PIRA DEMONSTRATION BIBLIOGRAPHY

AAPT SUMMER MEETING Washington DC July-2018

LECTURE DEMONSTRATIONS WORKSHOP

LEADERS

Cliff Bettis - University of Nebraska-Lincoln
Vacek Miglus - Wesleyan University
Sam Sampere - Syracuse University
Dale Stille - University of Iowa
Keith Warren - North Carolina State University
Stephen Irons - Yale University
Tom Senior - Lake Forest College

ADVISORS
David Maiullo - Rutgers University David Sturm - University of Maine

PIRA HOMEPAGE

http://www.pira-online.org

DEDICATION
 PIRA 200
 MECHANICS

i
REFERENCES ii
BIBLIOGRAPHY FORMAT iii
iv

1A Measurements
10. Basic Units
20. Error and Accuracy
30. Coordinate Systems
40. Vectors
50. Math Topics
60. Scaling

1C Motion In One Dimension
10. Velocity
20. Uniform Acceleration
30. Measuring g

1D Motion In Two Dimensions
10. Displacement in Two Dimensions
15. Velocity, Position, and Acceleration
40. Motion of the Center of Mass
50. Central Forces
52. Deformation by Central Forces
55. Centrifugal Escape
60. Projectile Motion

1E Relative Motion 19
10. Moving Reference Frames
20. Rotating Reference Frames
30. Coriolis Effect

1F Newton's First Law
22
10. Measuring Inertia
20. Inertia of Rest
30. Inertia of Motion
$1 G$ Newton's Second Law
10. Force, Mass, and Acceleration
20. Accelerated Reference Frames
30. Complex Systems

1H Newton's Third Law
29
10. Action and Reaction
11. Recoil

1J Statics Of Ridgid Bodies
30
10. Finding Center of Gravity
11. Exceeding Center of Gravity
20. Stable, Unstable, and Neutral Equilibrium
30. Resolution of Forces
40. Static Torque

1K Applications Of Newton's Laws
10. Dynamic Torque
20. Friction
30. Pressure

1L Gravity
10. Universal Gravitational Constant
20. Orbits

1M Work And Energy 43
10. Work
20. Simple Machines
30. Non-Conservative Forces
40. Conservation of Energy
50. Mechanical Power

1N Linear Momentum And Collisions
49
10. Impulse and Thrust
20. Conservation of Linear Momentum
21. Mass and Momentum Transfer
22. Rockets
30. Collisions in One Dimension
40. Collisions in Two Dimensions

1Q Rotational Dynamics
57
10. Moment of Inertia
20. Rotational Energy
30. Transfer of Angular Momentum
40. Conservation of Angular Momentum
50. Gyros
60. Rotational Stability

1R Properties Of Matter
10. Hooke's Law
20. Tensile and Compressive Stress
30. Shear Stress
40. Coefficient of Restitution
50. Crystal Structure

FLUID MECHANICS

2A Surface Tension
71
10. Force of Surface Tension
15. Minimal Surface
20. Capillary Action
30. Surface Tension Propulsion

2B Statics Of Fluids
20. Static Pressure
30. Atmospheric Pressure
35. Measuring Pressure
40. Density and Buoyancy
60. Siphons, Fountains, Pumps

2C Dynamics Of Fluids
10. Flow Rate
20. Forces in Moving Fluids
30. Viscosity
40. Turbulent and Streamline Flow
50. Vorticies
60. Non-Newtonian Fluids

OSCILLATIONS AND WAVES
3A Oscillations
10. Pendula
15. Physical Pendula
20. Springs and Oscillators
40. Simple Harmonic Motion
50. Damped Oscillators
60. Driven Mechanical Resonance
70. Coupled Oscillations
75. Normal Modes
80. Lissajous Figures
95. Non-Linear Systems

INDEX

3B Wave Motion
10. Transverse Pulses and Wave
20. Longitudinal Pulses and Waves
22. Standing Waves
25. Impedance and Dispersion
27. Compound Waves
30. Wave Properties of Sound
33. Phase and Group Velocity
35. Reflection and Refraction (Sound)
39. Transfer of Energy in Waves
40. Doppler Effect
45. Shock Waves
50. Interference and Diffraction
55. Interference and Diffraction of Sound
60. Beats
70. Coupled Resonators
3C Acoustics
117
10. The Ear
20. Pitch
30. Intensity and Attenuation
40. Architectural Acoustics
50. Wave Analysis and Synthesis
55. Music Perception and the Voice
3D Instruments
20. Resonance in Strings
22. Stringed Instruments
30. Resonance Cavities
32. Air Column Instruments
40. Resonance in Plates, Bars, Solids
46. Tuning Forks
50. Electronic Instruments
3E Sound Reproduction
20. Loudspeakers
30. Microphones
40. Amplifiers
60. Recorders

THERMODYNAMICS

4A Thermal Properties Of Matter 130
10. Thermometry
20. Liquid Expansion
30. Solid Expansion
40. Properties of Materials at Low Temperatures
50. Liquid Helium

4B Heat And The First Law
10. Heat Capacity and Specific Heat
20. Convection
30. Conduction
40. Radiation
50. Heat Transfer Applications
60. Mechanical Equivalent of Heat
70. Adiabatic Processes

4C Change Of State
10. PVT Surfaces
20. Phase Changes: Liquid-Solid
30. Phase Changes: Liquid-Gas
31. Cooling by Evaporation
32. Dew Point and Humidity
33. Vapor Pressure
40. Sublimation
45. Phase Changes: Solid-Solid
50. Critical Point

4D Kinetic Theory 147
10. Brownian Motion
20. Mean Free Path
30. Kinetic Motion
40. Molecular Dimensions
50. Diffusion and Osmosis

4E Gas Law
10. Constant Pressure
20. Constant Temperature
30. Constant Volume

4F Entropy And The Second Law 153
10. Entropy
30. Heat Cycles

ELECTRICITY AND MAGNETISM

5A Electrostatics
10. Producing Static Charge
20. Coulomb's Law
22. Electrostatic Meters
30. Conductors and Insulators
40. Induced Charge
50. Electrostatic Machines

5B Electric Fields and Potential 161
10. Electric Field
20. Gauss' Law
30. Electrostatic Potential

5C Capacitance 166
10. Capacitors
20. Dielectric
30. Energy Stored in a Capacitor

5D Resistance
10. Resistance Characteristics
20. Resistivity and Temperature
30. Conduction in Solutions
40. Conduction in Gases

5E Electromotive Force And Current
20. Electrolysis
30. Plating
40. Cells and Batteries
50. Thermoelectricity
60. Piezoelectricity

5F DC Circuits
10. Ohm's Law
15. Power and Energy
20. Circuit Analysis
30. RC Circuits
40. Instruments

5G Magnetic Materials
10. Magnets
20. Magnetic Domains and Magnetization

INDEX
30. Paramagnetism and Diamagnetism
40. Hysteresis
45. Magnetostriction and Magnetores
50. Temperature and Magnetism

5H Magnetic Fields And Forces
184
10. Magnetic Fields
15. Fields and Currents
20. Forces on Magnets
25. Magnet/Electromagnet Interaction
30. Force on Moving Charges
40. Force on Current in Wires
50. Torques on Coils

5J Inductance
10. Self Inductance
20. LR Circuits
30. RLC Circuits - DC

5K Electromagnetic Induction
193
10. Induced Currents and Forces
20. Eddy Currents
30. Transformers
40. Motors and Generators

5L AC Circuits
10. Impedance
20. RLC Circuits - AC
30. Filters and Rectifiers

5M Semiconductors And Tubes 203
10. Semiconductors
20. Tubes

5N Electromagnetic Radiation
205
10. Transmission Lines and Antennas
20. Tesla Coil
30. Electromagnetic Spectrum

OPTICS

6A Geometrical Optics 209

1. Speed of Light
2. Straight Line Propagation
3. Reflection from Flat Surfaces
4. Reflection from Curved Surfaces
5. Refractive Index
6. Refraction from Flat Surfaces
7. Total Internal Reflection
8. Rainbow
9. Thin Lens
10. Pinhole
11. Thick Lens
12. Optical Instruments

6B Photometry
10. Luminosity
30. Radiation Pressure
40. Blackbodies

6C Diffraction224
10. Diffraction Through One Slit
20. Diffraction Around Objects

6D Interference
10. Interference From Two Sources

INDEX

15. Interference of Polarized Light
16. Gratings
17. Thin Films
18. Interferometers

6F Color
10. Synthesis and Analysis of Color
30. Dispersion
40. Scattering

6H Polarization
10. Dichroic Polarization
20. Polarization by Reflection
30. Circular Polarization
35. Birefringence
50. Polarization by Scattering

6J The Eye
10. The Eye
11. Physiology

6Q Modern Optics
10. Holography
20. Physical Optics

MODERN PHYSICS

7A Quantum Effects
243
10. Photoelectric Effect
15. Millikan Oil Drop
20. Compton Effect
50. Wave Mechanics
55. Particle/Wave Duality
60. X-ray and Electron Diffraction
70. Condensed Matter

7B Atomic Physics
10. Spectra
11. Absorption
13. Resonance Radiation
20. Fine Splitting
30. Ionization Potential
35. Electron Properties
50. Atomic Models

7D Nuclear Physics 252
10. Radioactivity
20. Nuclear Reactions
30. Particle Detectors
40. NMR
50. Models of the Nucleus

7E Elementary Particles 257
10. Miscellaneous

7F Relativity
10. Special Relativity
20. General Relativity

ASTRONOMY

8A Planetary Astronomy 259
05. Historical Astronomy
10. Solar System Mechanics
20. Earth - Moon Mechanics
30. Views from Earth

INDEX

35. Views from Earth - 2
36. Planetary Properties $=$ Globes, Hemispheres $\&$ Maps
37. Planetary Properties $-2=$ The Planets
38. Planetary Properties $-3=$ Planetoids, Minor Objects
39. Planetary Properties - 4 = Planetary Characteristics
40. Planetary Properties - $5=$ Comets and the Search for Life

8B Stellar Astronomy
265
10. The Sun
20. Stellar Spectra
30. Stellar Evolution
40. Black Holes
50. Stellar Miscellaneous

8C Cosmology
268
10. Models of the Universe
20. Gravitational Effects

8D Miscellaneous
10. Miscellaneous Astronomy
20. Telescopes
30. Astronomical Instruments

8E Astronomy Teaching Techniques
270
30. Techniques and Projects

EQUIPMENT
9A Support Systems
10. Blackboard Tools
20. Audio
30. Slide Projectors
34. Film Projectors
36. Overhead Projectors
38. Video and Computer Projection
40. Photography
50. X-Y, Chart Recorders
60. Buildings
65. Museums
70. Resource Books
73. Unclassified Demonstrations
75. Philosophy
80. Films
85. Computer Programs

9B Electronic
10. Timers
15. Position and Velocity Detectors
17. Sources of Sound
18. Sound Detectors
20. Circuits/Components/Inst.
30. Function Generators
37. Oscilloscopes
40. Advanced Instruments
50. Power Supplies
60. Light Sources
61. Light Paths Made Visible
62. Lasers
65. Microwave Apparatus
90. Computer Interface

9C Mechanical

INDEX
10. Motors
20. Pumps
25. Vacuum
30. Air Support
35. Ripple Tank
40. Other

PIRA 1000 Appendix

Dedicated to the Memory of Phillip Johnson

This volume is dedicated to Phil Johnson whose life brought this work to fruition.
It was Phil's vision that the demonstrations used in the physics classroom could be cataloged, given a universal number code thus eliminating a lot of confusion from school to school. He also saw the value and need for a reference that professionals in the field could pickup and find any number of demonstration and the corresponding references to the literature on the subject. This makes it possible to expand and enhance the demonstrations facility at any school using this volume.

I remember the first meeting at the University of Texas Austin, where he was a tireless and demanding taskmaster. Keeping us on course and focused could be a challenge. Demonstrations that were new to any number of us would lead us off into extraneous discussions very easily, but Phil with a firm hand would get us back on track. Phil could play just as easily as any of us and really enjoyed an evening of conviviality, the discussion more often than not wandered back to demos and how to improve them. Talking shop is easy to do when you love your job, and Phil loved demos!

Phil was also the quintessential Big Demo man. His demonstration show at the American Association of Physics Teachers at the University of Minnesota is a legend. It was my first show and I learned why bother crushing a 5 gallon can when you can crush a 55 gallon drum with stunning effect. Or was it the monkey shoot that was performed with a live professor dropped from a 25 to 30 foot scaffold into a pole vaulters foam safety pit.

Those of us who knew Phil well will find it hard to forget that quiet smile and gentle man who found it easy to laugh. A man whose focus brought a new professionalism to the world of lecture demonstrations. A man who by the strength of his character willed this bibliography to life.

Zigmund J. Peacock
University of Utah

PIRA DEMONSTRATION BIBLIOGRAPHY

This Demonstration Bibliography consists of entries from:

How to use the Physics Demonstration Bibliography

This Demonstration Bibliography contains about 12,000 entries including all of Sutton, Freier \& Anderson, Meiners, Hilton, Dick and Rae, The University of Minnesota Demonstration Handbook, The American Journal of Physics (AJP), The Video Encyclopedia of Physics Demonstrations, articles from The Physics Teacher (TPT), Sprott, and Bilash II \& Maiullo.

The on-line version of this Bibliography may be found at the University of Colorado at Boulder. The URL is: http://physicslearning.colorado.edu/Bib
Excel and PDF versions can be found at: http://www.pira-online.org in the "Resources" section under . the DCS tab.

Information in the main body of this bibliography is listed in four columns:

Reference	Demonstration Name	PIRA DCS number	Abstract
Example:			
F\&A, Mb-16	Monkey and Hunter	1D60.30	A compressed air gun shoots at a tin can.

Each reference has a unique numbering format. This unique format is used in the bibliography as a means of identifying the source and entry of each reference. Some references have a similar format, so an author prefix has been added to the entries. A "1" or a "2" has been added to the author prefix when that author has more than one book listed as a reference.
A list of formats for the reference column in this book is:

Sut, M-1
F\&A, Ma-1
Hil, M-1d
Mei, 8-2.8
D\&R, M-108
UMN, 1A12.01
AJP 52(1), 85
TPT 15(5), 300
Disc 01-01
Sprott, 1.1
Bil\&Mai, p3
Ehrlich 1, p. 3
Ehrlich 2, p. 22

Sutton

Freier \& Anderson
Hilton
Meiners
Dick and Rae
University of Minnesota Handbook
American Journal of Physics
The Physics Teacher
The Video Encyclopedia of Physics Demonstrations
Julien Clinton Sprott
Bilash II \& Maiullo
Ehrlich - Turning the World Inside Out
Ehrlich - Why Toast Lands Jelly-Side Down

The "demonstration" name listed in the bibliography is either the name listed on the reference or, if none is given, a simple descriptive name. In cases where there are several common names for a demonstration, the committee has chosen a preferred name.

The "abstract" is very brief. It is not intended to be a summary of the reference. One sentence is, in general, sufficient to describe the unique characteristics, if any, of the item.

Each demonstration is listed in only one location, even if it is commonly used to illustrate several concepts. The committee has tried to determine the most fundamental use for any demonstration and included reference pointers at other common locations of demonstration use.

The PIRA bibliography is also a dynamic reference. The bibliography changes and expands as new technologies, demonstrations, education standards, and references emerge. An example of this would be when a demonstration moves out of the PIRA 200,500, or 1000. In this case the reference that has moved out of the PIRA 200, PIRA 500, or PIRA 1000, is given the designation "PIRA 200 - Old", "PIRA 500 - Old", or "PIRA 1000 - Old".
The PIRA Bibliography Committee approves to all changes and additions to the Bibliography.

1A10.20	Standards of Mass
1A10.35	Meter Stick
1A40.10	Vectors
1A50.10	Radian
1A60.10	Powers of Ten
1C10.05	Ultrasonic Ranger and Student
1C10.20	PASCO Dynamics Carts
1C20.10	Penny and Feather
1C30.10	PASCO Free Fall
1D40.10	Throw Objects
1D50.10	Ball on a String
1D50.40	Pail of Water, Pail of Nails
1D60.10	Howitzer and Tunnel
1D60.20	Simultaneous Fall
1D60.30	Monkey and Hunter
1E10.10	Bulldozer on Moving Sheet
1E10.20	Frames of Reference Film
1F20.10	Inertia Ball
1F20.30	Tablecloth Pull
1F30.10	Persistence of Motion
1G10.10	Accelerating Air / Dynamics Cart
1G10.40	Atwood's Machine
1H10.10	Push Me Pull Me Carts
1J10.10	Map of State
1J11.20	Tower of Lire
1J20.10	Bowling Ball Stability
1J20.11	Balance the Cone
1J30.10	Suspended Block
1J30.25	Rope and Three Students
1J40.10	Grip Bar
1J40.20	Torque Beam
1K10.20	Ladder Against a Wall
1K10.30	Walking the Spool
1K20.10	Friction Blocks - Surface Materials
1K20.30	Static vs. Sliding Friction
1L10.10	Cavendish Balance Video
1L20.10	Gravitational Wells
1M10.20	Pile Driver
1M20.10	Pulleys
1M40.10	Nose Basher
1M40.15	Stopped Pendulum
1M40.20	Loop the Loop
1N10.20	Egg in a Sheet
1N22.120	Fire Extinquisher Rocket
1N21.10.10	Collisision Bocket Balls
1N40.24	Air Table Collisions
1Q10.10	Inertia Wands and Two Students
1Q10.30	Ring, Disk, and Sphere Race
1N20	Carts Apart Carts
1Nall	

1Q20.10	Adjustable Angular Momentum
1Q30.10	Passing the Wheel
1Q40.10	Rotating Stool and Masses
1Q40.22	Rotating Hoberman Sphere
1Q40.30	Rotating Stool and Wheel
1Q50.50	Precessing Gyro
1R10.10	Stretching a Spring
1R40.30	Happy and Sad Balls
2A10.20	Floating Metals
2B20.40	Pascal's Vases
2B30.10	Crush the Can
2B30.30	Magdeburg Hemispheres
2B35.30	Manometer
2B40.10	Weigh Submerged Block
2B40.20	Archimedes' Principle
2C10.10	Torricelli's Tank
2C20.15	Venturi Tubes
3A10.10	Simple Pendulum
3A15.10	Physical Pendulum
3A20.10	Mass on a Spring
3A40.10	Cir. Motion vs. Mass on a Spring
3A60.10	Tacoma Narrows Film / Video
3A70.20	Coupled Pendula
3B10.10	Pulse on a Rope
3B10.30	Shive/Bell Labs Wave Model
3B20.10	Hanging Slinky
3B22.10	Melde's Apparatus
3B40.10	Doppler Buzzer
3B50.40	Moire Pattern Transparencies
3B55.10	Speaker Bar
3B55.40	Trombone
3B60.10	Beat Forks
3B60.20	Beats on Scope
3C20.10	Range of Hearing
3C30.20	DB Meter and Horn or Speaker
3D30.60	Kundt's Tube
3D30.70	Hoot Tubes
3D40.20	Singing Rod
3D40.30	Chladni Plate
3D40.55	Shattering Goblet
4A30.10	Bimetallic Strip
4A30.20	Ball and Ring
4A40.30	Smashing Rose and Tube
4B20.10	Convection Tube
4B30.21	Conduction Rods
4B40.10	Light the Match
4B50.25	Heating a Water Balloon
4B60.10	Dropping Lead Shot

4B70.20	Expansion Cloud Chamber
4C30.10	Boiling by Cooling
4C31.30	Drinking Bird
4D10.10	Brownian Motion Cell
4D20.10	Crookes' Radiometer
4D30.20	Molecular Motion Demonstrator
4E10.20	Balloon in LN2
4E30.10	Constant Volume Bulb
4F30.10	Stirling Engine
5A10.10	Rods and Fur
5A20.10	Rods and Pivot
5A22.25	Soft Drind Can Electroscope
5A40.10	Charging by Induction
5A40.20	Charge Propelled Cylinder
5A50.30	Van de Graaff Generator
5B10.10	Hair on End
5B10.40	Electric Field Lines
5B20.10	Faraday's Ice Pail
5B20.35	Radio in a Cage
5B30.35	Point and Ball with Van de Graaff
5C10.20	Parallel Plate Capacitor
5C20.10	Capacitor with Dielectrics
5C30.20	Short a Capacitor
5C30.30	Light the Bulb
5D10.40	Resistance Model
5D20.10	Wire Coil in LN2
5D20.60	Conduction in Glass
5D40.10	Jacob's Ladder
5E40.25	Lemon Battery
5E50.10	Thermocouple
5F10.10	Ohm's Law
5F15.35	Fuse with Increasing Load
5F20.10	Kirchhoff's Voltage Law
5F20.50	Series and Parallel Circuits
5F30.10	Capacitor and Light Bulb
5G10.20	Break a Magnet
5G20.30	Magnetic Domain Models
5G30.10	Paramagnetism and Diamagnetism
5H30.10	Magnets and Pivot
5G50.10	Curie Point
5H40.10	Parallel Wares Tube
5H40.15	Interacting Coils
5G50.50	Meissner Effect
5H10.20	Oersted's Effect
5H10.30	Magnet and Iron Filings
5H15.10	Magnetic Field Around a Wire
5H15.40	Solenoid and Iron Filings

5H40.30	Jumping Wire
5H50.10	Model Galvanometer
5 J 20.10	LR Time Constant on Scope
5 J 20.20	Series orParallel Lamps w/Inductor
5K10.20	Induction Coil and Magnet
5K10.30	Mutual Induction Coils with Battery
5K20.10	Pendulum in Big Electromagnet
5K20.25	Magnets and Tubes
5K20.26	Faraday Repulsion Coil
5K30.20	Dissectible Transformer
5K40.40	Motor / Generator
5L20.20	RLC Resonance
5N10.80	EM Vectors
5N20.10	Tesla Coil / Induction Coil
5N30.10	Projected Spectrum w/ Prism
6A01.10	Speed of Light
6A20.10	Concave and Convex Mirrors
6A40.30	Disappearing Beaker
6A42.20	Big Plastic Refraction Tank
6A44.10	Blackboard Optics
6A44.40	Laser and Fiber Optics
6A60.30	Projected Filament w/ Lens
6B10.15	Inverse Square Model
6C10.10	Single Slit and Laser
6D10.10	Double Slits and Laser
6D20.10	Number of Slits
6D30.10	Newton's Rings
6D30.20	Soap Film Interference
6D40.10	Michelson Interferometer
6F40.10	Sunset
6H10.10	Polaroids on the Overhead
6 H 10.20	Microwave Polarization
6H20.10	Brewster's Angle
6H30.10	Three Polariods
6H30.40	Karo Syrup
6 J 10.10	Eye Model
6Q10.10	Holograms
7A10.10	Discharging Zinc Plate
7A50.40	Vibrating Circular Wire
7A60.10	Electron Diffraction
7B10.10	Student Gratings and Line Sources
7D10.10	Geiger Counter and Samples
7D30.60	Diffusion Cloud Chamber
7F10.60	Lorentz Transformation/Time Dilation
8A10.10	Orrery
8A20.15	Phases of the Moon
8A30.30	Retrograde Motion Model
8A35.10	Celestial Sphere
8B10.50	Sunspots on the Overhead
8B10.60	Random Walk
8B40.30	Membrane Table / Black Hole
8C10.30	Expanding Universe

	MEASUREMENT	1A00.00	
	Basic Units	1A10.00	
PIRA 1000	basic unit set	1A10.10	
Hil, M-1a	standards of mass, etc	1A10.10	Show models of the fundamental units of mass and length and a stop clock for time.
Disc 01-01	basic unit set	1A10.10	Show a clock with a second sweep, meter and yard sticks, and kilogram and pound mass.
PIRA 200	standards of mass	1A10.20	Show students $1 \mathrm{lb}, 1 \mathrm{~kg}, 1$ slug masses.
UMN, 1A10.20	standards of mass	1A10.20	Show students $1 \mathrm{lb}, 1 \mathrm{~kg}, 1$ slug masses.
F\&A, Ma-2	standards of mass	1A10.20	Show sets of calibrated weights.
Sut, M-1	table of masses	1A10.24	A table of masses covering the range from the universe to the electron.
Mei, 8-2.8	conservation of mass	1A10.28	Weigh a flask with Alka-Seltzer closed and open on a crude and accurate balance to aid in conservation of mass discussion.
AJP 28(2),167	TME and Glug	1A10.29	The Technische Mass Einheit ("metric slug") = 10 Glugs.
PIRA 500	standards of length	1A10.30	
UMN, 1A10.30	standards of length	1A10.30	Put out standard yard and meter.
F\&A, Ma-1	standards of length	1A10.30	Standard meter and standard yard.
D\&R, M-016	standard meter stick	1A10.30	A meter stick with painted 10 cm lengths for easy visibility.
AJP 34(5),419	Airy points of a meter bar	1A10.32	Support a rectangular bar at the specific points in order that the distance between engravings will not be altered by deflections due to the weight of the bar.
AJP 57(11),988	historical note	1A10.33	Very interesting history of the development of the meter.
AJP 52(7),607	the new meter	1A10.34	Wouldn't it be nice to start off six page article on the new meter with a concise definition of the new meter?
PIRA 200	meter stick	1A10.35	Set out a standard meter.
PIRA 1000	"1 nsec"	1A10.36	
UMN, 1A10.36	1 "nsec"	1A10.36	Cut a length of meter stick to equal the distance light travels in one nsec.
Bil\&Mai, p12	significant digits	1A10.37	Modified meter sticks are used to teach about error and significant digits.
PIRA 1000	body units	1A10.38	
UMN, 1A10.38	body units	1A10.38	
D\&R, M-020	body units	1A10.38	Identifying parts of the body that approximate metric units.
PIRA 500	clocks	1A10.40	
UMN, 1A10.40	clocks	1A10.40	Set out a timer with a one second sweep, an hour glass, a metronome, etc.
PIRA 1000	WWV signal	1A10.45	
UMN, 1A10.45	WWV signal	1A10.45	Listen to WWV and show the signal on an oscilloscope.
F\&A, Ma-3a	WWV signal	1A10.45	Listen to WWV and display on an oscilloscope.
Hil, M-1d	WWV	1A10.45	Listen to WWV and show the signal on an oscilloscope.
AJP 55(4),378	WWV on your microcomputer	1A10.46	Use WWV to set the clock on your microcomputer and determine how fast it runs.
F\&A, Ma-3b	Orrery	1A10.48	Use an Orrery to show sidereal time.
Hil, M-1e	Sidereal time	1A10.49	Two clocks on permanent display show Greenwich and Sidereal time.
PIRA 1000	one liter cube	1A10.50	
UMN, 1A10.50	one liter cube	1A10.50	A one liter wood cube has cm square rules on each face and removable one cm sq and one $\mathrm{cm} \times$ one dm blocks.
Hil, M-20a. 6	one liter cube	1A10.50	Picture of a one liter cube.
D\&R, M-028	one liter volume	1A10.50	Show 1 liter liquid volume.
Bil\&Mai, p 14	estimating volumes	1A10.52	Pinto beans and a 1 L bottle are used in an activity where students measure the size of one bean and then use that figure to estimate how many beans are in a full bottle.
PIRA 1000	mass, volume, and density	1A10.55	

Demonstratio	Bibligrqaphy	July 2015	
UMN, 1A10.55	mass, volume, and density	1A10.55	Compare wood and aluminum cubes, each with 10 cm sides, (equal volume). Compare a 10 cm aluminum cube with a $10 \mathrm{~cm} \mathrm{sq} \times 4 \mathrm{~cm}$ lead block (equal mass). Compare a 10 cm aluminum cube with a $10 \mathrm{~cm} \mathrm{sq} \times 4 \mathrm{~cm}$ aluminum block (equal density).
TPT 34(7), 448	volume relationship set	1A10.57	The relationship between the volumes of a cone, cylinder, cube, pyramid, rectangular prism, and sphere, all of equal diameter and height is explored. Or, take two cone type cups, cut one to half height, and determine how many small cups of water it takes to fill the uncut cup.
PIRA 1000	Avogadro's number box	1A10.60	
UMN, 1A10.60	Avogadro's number box	1A10.60	A cube with sides of 28.2 cm has a volume of 22.4 L at STP.
UMN, 1A10.60	Avogadro's number box	1A10.60	
Hil, H-4a	Avogadro's number box	1A10.60	A 22.4 liter box to represent the volume of one mole at STP.
$\begin{aligned} & \text { D\&R, H-450, M- } \\ & 028 \end{aligned}$	Avogadro's number box	1A10.60	A 22.4 liter box representing the volume of one mole at STP. Masses of one mole of common elements may also be displayed on the box.
PIRA 1000	mole samples	1A10.65	
UMN, 1A10.65	mole samples	1A10.65	Show mole samples of carbon, iron, copper, zinc, etc.
PIRA 1000	density samples	1A10.70	
UMN, 1A10.70	density samples	1A10.70	One kg samples of lead, aluminum, water, wood each have 5 cm square bases. A one meter frame shows the size of approximately 1 kg of air.
PIRA LOCAL	Larry's density samples	1A10.71	Pass around to the class some labeled uniform cylinders of different materials.
	Error and Accuracy	1A20.00	
PIRA 1000	Gaussian collision board	1A20.10	
UMN, 1A20.10	Gaussian curve marble board	1A20.10	
Sut, A-47	Gaussian collision board	1A20.10	Balls roll down a nail board into parallel chutes forming a probability curve similar to the distribution of molecular velocities.
D\&R, M-042	Gaussian collision board	1A20.10	Steel balls roll down a peg board with parallel chutes. Balls falling into chutes should form a probability curve.
Disc 16-12	Gaussian curve	1A20.10	A commercial device for the overhead projector where ball bearings roll through an array of nails into parallel chutes.
PIRA 1000	coin flip	1A20.20	
UMN, 1A20.20	coin flips	1A20.20	
PIRA 1000	dice	1A20.25	
UMN, 1A20.25	dice	1A20.25	
AJP 43(8),732	contact time measurement	1A20.31	Measure contact time of two hammers being struck together. A pulse generator is gated to a pulse counter while the hammers are in contact. Frequency of the pulse generator can be changed to vary accuracy.
Mei, 6-1	vernier calipers	1A20.41	Use commercial large scale verniers to show how they work. Also mentions large coordinate systems.
Hil, M-1b	vernier calipers, etc	1A20.41	Demonstration versions of the micrometer and vernier calipers.
Hil, M-1c	vernier scale, slide rule for overhead projector	1A20.42	A slide rule and vernier scale made of clear plastic for use on the overhead projector.
PIRA 1000	weight judgment	1A20.50	
Sut, M-2	wood and brass blocks	1A20.50	A small heavy weight and a slightly lighter large wood block are passed around the class.
D\&R, M-052	weight judgement	1A20.50	Pass 35 mm film canisters with different masses inside to students and have them place in proper order from lightest to heaviest.
Mei, 6-2.5	lead ping pong ball and foam chunk	1A20.51	Students judge weight of a white lead filled ping pong ball and a chunk of black foam.
Mei, 6-1.1	statistics on overhead projector	1A20.55	Transparent Lucite probability board for the overhead projector. Construction details in the Appendix, p. 533.
PIRA 1000	reaction time	1A20.60	
UMN, 1A20.60	reaction time	1A20.60	Cover 3/4 of a stop clock face. Push the stop button when the hand shows.
F\&A, Mb-1a	reaction time	1A20.60	A large stop clock is covered by a disc with one quadrant cut out. Stop the clock as soon as you see the hand emerge.
Mei, 6-2.6.1	reaction time	1A20.60	Same as Mb-1a.
	Coordinate Systems	1A30.00	
PIRA 500	XYZ Axes	1A30.10	

Demonstratio	Bibligrqaphy	July 2015	
UMN, 1A30.10	XYZ Axes	1A30.10	A stand holds large arrows. Also includes circular arrows that can be mounted on the vectors.
AJP 35(12), x	non-orthogonal frames	1A30.15	A model for demonstrating the geometry of vectors in non-orthogonal frames.
Mei, 13-8.1	Euler's angles	1A30.21	A model that demonstrates the orientation of an arbitrarily oriented set of orthogonal axes with respect to another orthogonal set which is fixed.
AJP 28(9),818	Euler's angles - MITAC gyro model	1A30.22	Use the MITAC gyro as a classroom model to illustrate Euler's angles.
PIRA 1000	polar coordinates	1A30.30	
UMN, 1A30.30	polar coordinates	1A30.30	Need a demo to go with the xyz axes.
PIRA 500	chalkboard globe	1A30.40	
UMN, 1A30.40	chalkboard globe	1A30.40	Draw coordinates on a 20 " plain globe.
PIRA 1000	blackboard hemisphere	1A30.41	
UMN, 1A30.41	blackboard hemisphere	1A30.41	Half of a 20" dia. blackboard sphere.
	Vectors	1A40.00	
PIRA 200	components of a vector	1A40.10	Arrows define a three dimensional coordinate system. An arbitrary vector is viewed in the three planes.
UMN, 1A40.10	components of a vector	1A40.10	
Mei, 6-4.3	components of a vector	1A40.10	A three dimensional vector model on a large Lucite box. Diagrams.
D\&R, S-025	components of a vector	1A40.10	Several three dimensional coordinate systems used to describe effects of motion in a moving frame. Use a meter stick to locate points relative to origin.
Disc 01-07	3-D vector components	1A40.10	Metal arrows define a three dimensional coordinate system. An arbitrary vector is viewed in the three planes.
Hil, M-10a	components of a vector	1A40.13	A Lucite frame for introducing vectors.
PIRA 1000	vector components animation	1A40.14	
Disc 01-04	vector components	1A40.14	Animation.
Sut, M-3	project components of a vector	1A40.15	A horizontal arrow is shadow projected onto two screens at 90 deg. facing the class.
PIRA 1000	folding rule	1A40.20	
UMN, 1A40.20	folding rule	1A40.20	A large version of the folding carpenter's rule of four 2' sections with painted arrows.
PIRA 1000	tinker toys	1A40.25	
UMN, 1A40.25	tinker toys	1A40.25	Put out a box of tinker toys that includes arrow tips.
F\&A, Mb-2	tinker toys	1A40.25	A set of tinker toys is set out.
PIRA 1000	magnetic vector addition	1A40.30	
UMN, 1A40.30	magnetic vector addition	1A40.30	
D\&R, M-068	magnetic vector addition	1A40.30	Magnetic arrows used to show vector addition.
PIRA 1000	vector addition (parallelogram)	1A40.31	
D\&R, M-064	vector parallelogram	1A40.31	A parallelogram arrangement used to show vector addition on the chalk board.
Disc 01-02	vector addition (parallelogram)	1A40.31	Animation.
PIRA 1000	vector addition (head to tail)	1A40.33	
Disc 01-03	vector addition (head to tail)	1A40.33	Animation.
PIRA 1000	Vernier Vector Addition II	1A40.35	
UMN, 1A40.35	Vernier Vector Addition II	1A40.35	Computer program.
PIRA 1000	resultant of vectors	1A40.40	
Mei, 6-4.4	resultant of vectors	1A40.40	Show the variation in the magnitude of the resultant of two vectors with a change in the angle between them on the overhead projector. Construction details in Appendix, p. 537.
Mei, 6-4.7	resultant of vectors	1A40.41	Vector addition using elastic vectors on an open framework.
Mei, 6-4.5	vector displacement	1A40.50	An overhead projector device uses two compass needles to show that a vector remains invariant when displaced. Diagram.
PIRA 1000	vector dot products	1A40.70	
Disc 01-05	vector dot products	1A40.70	Animation.
PIRA 1000	vector cross products	1A40.75	

Page 3

July 2015
Mechanics
1A40.75 Animation shows vectors superimposed on a right hand.
1A50.00
1A50.10 A flexible strip of plastic equal to the radius is bent around the edge of a circle.
1A50.10 Show a flexible rod has a length equal to the radius of a large disc, then bend it around the circumference and mark off the radians.
1A50.10 A string is used to mark off radii on the circumference of a large disc.
1A50.10 A flexible strip of plastic equal to the radius is bent around the edge of a circle.
1A50.10 A radian disc is made out of wood and painted bright yellow, looking remarkably similar to a Pac-Man.
1A50.30 Linkages connect a spot moving around a circle with spots moving orthogonally as the sine and cosine.
1A50.51 Working model of a binary counter with a scale of 32 . Construction details in the Appendix, p. 533.
1A50.52 A mechanical binary scaler with flipping wood blocks.
1A50.60 Some mechanisms to demonstrate Dirac's strings where turning through 360 degrees will not bring it back to the initial configuration.
1A50.60 Model of a discrete linear transformation where columns of water in a Plexiglas cube are allowed to flow through a matrix plate into compartments models a discrete linear transformation.
1A50.65 A balancing meter stick as an analog device for solving linear simultaneous equations.
1A50.70 Make a projection slide rule with front and back scales mounted side by side.
1A50.80 A general treatment of integer values of the sum of reciprocals applicable to parallel resistors, series capacitors, spherical mirrors, thin lenses, etc.
1A60.00
1A60.10 "Powers of Ten" is a film covering scales from the universe to sub-atomic.
1A60.10 "Powers of Ten" is a visual trip covering scales from the universe to subatomic. It is available in film and videodisc versions.
1A60.10 "Powers of Ten" film and "Metric Mania", a fun transparency.

1A60.20
1A60.20 A wood "cow" with barely adequate legs stands and another scaled up by a factor of 5 collapses.
1A60.22 The fundamentals of scaling in the zoological domain covering many animal characteristics.
1A60.30
1A60.30 "Bridges" of the same geometry are scaled in every dimension by 2:1. Masses placed in the center of the bridges are also scaled 2:1.
1A60.40
1A60.40 A large cube made up of 27 smaller ones is painted black on the outside. Knock the stack apart and show the increase in surface area by the preponderance of unpainted surfaces.
1A60.40 Cut a cube painted black into 27 smaller cubes. When dismantled, the unpainted surfaces show the increase in surface area.
$1 \mathrm{C00.00}$

1 C 10.00
1C10.05
Have a student walk to and from a sonic ranger while observing plots of position, velocity, and acceleration.
1C10.05 Have a student walk toward and away from a sonic ranger while observing plots of position, velocity, and acceleration on a projection of the Mac.

1C10.05 A record player with multiple speeds is used to pull a dynamics cart. Record the motion of the cart with a motion sensor.
1C10.10 A bulldozer runs at constant speed on a moving paper to show how velocities add and subtract.

Demonstrat	Bibligrqaphy	July 2015	
UMN, 1C10.10	bulldozer on moving sheet	1C10.10	The bulldozer on a moving sheet moves in the same or opposite direction as the moving sheet, not at a angle, to show addition and subtraction of velocities.
D\&R, S-020	vehicle on a moving sheet	1C10.10	A battery powered vehicle runs at a constant speed on a moving paper to show how velocities add and subtract.
Bil\&Mai, p 25	vehicle on a moving sheet	1C10.10	A moving toy car is placed on a large sheet of paper. The speed of the car is measured when the sheet and car are moving in the same direction, opposite direction, and several other scenarios.
Disc 01-09	bulldozer on moving sheet	1C10.10	Identical bulldozers run at constant speed, one on a moving paper, to show how velocities add and subtract.
PIRA 200	PASCO dynamics cart	1C10.20	
PIRA 1000- Old	PASCO dynamics cart	1C10.20	
UMN, 1C10.20	PASCO dynamics cart	1C10.20	
Hil, M-2a	measuring constant velocity	1C10.21	Time a toy truck with a stop clock as it is pulled across the table at constant velocity in front of a meter stick.
Mei, 7-1.1	photographing uniform motion	1 C 10.22	Take an open shutter photo of a toy tractor moving a blinky.
PIRA 500	air track and glider	1 C 10.25	
UMN, 1C10.25	air track and glider	1C10.25	
Disc 01-08	constant velocity (airtrack)	1C10.25	Dots are superimposed on the screen every half second to mark the position of the air glider.
Mei, 11-1.4	velocity - air track and glider	1C10.26	Measuring air track glider velocity: stopwatch and meter stick, spark recorder, photo interrupt.
PIRA 1000	velocity - air track and glider	1 C 10.27	
UMN, 1C10.27	velocity - air track and glider	1 C 10.27	Level air track with the Pasco photogate timer system. Use one or two timers.
PIRA 1000	approaching instantaneous velocity	1C10.30	
UMN, 1C10.30	approaching instantaneous velocity	1C10.30	An air glider is given a reproducible velocity by a solenoid kicker. Flags of decreasing length interrupt a photo timer.
Mei, 7-1.16	approaching instantaneous velocity	1C10.30	A ball breaks two foils to start and stop a timer. Change spacing of gates to approach instantaneous velocity.
F\&A, Mb-10	strobed disc	1C10.32	Look at a fluorescent spot on a 1725 RPM disc with a stroboscope at multiples of the frequency to demonstrate the limiting process.
Mei, 7-2.1	speed at a point	1 C 10.33	Take a picture of a light bulb pendulum with a strobed camera.
TPT 16(3),160	terminal velocity	1 C 10.51	A mechanical device rolls down an incline with a terminal velocity.
TPT 1(2),82	terminal velocity tube	1C10.55	A marble rolling down a tube of water at a slight incline reaches terminal velocity allowing slow constant velocity to be measured.
PIRA 1000	muzzle velocity	1 C 10.60	
AJP 44(7),711	muzzle velocity - foil	1C10.60	Graphite rods are broken to switch an oscillator in and out of a counter circuit.
AJP 45(9),882	muzzle velocity - foil	1C10.60	Use the circuit in AJP 44(9),85 with the breaking foil method of measuring muzzle velocity.
AJP 45(9),882	muzzle velocity - foil	1C10.60	Using the apparatus by Blackburn and Koenig, AJP 44,855(1976), to measure the muzzle velocity of a rifle.
TPT 20(3),184	muzzle velocity - foil	1C10.60	The bullet passes through two aluminum foil strips. The signal is shown on an oscilloscope.
F\&A, Mb-21	muzzle velocity - foil	1C10.60	Bullet breaks two metal foils triggering a timer.
Mei, 7-1.2	muzzle velocity - foil	1C10.60	Aluminum foil triggers 1 m apart start and stop an electronic timer. Construction details.
AJP 55(9),856	muzzle velocity - photogate timer	1C10.61	Measure the speed of a bullet with eight crisscrossing LED beams with the detectors connected to an eight input OR gate.
Mei, 7-1.19	muzzle velocity - photogate	1 C 10.61	Details of a photoelectric triggering circuit good to a few microseconds.
AJP 47(5),426	time of flight	1 C 10.62	An inexpensive circuit useful in time-of-flight velocity measurements for bullet velocity with the ballistic pendulum demonstration of momentum conservation. Mechanical construction considerations are outlined.
AJP 51(7),602	time of flight	1C10.62	An apparatus measures the time of flight of the projectile fired from the Blackwood pendulum apparatus by timing signals from two microphones. Circuits are included.
D\&R, M-162	time of flight	1C10.62	A baseball with inserted timer that starts when ball is released and stops when ball is caught or hits something.
Sut, E-264	RC bullet timer	1 C 10.63	A capacitor is discharged to a ballistic galvanometer during the time the bullet passes between two gates. Diagrams and theory.
PIRA 1000	muzzle velocity - disc	1 C 10.65	
F\&A, Mb-22	muzzle velocity - disk	1C10.65	An air gun is fired through two rotating cardboard discs separated by some distance.
Mei, 7-1.3	muzzle velocity - disk	1 C 10.65	Shooting a bullet through two rotation discs.

Page 5

Sut, M-72
PIRA 200
UMN, 1C20.10

Sut, M-79
Hil, M-5a
D\&R, M-088
Sprott, 1.1
Bil\&Mai, p 27

Disc 01-14
UMN, 1C20.11
D\&R, M-136
PIRA 1000 hammer and feather on the Moon
PIRA 1000
UMN, 1C20.15
TPT 17(5),314
rk balls
cork and lead ball drop
drop cork \& lead balls

Sut, M-80
D\&R, M-120
Bil\&Mai, p 33
drop iron and wood balls drop heavy and light balls drop heavy and light balls

Ehrlich 1, p. 3	drop balls of different sizes
PIRA 1000	drop ball and paper UMN, 1C20.16
drop ball and paper	
TPT 32(9), 537	flat and crumpled dollar bills quarters and cards
AJP 30(9),656	heavy and light balls pedagogy
Ehrlich 1, p. 44	freefall and air resistance

TPT 35(6), 364
freefall and air resistance
TPT 25(8), 505
freefall and air resistance

TPT 24(3), 153
freefall and air resistance

TPT 43(7), 432
PIRA 500
UMN, 1C20.20
freefall and air resistance equal time equal distance drop equal time equal distance drop

TPT 16(4),233
F\&A, Mb-12
Mei, 7-1.12
Sut, M-84
D\&R, M-094
Bil\&Mai, p 29
equal time equal distance drop equal time equal distance drop

1C10.65 Fire a bullet through two discs rotating on the same shaft.
1C10.66 Sets of contacts two meters apart trigger a strobe which illuminates a spinning wheel marked with a radial line. Measure the angle on the photograph.
1C10.71 Project the minute hand of a clock.
1C10.72 A table of velocities ranging from continental drift to the speed of light.
1C20.00
1C20.10
Drop a penny and feather in a glass tube, first full of air and then evacuated.
1C20.10 Drop a penny and feather in a glass tube, first full of air and then evacuated.

1C20.10 Invert a large glass tube containing a feather and bit of lead.
1C20.10 Dropping the feather and coin in a vacuum.
1C20.10 Drop a penny and feather in an acrylic tube, first full of air and then evacuated.
1C20.10 In an evacuated tube objects fall at the same rate independent of their size, shape, and mass.
1C20.10 How to make and use a homemade or commercial penny and feather tube.

1C20.10 Metal and paper discs are placed in identical tubes.
1C20.11
1C20.11
Drop a flat dollar bill and a book simultaneously. Then place bill on top of book and drop.
1C20.12
1C20.15
1C20.15
1C20.15 Hint on how to drop a heavy and light object simultaneously with one hand.

1C20.15 Iron and wood balls are dropped simultaneously.
1C20.15 Heavy and light balls are dropped simultaneously.
1C20.15 Drop heavy and light balls from the same height and see if they hit the floor at the same time. Air resistance is a factor that must be considered in very light balls such as Ping Pong balls.
1C20.15 Drop balls of different sizes from the same height. Works well unless you use a ball of extremely low density.
1C20.16
1C20.16 Drop a ball and sheet of paper, then drop a ball and a wadded sheet of paper.
1C20.16 Drop flat and wadded dollar bills simultaneously.
1C20.16 A quarter is attached near the edge of a notecard. Another quarter is attached to the center of another notecard. Both are dropped simultaneously from the same height.
1C20.17 Try asking what height the heavy ball must be dropped from so it hits the floor at the same time as the light ball.
1C20.18 Observe the effect of air resistance on objects of different size, shape, density, and orientation. Also, tape a coin to the center of a note card and then a coin to the middle of another card's short side edge. Hold both horizontally and then drop.
1C20.18 Video capture to study the effect of air resistance on a variety of objects in freefall and in two dimensions.
1C20.18 A large light object is dropped from a height of 3 meters. Photogates are used to measure the speed of fall.
1C20.18 Air resistance acting on a sphere analyzed with numerical analysis, strobe photographs, and videotapes. The sphere is a Ping-Pong ball.
1C20.18 On the accuracy of computing the acceleration of free fall in air.
1C20.20
1C20.20 Climb a ladder and drop two long strings with balls - one with equal distance intervals and the other with equal time intervals.
1C20.20 String and Sticky Tape Series: directions for simple apparatus.
1C20.20 Drop a long string of balls with spacing of 1,4,9,16.
1C20.20 Drop a string with wood blocks tied at 1,4,9,16 unit intervals.
1C20.20 Drop a string with a series of lead balls attached.
1C20.20 Drop a long string of balls with spacing of 1,4,9,16,etc.
1C20.20 Metal nuts are tied to a string at strategic intervals. When held above a pizza pan and released the nuts are heard to strike the pan at equal time intervals.

Demonstration Bibligrqaphy

Disc 01-12	string and weights drop
PIRA 500	inclined air track
UMN, 1C20.30	inclined air track
Mei, 11-1.6	inclined air track
Mei, 7-1.5.1	inclined air track
Disc 01-11	constant acceleration
Hil, M-3e	inclined air track
AJP 45(10),1005	inclined air track
Hil, M-15e. 2	inclined air track
D\&R, M-108	inclined rail and ball
PIRA 500	blinky track
UMN, 1C20.40	blinky track
AJP 29(3),211	acceleration "v" track
AJP 47(3),287	blinky track
F\&A, Mb-13	blinky track
Sut, M-77	blinky track
PIRA 1000	blinky track with graphs
UMN, 1C20.41	blinky track with graphs
Disc 01-10	rolling ball on incline
F\&A, Mb-11	blinky track - strobe photo
Sut, M-82	ball on an incline
Sut, M-83	ball on an incline with seconds pend
Sut, M-78	inclined wire
Hil, M-3d	car on an inclined wire
TPT 16(8),558	ball on an incline
TPT 1(2),82	slow roller on incline
Mei, 7-1.6	ball on an incline
Ehrlich 1, p. 6	ball on an incline
Mei, 7-1.5.2	car on an incline
Sut, M-76	Duff's plane
Hil, M-3c	Duff's plane
Mei, 7-1.5.8	dynamometer
Mei, 7-1.4	photographing acceleration
PIRA 200	Measuring g free fall timer
UMN, 1C30.10	free fall timer
Ehrlich 2, p. 32	free fall timer

July 2015
1C20.20 Drop strings with weights.
1C20.30
1C20.30 Place risers under one end of an air track. Use photogate timers to measure the velocity at two points.
1C20.30 Timing on an inclined air track: spark recording, photoelectric, periodic impact.
1C20.30 Interrupted photocell times a glider at the top and bottom of an incline.
1C20.30 Dots marking the position of the glider are superimposed on the screen as the glider accelerates down an inclined air track
1C20.31 Use a stop clock and meter stick with the inclined air track.
1C20.35 Data for graphs of acceleration, velocity, or displacement as a function of time is obtained from a glider on an inclined air track as it accelerates down and rebounds. Details for a timing device using two spring contacts.

1C20.36 Record a glider on an inclined air track with strobe photography.
1C20.37 Record positions of a ball at equal time intervals on an inclined channel with a strobe light.
1C20.40
1C20.40 Lights that flash every second are placed along an inclined and horizontal track such that they flash at the moment the ball passes.
1C20.40 Use a 1" x 1" extruded aluminum angle for an acceleration track raceway.
1C20.40 A ball rolls down a sloped track onto a flat track. A series of lights blinking every second is mounted on the track at intervals such that the ball passes as the light blinks.
1C20.40 Lights that flash every second are spaced along an incline and horizonta track such that they are flashing at the moment the ball passes.
1C20.40 The original blinky track.
1C20.41
1C20.41 Two sets of magnetic arrows are transferred from the blinky track to a magnetic blackboard. The arrows graphs show the position at blinks and the change in position at blinks.
1C20.41 Additions to the blinky track: magnetic strips can be removed from the track showing all d's, delta d's, and delta v's. Place these strips vertically to show position, velocity, and acceleration vs time. Graphs are simulations on disc but real at U of Wash.
1C20.42 Use a strobe and camera to record a ball rolling down an incline and across a flat.
1C20.43 A ball is accelerated down an incline onto a horizontal track where the velocity is measured.
1C20.43 A seconds pendulum is released when the ball enters the horizontal track (M82) and is placed so it knocks the ball off the track.

1C20.44 A taut inclined wire forms the incline.
1C20.44 A long wire is stretched diagonally across the chalkboard with chalk marks at every meter. A student times a low friction car as it accelerates to various marks.
1C20.45 A simple demonstration using a ball bearing rolling down the grove of a plastic meter stick. Analysis included.
1C20.45 A solid wheel turning on a small axis rolls down an incline. The translational velocity is slow enough to make easy accurate measurements.

1C20.45 Rolling a ball down an incline starting at 1/4 the way up and all the way up.

1C20.45 Steel balls are rolled down the grove of an inclined plastic ruler.
1C20.46 A car on an incline is timed from release until the end of a measured distance.
1C20.50 A chalk ball oscillates as it rolls down a trough in a 2×6.
1C20.50 A ball leaves a trail as it oscillates back and forth while rolling down a chalk covered trough.
1C20.61 A simple dynamometer rides a cart on a track.
1C20.71 Take an open shutter strobe wheel photo of a small fan cart.
1 C 30.00
1C30.10 A ball is timed as it drops $.5 \mathrm{~m}, 1 \mathrm{~m}, 1.5 \mathrm{~m}$, or 2 m .
1C30.10 A ball is timed as it drops $.5 \mathrm{~m}, 1 \mathrm{~m}, 1.5 \mathrm{~m}$, or 2 m .
1C30.10 Drop objects and time their fall through a known distance with a stopwatch.

Demonstration Bibligrqaphy

Mei, 7-1.17	dropping balls
Mei, 7-1.18	dropping balls
AJP 42(3),255	dropping balls - release
AJP 44(9),855	dropping balls
AJP 55(4),324	accurate release mechanism
AJP 59(6),568	free fall timer - stopwatch mod.
PIRA 1000	little big ball dropper
UMN, 1C30.15	big ball dropper
Hil, M-3b	dropping balls
Sut, M-87	Welch free fall apparatus
PIRA 1000	big big ball dropper
UMN, 1C30.20	tall big ball dropper
Mei, 7-1.20	dropping balls
TPT 12(2),115	induction method
AJP 39(7),757	dropping balls in air
Sut, M-85	falling slab
Mei, 7-1.7	ink jet marker
F\&A, Mb-18	dropping balls - photo
Mei, 7-1.14	dropping balls - photo
PIRA LOCAL	picket fence and photogate
PIRA 1000	falling drops
AJP 47(6),542	mercury drops
TPT 4(2),77	falling drops
Bil\&Mai, p 35	falling drops
AJP 48(10),888	falling drops
Mei, 7-1.15	falling drops
AJP 33(10),824	synchrodropper
TPT 28(2),108	"videostrobe" with falling drops
PIRA 1000	catch a meter stick
UMN, 1C20.55	catch a meter sitck
TPT 14(3),177	catch a dollar
$F \& A, M b-1 b$	catch a meter stick
Mei, 6-2.6.2	catch a meter stick
D\&R, M-098	catch a dollar or meter stick
Sprott, 1.2	reaction time, falling meter stick
Bil\&Mai, p 34	catch a dollar or meter stick

Disc 01-13

TPT 16(9),656
Mei, 7-1.13
reaction time, falling meter stick
rotating turntable
rotating turntable

1C30.11 A latching relay system for turning a standard timer on and off for the dropping ball experiment. Use two independent measurements to eliminate the delay factor.
1C30.12 Use a photo interrupt system to time a falling ball. Details in appendix to demo 10-2.18.
1C30.13 A clever device to replace the standard electromagnet release for timing a dropping ball.
1C30.13 By replacing optical position sensors with electrical contact switches and by using an integrated-circuit timer with digital readout, the time required for a ball bearing to fall may be measured consistently to about 0.1 msec . The acceleration of gravity may then be determined to better than one part per thousand.
1C30.13 A new release mechanism with 10 ms accuracy.
1C30.14 Modify a commercial lap timer/stopwatch. Interface circuit and construction details.
1C30.15
1C30.15
1C30.16 A ball is released by an electromagnet and a clock started. The catcher stops the clock and can be set at different heights.
1C30.17 Describes an old Welch free fall apparatus.
1C30.20
1C30.20
1C30.21 Dropping a ball through a system of mirrors interrupts a light beam several times. Photocell output is displayed on a scope.
1C30.22 Drop a magnet through several equally spaced coils of wire. Examine the induced voltage on an oscilloscope. Circuit included.
1C30.25 Light and heavy balls are dropped through a multiple pass light beam and the output is shown on an oscilloscope.
1C30.30 A slab of wood is dropped by a ink squirter which leaves lines at equal time intervals.
1C30.31 A rotating ink jet sprays a paper sleeve on a falling meter stick.
1C30.33 Take a picture of a dropping ball illuminated by a strobe.
1C30.33 Photograph a dropping light bulb with a strobed disc.
1C30.35 A calibrated picket fence is dropped through a photogate to measure " g ".
1C30.40
1C30.40 A falling mercury drop generator and an electronic timing circuit conveniently and automatically generates a large number of data in a short period of time, yielding results with a high degree of precision.
1C30.41 A strobe illuminates water dripping from a faucet at an uniform rate.
1C30.41 Allow drops to fall from a buret. Use a stroboscope to see that the drops are accelerating.
1C30.42 A machine to make a stream of falling bubbles which are illuminated by a strobe light.
1C30.43 Steel balls are dropped at regular intervals and illuminated with a strobe. Diagrams and pictures.
1C30.44 Design for a 60 Hz stable synchrodropper.
1C30.46 Use the 60 Hz refresh rate of a video monitor to strobe falling drops by adjusting the rate to 60 Hz and having the stream fall past the screen.
1C30.55
1C30.55 Have one student drop a meter stick and use the distance it drops before another students catches it to determine the reaction time.
1C30.55 Have a student try to catch a dollar starting with the fingers at the midpoint.
1C30.55 Drop a meter stick and have a student catch it. Distance can be converted to reaction time.
1C30.55 Drop a meter stick and have a student catch it.
1C30.55 Try to catch a dollar bill or catch a meter stick to measure reaction time.
1C30.55 Have students catch a meter stick as it is dropped.
1C30.55 Hold a dollar bill by the top and have a student hold their open fingers over the middle of the bill. Drop the bill and see if the student can catch it. Repeat with a meter stick and measure how far the stick falls before it is caught.
1C30.55 Have a student catch a falling meter stick and relate the distance dropped to the reaction time.
1C30.61 Drop a ball on a phonograph turntable. Get time from the range.
1C30.61 Microswitch triggers dropping ball onto rotating turntable.
Sut, M-86
AJP 55(1),59

Mei, 12-2.2	spots on a globe		
Mei, 12-2.3	spots on a globe		
	Velocity, Position, and Acceleration showing acceleration		
ref.	Hobbie film loop - AAPT Hobbie films - AAPT Pick a moving ball		
UMN, 1D15.12	kick a moving ball		
PIRA 1000	UMN, 1D15.15		high road low road
:---			

July 2015
Mechanics
1C30.63 A pendulum released from the side hits a ball dropped from the height that gives a fall time equal to a quarter period of the pendulum.
1C30.66 Time a bouncing ball for many bounces and determine g using the coefficient of restitution.
$1 D 00.00$

1D10.00

1D10.10
1D10.10 Start with a ball on a string at the bottom of a vertical tube. Hold the string while moving the tube horizontally.
1D10.10 A ball on a string is placed in a tube and the tube displaced. The resultant is quite apparent.
1D10.10 Ball on a string in a hydrometer jar.
1D10.10 A ball on a string is placed in a clear tube and the string is displaced.
1D10.10 A bead is pulled vertically along a rod in a frame that is pulled horizontally.
1D10.10 A ball on a string is placed in a horizontal tube which is raised while holding the free end of the string on the table.
1D10.10 The ball in a tube done horizontally on the table viewed from above with the camera.
1D10.11 Walking toy with bob on a string that, when placed over the edge of a table, pulls the toy forward. As the toy gets closer to the edge, the angle of the pull changes. At the edge of the table, there is no component of force pulling forward, the toy stops.
1D10.20
1D10.20
1D10.20 A hoop with a piece of chalk fastened to the circumference is rolled along the chalk tray.
1D10.20 A hoop with a piece of chalk fastened to the circumference is rolled along the tray of a chalk board.
1D10.20 Large and small cylinders are joined coaxially. A spot on the larger cylinder moves in a cycloid when the smaller cylinder is rolled on its circumference.

1D10.30 A mechanical device that transforms rotational motion into rectilinear motion.
1D10.31 A three pronged spider in a six slotted wheel.
1D10.32 Two blocks - one with slots and the other with pins.
1D10.40
1D10.40
1D10.50
1D10.50
1D10.55
A large disc marked with a radial line turns about its axis.
A ping pong ball is stuck on the edge of a vertical rotating disc.
A device to turn a clear plastic disc at variable speed on the overhead projector.
1D10.55 A motorized acrylic disc with three holes for steel balls rotates on an overhead projector.
1D10.60 Use an electronic strobe to measure the angular velocity of a fan blade or other rotating objects.
1D10.70 A spinning disc mounted on a cart has a rectilinear pattern of dots. The center dot is stationary while the cart is stationary, a different dot appears stationary while moving the cart in a large circle, or while translating the cart along a track.
1D10.71 An inclined globe with spots is spun, rotated in an orbit while not spinning, and both rotated and spun. The spots form parallel lines perpendicular to the various angular velocity vectors.
1D10.72 A globe with random spots rests on rollers driven independently at variable speeds to show instantaneous center of rotation.
1D15.00

1D15.01 see 1G20.75
1D15.12
1D15.12
1D15.15
1D15.15
Kick a moving soccer ball on the floor or hit a moving croquet ball on the lecture bench with a mallet.

1D15.20 Two balls race - one down a slight incline and the other down the same incline but including a valley.
1D15.20 Two objects start at the same velocity, one moves straight to the finish, the other traverses a valley. The problem: which wins?
1D15.20 Two balls race, one down a slight incline the other down the same incline but including a valley.
1D15.20 Two balls race down incline tracks. One track is straight, one track has a rise at each end.
1D15.30
1D15.30 A ball accelerating down an incline catches and passes a ball moving at constant velocity on a horizontal track.
1D15.35
1D15.35 A ball accelerates down an incline with a stripped rope moving at constant velocity in the background. The moment the ball has the same velocity as the rope is strikingly obvious. Repeat with the rope at a different constant velocity.
1D15.36 This McDermott article contains several ball on incline races to help distinguish the concepts of position, velocity, acceleration.
1D15.40
1D15.40 Several rods are mounted as cords of a large circle with one end of each rod top center. Beads released simultaneously at the top all reach the ends the rods at the same time.
1D15.40 Small balls roll down guides that form chords of a large inclined circle. A single click marks simultaneous arrival.
1D15.40 Beads are released simultaneously to slide along cords of a large circle.
1D15.41
1D15.41 Lengths and angles of a wire frame triangle are chosen so that beads sliding down the wires traverse each side in the same time.
1D15.45 Three tracks - straight line, parabola, and cycloid are mounted together. Triggers at each end control a timer. Details.
1D15.50
1D15.50 Each end of a track forms a brachistochrone. Balls released at any height on the brachistochrones reach the middle at the same time.
1D15.50 Two balls released on opposite sides of a cycloid always meet in the middle regardless of handicap. The ball on the cycloid always beats the ball on the incline.
1D15.51 History of the brachistochrone as a tautochrone.
1D15.52 On constructing a large brachistochrone.
1D15.53 Use the brachistochrone and tautochrone properties of a cycloid to make an actual slide track in amusement parks.
1D15.54 Solution to the brachistochrone problem.
1D15.55
1D15.55 Balls roll down an incline, brachistochrone, and parabola. The ball on the brachistochrone wins.
1D40.00
1D40.10 A light disc contains a heavy slug that can be shifted from the center to side. Mark the center of mass.
1D40.10 Mount battery powered lights on styrofoam shapes and throw them in the air.

1D40.10 A light wooden disc contains a heavy slug that can be shifted from the center to the side.
1D40.10 Throw a slab of styrofoam with lights placed at the center of gravity and away from the center of gravity.
1D40.10 A disc with an internal sliding weight has spots painted on opposite sides marking the center of mass in the two cases.
1D40.10 Discs with movable and stationary center of mass and a "bulls eye" painted on each side, one off center.
1D40.10 Throw a disc with uniform distribution and then offset the center of mass.
1D40.12 Mark the center of gravity of a hammer with a white spot. Throw it in the air and attach it to a hand drill to show it rotating smoothly.
1D40.13 A bunch of junk is tied together with strings and thrown across the room.
1D40.15
1D40.15 Some Phil Johnson humor. "This was in the Physics Teacher but I haven't got to it and I've never done it so I can't describe it well at this time". See the other 1D40.15 entries for a description.
1D40.15 A description and analysis of the rotational dynamics of a bola.

Demonstration Bibligrqaphy

TPT 48(4), 222	bola
PIRA 500	spinning block spinning block
UMN, 1D40.20	
F\&A, Mp-17	spinning block
D\&R, M-670	spinning block

AJP 33(10),xiii air supported dumbell

Mei, 10-2.10	spinning block
PIRA 1000	air table center of mass air table center of mass photographing the center of mass
AJP 31(4),299	photographing center of motion
AJP 58(5),495	spinning block
Mei, 10-3.2	throw the dumbell
Mei, 12-4.4	Earth-Moon system
AJP 30(6),471	Earth-Moon system
PIRA 1000	Earth-Moon system TPT 28(6),425
F\&A, Mp-8	Earth-Moon system
F\&A, Mp-18	Earth-Moon system Sut, M-169
PIRA 1000	air track pendulum glider

F\&A, Mp-1	air track pendulum glider Mei, 9-2.3 Mei, 11-1.2
air track pendulum glider pendulum glider	
Sut, M-125	momentum pendulum
D\&R, M-486	momentum pendulum
TPT 2(1),33	momentum pendulum car
PIRA 1000	air track inchworm UMN, 1D40.55 air track inchworm air track inchworm

Mei, 9-2.2 air track inchworm

Sut, M-126 momentum cars

1D40.15 An analysis of bola motion and a simplified model bola.
1D40.20
1D40.20 A large block of wood with magic markers located at and away from the center of mass. Place the block on a large sheet of paper and hit off center with a hammer.
1D40.20 A large wood block has two holes for felt tipped pens, one on the center of mass. Put the block on paper and hit it down the paper.
1D40.20 A 2X4 about 30 cm long has 3 holes drilled on the center line of the long axis. The center hole is at the center of mass with the other two equally spaced outward toward the ends of the block. Insert 3 different color marker pens, place the block at the end of a strip of long paper, and kick at the center of mass for parallel lines. Kick again near one end to produce one straight line plus two epicycloids. In both cases the center of mass is a straight line.
1D40.21 Two dry ice pucks on the ends of a bar form a dumbbell that rides on a sheet of plate glass. Use a cue stick to hit it on and off the center of mass.

1D40.21 Use a pool cue to hit a dumbbell double dry ice puck on or off the center of mass. Also shoot a . 22 into a gas supported block on or off the center of mass.
1D40.22
1D40.22 A weighted block glides across an air table.
1D40.25 Make an open lens photo of a system of two masses connected by a rod and the center of mass will be apparent.
1D40.25 Photographing the center of velocity of a variety of rigid bodies.
1D40.25 Strobed photo is taken of a irregular object translating and rotating on a air table.
1D40.30 A dumbbell with unequal masses is thrown without rotation when the force is applied at the center of mass.
1D40.31 Stick unequal size corks in knitting needle, place a cord under at the center of mass, and jerk it into the air.
1D40.35
1D40.35 An Earth-Moon system hanging from a string is used to demonstrate the Earth's wobble.
1D40.35 Two unequal masses are fastened to the ends of a rigid bar. Spin the system about holes drilled in the bar at and off the center of mass.
1D40.35 Pucks of different mass are held together by a string while spinning on the air table.
1D40.35 An Earth-Moon system is rotated from a hand drill on and off the center of gravity.
1D40.50
1D40.50 A double pendulum hangs from an air track glider with a mounted spot marking the center of mass. Set the system in oscillation and the spot will remain still or translate smoothly.
1D40.50 A pendulum with a massive bob is attached to an air glider.
1D40.50 A heavy pendulum on a light glider.
1D40.50 A double pendulum on an air glider has total mass equal to the glider. A marker placed on the pendulum at the center of mass is stationary as the system oscillates.
1D40.51 A pendulum support is free to move on rollers as the pendulum swings back and forth.
1D40.51 A pendulum support is free to move on rollers as the pendulum swings back and forth. Also can be done by standing on a roller cart and swing your hips side to side.
1D40.52 Mount a heavy pendulum on a PSSC car and then have the students imagine the pendulum scaled up to be the Earth.
1D40.55
1D40.55 A leaf spring couples two air track gliders.
1D40.55 The center of mass of two gliders coupled with leaf springs is marked with a light or flag. Show oscillation about the center of mass or constant velocity of c of m.
1D40.55 Two gliders on a track are coupled with a leaf spring and elastic. A light is mounted on the elastic at the center of mass.
1D40.56 Two cars are attached together by a elastic band fastened to a motorized eccentric on one car. The point of no motion can be indicated by a pointer and changed by weighting one car.

Demonstration Bibligrqaphy

Mei, 9-4.22	rotor on a cart
AJP 53(10),1002	satellite oscillation
AJP 34(2),166	two circle roller
TPT 28(2),122	non-round rollers
PIRA 200	Central Forces ball on a string
UMN, 1D50.10	ball on a string
D\&R, M-198	ball on a string
PIRA 1000	arrow on a disc
UMN, 1D50.15	arrow on a disk
PIRA 1000	whirligig
UMN, 1D50.20	whirligig
AJP 29(3),212 F\&A, Mm-2	centripetal force apparatus whirligig
Sut, M-138	whirligig
$\begin{aligned} & \text { D\&R, M-198, M- } \\ & 742, \& \text { S-075 } \end{aligned}$	whirligig
Ehrlich 1, p. 72	whirligig
Disc 05-17	ball on cord
PIRA 500	conical pendulum
UMN, 1D50.25	conical pendulum
AJP 30(3),221	conical pendulum
Mei, 8-5.3	conical pendulum
Sut, M-160	conical pendulum
Ehrlich 1, p. 74	conical pendulum
PIRA 1000	plane on a string
Disc 05-19	plane on string
Mei, 8-5.9	conical pendulum
AJP 31(1),58	conical pendulum
Hil, M-19L	conical pendulum
TPT 1(2),81	conical pendulum game
D\&R, M-784	conical pendulum game
Bil\&Mai, p 136	conical pendulum ride
PIRA 1000	carnival ride model
UMN, 1D50.30	canival ride model
Bil\&Mai, p 138	carnival ride model - Downy

July 2015
Mechanics
1D40.58 Balls of equal or unequal mass can be screwed on the ends of a rod rotating horizontally about its center. The assembly is mounted on a cart on a track. The cart oscillates if the balls are of unequal mass.
1D40.60 Discussion of the LDEF satellite (30'x14'dia.) as an example where the distinction between the center of mass and center of gravity is important.
1D40.70 Two disks, partially interlocking at right angles, roll with a wobble but with a constant height center of mass.
1D40.71 Two types of weird rollers: one in which the center of mass remains at a uniform distance from the surface as it wobbles down an incline, and two which although non round have a constant diameter.
1D50.00
1D50.10 Tie a lightweight ball to a string and twirl around in a vertical circle.
1D50.10 Tie a whiffle ball to a sting and twirl around in a vertical circle.
1D50.10 Tie a lightweight ball to a string and whirl in horizontal or vertical circle.
1D50.15
1D50.15 Mount an arrow tangentially on the edge of a rotating disk.
1D50.20
1D50.20 A large ball and a small ball fastened to opposite ends of a string which is threaded through a handle.
1D50.20 Use a glass tube for the holder and rubber stoppers for the masses.
1D50.20 A large and small ball are on opposite sides of a string threaded through a handle.
1D50.20 Two balls - $1 \mathrm{~kg}, 100 \mathrm{~g}$ - are attached to the ends of a 1 m string passing through a small hollow tube. Twirl a ball around your head.
1D50.20 A string with a rubber ball on one end passes through a plastic or copper sleeve and weights are attached to a loop at the other end.
1D50.20 A twirling weight connected to a hanging weight through a tube is used to show angular momentum conservation.
1D50.20 A string with a rubber ball on one end passes through a plastic sleeve and weights are attached to a loop at the other end.
1D50.25
1D50.25 A ceiling mounted bowling ball pendulum is used as a conical pendulum.
1D50.25 Apparatus Drawings Project No. 25: Construction of a low friction conical pendulum.
1D50.25 The front axle of a bike is used for a whirligig / conical pendulum support.
1D50.25 A ball on a cord is rotated mechanically at a steady slow speed.
1D50.25 A conical pendulum makes a particular angle with the vertical related to its length and period. Make cones out of cardboard or transparency film to verify.
1D50.26
1D50.26 A model plane flies around on a string defining a conical pendulum.
1D50.27 Motorized triple bifilar coaxial conical pendula are used to demonstrate critical period.
1D50.28 The main bearing of a conical pendulum is from a bicycle wheel axle. See also under whrilygig (AJP 30,221)
1D50.28 The front wheel axle of a bike is used as a good bearing for a conical pendulum where the string tension is set by a counterweight. See AJP 31(1),58.
1D50.29 Swing a conical pendulum so it will strike a peg directly under the support on some swing other than the first.
1D50.29 Swing a conical pendulum so that it will miss a bottle as it swings away but hit the bottle on it's return.
1D50.29 Steel nuts are attached by string to the circumference of an empty wire spool. Place the spool on a phonograph turntable set to its highest speed. Observe the deflection. This is a model of a carnival swing ride.
1D50.30
1D50.30 A toy person is held on a vertical card at the edge of a turntable when the turntable is spun fast enough.
1D50.30 A Downy ball is tied to a string. Pull the stopper of the ball outward until it locks into position. Swing the ball slowly increasing the tangential velocity until a "pop" sound is heard indicating that the stopper has been released.
Ehrlich 1, p. 73 carnival ride model accelerometer
Disc 05-20 roundup

An inexpensive accelerometer is tied to a string. It beeps at a preset value when the correct rotation rate is achieved.
1D50.30 A toy person stands on the inside wall of a rotating cylinder.

D\&R, M-370	carnival ride variation - carry a b
TPT 24(5),295	carnival ride variation - carry a b
Ehrlich 1, p. 91	carnival ride variation - ball in a cup
Mei, 8-5.4	swinging up a weight
PIRA 200	pail of water
UMN, 1D50.40	pail of water, pail of nails
F\&A, Mb-29	pail of water
Sut, M-154	pail of water
D\&R, M-354	pail of water
D\&R, M-362	pail of water
Sprott, 1.7	pail of water
Bil\&Mai, p 130	pail of water
Ehrlich 1, p. 76	pail of water
Disc 05-21	whirling bucket of water
PIRA 1000	penny on a coat hanger
UMN, 1D50.45	penny on a coathanger
AJP 40(5),776	penny on the coathanger
TPT 15(1),46	penny on the coathanger
Sut, M-155	penny on the coathanger
Hil, M-16b. 3	penny on the coathanger
D\&R, M-362	penny on a coathanger
Disc 05-18	coin on coat hanger
PIRA 1000	balls on a propeller
UMN, 1D50.48	balls on a propeller
PIRA 1000	Welch centripetal force
UMN, 1D50.50	Welch centripetal force
AJP 28(6),561	Welch centripetal force review
AJP 71(2), 185	Welch centripetal force
F\&A, Mm-1	Welch centripetal force
AJP 34(10),981	Welch centripetal force modification
AJP 43(5),466	Welch centripetal force
AJP 34(8),708	Welch centripetal force modification
AJP 28(4),377	variable centripetal force
TPT 21(3),188	Cenco centripetal force
Hil, M-16e	Cenco centripetal force
AJP 45(5),496	Cenco centripetal force modification

D\&R, M-370

Ehrlich 1, p. 91
cup
swinging up a weight
pail of water
pail of water, pail of nails

A ball is placed in a Styrofoam cup or flower pot with no bottom and rotates around the inside at a constant height when the pot is swirled at the right frequency.
A ball is placed in a Styrofoam cup or flower pot with no bottom and rotates around the inside at a constant height when the pot is swirled at the right frequency. An inverted wine glass whose middle is slightly larger than its mouth will also work. Swirl the glass and the ball will rotate about the inside and climb to the center of the glass. Continue swirling the glass and you can carry the ball anywhere desired.
1D50.33 A small ball in a plastic cup can be made to revolve faster and faster or even climb the walls by shaking the cup at the right frequency.
1D50.37 An arrangement whereby a swinging 500 g weight picks up a 1000 g weight.
1D50.40 Swing a bucket of water in a verticle circle over your head.
1D50.40 Swing a bucket of water in a vertical circle over your head. If nails are used, they can be heard dropping away from the bottom of the can.
1D50.40 A pail of water is whirled around in a vertical circle.
1D50.40 Swing a bucket of water over your head.
1D50.40 Place a test tube with mouth facing inward on the rim of a vertical bicycle wheel. Fill with water and spin wheel. Measure rpm when water starts to fall out of test tube to verify " g ".
1D50.40 A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.
1D50.40 A bucket full of water is swung in a vertical circle.
1D50.40 A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg or anything else when swinging the platform.
1D50.40 A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.
1D50.40 Rotate a bucket of water in a vertical circle.
1D50.45
1D50.45
1D50.45 Place a penny on an elongated coat hanger and rotate around your finger.
1D50.45 A penny is balanced on the hook of a coat hanger. The coat hanger is twirled around your finger and the penny doesn't fly off.
1D50.45 The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.
1D50.45 Place a coin on the coat hanger and rotate it about the finger.
1D50.45 Balance a penny on the hook of a coathanger and rotate.
1D50.45 A coin is placed on the flat of the hook of an elongated coat hanger and twirled around.
1D50.48
1D50.48
Balls sit in cups mounted on a swinging arm at .5 and 1.0 m . Calculate the period necessary to keep the ball in the outer cup and swing it around in time to a metronome.
1D50.50
1D50.50 The angular velocity and mass needed to stretch a spring a certain distance are compared.
1D50.50 Uses no motor, self contained static force measurement.
1D50.50 The center of mass correction for the usual centripital force apparatus.
1D50.50 The angular velocity and mass needed to stretch a spring a certain distance are compared.
1D50.51 Two modifications to the apparatus.

1D50.51 A modification to improve the Sargent-Welch 9030 centripetal force apparatus.
1D50.51 Improvements to the Welch centripetal force apparatus.
1D50.53 A new design for the apparatus that allows any two of the three variables of mass, angular velocity, and distance to be kept constant.
1D50.53 A relay starts the counter and clock so three hands are not needed when using the Cenco 74470 apparatus.
1D50.53 Lab apparatus used as a demonstration.
1D50.54 Replace the screw adjustment for the fixed end of the spring with a movable plate.

Disc 13-18	rotation water troughs
Mei, 8-5.1	rotating manometer
Sut, M-150	rotating manometer
Sut, M-143	project mercury parabola
PIRA 1000	balls in water centrifuge
UMN, 1D52.30	balls in water centrifuge
AJP 30(5),385	balls in water centrifuge
TPT 1(1),35	balls in water centrifuge
Sut, M-153	balls in water centrifuge
Hil, M-16d. 3	balls in water centrifuge
Hil, M-16d. 1	corks in water centrifuge
F\&A, FI-7	inertial pressure gradient
Mei, 8-3.5	centrifuge
Mei, 8-3.6	balls in water centrifuge
AJP 53(9),915	cork and ball rotating in water
Hil, M-16c. 1	rotating corks in water
Bil\&Mai, p 132	rotating floats in water
AJP 56(11),1046	car picture
PIRA 1000	water and mercury centrifuge
F\&A, Mm-4a	mercury/water centrifuge
Sut, M-159	mercury/water centrifuge
Disc 05-23	water and mercury centrifuge
Sut, M-152	centrifuge
F\&A, Mm-7	centrifuge
Sut, M-148	the full skirt
PIRA 1000	rotating candle
UMN, 1D52.40	rotating candle
AJP 37(4),456	rotating candle
F\&A, Fl-4	central pressure gradients
Mei, 10-2.5	rotating candle
Sut, M-141	rotating candle
Hil, M-16d. 2	rotating candle
Mei, 8-5.6	geotropsim
PIRA 1000	paper saw
UMN, 1D52.50	paper saw
Sut, M-140	paper saw
Sut, M-149	rubber wheel
PIRA 1000	rotating rubber wheel
Disc 05-25	rotating rubber wheel
AJP 52(4),335	wobbling Christmas tree toy
TPT 3(4),173	centripetal-centrifugal discussion Centrifugal Escape
PIRA 500	broken ring
UMN, 1D55.10	broken ring

Mechanics

1D52.21 Two water containers are mounted on a rotating table. A rectangular container mounted radially shows half a parabola, and another formed in an arc of constant radius stays level.
1D52.23 Tubing constructed in an "E" shape on its back is partly filled with water and rotated.
1D52.24 A U shaped manometer is mounted with one of its arms coincident with the axis of a rotating table.
1D52.26 Spin a dish of mercury and image a light bulb on the ceiling.
1D52.30
1D52.30 Cork and steel balls are spun in a curved tube filled with water.
1D52.30 Wood balls in two curved tubes, air and water filled, are rotated.
1D52.30 Spin a bent glass tube filled with water that contains two wood or steel balls.

1D52.30 Spin a bent glass tube filled with water containing cork and aluminum balls.
1D52.30 A glass bowl containing water, a steel ball, a cork ball is spun.
1D52.30 Spin a semicircular tube filled with water containing two corks.
1D52.31 A bubble in a tube goes to the center when whirled in a horizontal circle.
1D52.31 A long thin tube containing a wood plug is rotated horizontal while either filled with water or empty.
1D52.31 A long thin tube containing a brass ball, ping pong ball, and water is rotated.

1D52.33 One cork is tied to the bottom, one ball is tied to the top of two cylinders full of water at the ends of a rotating bar.
1D52.33 Corks tied to the bottom of two jars full of water are first translated on a cart and then put on a pivot and rotated about the center.
1D52.33 Fishing floats tied to the bottom of two jars full of water are attached to a large plywood circle with Velcro. Place this assembly on a Lazy-Susan, rotate, and observe the floats.
1D52.34 A picture taken from inside a car of a candle, CO 2 balloon, H 2 balloon as the car is driven in uniform circular motion.
1D52.35
1D52.35 A globe with water and mercury on a hand crank rotator.
1D52.35 A spherical glass bowl is spun and mercury forms a equatorial band with water above and below.
1D52.35 Water and mercury spin in a glass sphere.
1D52.36 Diagram for building a projection cell centrifuge.
1D52.37 A hand cranked test tube centrifuge.
1D52.38 Spin a doll with a full skirt or kilt. Cheap thrills.
1D52.40
1D52.40 A candle is placed on a turntable and covered with a large Plexiglas hemisphere.
1D52.40 Make the rotating candle out of meter sticks and candles.
1D52.40 A candle rotates in a chimney on a turntable.
1D52.40 A lighted candle in a chimney goes around on a dry ice puck string attached by a string to a pivot.
1D52.40 A lighted candle in a chimney lamp on a rotating table will point to the center.
1D52.40 Lighted candles in chimneys are rotated about the center of mass.
1D52.45 Grow corn or wheat on a rotating turntable two weeks before class.
1D52.50
1D52.50 A 6" paper disc placed on a dremmel tool cuts another sheet of paper.
1D52.50 Typewriter paper will cut through other paper, Bristol board will cut through wood when spun at high speeds.
1D52.60 A sponge rubber wheel with one spoke cut is rotated at high speed and viewed under stroboscopic light.
1D52.61
1D52.61 A rubber wheel stretches to a larger radius when spun.
1D52.70 A Lagrangian-effective potential solution explaining the behavior of this toy.

1D52.90 A final (?) note on the topic from the editor.
1 D55.00
1D55.10
1D55.10

A ball is rolled around the inside of a large open metal hoop. Students predict where the ball will go when it reaches the opening.

Demonstra	Bibligrqaphy	July 2015	
Bil\&Mai, p 128	broken ring	1D55.10	Roll a ball around a circular hoop with a gap. Ask student to predict the path of the ball when it exits the hoop.
Ehrlich 2, p. 22	broken ring	1D55.10	A ball is rolled around the inside of a plastic circular ring with a gap. The ball goes off on a tangent when it hits the gap.
Disc 05-14	circle with gap	1 D 55.10	Roll a ball around a circular hoop with a gap.
PIRA 1000	the big omega	1 D 55.11	
UMN, 1D55.11	the big omega	1D55.11	A large wood circle with a gap is used with a bocce ball.
PIRA 500	release ball on a string	1D55.15	
Sut, M-137	cut the string	1D55.15	Cut the string while swinging a ball overhead.
Sprott, 1.8	revolving ball and cut string	1D55.15	A ball swung overhead at the end of a string is cut lose and it moves tangent to the circle.
Bil\&Mai, p 126	release ball on a string	1D55.15	Swing a ball on a string in a vertical plane while facing the audience. Release the string when the ball is in the 3 or 9 o'clock position. Attach a rubber band to the string and observe the stretch of the rubber band vs. the velocity of the ball.
F\&A, Mb-31a	slingshot	1D55.16	A David and Goliath type slingshot.
PIRA 1000	grinding wheel	1D55.20	
UMN, 1D55.20	grinding wheel	1D55.20	Watch the path of sparks flying off a grinding wheel.
F\&A, Mb-31b	grinding wheel	1D55.20	Show the sparks coming off a grinding wheel.
Mei, 7-2.2	grinding wheel	1D55.20	Sparks fly off a grinding wheel.
PIRA 1000	spinning disc with water	1D55.23	
Disc 05-16	spinning disc with water	1D55.23	Red drops fly off a spinning disc leaving traces tangent to the disc.
PIRA 1000	falling off the merry-go-round	1D55.30	
UMN, 1D55.30	falling off the merry-go-round	1D55.30	Large turntable with different surfaces.
F\&A, Mm-6	falling off the merry-go-round	1D55.30	A turntable is rotated until objects slide or tip over.
D\&R, M-340	falling off the merry-go-round	1D55.30	A turntable is rotated until objects slide off. Try the object at a different radius and same rotation speed.
Bil\&Mai, p 134	falling off the merry-go-round	1D55.30	A turntable is rotated until an object slides off. Try the object at a different radius and the same rotation speed. An old record player will also work.
Ehrlich 1, p. 78	falling off the merry-go-round	1D55.30	A turntable is rotated until a row of pennies start to slide off.
Disc 05-15	rotating disc with erasers	1D55.30	Place erasers on a disc at various radii and rotate until they fly off.
UMN, 1D55.31	falling off the merry-go-round	1D55.31	Line up quarters radially on a rotating platform and spin at varying rates.
TPT 28(9),586	train wrecks	1D55.33	Pictures of train wrecks at curves and some calculations.
Sut, M-151	air pump	1D55.50	Three mutually perpendicular discs are rotated about the intersection of two and air is drawn in the poles and expelled at the equator.
	Projectile Motion	1 D 60.00	
PIRA 1000	ball to throw	1D60.05	
UMN, 1D60.05	ball to throw	1D60.05	Provide a large nerf ball, tennis ball, soft ball, or whatever ball is requested.
PIRA 200	howitzer and tunnel	1D60.10	A ball fired vertically from cart moving horizontally falls back into the muzzle.
UMN, 1D60.10	howitzer and tunnel	1D60.10	A spring loaded gun on a cart shoots a ball vertically and after the cart passes through a tunnel the ball lands in the barrel.
AJP 41(4),580	howitzer and tunnel on air track	1D60.10	A launching system for use with an air track glider.
TPT 12(3),177	howitzer and tunnel	1D60.10	A description of a ball launcher mounted on an air track glider. It can fire a small projectile ($1 / 2^{\prime \prime}$ dia.) 10-15 ft.
F\&A, Mb-24	howitzer and tunnel	1D60.10	A car on a track shoots a ball up before it rolls under a tunnel.
Mei, 10-2.2	howitzer and tunnel	1D60.10	A gun mounted on an air puck shoots a ball vertically.
Mei, 7-2.16	howitzer and tunnel	1D60.10	As cart moves at constant velocity a cannon fires a billiard ball vertically. Details in Appendix, p. 545.
Mei, 7-2.15	howitzer and tunnel	1D60.10	Instructor sits on a wheeled cart with a catapult to project a ball upward.
Sut, M-99	howitzer and tunnel	1D60.10	A ball fired vertically from cart moving horizontally falls back into the muzzle.
Hil, M-6b	howitzer and tunnel	1D60.10	A steel ball projected upward from a moving car returns into the barrel.
D\&R, M-182	howitzer and tunnel	1 D 60.10	A car on a track shoots a ball up before it rolls under a tunnel and catches it when it comes out of the tunnel.
Sprott, 1.3	vertical gun on car	1D60.10	A car rolling across the table fires a projectile straight upward and subsequently catches it.
Bil\&Mai, p 49	howitzer and tunnel	1D60.10	Use a commercial spring cart or a spring popper toy on a battery powered car.
Disc 02-03	vertical gun on car	1D60.10	A ball is shot up from a moving cart and falls back into the barrel.
Bil\&Mai, p 47	ball or toy and Rollerblades	1D60.12	Move across the room on Rollerblades. Throw a ball or small toy in the air and then catch it. Parabolic trajectory.
PIRA 1000	howitzer and tunnel on incline	1D60.15	

UMN, 1D60.15	howitzer and tunnel on incline
AJP 42(4),326	howitzer and tunnel on incline
AJP 43(8),732	howitzer and tunnel inclined
AJP 44(8),783	howitzer and tunnel on incline
PIRA 1000	vertical gun on accelerated car
Disc 02-04	vertical gun on accelerated car
PIRA 200	simultaneous fall
UMN, 1D60.20	simultaneous fall
F\&A, Mb-14	simultaneous fall
Sut, M-91	simultaneous fall
Hil, M-13b	simultaneous fall
D\&R, M-158	simultaneous fall
Bil\&Mai, p 40	simultaneous fall
Disc 02-01	shooter/dropper
TPT 15(8),485	simultaneous fall
TPT 46(9),553	simultaneous fall
AJP 31(3),215	simultaneous fall
PIRA 200	monkey and hunter
UMN, 1D60.30	monkey and hunter
AJP 36(4),367	monkey and hunter
F\&A, Mb-16	monkey and hunter
Hil, M-13a	monkey and hunter
D\&R, M-170	monkey and hunter
Sprott, 1.4	monkey and hunter
Disc 02-02	monkey gun
TPT 15(7),368	monkey and hunter on incline
Ehrlich 1, p. 4	monkey and hunter on incline
AJP 43(6),561	monkey and hunter
AJP 43(6),562	monkey and hunter
TPT 13(5),308	monkey and hunter
TPT 20(4),260	monkey and hunter
TPT 10(4),216	monkey and hunter
Mei, 7-2.11	monkey and hunter string release
Sut, M-92	monkey and hunter
AJP 31(3),212	monkey and hunter
TPT 10(5),263	monkey and hunter
Ehrlich 2, p. 30	monkey and hunter
AJP 38(9),1160	monkey and hunter
AJP 50(5),470	monkey and hunter
TPT 19(8),563	monkey and hunter
TPT 9(5),282	monkey and hunter
TPT 2(7),336	monkey and hunter
TPT 5(6),272	monkey and hunter

1D60.15 Prop up one end of the howitzer and tunnel track and start the cart from either end.
1D60.15 Perform the howitzer and tunnel on an incline with the car starting at rest.
1D60.15 Short note on inclined ballistic cart systems.
1D60.15 Some strobe pictures and drawings show the ball is always above the cart relative to the incline, but not always above the cart relative to the horizontal.

1D60.16
1D60.16 Two cases: vertical gun on a car on an incline, and on a car accelerated by a mass on a string.
1D60.20 Two balls simultaneously dropped and projected horizontally hit the floor together.
1D60.20 Device to drop one billiard ball and shoot another out.
1D60.20 A spring loaded device drops one ball and projects the other horizontally.
1D60.20 Two apparatuses are described for dropping one ball and projecting another.
1D60.20 One ball is projected horizontally as another is dropped.
1D60.20 Two apparatuses are shown for dropping one ball and projecting another.
1D60.20 Dice in different positions are flicked off a table with a ruler. They strike the floor at the same time.
1D60.20 Drop one ball and simultaneously project another horizontally.
1D60.21 Instructor rolls a superball off the hand while walking at a constant velocity.
1D60.21 A simultaneous fall apparatus made from a broken meter stick and some blocks.
1D60.22 Roll a steel ball down an incline where it hits another, momentum exchange knocks the one out, and the other drops through a slot.
1D60.30 A gun shoots at a target, released when the gun is fired. The ball hits the target in midair.
1D60.30 Light beam aiming, air pressure propelled, microswitch to electromagnet release version of monkey and hunter.
1D60.30 Use a large bore air gun and wood "shell" projectile which is caught in a net.
1D60.30 A compressed air gun shoots at a tin can.
1D60.30 Shoot the tin can monkey with a blowgun and an electromagnet release.
1D60.30 Blow a ball through a metal tube. Trip wire at muzzle opens an electromagnet which drops the monkey.
1D60.30 A projectile fired at a falling target hits the target.
1D60.30 The apparatus consists of a blow gun with dowel projectile and electromagnetic release.
1D60.31 A simple and effective version using rolling balls on an inclined table.
1D60.31 A simple effective version using rolling balls on an inclined table. Works regardless of the slope of the incline.
1D60.32 Modifying the Cenco No. 75412 blowgun for bore sighting with a laser.
1D60.32 A needle valve, reservoir, pressure gauge, and solenoid valve permits varying the muzzle velocity.
1D60.32 Using the simultaneous fall device to shoot the monkey.
1D60.32 Shoot the monkey using a rubber band propelled pencil.
1D60.32 Using a 0.5 L India rubber bulb as a substitute for lungs.
1D60.32 A simple string release dart gun monkey and hunter.
1D60.32 A bore sighted blowgun with electromagnetic release.
1D60.33 Shoot a Christmas tree bulb weighted with a little water.
1D60.33 Cut out a pop can and cover the hole with paper.
1D60.34 The classic "Monkey and Hunter" demonstration done using a transparency on the overhead projector.
1D60.34 A magnetic switch and solenoid release.
1D60.34 A simple switch using infrared optics and a single IC and transistor to release the magnet.
1D60.34 Bore sighting is used to aim the gun, an optoelectronic device is used to trigger the release. Circuit details are available from the author.
1D60.34 A photo resistor is used as a switch.
1D60.34 Use the PSSC cart spring to launch the projectile. Also a simple magnet switch.
1D60.34 Plotting projectile motion using the overhead projector, strobe photography, and an optoelectronic circuit for triggering the monkey drop.

Demonstratio	Bibligrqaphy
AJP 53(10),937	monkey and hunter
TPT 2(5),277	monkey and hunter
AJP 43(6),562	monkey and hunter
TPT 13(5),298	monkey and hunter
PIRA 500	range of a gun
UMN, 1D60.40	range of a gun
TPT 14(3),168	range of a gun
Sut, M-95	range of a gun
D\&R, M-166	range gun
Bil\&Mai, p 45	range of a gun
Disc 02-06	range gun
Mei, 7-2.18	range of a gun
TPT 15(7),432	range of a gun
TPT 14(4),245	range of a gun
TPT 11(6),362	range of a gun
AJP 29(2), x	range of a gun - gun
AJP 31(2),89	simple spring gun
TPT 22(3),185	range of a gun - gun
TPT 28(7),477	projectile launcher
Mei, 7-2.19	range of a gun - gun
Mei, 7-2.20	range of a gun - gun
AJP 30(12),851	range of a projected ball
PIRA 1000	parabolic path through rings
UMN, 1D60.50	parabolic path through rings
TPT 22(6),402	parabolic trajectory
TPT 2(7),336	parabolic path through rings
Mei, 7-2.13	parabolic trajectory
Mei, 7-2.7	parabolic trajectory
PIRA 1000	parabolic trajectory on incline
AJP 52(4),299	projectile range on an inclined plane
TPT 2(6),278	parabolic trajectories on the overhead projector
F\&A, Mb-20	parabolic trajectory on incline
Mei, 7-2.8	parabolic trajectory on incline
Sut, M-96	parabolic trajectory on incline
Ehrlich 1, p. 8	parabolic trajectory on incline
Ehrlich 2, p. 87	parabolic trajectory on incline
Disc 02-05	air table parabolas
AJP 28(9),805	parabolic trajectory
Bil\&Mai, p 41	parabolic trajectory

July 2015
1D60.35 Viewed from the free monkey frame, the bullet moves uniformly. Placing the hunter below the monkey can mislead students.
1D60.35 Tutorial
1D60.36 Investigates the effect of the method of air entry and switch friction on the accuracy of the shot.
1D60.38 Sound activated electronic flash produces photographic record of the distance the target falls.
1D60.40
1D60.40 An air powered cannon (5 psi) shoots a 5 cm dia $\times 10 \mathrm{~cm}$ projectile to better than 1\% accuracy.
1D60.40 Using the Blackwood ballistic pendulum gun, students are asked to calculate the angle necessary for them to be hit.
1D60.40 Shoot at 45, then calculate 30 or 60 and place the target.
1D60.40 Fire a spring gun at various angles. Simulate a strobe photo of the trajectory with a meter stick and weights hanging from strings.
1D60.40 A dart gun with attached protractor to observe the angle is used to find the angle for maximum range.
1D60.40 Fire a spring loaded gun at various angles.
1D60.42 Impact point of a slingshot projectile is predicted from the drawing force and drawing distance.
1D60.43 Use the tennis ball serving machine to find muzzle velocity, range, etc.
1D60.44 A softball is modified to be fired by the Cenco ballistic pendulum gun (No.75425). Calculate muzzle velocity and examine the range at various angles.
1D60.45 Using a toy dart gun and a ball bearing weighted dart, the author gives a concise description for obtaining muzzle velocity used to predict the range at various angles.
1D60.46 A toy spring-loaded gun is surprisingly precise.
1D60.46 A spring gun shoots a $3 / 4$ " steel ball $12 \mathrm{~m} / \mathrm{sec}$ with 2% accuracy.
1D60.46 On using the Blackwood Pendulum gun as a device for finding the range of a projectile
1D60.46 Making a string and sticky tape launcher out of bamboo.
1D60.46 A golf ball fired from a spring powered gun. Construction details in appendix, p. 548.

1D60.46 A spring gun for a 3/4" steel ball. Construction details.
1D60.47 Apparatus Drawings Project No. 32: Plans for a inclined tube for launching a ball.
1D60.50
1D60.50 Same as TPT 22(6),402 except the ball is shot with a spring loaded gun.
1D60.50 Four launching ramps are mounted to a large magnetic surfaced coordinate system. Magnet based metal hoops can be repositioned easily so the ball passes through all the hoops. Looks very nice.
1D60.50 A ball launched off a ramp will pass through a set of rings.
1D60.50 Parabolic Lucite templates coincide with path of steel balls projected horizontally.
1D60.50 Throw a piece of chalk so it follows a parabolic path drawn on the board.
1D60.55
1D60.55 An old, simple, elegant (no calculus) solution.

1D60.55 Ink dipped balls are rolled down an incline onto a tilted stage on an overhead projector.
1D60.55 A tennis ball covered with chalk dust is rolled across a tilted blackboard.
1D60.55 Inked balls are rolled on a transparent tray on the overhead projector. Also Compton effect and Rutherford scattering.
1D60.55 Fire a ball up an incline and trace the trajectory as it rolls on carbon paper.
1D60.55 Steel balls leave a trail of dots when rolled on an inclined table that is vibrating. Use carbon paper.
1D60.55 Balls are rolled across a tilted overhead projector. The ball follows a predictable parabolic trajectory.
1D60.55 Pucks are projected across a tilted air track.
1D60.56 A ball launched off a ramp strikes a vertical carbon paper moved repeatedly away and laterally by equal amounts. Unexpectedly, not dependent on g .

1D60.56 Two tables are place a short distance apart. Hit a small block on one table with a larger block and see if it is possible for the small block to jump the gap and land on the second table.

Demonstration Bibligrqaphy

Mei, 7-2.14	parabolic trajectory
TPT 16(1),33	parabolic trajectory
Hil, M-4a	photographing parabolic trajectories
AJP 43(11),936	falling body simulator
Mei, 7-2.17	parabolic trajectory
PIRA 1000	parabolic trajectory
UMN, 1D60.60	parabolic trajectory
AJP 47(12),1097	parabolic trajectory
F\&A, Mb-17	parabolic trajectory
Sut, M-90	parabolic trajectory
AJP 31(1),42	parabolic trajectory - water stream
PIRA 1000	water stream trajectory
UMN, 1D60.65	water trough trajectory
F\&A, Mb-19	parabolic trajectory
F\&A, Mb-23	spitting trajectory
Mei, 7-2.9	parabolic trajectory
Sut, M-255	spitting trajectory
Hil, M-13d	spitting trajectory
Bil\&Mai, p 43	water stream trajectory
AJP 42(8),706	water drop stream
Mei, 7-2.10	water drop stream
Mei, 7-2.12	dropping the bomb
F\&A, Mb-15	juggling
AJP 49(5),483	projectiles with analog computer
	RELATIVE MOTION Moving Reference Frames
PIRA 200	crossing the river
PIRA 500 - Old	crossing the river
UMN, 1E10.10	crossing the river
AJP 48(10),887	crossing the river
Mei, 6-4.10	crossing the river
Sut, M-75	crossing the river
Bil\&Mai, p 38	crossing the river
Disc 02-08	bulldozer on moving sheet (2D)
AJP 35(2), xix	toy tractor drive
TPT 19(1),44	moving blackboard
PIRA 200	Frames of Reference film
PIRA 500 - Old	Frames of Reference film
UMN, 1E10.20	Frames of Reference film

1D60.56 Inexpensive apparatus for plotting parabolic trajectory by repeatedly hitting a carbon paper.
1D60.58 A strobe picture is taken of the projectile motion of a golf ball. A method of analysis suited for a HS class is presented.
1D60.58 Photograph a bouncing ping pong ball through a motorized slotted disc.
1D60.59 An analog computer simulator for falling bodies projected horizontally.
1D60.59 Use an analog computer to calculate trajectories.
1D60.60
1D60.60 A pivoted bar with several pendula of length proportional to the square of the distance point from the pivot.
1D60.60 Uses the balls hanging from a stick device at the blackboard.
1D60.60 A pivoted bar has pendula of length proportional to the square of the distance from the pivot point.
1D60.60 A stream of water matches the position of balls of lengths $1,4,9,16, \ldots$ at all angles of elevation.
1D60.61 Apparatus Drawings Project No.33: The adjustable water nozzle has an arm extending in the direction of the nozzle with hanging arrows at intervals along the arm. Adjust the water pressure so the stream matches the arrow heads.

1D60.65
1D60.65 Hook a nozzle to the house water through an additional regulator to reduce pressure fluctuations. Shoot at varying angles into a water trough.

1D60.65 A hose aimed with a protractor demonstrates range.
1D60.65 A pulser spits out regularly spaced water drops which are viewed with a strobe. A horizontal mirror shows uniform velocity and a vertical mirror shows acceleration.
1D60.65 Project light down a horizontally discharged water stream to make the path visible.
1D60.65 Use a tuning fork to break a stream of water directed at 45 degrees into regularly spaced drops.
1D60.65 A horizontally projected water jet illuminated with a strobe.
1D60.65 A steady stream of water is shot from a tube with an eye dropper nozzle. Adjust the angle for maximum range.
1D60.68 Design for a water drop generator based on a speaker driven diaphragm.
1D60.68 A vibrator is used to break a horizontally projected stream of water into uniform drops.
1D60.70 A mechanism to drop a bomb in slow motion from a model airplane.
1D60.71 Juggling higher trajectories requires slower hand motion.
1D60.90 A simple analog computer is used to generate voltages representing the various parameters which are displayed on an oscilloscope.

1E00.00
1E10.00
1E10.10
1E10.10
1E10.10 Pull a sheet of wrapping paper along the lecture bench while a toy wind up tractor crosses the paper.
1E10.10 A long sheet of paper (river) is pulled along the table by winding on a motorized shaft. A motorized boat is set to cross the river. Marking pens trace the paths.
1E10.10 A wind up toy is placed on a sheet of cardboard that is pulled along the table.
1E10.10 A small mechanical toy moves across a rug which is pulled down the lecture table.
1E10.10 A constant velocity toy moves across a moving paper river. Vector addition.
1E10.10 The bulldozer moves across a sheet moving at half the speed of the bulldozer or at the same speed.
1E10.11 On using toy tractors in kinematics demonstrations.
1E10.15 Using a large movable reference frame on wheels and a walking student, equations of relative speed can be deduced by non science majors.
1E10.20
1E10.20
1E10.20 The classic film available on video disc permits use of selective parts.

Demonstration Bibligrqaphy

Mei, 6-4.1	photographing relative velocity
Mei, 7-3.1	Galilean relativity
F\&A, Mb-30	stick on the caterpiller
Ehrlich 2, p. 64	stick on a wheel
AJP 34(1),xviii	inertial reference frames
Mei, 7-3.2	inertial reference frames
	Rotating Reference Frames
PIRA 500	Foucault pendulum
UMN, 1E20.10	Foucault pendulum
AJP 29(9),646	Foucault pendulum
F\&A, Mz-6	Foucault pendulum
Sut, M-208	Foucault pendulum
Hil, M-19e	Foucault pendulum
AJP, 75 (10), 888	Foucault pendulum
AJP 76 (2), 188	Foucault pendulum
AJP 78 (11), 1188	Foucault pendulum
Disc 06-13	Foucault pendulum
AJP 46(4),438	short Foucault pendulum
AJP 49(11),1004	short Foucault pendulum
AJP 54(8),759	Foucault pendulum
AJP 46(5),419	short, continuous Foucault pendulum
TPT 21(7),477	Foucault pendulum
TPT 19(6),421	Foucault pendulum
TPT 28(6),362	time lapse Foucault cycle
AJP 46(4),436	Foucault pendulum
TPT 19(2),134	Foucault pendulum
Mei, 13-4.4	Foucault pendulum
AJP 34(7),615	Foucault pendulum drive
Mei, 13-4.3	Foucault pendulum
Sut, M-207	Foucault pendulum
TPT 35(4), 199	Spirograph
TPT 35(3), 182	Foucault's pendulum as a Spirograph
TPT 12(2), 89	electronic Spirograph
AJP 38(2),173	Foucault pendulum - Onnes experiment
TPT 28(5),264	general and historical article
PIRA 1000	Foucault pendulum model
UMN, 1E20.20	Foucault pendulum model
TPT 20(2),116	Foucault pendulum model, etc
F\&A, Mz-7	Foucault pendulum model

1E10.22 Toy bulldozers, blinkies, and a camera give a photographic record of relative velocities.
1E10.23 A Polaroid camera and blinky, each on a cart pushed by a toy caterpillar, show the various cases of relative motion.
1E10.31 A small stick placed on the top tread of a toy caterpillar moves twice as fast as the toy.
1E10.31 A ruler placed on the top of a rolling wheel or soda can moves twice as fast as the wheel or can.
1E10.41 Two X-Y axes, one on a moving cart, and "cord" vectors are painted with fluorescent paint and viewed in black light.
1E10.41 More Phil Johnson humor. "Complicated. Look it up". The description would read: A complicated mechanical apparatus to show two X-Y axes systems, one stationary and one on a moving cart. "Cord" vectors are painted with fluorescent paint and viewed in black light as the cart is moved at constant velocity.
1E20.00
1E20.10
1E20.10 A ceiling mounted pendulum swings freely. The change in path is noted at the end of the class period.
1E20.10 Suspension for a large (120\#-36') non driven Foucault pendulum.
1E20.10 A large pendulum hung from the ceiling swings for an hour.
1E20.10 Optical arrangement for projecting the Foucault pendulum motion.
1E20.10 Permanent corridor demonstration as described in Scientific American, vol 210, Feb. 64, 132-9.
1E20.10 A thorough explanation of the Foucault pendulum utilizing underlying geometry on a level suitable for students not familiar with calculus.
1E20.10 A driving mechanism for a Foucault pendulum. Mechanism and electronic circuit are described.
1E20.10 The changing plane of oscillation of a Foucault pendulum is calculated without using complicated equations or assumptions.
1E20.10 Look at the plane of swing at six ten minute intervals.
1E20.11 Pictures and a circuit diagram for a well done short Foucault pendulum.
1E20.11 A 70 cm pendulum with a method of nullifying the precession due to ellipicity.
1E20.11 A Foucault pendulum driver for limited space exhibits.
1E20.11 Modification of the AJP 46,384 (1978) pendulum to make it portable so it can be moved into lecture rooms for demonstration.
1E20.11 Plans for a very short (50 cm) Foucault pendulum.
1E20.11 Several novel features that can be incorporated in the design of a short Foucault pendulum to make construction and operation relatively simple.
1E20.12 The author will provide a videotape of a complete time lapsed cycle of the Foucault pendulum filmed at the Center of Science and Industry in Columbus for preview and copying.
1E20.13 A 2 meter Foucault pendulum with a Charron ring drive.
1E20.14 The support wire for a 2.8 meter Foucault pendulum is lengthened by heating at the end of each swing.
1E20.14 Foucault pendulum drive mechanisms.
1E20.15 An electromagnet is placed below the equilibrium position of the bob. Circuit for the drive is given.
1E20.16 An optical projection system to show the deflection of a Foucault pendulum after 100 oscillations.
1E20.16 General text about the Foucault pendulum.
1E20.17 A "Spirograph" toy used to generate a picture of the motion of a Foucault pendulum.
1E20.17 How a Foucault sand pendulum creates the same patterns as a "Spirograph" toy.
1E20.17 An electronic circuit that shows "Spirograph" patterns on an oscilloscope.
1E20.19 A review of Onnes' analysis that led to the first properly functioning Foucault pendulum. More stuff.
1E20.19 Some discussion of a current murder novel, some history of Foucault's work, etc.
1E20.20
1E20.20 A pendulum is mounted on a rotating turntable.
1E20.20 Build a simple model of the Foucault pendulum and demonstrate the Coriolis effect by the curved trace method.
1E20.20 A simple pendulum supported above the center of a turntable.

July 2015

Mechanics

1E20.20 A simple pendulum hanging from a rotating platform.
1E20.20 Picture of a nice Foucault pendulum model.
1E20.20 A pendulum is mounted on a clear acrylic rotating platform. Commercial model.
1E20.21 A monkey puppet sits on a rotating reference frame to help the student visualize a non-inertial frame.
1E20.22 Sit on a rotating chair with a table on your lab. A pendulum releasing ink marks a clear pattern on the paper.
1E20.26 A geometrical model helps correct some common misconceptions about the plane of oscillation of the Foucault pendulum.
1E20.27 Excellent diagram explaining the variation of rotation of the Foucault pendulum with latitude
1E20.28 Derivation of the Foucault pendulum period shows that no correction factor is needed for (1 m) lengths. Contradicts C.L.Strong, Sci.Am. 210,136 (1964).

1E20.30
1E20.30 See AJP 47(4),365
1E20.30 A vibrating elastic steel wire pendulum demonstrates how the rotation of the plane of oscillation depends on the latitude.
1E20.35 A ball on rod pendulum set at 45 degrees latitude can be driven by a solenoid inside the globe.
1E20.35 An electromagnet inside a globe drives a small pendulum at a selected latitude. Construction details p. 592.
1E20.40 The concept of a locally inertial frame is used to study motion in accelerated frames. Two demonstrations are presented.
1E20.50
1E20.50 Design for a rotating room that seats four at a table, and has four possible speeds.
1E20.50 A rotating motion room that holds four students.
1E20.50 Students try to play catch on a large rotating system. Other possibilities for the apparatus are discussed.
1E20.51 Experiments performed on a rotating frame are projected onto a screen through a rotating dove prism. Centrifugal force, coriolis force, angular acceleration, cyclones and anticyclones, Foucault pendulum, etc.
1 E30.00
1E30.10
1E30.10 Mount a rotating disk vertically, drive a pen on a cart at constant velocity in front of the disk. The speeds of the disk and cart are variable.
1E30.11
1E30.11 Place a poster board circle on a turntable move a magic marker across in a straight line.
1E30.11 Move a magic marker in a straight line across a rotating disc.
1E30.11 A cart on a track with a marker passes in front of and draws on a large disc that can be rotated.
1E30.12 AJP 50(4),381 should have referenced AJP 27(6),429.
1E30.12 Turn a nearly vertical sheet as a drop of ink is running down it.
1E30.13
1E30.13 Same as AJP 46(7),759.
1E30.13 A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles.
1E30.14 The PSSC air puck is used to give a spark trace on a rotating table.
1E30.20
1E30.20 Same as Mb-25.
1E30.20 A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning.
1E30.20 A clamped dart gun is fired by an instructor sitting on a revolving chair into a target board.
1E30.20 A spring gun at the center of a rotating table fires into a target at the edge.
1E30.21 Go to a merry-go-round and walk on it. You will feel a very strange "force".
1E30.24 A ball on a string is threaded through the pole of a spinning globe. Pull on the string and the ball moves to higher latitudes and crosses the latitude lines.

AJP 55(11),1010 Coriolis dish and TV

AJP 41(2),247	Coriolis rotating platform and TV
PIRA 1000	Coriolis ball on turntable
Ehrlich 1, p. 80	Coriolis ball on turntable
Disc 06-14	Coriolis effect
TPT, 37(4), 244	Coriolis-effect demonstration on an overhead projector
F\&A, Mb-26	leaky bucket on turntable
D\&R, S-040	Toricelli column on turntable
Mei, 12-6.5	drop ball on turntable
Mei, 12-6.3	Coriolis trajectory
AJP 33(8), iii	Coriolis water table
TPT 3(4),171	Coriolis water table
Mei, 12-6.4	Coriolis water table
AJP 58(4),381	rotating water flow table
TPT 10(9),532	Coriolis
PIRA 1000	rotating TV camera
UMN, 1E30.50	rotation table with tv
Mei, 12-6.7	rotating TV camera
Mei, 12-6.8	vacuum cleaner

AJP 38(3),390

PIRA 1000
UMN, 1F10.10
F\&A, Mz-2
Sut, M-106
PIRA 1000
Mei, 8-2.7
Bil\&Mai, p 52
Disc 08-24
Mei, 8-2.5

AJP 29(6),vi

TPT 11(5), 312

PIRA 1000
UMN, 1F10.20
TPT 12(1),30

PIRA 1000

NEWTON'S FIRST LAW

 Measuring Inertiainertia balance
inertia balance
inertia balance
inertia balance
inertia balance - leaf spring
inertia balance
inertia balance
inertia balance
inertia oscillation
inertial equal arm balance
inertia balance
inertia bongs
inertia bongs
inertia bongs

1E30.26 A ball oscillates in a spherical dish at rest, and follows various curved paths when the dish is rotated at different speeds. A TV camera is mounted to the rotating frame. More.
1E30.27 A puck is launched on a rotating platform and the motion is followed with a TV
1E30.28
1E30.28 Roll a ball across a rotating turntable that has been covered with carbon paper.
1E30.28 Roll a ball across a slowly rotating turntable.
1E30.29 Use an overhead and plastic rotating platform to illustrate Coriolis force to a large lecture.
1E30.30 A can with a hole is mounted above a rotating table. As the table turns, the stream of water is deflected.
1E30.30 A Toricelli column with only one hole open is filled and mounted on a rotating platform. As the table turns the stream of water is deflected.
1E30.32 A mass falls on a disc first while it is rotating and then when it is stationary. Difference in point of impact is noted.
1E30.33 A ball describing an arc is released first in a stationary coordination system and then in a rotating system.
1E30.34 A flat board rotates in a horizontal plane with a flexible tube full of flowing water running lengthwise. The tube deflects upon rotation.
1E30.34 A flexible rubber tube with water flowing in it is stretched across a disc which can be rotated. The tube deflects when rotated.
1E30.34 A flexible rubber tube with water flowing in it is stretched across a disc which can be rotated. The tube deflects.
1E30.35 Food coloring used to mark flow is introduced at the edges of a circular rotating tank with a center drain hole. A rotating overhead TV camera allows motion in the rotating frame to be viewed.
1E30.36 A pan of water on a turntable has a recirculating pump with an inlet and exit of opposite sides of the pan. Floats above these areas rotate in opposite directions as the pan of water is spun.

1E30.50
1E30.50
1E30.51 A TV camera is rotated in front of an oscilloscope displaying a slow ellipse. Vary the camera rotation.
1E30.61 Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power.
E30.71 The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example.
1F00.00
1F10.00
1F10.10
1F10.10 A torsion pendulum has cups that can be loaded with various masses.
1F10.10 A light torsion pendulum can be loaded with various masses.
1F10.10 Torsion pendulum as an inertia balance.
1F10.11
1F10.11 A horizontal leaf spring as an inertial balance.
1F10.11 Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again.
1F10.11 Place masses on a platform supported by horizontal leaf springs.
1F10.12 A puck between two springs rolling on Dylite beads is timed with several different masses.
1F10.13 Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart.
1F10.13 Measure the period of a commercially available (?) inertia balance by using a stroboscope.
1F10.20
1F10.20
1F10.20 Two large cylinders are suspended, one wood (3 Kg) and one iron (50 Kg). Students compare displacements when struck by a hammer or just push the things around.

Demonstration Bibligrqaphy	
UMN, 1F10.25	foam rocks
Disc 02-14	foam rock
Mei, 8-2.6	judging inertial mass
	Inertia of Rest
PIRA 200	inertia ball
UMN, 1F20.10	inertia balls
F\&A, Mc-2	inertia balls
Sut, M-100	inertial ball
D\&R, M-250	inertia ball
Sprott, 1.5	inertia balls
Ehrlich 1, p. 30	inertia balls
AJP 72(7), 860	inertia ball
Disc 02-13	inertia ball
PIRA 1000	bowling ball inertia balls
UMN, 1F20.11	bowling ball inertia balls
Bil\&Mai, p 56	bowling ball inertia balls
Hil, M-6d	inertia balls
D\&R, M-242	toilet paper
PIRA 1000	inertia block
Mei, 8-1.2	inertia block
UMN, 1F20.16	inertia block
F\&A, Mc-3	inertia block
Sut, M-101	inertia block
D\&R, M-258	inertia block
AJP 46(7),710	inertia balls - analysis
PIRA 1000	smash your hand
UMN, 1F20.20	smash your hand
F\&A, Mc-1	smash your hand
D\&R, M-254	smash your hand
Mei, 8-2.4	smash your hand, etc.
PIRA 1000	hit the nail on the head
UMN, 1F20.22	hit the nail on the head
Hil, M-6e	hit the nail on the "head"
Ehrlich 1, p. 30	hit the stake on your chest
PIRA 1000	smash block on bed of nails
AJP 56(9),806	smash the block
TPT 14(2),119	smash the block
Sut, M-102	vibrograph
PIRA 200	tablecloth pull
PIRA 500 - Old	tablecloth pull
UMN, 1F20.30	tablecloth pull
TPT 15(4),242	the tablecloth pull

July 2015
Mechanics
1F10.25 Hit a real rock (granite) then a foam rock (looks like granite) with a hammer. Throw a form rock at some students.
1F10.25 Hit a real rock and then a foam rock with a heavy mallet.
1F10.30 A blindfolded volunteer compares a mass on a string with a mass on a roller cart.
1F20.00
1F20.10 Break the string on the top or bottom of a suspended mass.
1F20.10 Two heavy iron balls are hung separately between lengths of string. Pull on one and jerk on the other.
1F20.10 Two steel balls are suspended by strings with identical strings tied from their bottoms. Give a quick jerk to one and pull the other slowly.
1F20.10 Break the string on the top or bottom of a suspended mass.
1F20.10 Break the string on the top or bottom of a suspended mass.
1F20.10 Pull on a string attached to the bottom of a heavy ball that is suspended by an identical string until one of the strings breaks.
1F20.10 Break the string on the bottom or top of a suspended mass.
1F20.10 Quantitative analysis of how the strings break in this demonstration.
1F20.10 A mass is suspended between two cords. Pull slowly or jerk on the lower cord.
1F20.11
1F20.11 Replace the standard 6 cm balls with bowling balls for increased visibility.
1F20.11 Attach a string to a bowling ball. Pull slowly and lift the ball off the floor. Jerk and the string breaks.
1F20.12 One mass is hung from a string and another mass hung below it. Jerk the lower mass to break one of the strings.
1F20.14 Toilet paper unrolls if pulled slowly, but breaks if pulled or jerked.
1F20.15
1F20.15 A 50 lb mass is mounted on rollers. A thread will pull it but a rope can be broken with a jerk.
1F20.16 Tie a loop of 7/16" braided cotton cord through a hole in a 2 " $\times 4$ " $\times 10$ " steel block. Pull and jerk with a hammer.
1F20.16 A length of rope is tied to a 10 lb . block. A pull with a hammer will move the block but a jerk will break the rope.
1F20.16
A rope is attached between a heavy iron ball and a hammer head. A fast swing of the hammer takes up the slack and breaks the rope without moving the ball.
1F20.16 Hang a 20 to 30 kg object with a rope. With a $3 / 4$ inch dowel rod 1 meter long the object can be easily deflected if pushed gently but the rod will break if swung at the object.
1F20.18 For the more advanced reader. The system may be treated as a forced harmonic oscillator and the classical results of the demonstration are verified analytically. Surprises emerge.
1F20.20
1F20.20
1F20.20
1F20.20
1F20.21

1F20.22
1F20.22

1F20.22

1F20.25
1F20.25

1F20.25

1F20.26

1F20.30
1F20.30
1F20.30
1F20.30

1F20.22 A very heavy steel stake is placed against your chest and hit with a hammer. No pain or damage results.
Place a lead block on your hand and hit it with a hammer.
Hit a 10 lb . brick with a hammer while it rests on your hand.
Place a $1 / 4$ inch thick steel plate on your hand and hit it with a hammer.
Hit a 10 lb block on the hand or a 50 lb brick on the stomach with a hammer.
Pound nails into a 50-75 lb wood block placed on a student's head.

Place a physics book, then a 6"x6" block of wood on a student's head and drive a nail into the block.

An analysis of smashing a block on a volunteer sandwiched between two nail beds. Safety issues are discussed.
A bed of nails is placed on the chest before smashing the block with a sledge.
An optical lever arrangement for magnifying small displacements of a large mass when the table is hit with a hammer.

Pictures and a few hints.

Demonstration Bibligrqaphy

\&A, Mc-4b	tablecloth pull
D\&R, M-524	tablecloth pull
Sprott, 1.6	tablecloth pull
Bil\&Mai, p 54	tablecloth pull
Bil\&Mai, p 73	tablecloth pull
Disc 02-15	tablecloth pull
PIRA 1000	inertia cylinder
UMN, 1F20.33	inertia cylinder
F\&A, Mc-4a	inertia cylinder
D\&R, M-222	dollar bill and coke bottles
Bil\&Mai, p 54	dollar bill and coke bottles
PIRA 1000	coin/card snap
Mei, 8-2.3	card/coin snap
Sut, M-104	card/coin snap
Hil, M-6a	card/coin snap
D\&R, M-226	card/coin snap
Ehrlich 1, p. 21	coin/card snap
PIRA 500	eggs and pizza pan
UMN, 1F20.35	eggs and pizza pan
Mei, 8-2.2	blocks and broomstick
D\&R, M-234	eggs and pizza pan
Disc 02-16	eggs and pizza pan
PIRA 1000	pen and embroidery hoop
UMN, 1F20.36	pen and embroidery hoop
D\&R, M-230	pen and embroidery hoop

Ehrlich 1, p. 21	pennies on your arm
PIRA 1000	stick on wine glasses
UMN, 1F20.40	stick on wine glasses
$\begin{aligned} & \text { AJP, 65(6), } 505- \\ & 510 \end{aligned}$	transverse bending and the breaking broomstick demo
D\&R, M-250	stick on wine glasses
Mei, 8-2.1	inertia stick
PIRA 1000	shifted air track inertia
UMN, 1F20.50	shifted air track inertia
Disc 02-12	shifted air track inertia
F\&A, Mc-5	loose hammer head
Sut, M-105	inertia cart
Mei, 8-1.3	string of weights
Sut, M-288	inertia of liquids
PIRA 200	Inertia of Motion persistence of motion (air track)
UMN, 1F30.10	persistence of motion (air track)
F\&A, Me-2	air table puck
F\&A, Me-1	CO2 block

1F20.30 Pull the tablecloth out from under a place setting.
1F20.30 Pull the tablecloth out from under a place setting.
1F20.30 Quickly pull a cloth out from under a beaker filled with water.
1F20.30 Pull a tablecloth from beneath a table setting.
1F20.30 A detailed analysis of the tablecloth pull demo.
1F20.30 Pull a low friction tablecloth from under a place setting.
1F20.33
1F20.33
Stand a $3 / 4$ " $\times 6$ " aluminum cylinder on a sheet of paper. Jerk the paper out from under the cylinder.
1F20.33 Jerk a sheet of paper out from under a thin steel cylinder.
1F20.33 Jerk a dollar bill from between two coke bottles stacked mouth to mouth.
1F20.33 Jerk a dollar bill from between two coke bottles stacked mouth to mouth.
1F20.34
1F20.34 Snap a card out from under a tall object, e.g., a shipping tag from under a balanced claw hammer.
1F20.34 Several inertia tricks.
1F20.34 Snap a piece of cardboard from under a steel ball.
1F20.34 Snap a card from under a steel ball.
1F20.34 Shoot a penny at the bottom of a stack of pennies knocking the bottom penny out without disturbing the rest of the stack.
1F20.35
1F20.35 Set a pizza pan on three 21 beakers full of water, stand paper cylinders with eggs at the tops above the beakers, knock out the pizza pan.
1F20.35 Egg on a spool, on a pie tin, on a beaker of water. Flex broom and knock out pie tin.
1F20.35 Set a pizza pan on a glass of water. Set an egg on pan above the glass. Snap the pizza pan with a broomstick and the egg fall into the glass.
1F20.35 Place a pizza pan on three beakers, place cardboard tubes on the pan directly above the beakers, and eggs on the tubes. Knock out the pizza pan.

1F20.36
1F20.36
1F20.36
Balance an embroidery hoop on the mouth of a soft drink bottle, and then balance a pen on the embroidery hoop. Snap hoop sideways and pen will fall into bottle.
1F20.38 Place a row of 10 to 20 pennies on your forearm. Quickly swing your arm forward and catch all the pennies in midair.
1F20.40
1F20.40

1F20.40 A nice explanation and guide to breaking the broomstick balanced on two wine glasses. This setup describes how to use force probes to measure and analyse the forces involved.
1F20.40 Wooden rod with pins in each end is placed on wine glasses full of water. Break the stick with an iron bar.
1F20.40 A long stick is horizontally supported from rings of filter paper at each end. Break the filter paper with a pull on the middle of the stick or the stick with a jerk.
1F20.50
1F20.50 Support an air track on wheels. Move the air track under an air glider.
1F20.50 Move the air track under an air track glider.
1F20.60 A hammer handle may be tightened by pounding on the far end of the handle.
1F20.61 A cart has a pivoting arm with different masses but the same volume at the ends. The greater mass lags behind as the cart is accelerated.
1F20.62 A string of weights connected by springs shows uneven deformation when jerked.
1F20.64 There are two horizontal glass tubes, one with a cork cylinder and the other with a lead cylinder. Strike the stopper at one end of the glass tubes with a hammer and watch the direction of the cylinders.
1F30.00
1F30.10
A single glider the air track.
1F30.11 Air table with a puck.
1F30.13 A large piece of dry ice on a flat formica top wetted with alcohol.

Demonstrati	Bibligrqaphy	July 2015	
PIRA 1000	water hammer	1F30.21	
TPT 2(4),178	water hammer	1F30.21	Some water in an evacuated test tube clicks when the water hits the end of the tube.
Sut, M-290	water hammer	1F30.21	Shut off the sink faucet and a water hammer may be heard. A small tube evacuated with some water shows the effect nicely.
Hil, M-6c	water hammer	1F30.21	A tube is evacuated except for some water. When the tube is stopped suddenly, the water strikes the end of the tube with a click.
Disc 13-14	water hammer	1F30.21	Evacuate a glass tube containing water.
PIRA 1000	car on cart on cart	1F30.30	
UMN, 1F30.30	car on cart on cart	1F30.30	A small car on a skateboard on a large roller cart hits a stop level with the roller cart and the skateboard and car continue to move at constant velocity.
Mei, 8-1.5	cart on a cart	1F30.30	A smaller roller cart is placed on a larger one. when the larger is stopped, the smaller continues.
Bil\&Mai, p 16	dynamics cart on a cart	1F30.30	A dynamics track is placed on a rolling table. A dynamics cart is placed on the track. Ask what happens to the cart when the table is pushed. Many situations are possible.
Bil\&Mai, p 80	dynamics cart on a cart	1F30.30	Place a dynamics track on a rolling table, and then a dynamics cart on the track. What happens to the dynamics cart when the table is moved across the room.
PIRA 1000	nail by hand	1F30.40	
UMN, 1F30.40	nail by hand	1F30.40	Follow the directions in TPT 18(1),50.
TPT 18(1),50	hand pile driver	1F30.40	Drive a nail into wood with your bare hands.
PIRA 1000	pencil and plywood	1F30.50	
UMN, 1F30.50	pencil and plywood	1F30.50	Place a pencil in a brass tube hooked to a fire extinguisher. Fire the pencil into a $1 / 2$ " plywood board.
Disc 02-17	pencil and plywood	1F30.50	Use a CO2 extinguisher to fire a pencil through a 1/2" plywood.
	NEWTON'S SECOND	1G00.00	
	LAW Force, Mass, and Acceleration	$1 \mathrm{G10.00}$	
Ehrlich 2, p. 23	net force	$1 \mathrm{G10.05}$	Estimating the net force on a book as you move it in several types of motion.
Ehrlich 2, p. 25	net force	1G10.05	Use a simple force indicator made from index cards to observe the connection between force and acceleration.
PIRA 200	accelerating air / Dynamics cart	1G10.10	
PIRA 500 - Old	glider, mass, and pulley on air track	1G10.10	
F\&A, Md-2	acceleration air glider	1G10.10	Air track glider pulled by a falling weight.
Mei, 7-1.5.7	acceleration air glider	1G10.10	Accelerate a glider on a track with a mass on a string over a pulley.
Hil, M-7b	glider, mass, and pulley	1G10.10	An air track glider is timed while pulled by a mass on a string over a pulley.
Bil\&Mai, p 20	dynamics cart, mass, and pulley	1G10.10	A mass over a pulley pulls a dynamics cart down a track. Record the motion of the cart with a motion sensor.
Disc 01-15	string and weight acceleration (air)	$1 \mathrm{G10.10}$	Three cases of an air glider pulled by a falling weight.
PIRA 1000	constant mass acceleration system	1G10.11	
UMN, 1G10.11	constant mass acceleration system	1G10.11	A glider on the air track is accelerated by a mass on a string over a pulley and final velocity timed photoelectrically. Keep the mass of the system constant by transferring from the glider to the pan.
Mei, 11-1.5	acceleration air glider	1G10.11	Air glider with a string over a pulley to a mass. Vary mass on both glider and hanger.
Mei, 10-2.1	acceleration air glider on incline	1G10.12	A glider is timed as it floats up an incline pulled by a string to a weight over a pulley.
AJP 50(2),185	acceleration air glider on incline	1G10.13	An air track glider is accelerated up an inclined track by the string, pulley and mass system. A newton scale is included on the glider to measure the tension in the string directly. An electromagnet release and photogate timer at a fixed distance are used to derive acceleration.
TPT 17(1),45	acceleration glider accelerometer	1G10.14	An elegant pendulum accelerometer designed for the air track. Reflected laser beam is directed to a scale at one end of the track.
PIRA 1000	roller cart and bungee loop	1G10.15	
UMN, 1G10.15	roller cart and bungee loop	1G10.15	A student standing on a large roller cart is pulled by another student with a loop of bungee cord. Pulling so that the bungee cord maintains a constant length gives a slow acceleration to the cart.

Demonstration Bibligrqaphy	
PIRA 1000	Strang gage
Disc 01-17	acceleration with spring (airtrack)
AJP 52(3),268	constant force generators
AJP 57(6),543	battery propeller force generator
AJP 51(4),344	constant force generator
PIRA 1000	accelerated car
Hil, M-7a	acceleration car
AJP 29(5),294	acceleration car and track
Mei, 8-1.1	acceleration car
Sut, M-108	acceleration car
Hil, M-3a	acceleration car, mass \& pulley
PIRA 1000	accelerated instructor
UMN, 1G10.22	accelerated instructor
Mei, 8-1.6	acceleration car photo
PIRA 1000	acceleration block
UMN, 1G10.25	acceleration block
Mei, 8-1.7	acceleration car
PIRA 1000	mass on a scale
F\&A, Mf-1	weight of a mass
Hil, M-8a	mass on a scale
Ehrlich 1, p. 29	mass on a scale
PIRA 200	Atwood's machine
UMN, 1G10.40	Atwood's machine
F\&A, Ms-7	Atwood's machine
Sut, M-110	Atwood's machine
Hil, M-7c	Atwood's machine
D\&R, M-278	Atwood's machine
Disc 01-16	Atwood's machine
TPT, 37(2), 82	another look at Atwood's machine
AJP 71(7), 715	variable mass Atwood's machine
Sut, M-111	Atwood's machine
AJP 37(4),451	Atwood's machine
Mei, 11-2.1	Atwood's machine
Ehrlich 2, p. 58	Atwood's machine - high friction
TPT 11(9),539	Atwood's machine problem
TPT 18(8),603	Morin's machine
AJP 58(6),573	auto acceleration
TPT 12(8),491	car time trials
	Accelerated Reference Frames
PIRA 1000	candle in a bottle

1G10.16
1G10.16 An air track glider is pulled by a small spring hand held at constant extension.
1G10.17 A note that picks some nits about the hanging mass, mentions the "Neg'ator" spring.
1G10.18 Plans for a battery powered air track propeller that provides a constant force.
1G10.19 A constant force generator for the air track based on the induction of eddy currents. It is easy to handle and can be self-made.
1G10.20
1G10.20 Time the acceleration of a toy truck as it is pulled across the table by a mass on a string over a pulley.
1G10.21 Apparatus Drawings Project No. 15: Large low friction acceleration carts and track for use in the lecture demonstration.
1G10.21 Three different pulley arrangements allow a cart to be accelerated across the table top.
1G10.21 A car is accelerated by a descending weight.
1G10.21 Distance and time are measured as a toy truck is accelerated by a mass and pulley system.
1G10.22
1G10.22
1G10.24 Take a strobed photo of a light on a car pulled by a weight on a string over a pulley.
1G10.25
1G10.25 Accelerate a block of wood across the table by a mass on a string over a pulley.
1G10.26 A complex arrangement to accelerate a car, vary parameters, and graph results is shown. Details in appendix, p. 549 .
1G10.30
1G10.30 Suspend a mass from a spring balance and then cut the string.
1G10.30 Hang a mass on a spring scale to show reaction of the scale to mg .
1G10.30 Hang a mass on a spring scale. Moving the scale up and down will give readings that permit a quantitative test of Newton's second law.
1G10.40 Two equal masses are hung from a light pulley. A small percentage of one mass is moved to the other side.
1G10.40 Place 1 kg on each side of a light pulley on good bearings. Add 2 g to one side.
1G10.40 Three skeletonized aluminum pulleys are mounted together on good bearings. Many combinations of weights may be tried.
1G10.40 Two equal masses are hung from a light pulley. A small percentage of one mass is moved to the other side.
1G10.40 An Atwood's machine using an air pulley.
1G10.40 Atwood's machine made of two pulleys for string separation. Spring scales hang from the ends of the string to monitor tension during acceleration.

1G10.40 The small weight is removed after a period of acceleration and the resulting constant velocity is measured.
1G10.40 Using Atwood's machine, compare acceleration determined from experimental data with the numbers theoretically derived from Newton's law.

1G10.40 Sand flowing from a bottle makes for a variable mass Atwood's machine.
1G10.42 Hang the weights from spring balances on each side.
1G10.44 A rotation free Atwood's machine using air bearing surface and spark timer.
1G10.44 Atwood's machine using an air bearing and spark timer.
1G10.45 A high friction Atwood's machine made by wrapping the string around a smooth horizontal rod or cylinder.
1G10.45 More Phil Johnson humor. "One of the best nerd problems ever". The description would read: An entertaining four step Atwood's machine problem of unknown origin is solved by applying Newton's second law.
1G10.45 Morin's (French) alternative to Atwood's (English) machine.
1G10.51 On using automotive magazine test results to study kinematic relations.
1G10.52 Use student's cars to do time trials in the school parking lot.

1G20.10

Demonstrat	Bibligrqaphy	July 2015	
UMN, 1G20.10	candle in a bottle	1G20.10	Drop a candle burning in a large flask.
TPT 1(1),34	candle in a bottle	1G20.10	Drop, toss up, and throw a bottle containing a lighted candle
F\&A, Fl-3	gravitational pressure in circulation	1G20.10	Drop a Plexiglas container with a lighted candle.
F\&A, Fl-2	bottle and candle	1G20.10	Throw a jug with a lighted candle into the air.
Mei, 8-3.7	candle in a bottle	1G20.10	A lighted candle in a glass chimney in a large container will burn for a long time unless dropped.
Sut, M-98	candle in a bottle	1G20.10	A candle in a dropped chimney goes out after 2-3 meters due to absence of convection currents.
Disc 01-19	candle in dropped jar	1G20.10	Drop a closed jar containing a burning candle.
AJP 32(1),61	falling candle doesn't work	1G20.11	Hey, when these guys tried it they could drop the bottle 25 feet and the candle only went out upon deceleration.
AJP 34(2),172	elevator paradox	1G20.13	A large hydrometer flask in a beaker of water remains at its equilibrium position as the beaker is moved up and down.
AJP 30(12),929	four demos	1G20.14	Four demos: Drop a weight on a spring balance, drop a cup with weights on rubber bands, drop a candle in a bottle, drop or throw a tube of water containing a rising cork.
PIRA 1000	ball in a thrown tube	1G20.20	
UMN, 1G20.20	ball in a thrown tube	1G20.20	Invert and throw a 4' Plexiglas tube full of water that contains a cork. The rising cork will remain stationary during the throw.
TPT 1(1),34	ball in a thrown tube	1G20.20	Throw or drop long water filled tube containing a cork. Also try a rubber stopper or air bubble.
F\&A, Fl-6	falling bubble	1G20.20	A rising bubble in a jar remains stationary while the jar is thrown.
Mei, 8-3.4	ball in a thrown tube	1G20.20	A long thin tube with an air bubble is tossed across the room.
$\begin{aligned} & \text { D\&R, M-102, S- } \\ & 215 \end{aligned}$	bubble in a thrown tube	1G20.20	A bubble in a water filled tube ceases to rise when tossed in the air.
TPT 1(1),34	modified falling tube	1G20.21	Couple a lead weight and cork with a spring and put the assembly in a tube of water so the cork just floats. Drop the tube and the cork sinks.
Mei, 8-3.3	ball in a falling tube	1G20.21	A cork remains submerged in a falling jar of water. Diagram of a mousetrap mechanism.
Sut, M-97	ball in a falling tube	1G20.22	A ball and tube are dropped simultaneously from the ceiling. The ball strikes the bottom of the tube after hitting the floor.
PIRA 1000	leaky pail drop	1G20.30	
$\begin{aligned} & \text { D\&R, M-188, S- } \\ & 055 \end{aligned}$	leaky pail drop	1G20.30	Punch vertical holes near the bottom of a Styrofoam cup. When you fill it with water and drop it no water will run out.
Ehrlich 2, p. 183	leaky pail drop	1G20.30	Drop a water filled cup with two holes near the bottom of it. The water does not run out of the cup when it is in free fall.
TPT 1(1),34	leaky pail drop	1G20.30	Punch a hole in the bottom of a can and fill it with water. When you drop it, no water will run out.
AJP 31(5),391	drop pail with holes	1G20.30	First drop a can with several vertical holes to show no flow in free fall, then rig up a pulley system to accelerate the pail greater than g (shown), and the top hole will issue the longest stream of water.
TPT 12(6),366	pop the balloon	1G20.33	This device pops a balloon if it is not in free fall. Toss it to a student to give them a real bang.
Mei, 8-3.1	vanishing weight	1G20.34	A strip of paper pulled from between two weights will tear except when dropped.
F\&A, Mf-2	vanishing weight	1G20.36	Weights compress the tube of an air whistle until in free fall when the whistle blows.
F\&A, Fl-5	Einstein's birthday present	1G20.38	A ball attached to a tube by a weak rubber band is pulled to the tube in free fall.
D\&R, M-188	Einstein's birthday present	1G20.38	Weights are attached to the bottom of a cup by weak rubber bands. Drape the weights over the edge of the cup and drop. They will jump inside during freefall.
PIRA 500	cup and weights	1G20.40	
UMN, 1G20.40	cup and weights	1G20.40	Hang 1 kg weights from heavy rubber bands extending from the center over the edge of a styrofoam bucket. Drop the thing.
TPT 21(8),521	cup \& weights	1G20.40	Further discussion of the R. D. Edge article describing dropping a styrofoam cup with weights suspended over the edge by rubber bands.
TPT 1(1),34	vanishing weight - dropping things	1G20.41	1) Drop a mass on a spring scale, 2) Drop an object with a second object hanging by a rubber band, 3) stretch a rubber band over the edge of a container and drop.
Mei, 8-3.13	vanishing weight	1G20.42	A parcel scale is dropped with a bag of sand on the platform.
TPT 16(6),391	elevators	1G20.43	A battery powered circuit is constructed in a box causes a light to glow while a spring scale is unloaded. The light will glow while a loaded spring scale is in free fall.

July 2015
Mechanics
1G20.44 Drop a frame with an oscillating mass on a spring and the mass will be pulled up but stop oscillating.
1G20.45
1G20.45 Hold one end of a Slinky high in the air so the other end is not touching the ground and is clearly visible. Let go of the top end and watch as the lower end remains in place untill the whole spring has contracted to its minimum length. Note that the top end of the Slinky falls faster than " g ".
1G20.45 Hold a Slinky so some of it extends downward, then drop it to show the contraction.
1G20.46 Drop a frame containing three different masses hanging on identical springs or a frame with a pendulum.
1G20.47 Suspend a pendulum from a stick. Drop the stick when the pendulum is at an extreme and the stick and pendulum will maintain the same relative position.

1G20.55 A falling cage is equipped with two guns lined up with holes in two sheets and a net to catch the ball. The balls don't go through the holes unless the cage is in free fall.
1G20.60 Quickly raise and lower a spring balance-mass system.
1G20.60 Quickly raise and lower a spring balance - mass system.
1G20.61 Discussion of the elevator problem and a car going around a curve.
1G20.62 A rope over a ceiling mounted pulley has a weight on one side and a spring scale and lighter weight on the other side.
1G20.63 An apparatus to quantitatively demonstrate the forces acting on a passenger standing on a spring scale in an elevator. Diagrams.
1G20.63 Do deep knee bends on a bathroom scale as a simple test of Newton's second law.
1G20.64 The elevator is a spring scale and potentiometer combination.
1G20.70
1G20.70 The water surface of a liquid accelerometer on a tilted air track remains parallel to the angle of the air track during acceleration.
1G20.70 Put a cart on an incline, mount a liquid accelerometer on the cart and mark the reference at rest, give the cart a push up the incline and observe the accelerometer as the car goes up, stops, and comes back down.
1G20.70 A Lucite box containing colored glycerine mounted on a cart is rolled down an incline or given a push up an incline.
1G20.70 Place a liquid accelerometer on an air track glider on an inclined air track
1G20.75 Put two students in a car with a helium balloon.
1G20.75 A balloon filled with air is suspended from the top and a helium balloon from the bottom of a clear box mounted on wheels.
1G20.76
1G20.76 A float in a glass of water on an accelerating cart. Also, moving in uniform circular motion.
1G20.76 Two flasks full of water, one has a cork ball, the other has a heavier than water ball.
1G20.76 An iron ball is suspended from the top and a cork ball from the bottom of a clear box filled with water mounted on wheels.
1G20.76 A jar full of water with a heavy suspended ball is accelerated across a table. Try same experiment with a light ball suspended from the bottom of the jar.

1G20.76 Two jars full of water, one has a light ball suspended from the bottom, one has a heavy ball suspended from the top. Rotate on a turntable.
1G20.76 A fishing float or a Ping Pong ball is anchored to the bottom of a water filled jar. Move the jar suddenly and observe the motion of the float.
1G20.76 Two jars of water, one has a light ball suspended from the bottom, the other has a heavy ball suspended from the top.
1G20.79 A design for a high quality accelerometer.
1G20.79 A simple accelerometer for use on the overhead projector made from a clear box, small washer, and a 1 inch ball bearing.
1G20.79 A simple accelerometer for use on the overhead projector made from a concave lens and a small steel ball bearing.
1G20.79 A ruler hangs over the end of a table like a diving board. Place a penny on the end of the ruler and pluck it. When you hear the penny clatter, the acceleration has exceeded 1 g .
1G20.79 A 1000 g accelerometer. Drop steel balls onto a piece of soft wood and determine the acceleration during impact by measuring the depth of the dents.

Demonstra	Bibligrqaphy	July 2015	
PIRA 1000	cart and elastic band	1G20.80	
UMN, 1G20.80	cart and elastic band	1G20.80	Place an accelerometer (cork on a string in a clear water filled box) on a cart and attach a strong rubber band to one end. Push the cart down the bench while holding the rubber band.
PIRA 1000	acceleration pendulum cart	1G20.85	
UMN, 1G20.85	acceleration pendulum cart	1G20.85	Push a skateboard across the lecture bench so an attached pendulum is displaced at a constant angle.
AJP 34(9),825	accelerometer	1G20.87	The bubble of a spirit level moves in the direction of acceleration.
TPT 21(3),184	accelerometer	1G20.87	Place a carpenter's level on Fletcher's trolley and use the bubble as an accelerometer.
Sut, M-289	accelerometer	1G20.88	A discussion of "U" tube manometers for use as accelerometers.
	Complex Systems	1 G 30.00	
AJP 38(4),541	Poggendorff's experiment	1G30.11	The reaction on an Atwood's pulley hanging from a scale is twice the harmonic mean of the suspended weights.
Mei, 8-1.4	tension in Atwood's machine	1G30.11	Hang an Atwood's machine from a spring scale and take readings in both static and dynamic cases.
Sut, M-112	double Atwood's machine problem	1G30.12	The mass on one side of the Atwood's machine is replaced with another Atwood's machine.
PIRA 1000	mass on spring, on balance	1 G30.20	
UMN, 1G30.20	mass on spring, on balance	1 G 30.20	A mass on a spring oscillates on one side of a tared balance.
Sut, M-114	mass on a spring, on balance	1G30.20	A large ball on a stretched spring is tared on a platform balance. The string is burned and the motion observed.
Hil, M-8c	acceleration on a balance	1 G30.20	Burn the string extending a mass on a spring on a tared platform balance.
Mei, 8-3.14	weigh a yo-yo	1G30.25	A yo-yo is hung from one side of a balanced critically damped platform scale.
PIRA 1000	hourglass on a balance	1G30.30	
UMN, 1G30.30	hourglass on a balance	1G30.30	An hourglass runs down on a tared, critically damped balance.
F\&A, Mp-19	acceleration of center of mass	1G30.30	A very large hourglass is placed on a critically damped balance. The deflection is noted as the sand starts, continues, and stops falling.
Mei, 9-4.10	acceleration of center of mass	1G30.30	An hourglass full of lead shot is tared on a critically damped platform balance. The resultant force is observed as the lead shot starts, continues, and stops falling.
Sut, M-116	hourglass on a balance	1 G30.30	An hourglass on one side of a equal arm balance.
Ehrlich 2, p. 38	hourglass on a scale	1G30.30	A demonstration equivalent to the weight of an hourglass. The weight of water flowing from one bottle to another shows an increased scale reading while the water flows.
Mei, 9-4.13	acceleration of center of mass	1G30.31	An apparatus to show transient and steady state conditions in the hourglass problem.
AJP 53(8),787	the hourglass problem	1G30.32	Careful analysis and demonstration shows that the center of mass is actually accelerating upwards during most of the process.
Hil, M-8d	acceleration of center of mass	1G30.33	A funnel full of water is placed on a tared platform balance and the water is then released and runs into a beaker.
Sut, M-115	reaction balance	1G30.34	One mass on an equal arm balance is supported by pulleys at the end and fulcrum. The balance is in equilibrium if the string holding the mass is held fast or pulled in uniform motion. Look it up.
Mei, 9-4.12	acceleration of center of mass	1G30.35	A ball is dropped in a tall cylinder filled with oil while the entire assembly is on a balance. A hollow iron ball may be released from an electromagnet on the bottom and float to the top.
	NEWTON'S THIRD LAW Action and Reaction action and reaction	1H00.00	
		1H10.00	
ref.		1H10.01	see 1N22. section.
Ehrlich 2, p. 27	pick yourself up	1H10.05	Show that you can not "pick yourself up by your bootstraps" unless an outside force can give you an upward acceleration.
PIRA 200	push me pull me carts	1H10.10	Two people stand on roller carts and both pull on a rope or push with a long stick.
UMN, 1H10.10	push me pull me carts	1H10.10	Two people stand on roller carts and both pull on a rope. A long stick may be substituted to allow pushing.
F\&A, Mg-5b	rope and carts	1H10.10	People on two identical roller carts pull each other with a long rope.
D\&R, M-554	push me pull me carts	1H10.10	Two people on roller carts push off each other with outstretched hands.
Bil\&Mai, p 115	push me pull me Rollerblades	1H10.10	Students put on Rollerblades, hold their palms out to each other and push with equal force. Repeat with only one student pushing, a heavy student pushing a lighter student, two students pushing one student, etc.
Sut, M-118	rope and carts	1H10.11	All the things you can do standing and running on carts with and without ropes.
Mei, 8-1.9	rope and carts	1H10.12	Stand on a cart holding a rope passing over a pulley to a weight slightly less than static friction, then pull the rope.

Demonstration Bibligrqaphy	
PIRA 1000	reaction air gliders
Disc 02-18	reaction gliders
PIRA 1000	Newton's sailboat
UMN, 1H10.20	Newton's sailboat
TPT 10(4),208	Newton's sailboat
D\&R, M-324	fan cart with sail
Disc 02-21	fan car with sail
TPT 10(9),448	Newton's sailboat
PIRA 1000	helicopter rotor
Ehrlich 2, p. 109	helicopter rotor
Disc 02-25	helicopter rotor
Sut, M-122	cannon car
Bil\&Mai, p 6	bend a wall
Bil\&Mai, p 117	bend a wall

ref.	Recoil recoil
PIRA 500	floor cart and medicine ball
UMN, 1H11.10	floor cart and medicine ball
F\&A, Mg-5c	floor cart and medicine ball
$\begin{aligned} & \text { D\&R, M-300, M- } \\ & 312, \mathrm{M}-324, \mathrm{~S}- \\ & 330 \end{aligned}$	floor cart and medicine ball
Bil\&Mai, p 119	Rollerblades and medicine ball
PIRA 1000	stool on conveyor
Mei, 8-1.10	stool on a conveyor
Bil\&Mai, p 67	person and skateboard
PIRA 200 - Old	tennis ball cannon
UMN, 1H11.20	tennis ball cannon
D\&R, M-562	tennis ball cannon
PIRA 1000	liquid nitrogen cannon
UMN, 1H11.30	liquid nitrogen cannon
F \& A, Hk-11	liquid nitrogen cannon
F\&A, Mi-2	dry ice cannon
Sut, H-115	liquid air gun
Sprott, 2.11	liquid nitrogen cannon
Mei, 9-4.17	ballistic gun
Mei, 9-4.21	open cannon
Mei, 9-4.20	bent gun
Ehrlich 1, p. 34	bent straw

Ehrlich 2, p. 34 bent straw

July 2015
1H10.15
1H10.15 Burn a string holding a compressed spring between two air gliders.
1H10.20
1H10.20 Propel an air glider with a battery powered fan, then attach a sail directly in front of the fan.
1H10.20 A battery powered fan and sail can be mounted on a air track glider. Three cases are demonstrated: 1) sail attached, fan not attached; 2) both sail and fan attached; 3) fan attached, no sail.
1H10.20 A sail is placed in front of a battery powered fan on a cart.
1H10.20 A sail is placed in front of a battery powered fan on a cart.
1H10.21 A balloon provides an air source on one cart, a sail is mounted on another cart. Hold each stationary in turn.
1H10.25
1H10.25 A propeller on a stick can generate enough lift to rise vertically when twirled.
1H10.25 A symmetric propeller deflects air down, causing upward lift.
1H10.30 A small brass cannon mounted on one car fires a bullet into a wood block on another of equal mass. A string tying the carts together will result in no motion.
1H10.35 A laser and a mirror on a rolling arm are used to measure the movement of a wall.
1H10.35 Attach a mirror to a wall and position a laser beam to bounce off the mirror and onto the ceiling. Push on the wall near the mirror and watch the beam on the ceiling move. A student on Rollerblades can also push on the wall.

1H11.00
1 H 11.01 see 1 N 20 . and 1 N 21 . sections.
1H11.10
1H11.10 Stand on a roller cart and throw a medicine ball or styrofoam ball.
1H11.10 Throw a heavy medicine ball while standing on a roller cart.
1H11.10 Stand on a roller cart and throw a medicine ball to a person standing on the floor. Also do with people on two carts passing the ball between them with carts either locked together or independent.
1H11.10 A student on Rollerblades throws a medicine ball to a person standing on the floor.
1H11.11
1H11.11 Throw a ball while on a stool mounted on a conveyor.
1H11.15 A student stands on the edge of a skateboard. As the student steps off the skateboard, the skateboard travels backward and away from the student at great velocity.
1H11.20 A cannon on wheels shoots a tennis ball.
1H11.20
1H11.20 A tennis ball cannon constructed from tin cans or PVC.
1H11.30
1H11.30 A liquid nitrogen powered cannon on wheels shoots heavy and light stoppers.
1H11.30 A cork is shot out of a liquid nitrogen cannon.
1 H 11.30 CO 2 provides the pressure to blow a cork out of a cannon on wheels.
1 H 11.30 Liquid air in a bent test tube shoots a cork when the escape valve is closed.
1H11.30 The rapid evaporation of liquid nitrogen exerts enough pressure to blow a cork stopper from a steel cylinder that has been sealed on one end.
1H11.40 Shoot a spring loaded bifilar suspended gun. Measure the muzzle velocity by range and the recoil by adjacent scale.
1H11.41 A hole in the back of a rail mounted gun allows the gases to escape or not to show the difference on recoil.
1H11.44 A spring loaded gun firing a steel ball has a barrel bent 90 degrees to show recoil opposite the exit direction instead of the firing direction.
1H11.44 A bent straw recoils like a lawn sprinkler when air is blown through it. The author states that no recoil is observed when air is sucked into the bent straw. This statement is retracted in his second book "Why Toast Lands Jelly Side Down", p. 71. See 1Q40.85.
1H11.44 A bent straw recoils like a lawn sprinkler when you blow through it. No recoil is observed if you place the straw in a plastic sandwich bag.

Demonstration Bibligrqaphy	
	STATICS OF RIGID
TPT 22(8),535	BODIES Finding Center of Gravity center of mass
D\&R, M-662	find the center of mass
Bil\&Mai, p 159	find the center of mass
Ehrlich 2, p. 66	center of mass
PIRA 200	map of state
UMN, 1 J10.10	map of state
F\&A, Mp-7	map of Minnesota
D\&R, M-466	map of state
AJP 36(1), x	find the center of gravity
PIRA 1000	irregular object center of mass
Sut, M-32	hanging shapes
Sut, M-31	hanging board
D\&R, M-466	hanging board
Bil\&Mai, p 148	irregular object center of mass
Disc 03-20	irregular object center of mass
F\&A, Mp-13	hanging potato
PIRA 1000	loaded beam - moving scales
UMN, 1J10.20	loaded beam - moving scales
TPT 10(8),469	loaded beam - moving scales
PIRA 500	center of gravity of a broom
UMN, 1J10.25	center of gravity of a broom
F\&A, Mp-15	center of gravity of a broom
PIRA 1000	balance beam and bat
UMN, 1J10.26	balance beam and bat
PIRA 500	meter stick on fingers
UMN, 1J10.30	meter stick on fingers
Sut, M-50	friction and pressure
D\&R, M-478	meter stick on fingers
Bil\&Mai, p 150	meter stick on fingers
Ehrlich 1, p. 49	meter stick on fingers
Disc 04-15	meter stick on fingers
PIRA 500	Exceeding Center of Gravity leaning tower of Pisa
UMN, 1J11.10	leaning tower of Pisa
F\&A, Mp-9	leaning tower of Pisa
Sut, M-34	leaning tower of Pisa

1300.00

1 J 10.00
1 J 10.09
1 J10.09

1 J 10.09

1J10.09

1 J10.12
1 J10.12

1 J10.20
1 J10.20
1 J10.20

1 J10.25
1 J10.25
1 J10.25

1 J10.26
1 J10.26
1 J10.30
1 J10.30
1 J10.30

1 J10.30
1 J10.30
1 J 11.00
1 J11.10
1 J11.10

1 J11.10

1J10.10 Suspend a map of the state from holes drilled at large cities to find the "center of the state".
1J10.10 Sandwich of a map of the state between two Plexiglas sheets and suspend from holes drilled at large cities to find the "center of the state".
1J10.10 A Plexiglas map of the state is suspended from several points.
1J10.10 A map of a state is suspended from several points to find the "center of the state".
1J10.11 Use a chalk line on the plumb bob and snap it to make a quick vertical line.
Use the plumb bob method to find the center of gravity of various geometric shapes.
1J10.12 Suspend an irregular board from several points and use a plumb bob to find the center of gravity.
1J10.12 Hang an irregular board from several points and find the center of gravity with a plumb bob.
1J10.12 Hang an irregular board, banana, or coat hanger from several points and find the center of gravity with a plumb bob. The banana and coat hanger will need to be taped to a sheet of heavy paper to do the demonstration.
1 J10.12 Suspend an irregular object from several points and find the center of mass with a plumb bob.
1J10.15 Hang a potato from several positions and stick a pin in at the bottom in each case. All pins point to the center of gravity.

1J10.30 Put a finger from each hand under the ends of a meter stick. Bring fingers together to find center of mass of stick.
1J10.30 Slide your fingers together under a pipe and they meet at the center of gravity. Spin the pipe about this point to show this is the center of mass.

1J11.10 A model of the tower constructed in sections. Adding the top will cause it to tip over.
Many examples of simple center of mass demonstrations.
With a rotational motion, toss an ellipse in the air with a bulls-eye at the center of mass. Also toss a baton with the same rotational motion and observe it's center of mass.
a cardoard disc with an offet center of mass into the air with rotational motion. Bulls-eyes are drawn at the center of the disc, and at the center of mass of the disc.

Roll a magnetic manble toward another magnetic marble to make a glancing collision. The two marbles rotate about their center of mass when they stick together.

Slide the scales together under a loaded beam noting the scale readings of the moving and stationary scales.
Instead of moving the masses on the beam, move the scales under the beam. Same as bringing your fingers together under the meter stick.

Bring your fingers together under a broom the find the center of gravity.
Find the center of gravity of a broom, hang a kg mass somewhere on the broom, find the new center of gravity, calculate the weight of the broom by equating torques.

Slide your fingers together under a meter stick and they meet at the center of gravity. Add a baseball hat to one end and repeat.
Slide your fingers under the meter stick to find the center of mass. Slide your fingers together under a meter stick and they will meet at the center of mass.
Slide your fingers under a meter stick to find the center of mass.

Add a top to a slanted cylinder and it falls down. Also hang a plumb bob from the center of mass in each case.

Add on to the leaning tower and it falls down.

Demonstration Bibligrqaphy

Hil, M-18b. 1	leaning tower of Pisa
AJP, 75 (4), 367	leaning tower of Pisa
PIRA 1000	toppling cylinders
AJP 34(9),822	falling cylinders
Disc 03-26	toppling cylinders
PIRA 1000	tipping block on incline
UMN, 1J11.15	tipping block on incline
TPT 16(7),506	tipping block on incline
F\&A, Mp-14	tipping block on incline
Bil\&Mai, p 152	tipping block on incline
PIRA 200	leaning tower of Lire
UMN, 1 J11.20	leaning tower of Lire
AJP 23(4),240	leaning tower of lire
TPT 18(9),672	leaning tower of Lire
D\&R, M-490	leaning tower of Lire
F\&A, Mp-11	leaning tower of Lire
Sprott, 1.17	leaning tower of Lire
Ehrlich 1, p. 38	leaning tower of Lire
AJP 73(12), 1107	stacking blocks
AJP 41(5),715	cantilevered books
Sut, M-287	instability in flotation
Ehrlich 1, p. 39	instability in flotation

PIRA 1000	male and female center of gravity	1 J 11.40
TPT 21(1),42	people tasks, etc.	1 J 11.40
TPT 17(4),254	your center of gravity male \& female center of gravity	1 J 11.40
Mei, 14-3.7		1 J 11.40
D\&R, M-500, M-	human center of gravity	
504 Bil\&Mai, p 152	human center of gravity	1 J 11.40

Ehrlich 2, p. 43 human center of gravity

Stable, Unstab., and Neut. Equilibrium
PIRA 200
PIRA 500 - Old
UMN, 1J20.10

PIRA 200
PIRA 1000 - Old
UMN, 1J20.11
F\&A, Mq-2

Sut, M-39
Disc 03-19
PIRA 1000
$1 J 11.11$

1J11.15

1 J 11.20

1 J 11.20
1 J 11.20

1 J 11.2

1J11. 2

1J11.

1 J 11.2
1J11.2

1J11.

1 J 11.30

1J11.40
1J11.40
$1 J 11.40$
1J11.40
1311.40
1311.40

1J11.40

1J20.00

1 J 20.10
1J20.10
1 J20.10

1J20.11
1 J20.11
1J20.11
1J20.11

1J20.11
1J20.11
1J20.12

1J11.10 The leaning tower of Pisa.
1J11.10 Physics explanation with picture of an antique leaning tower of Pisa demo.

1J11.11 A tube, weighted at the bottom, falls when a cap is added. An upright cylinder, containing two balls, falls when a weighted cap is removed.
1J11.11 The standard leaning tower and an upright cylinder that topples when the cap is removed. It has two balls in the tube.

1J11.15 Raise an incline plane until a block tips over
1J11.15 A very clever modification of the leaning tower of Pisa demonstration.
1J11.15 A block is placed on an incline and the incline is raised until the block tips.
1J11.15 A block is placed on an incline plane and the incline is raised until the block tips.
1J11.20 Stack blocks stairstep fashion until the top block sticks out beyond any part of the bottom block.

1J11.30 A device to raise the center of mass in a boat until the boat flips. Diagram.

A cone can show stable, unstable, and neutral equilibrium; a sphere shows only neutral equilibrium.
A large cone shows stable, unstable, and neutral equilibrium.
Balance a cone, show a block is stable and a sphere is neutral.

Demonstration Bibligrqaphy

UMN, 1J20.12	wood block stability
PIRA 1000	block on the cylinder
UMN, 1 J20.15	block on the cylinder
AJP 51(7),636	block on the cylinder
F\&A, Mq-1	block on the cylinder
Sut, M-40	catenary surface
PIRA 1000	block on curved surfaces
UMN, 1J20.17	block on curved surfaces
PIRA 1000	fork, spoon, and match
UMN, 1 J20.20	fork, spoon, and match
TPT 10(8),464	fork, spoon, and match
F\&A, Mp-5	fork, spoon, and match
Mei, 14-3.8	fork, spoon, and match
D\&R, M-474	fork, spoon, and match
PIRA 1000	nine nails on one
UMN, 1J20.25	nine nails on one
D\&R, M-458	fourteen nail on one
PIRA 500	sky hook
TPT 14(8),499	sky hook
TPT 15(4),241	hanging belt
D\&R, M-470, M- 474	sky hook
PIRA 1000	spoon on nose
UMN, 1J20.32	spoon on nose
PIRA 1000	horse and rider
F\&A, Mp-4	horse and rider
Sut, M-33	horse and rider
Hil, M-18a. 2	horse and rider
D\&R, M-462, M482	horse and rider
Sut, M-36	balancing man
Sut, M-38	balancing man
Bil\&Mai, p 154	balancing man
PIRA 500	tightrope walking
AJP 50(5),471	tightrope walking
F\&A, Mp-6	tightrope walking
Disc 03-23	clown on rope
PIRA 1000	tightrope walking model
UMN, 1J20.46	tightrope walking model
F\&A, Mp-12	balancing a stool
Mei, 14-2.2	balancing a stool
PIRA 1000	chair on a pedestal
Disc 03-22	chair on pedestal
PIRA 1000	broom stand
Disc 04-19	broom stand
PIRA 500	wine butler
UMN, 1J20.60	wine butler
TPT 14(1),39	glass on coin, etc
D\&R, M-472	balancing soda can

1J20.12 A block and support have marks that show whether the center of gravity has moved up or down when the block is displaced.
1J20.15
1 J20.15
1 J20.15
1 J20.15
1 J20.16
1 J 20.17
1 J 20.17
1 J20.20
1 J 20.20
1 J20.20
1J20.20
1 J 20.20
1 J20.20
1 J20.25
1 J20.25
1 J 20.25
1 J20.30
1J20.30
1J20.30
1 J20.30

1 J 20.32
1 J20.32

1 J 20.35
1 J20.35
1J20.35
1J20.35
1 J 20.35
1 J 20.40
1 J 20.40
1J20.40

1J20.45
1 J20.45

1 J 20.45
1 J 20.45
1J20.46
1 J 20.46

1J20.50
1J20.50

1 J 20.51
1 J 20.51
1 J 20.55
1J20.55
1 J 20.60
1J20.60
1J20.65
1 J 20.65

A rectangular block of wood is placed on a cylinder first with the width less than the radius (stable) and then with the width greater (unstable).
An "elementary" discussion of the oscillatory properties of the block on the cylinder.
A thin block on a cylinder is stable, a thick one is not.
A large block is always in stable equilibrium anywhere along this catenary surface.

A block is placed on a catenary surface, a circle, and a parabola.
Place a spoon and match in the tines of a fork and balance the assembly on the edge of a glass.
Picture of the fork, spoon, and match balanced on the edge of a glass.
Stick two forks and a match together and balance on a glass while pouring out the water.
Two forks and a match can be balanced on the edge of a glass while the water is poured out.
A fork, spoon, and match assembly are balanced on the edge of a glass.
A technique to balance ten landscape spikes on the head of a single upright spike.
A technique to balance 14 large nails on the head of a single upright nail.
A complete solution to the hanging belt problem.
Shows a "belt hook" for the hanging belt.
The hanging belt and a hammer sky hook.

Hang a spoon on your nose. Most effective with giant food service spoons.

A horse has an attached weight to lower the center of mass.
Stable equilibrium of a center of gravity object.
A horse has a weight attached to lower the center of mass.
Stable equilibrium of a center of gravity object.
Stable equilibrium of a center of gravity object.
Stable equilibrium of a center of gravity object.
A center of gravity toy is constructed from a solid rubber figure, wire, and tennis balls.

Design of a 10' long "low wire" and description of the physical feats possible.
A toy unicycle rider carrying a balancing pole travels along a string. A toy clown rides a unicycle on a wire.

A model of a tightrope walker shows the center of mass moves up with tipping.
Wires form a support at the center of gravity of a lab stool.
Construct a stool so that wires crossed diagonally will intersect at the center of gravity. The stool can be oriented in any direction.

Hide heavy weights in the ends of a chair's legs so it will balance on a vertical rod placed under the seat.

Spread the bristles and a straw broom will stand upright.

Stick the neck of a wine bottle through a hole in a slanted board and the whole thing stand up.
Pictures show the hanging belt, pin on the point of a needle, and a jar balanced on its edge.
Partially fill a soda can with water and balance on its indented bottom edge.

Demonstrat	Bibligrqaphy	July 2015	
PIRA 1000	double cone	1 J 20.70	
UMN, 1J11.50	double cone	1 J 20.70	As a double cone moves up an set of inclined rails, its center of gravity lowers.
TPT 16(1),46	rolling uphill	1 J 20.70	A simple version of a ball rolling up a "v".
F\&A, Mr-1	double cone	1 J 20.70	A double cone rolls up an inclined "v" track.
Sut, M-37	double cone	1 J 20.70	Double cone and rails.
Hil, M-18a. 3	double cone	1 J 20.70	A double cone rolls up an inclined "v" track.
D\&R, M-482	double cone	1 J 20.70	As a double cone moves up a set of inclined rail it's center of gravity lowers.
Disc 03-24	double cone on incline	1 J 20.70	The double cone appears to roll uphill.
	Resolution of Forces	1 J 30.00	
PIRA 200	suspended block	1 J 30.10	Forces parallel and perpendicular to the plane will support the car midair when the plane is removed.
UMN, 1J30.10	suspended block	1 J 30.10	A 3-4-5 triangle holding a block. Add counterweights and remove the incline.
F\&A, Mj-2	suspended block	1 J 30.10	The components of force of a block on an inclined plane are countered by weights. The plane is then removed.
Mei, 14-3.3	suspended block	1 J 30.10	A 5-6-7 suspended block system is used to show the pulleys can be moved as long as the angle remains constant.
Sut, M-18	suspended block	1 J 30.10	Forces parallel and perpendicular to the plane will support the car when the plane is removed.
D\&R, M-272	suspended block	1 J 30.10	Forces parallel and perpendicular to the inclined plane will suspend a cart in midair when the inclined plane is removed.
Disc 04-03	load on removable incline	1 J 30.10	Place a cart on a removable 30 degree incline.
PIRA 1000	normal force	1 J 30.15	
UMN, 1J30.15	normal force	1 J 30.15	A block on an incline has an arrow mounted from the center of mass perpendicular to the surface with " N " on the arrowhead and another arrow hanging from the center of mass with a " g " on the arrowhead.
Bil\&Mai, p 69	normal force meter	1 J 30.15	Use two bathroom scales as normal force meters.
Bil\&Mai, p 60	normal force	1 J 30.15	Books or masses are placed on a rolling cart. Draw Free Body Diagrams of the cart rolling across a flat floor and then rolling on an incline.
TPT, 36(9), 556	demonstrating normal forces with a kitchen scale	1 J 30.16	A simple and less expensive way of demonstrating normal forces.
Sut, M-9	hanging the plank	1 J 30.18	A heavy plank is suspended from three spring scales in several configurations: series, parallel, and a combination.
PIRA 500	tension in a string	1 J 30.20	
UMN, 1J30.20	tension in a string	1 J 30.20	The weight of a mass hung from a single spring scale is compared to the weight shown on a spring scale between two masses over pulleys.
F\&A, MI-1	tension in a string	1 J 30.20	A spring scale is suspended between strings running over pulleys to equal weights.
D\&R, M-264	tension in a string	1 J 30.20	Stretch a string over two pulleys and attach a spring scale and mass to each end. Pull down with another spring scale in the middle and compare the readings. Tension readings in the outer scales should not change.
TPT 9(7),387	tension in a string	1 J 30.21	A clever story.
Sut, M-10	tension in a spring	1 J 30.22	Two students pull against each other through one and then two spring scales.
Ehrlich 1, p. 34	tension in a spring	1 J 30.22	Pull on two spring scales connected together to show they will read the same value.
Sut, M-8	tension in springs	1 J 30.23	Masses are hung at the ends of a series of spring scales.
Bil\&Mai, p 58	tension in springs	1 J 30.23	Masses are hung from springs scales connected in series and parallel.
PIRA 200	rope and three students	1 J 30.25	Two large strong students pull on the ends of a rope and a small student pushes down in the middle.
UMN, 1J30.25	rope and three students	1 J 30.25	Two large strong students pull on the ends of a rope and a small student pushes down in the middle of the rope.
TPT 9(3),148	rope and three students	1 J 30.25	Two football players stretch a 10 m rope while a small person pushes the middle to the floor.
D\&R, M-268	rope and three students	1 J 30.25	Two large students pull on the ends of a rope and a small student deflects the rope in the middle pulling the large students together.
Bil\&Mai, p 63	rope and three students	1J30.25	Two large strong students pull on the ends of a rope and a small student deflects the rope in the middle pulling the large students together.
Ehrlich 1, p. 22	chain and three students	1 J 30.25	A chain with demonstration scales on each end and a 10 pound weight in the middle. No matter how hard you pull on the scales you can not make the chain completely horizontal.
Disc 04-02	clothesline	1 J 30.25	Hang a 5 newton weight from a line and pull on one end of the line with a spring scale.
PIRA 1000	rope and three weights	1 J 30.26	

UMN, 1J30.26	rope and three weights
PIRA 1000	deflect a rope
UMN, 1J30.27	deflect a rope
PIRA 1000	break wire with hinge
UMN, 1J30.30	break wire with hinge
F\&A, Mj-3	breaking wire hinge
Sut, M-16	breaking wire hinge
Sut, M-5	pull the pendulum
PIRA 1000	horizontal boom
UMN, 1J30.40	booms
Disc 04-08	horizontal boom
PIRA 500	blackboard force table
UMN, 1J30.50	blackboard force table
F\&A, Mj-1	blackboard force table
Sut, M-13	blackboard force table
Sut, M-11	blackboard force table
Sut, M-12	blackboard force table
D\&R, M-072	force table
Bil\&Mai, p 22	blackboard force table
Ehrlich 1, p. 23	force table
Disc 04-01	force board
AJP 36(6),559	vertical force table
Sut, M-14	blackboard force table
Sut, M-4	blackboard force table
AJP 41(9),1115	force table on overhead projector
TPT 10(4),217	force table on overhead projector
Hil, M-10c	standard force table, etc.
Mei, 6-4.11	force table
PIRA 1000	human force table
UMN, 1J30.55	human force table
AJP 46(7),774	human force table
AJP 51(6),571	bosun chair force table
TPT 20(3),176	blackboard force table - rubber band
TPT 13(4),246	blackboard force table - rubber band
Sut, M-15	blackboard force table - springs
PIRA 1000	sail against the wind
UMN, 1J30.60	sail against the wind
AJP 40(8),1172	sail against the wind
AJP 40(4),626	sail against the wind
AJP 28(3),259	sail and the wind
Disc 02-10	sailing upwind (airtrack)
AJP 49(3),282	sail a trike against the wind
AJP 46(10),1004	sail against the wind
Sut, M-6	sailboat and wind
F\&A, Mo-9	floating cork
Sut, M-29	floating cork

1J30.26 Suspend a rope over two pulleys with masses on the ends and hang another mass from the center. Measure the deflection.
1J30.27
1J30.27 Stretch a rope in a frame with a 100 newton scale measuring the tension. Pull down with a 20 newton scale.
1 J 30.30
1J30.30 Suspend a 5 kg mass from a length of wire. Break a length of similar wire by placing the same mass on the back of a large hinge.
1J30.30 Pushing down on a slightly bent hinge will break the wire fastened to the ends.
1J30.30 Press down on a hinge to break a rope.
1 J 30.35 A long heavy pendulum is displaced with a spring scale.
1 J 30.40
1 J 30.40
1 J 30.40
1 J 30.50
1J30.50 Scales and masses are hung in front of a large movable whiteboard.
1330.50 A weight is hung on a string suspended between two spring scales.

1 J 30.50 The standard blackboard force table.
1J30.50 A mass is hung from the center of a cord attached to two spring scales. Start with the strings vertical, increase the angle.
1J30.50 A force table in the vertical plane
1J30.50 A horizontal force table.
1J30.50 A 5 pound exercise plate and several spring scales are used on a marker board to record three lines of force and their magnitudes.
1J30.50 A force table suitable for use on an overhead projector.
1J30.50 This looks like a magnetic vertical force board. A circle is marked with angles every 10 degrees.
1J30.51 A vertical force table that permits a continuous range of angles.
1J30.51 A removable frame that sets on the chalk tray.
1J30.51 A framework for doing the force table in the vertical plane.
1J30.52 A Plexiglas force table for the overhead projector.
1 J 30.52
1 J 30.53
1J30.54
1 J 30.55
1 J30.55
1 J 30.55
1J30.55
1 J 30.57
1 J30.57
1 J 30.57
1 J30.60
1 J 30.60
1 J30.60
1J30.60 A sail is mounted on an air track glider. A table fan supplies the wind.
1J30.60 Apparatus Drawings Project No.4: A sailboat rides in an air trough which serves as a keel. Set the angle of the sail with respect to the wind.
1J30.60 Use a skateboard cart with a foam core sail.
1J30.61 A wind driven tricycle moves against the wind.
1J30.64 A wind driven boat accelerates against the wind. Description and Analysis.
1J30.64 A cork stopper boat with a keel and removable sail.
1J30.65 A stick is hung by a thread at one end with the other attached to a cork floating on water.
1J30.65 A stick is hung by a thread at one end with the other attached to a cork floating on water.

Demonstra	Bibligrqaphy	July 2015	
PIRA 1000	sand in a tube	1 J 30.70	
UMN, 1J30.70	sand in a tube	1330.70	Place a tissue on the bottom of an open glass tube, fill with a few inches of sand, and push down on the top of the sand with a rod.
Sut, M-7	sand in a tube	1 J 30.70	A couple of inches of sand held in a tube by tissue paper will support about 50 lbs.
D\&R, F-070	rice in a tube	1 J 30.70	Fill a small mouth jar with rice. Plunge in a screwdriver and lift the jar. Also, a couple of inches of rice held in a tube by tissue paper will resist any effort to push it through the tissue paper.
PIRA 1000	stand on an egg	1 J 30.75	
UMN, 1J30.75	stand on an egg	1330.75	Three eggs in a triangle pattern in foam depressions between two plates will support a person.
D\&R, M-837	stand on an egg	1 J 30.75	Stand or put masses on an egg in a holder that keeps the pressure in one direction. Egg will withstand 80 to 120 lbs with no trouble.
Disc 04-21	egg crusher	1 J 30.75	A raw egg can be squeezed between two hard foam rubber pads with a force of over 150 lbs .
Sut, M-19	rolling wedge	1 J 30.80	A light roller lifts a heavy weight as it rolls inside an inclined hinge.
AJP 59(5),472	inverse catenary	1 J 30.90	A string of helium balloons tied at each end forms an inverse catenary.
AJP 40(2),354	catenary analog computer	1 J 30.91	Model the catenary on a simple analog computer.
	Static Torque	1340.00	
PIRA 200	grip bar	1 J 40.10	A thin rod mounted perpendicular to a broom handle holds a 1 Kg mass on a sliding collar.
UMN, 1J40.10	grip bar	1 J 40.10	Use wrist strength to lift a 1 kg mass at the end of a rod attached to a broom handle.
F\&A, Mo-5	grip bar	1 J 40.10	Use wrist strength to try to lift 1 kg at the end of a rod attached perpendicularly to a handle.
Mei, 14-3.1	grip bar	1 J 40.10	A thin rod mounted perpendicular to a broom handle holds a 1 Kg mass on a sliding collar.
D\&R, M-614	grip bar	1 J 40.10	A student grips a croquet mallet with a hand on each side of the head. Weights are mounted at different distances on the crossbar (handle).
Bil\&Mai, p 146	grip bar	1 J 40.10	Make a grip bar with 1 inch PVC pipe. Have a student try to hold the bar in a horizontal position as you slide a 1 Kg mass away from the handle.
Disc 04-10	torque bar	1 J 40.10	Use wrist strength to lift a weight suspended at various distances from the handle.
Ehrlich 2, p. 36	weight of a pendulum	1M40.12	Swing a mass attached to a large demonstration spring scale by a 1 meter string.
PIRA 1000	torque wrench	1 J 40.15	
TPT 15(2),115	torque wrench	1 J 40.15	Modify a Sears torque wrench so weights can be hung at different distances.
Disc 04-12	torque wrench	1 J 40.15	A torque wrench is used to break aluminum and steel bolts.
PIRA 1000	different length wrenches	1 J 40.16	
UMN, 1J40.16	different length wrenches	1 J 40.16	
PIRA 200	meter stick balance	1 J 40.20	Hang weights from a beam that pivots in the center on a knife edge.
UMN, 1J40.20	torque beam	1 J 40.20	Hang weights from a beam that pivots in the center on a knife edge.
F\&A, Mo-1	torque beam	1 J 40.20	Weights are hung from a horizontal bar pivoted on a knife edge.
Sut, M-27	torque beam	1 J 40.20	Weights are hung from a meter stick suspended on a knife edge.
Hil, M-18a. 1	torque beam	1 J 40.20	Weights on a meter stick supported at the center.
Ehrlich 1, p. 48	torque beam	1 J 40.20	Balance a ruler with pennies on it to show torques about its center.
Ehrlich 1, p. 83	torque beam	1 J 40.20	A 6 foot long beam is balanced on a knife edge. Pennies are place on one arm of the beam. The angular acceleration is proportional to the applied torque.
Disc 04-14	balancing meter stick	1 J 40.20	Use a meter stick, suspended at the center, as a torque balance.
PIRA 1000	hinge board	1 J 40.21	
Disc 04-11	hinge board	1 J 40.21	Use a spring scale to lift a hinged board from various points along the board.
TPT, 36(7), 438	torque rack demonstration	1 J 40.22	Illuminating discussion of torque using a counter-intuitive, yet simple, chalk board set-up.
TPT 11(7),427	torque beam	1 J 40.23	Put a quarter (5 g) on the end of a meter stick and extend it over the edge of the lecture bench until it is just about to tip over.
PIRA 1000	walking the plank	1 J 40.24	
UMN, 1J40.24	walking the plank	1 J 40.24	Place a 50 lb block on one end of a long 2×6 and hang the other end off the lecture bench. Walk out as far as you can.
Ehrlich 2, p. 75	toast lands jelly side down	1 J 40.24	A variation of the "walking the plank" demonstration in which the toast with jelly on one side is slowly pushed out over the edge of a table and allowed to fall off. Complete analysis as to why it always seems to fall on the floor with the jelly side down.
PIRA 1000	torque wheel	1 J 40.25	

Demonstration Bibligrqaphy

F\&A, Mo-2	torque disc
Sut, M-28	torque disc
Disc 04-13	torque wheel
Mei, 12-4.8	torque disc
Mei, 14-3.5	torque disc
PIRA 1000	torque double wheel
PIRA 1000	opening a door
UMN, 1J40.30	opening door
PIRA 1000	opening a trapdoor
UMN, 1J40.32	opening trapdoor
PIRA 500	loaded beam
UMN, 1J40.40	loaded beam
F\&A, Mo-7	loaded beam
Mei, 14-3.6	loaded beam
Sut, M-23	loaded beam
Disc 04-16	bridge and truck
Sut, M-26	loaded beam
PIRA 1000	Galileo lever
UMN, 1J40.45	Galileo lever
Sut, M-22	Galileo lever
Sut, M-21	Galileo lever
PIRA 500	Roberval balance
UMN, 1J40.50	Roberval balance
TPT 22(2),121	Roberval balance
F\&A, Mo-6	Roberval balance Disc 04-17
Roberval balance	
Mei, 12-4.9	Roberval balance
Sut, M-42	balances
Sut, M-41	balances

PIRA 1000	suspended ladder	1 J 40.60
UMN, 1J40.60	suspended ladder	1 J 40.60
Mei, 14-3.4	suspended ladder	1 J 40.60
PIRA 1000	hanging gate	1J40.65
UMN, 1J40.65	hanging gate	1 J 40.65
TPT 12(8),503	hanging gate	1 J 40.65
PIRA 1000	crane boom	1J40.70
UMN, 1J40.70	crane boom	1 J 40.70
PIRA 1000	arm model	1 J 40.75
UMN, 1J40.75	arm model	1 J 40.75
Disc 04-09	arm model	40

APPLICATIONS OF NEWTON'S
 LAWS
 Dynamic Torque 1K10.00
 tipping block tipping block tipping block tipping block
 tipping blocks

PIRA 500
UMN, 1K10.10
F\&A, Mo-4
Mei, 14-3.2

PIRA 1000

1 J 40.25

1 J 40.25
1 J 40.25

1 J 40.26

1 J40.26
1 J 40.27
1 J 40.30
1J40.30
1 J 40.32
1J40.32
1 J 40.40
1 J 40.40
1 J 40.40

1 J 40.40
1 J 40.40

1 J 40.40

1J40.41
1 J 40.45
1J40.45
1 J 40.45
1J40.45
1 J 40.50
1 J 40.50
1 J 40.50

1 J 40.50
1 J 40.50
1J40.51
1 J 40.55
1 J 40.56

J40.60
1 J 40.60
1 J 40.60

1 J40.65
J40.65

1 J 40.65
1 J40.70
1 J40.70
年 75
$1 J 40.75$

1K00.00

1K10.10
1K10.10
1K10.10
1K10.10
1K10.11

Weights can be hung from many points on a vertical disc pivoted at the center.
Various weights are hung from a board that can rotate freely in the vertical plane.
Use a wheel with coaxial pulleys of $5,10,15$, and 20 cm to show static equilibrium of combinations of weights at various radii.
An apparatus to show the proportionality between torsional deflection and applied torque.
Twist a shaft by applying coplanar forces to a disc.

Move a weight along a 2×4 on two platform scales.
Large masses can be placed on a board resting on two platform balances.
A model bridge is placed on two platform scales and a loaded toy truck driven across.
A heavy truck is moved across a board supported on two platform scales.
A plank rests on two spring scales forming a bridge. Move a toy truck across.
Support the loaded beam with spring scales instead of platform balances.
Same as Sutton device
A simple device to demonstrate the law of moments.
A simple device to show the law of moments.

Large Roberval balance.
A reminder and picture of the Roberval balance. Reaction to TPT 21, 494 (1983).

A large model of the Roberval or platform balance.
Neutral equilibrium is maintained at any position on the platform.
A version of the Roberval balance where a rigid assembly has upper and lower arms on one side.
The equal-arm analytical balance and weigh bridge.
The steelyard. The steelyard is a graduated metal bar with a fulcrum near one end. Hang an unknown weight from the shorter arm. A sliding weight is moved along the longer arm until equilibrium is achieved. The arm is graduated to directly read the value of the unknown weight.

Model of a ladder suspended from two pairs of cords inside an aluminum frame.

A gate initially hangs on hinges, then add cords and remove the hinges leaving the gate suspended in mid air.
Construction and use of a model of the swinging gate.

Place a spring scale on a skeleton in the place of the biceps muscle and hang a weight from the hand.
Use an arm model simulating both biceps and triceps muscles to throw a ball.

Pull with a spring scale at various angles on the edge of a block.
A large wooden block is tipped over with a spring scale.
A spring scale is used to show the least force required to overturn a cube.

Demonstration Bibligrqaphy	
UMN, 1K10.11	tipping blocks
TPT 22(8),538	tipping block
PIRA 200	ladder against a wall
UMN, 1K10.20	ladder against a wall
F\&A, Mo-8	forces on a ladder
Ehrlich 2, p. 60	ladder against a wall
Disc 04-18	ladder forces
PIRA 1000	forces on a ladder - full scale
UMN, 1K10.25	forces on a ladder - full scale
Sut, M-30	forces on a ladder - full scale
PIRA 200	walking the spool
UMN, 1K10.30	walking the spool
F\&A, Mo-3	walking the spool
Sut, M-24	walking the spool
Hil, M-10d	walking the spool
D\&R, M-618	walking the spool
Sprott, 1.15	walking the spool
Ehrlich 2, p. 65	walking the spool
Disc 06-07	spool with wrapped ribbon
Mei, 12-5.3	walking the spool x three
PIRA 1000	pull the bike pedal
UMN, 1K10.40	pull the bike pedal
Mei, 12-4.3	pull the bike pedal
Sut, M-25	pull the bike pedal
PIRA 1000	traction force roller
UMN, 1K10.41	traction force roller
AJP 34(3), xxix	traction force roller
F\&A, Ms-6	traction force roller
PIRA 1000	extended traction force
UMN, 1K10.42	extended traction force
TPT 28(9),600	extended traction force
PIRA 1000	rolling uphill
UMN, 1K10.50	rolling uphill
F\&A, Mp-3	rolling uphill

July 2015
1K10.11 Same as TPT 22(8),538.
1K10.11 Show the force necessary to tip over trapezoidal and weighted rectangular blocks. The students are surprised to discover the force needed is not related to the position of the center of mass.
1K10.20 Set a model ladder against a box and move a weight up a rung at a time.
1K10.20 A model ladder is set against a box and a weight moved up a rung at a time.
1K10.20 A small model ladder is placed against a box.
1K10.20 A plastic ruler, clay, and vertical notebook pad used to do the ladder against a wall demonstration.
1K10.20 A real ladder leans against the wall. Animation shows the forces as the ladder moves.
1K10.25
1K10.25 Mount a set of wheels at the top of a ladder, place some shoes at the bottom to decrease friction and climb the ladder until you fall down.
1K10.25 Wheels are attached to the top of a ladder and the bottom slides on the floor. Climb up the ladder and fall down.
1K10.30 Pull at various angles on the cord wrapped around the hub of a spool to move the spool forward or back.
1K10.30 Pull on the cord wrapped around the hub of a spool at various angles to make the spool move forward or back.
1K10.30 Pull on a cord wrapped around the axle of a large spool. The spool can be made to go forward or backward depending on the angle.
1K10.30 A string is pulled off the inner axis of a spool at different angles, changing the direction the spool rolls.
1K10.30 A string wound around the center of a spool is pulled at different angles causing the spool to change directions. Diagram and analysis. See TPT 2(3),139.
1 K 10.30 A string is pulled off the inner axis of a spool at different angles changing the direction the spool rolls.
1K10.30 A wooden spool can be made to move in different directions by pulling at different angles on the string attached to the hub.
1K10.30 A spool can be made to move either backward or forward by pulling at different angles on the string attached to the hub.
1K10.30 The sides of the spool are made of clear Plexiglas.
1K10.31 Three rolling spools where the outer discs ride on rails and the center section with the string is larger, smaller, and the same size as the outer discs allowing one to always pull horizontally.
1K10.40
1K10.40 Lock the front wheel, remove the brake, add training wheels, and pull backwards on the pedal in the down position.
1K10.40 Pulling backward on a pedal (in the down position) of a brakeless bike will cause the bike to go back unless the length of the pedal crank is increased.

1K10.40 Pull backward on a pedal at its lowest point and the bike will move backward.
1K10.41
1K10.41 Pull on a string wrapped around the circumference of a cylinder on a roller cart. Pull on a yoke attached to the axle of the same cylinder on the roller cart.
1K10.41 A large pulley on a roller cart is drawn either by a string wrapped around the circumference or by a yoke attached to the axle.
1K10.41 A large pulley can be drawn by either pulling on the axle or on a string wrapped around the perimeter. Try each case while the pulley is resting on a roller cart.
1K10.42
1K10.42 Pull on a string wrapped around the circumference of a cylinder placed on an air track glider.
1K10.42 A string wound around a cylinder, hoop, and spool is pulled while the objects are on a roller cart and the reaction force direction is surprising.
1K10.50
1K10.50 A disc with a nonuniform mass distribution is placed on an incline so it rolls uphill.
1K10.50 A loaded disc is put on an inclined plane so it rolls uphill or rolls to the edge of the lecture bench and back.

Sut, M-35	rolling uphill
Ehrlich 1, p. 46	rolling uphill
Disc 03-25	loaded disc AJP 28(9),819
teaching couples	
Sut, M-20	free vector
Mei, 10-2.8	couples
AJP 28(1),76	air jet couple
TPT 5(3),138	saw-horse on teter-totter

AJP 70(9), 890	Friction friction
PIRA 1000	washboard friction model
UMN, 1K20.05	washboard friction model Priction blocks - surface material
UMN, 1K20.10 friction blocks - surface material F\&A, Mk-1 friction blocks D\&R, M-340 friction blocks - surface material AJP 72(10), 1335 friction blocks AJP 75 (12), 1106 friction Bil\&Mai, p 24 friction blocks Bil\&Mai, p 71 friction blocks - surface materials Ehrlich 1, p. 41 friction blocks Disc 03-05 surface dependence of friction Bil\&Mai, p 75 tug of war	

Mei, 8-4.9	friction blocks
AJP 73(9), 812	friction blocks
AJP 33(2),161	sliding friction machine Triction blocks
TPT 12(6),373,367	friction blocks
Mei, 8-4.11	friction blocks
Mei, 8-4.10 Bil\&Mai, p 96	friction blocks friction blocks
Ehrlich 1, p. 42	friction blocks
Ehrlich 1, p. 43	sliding cylinder

TPT, 36(8), 464 measuring coefficient of friction of a low-friction cart
PIRA 500 weight dependence of friction
UMN, 1K20.15
Disc 03-04

July 2015
1K10.50 A large wood disc weighted on one side will roll uphill or to the edge of a table and back.
1K10.50 A loaded Styrofoam disc or sphere can be made to roll uphill, downhill, or remain at rest on an incline.
1K10.50 A loaded disc can roll up an incline.
1K10.80 Start with two index fingers rotating a meter stick about the center of mass, use it to go into couples. Read it.
1K10.81 A strong magnet on a counterbalanced cork always rotates about the center of mass no matter where the magnet is placed.
1K10.82 An arrangement to apply equal forces to opposite sides of a pulley mounted on a dry ice supported steel bar.
1K10.83 Air from a balloon is released through two nozzles offset from the center of mass. The assembly is free to rotate on a block of dry ice.
1K10.90 The Phil Johnson humor continues with "Good luck trying to demonstrate this one". The description is: A man sits on one side of an unbalanced teetertotter but is able to bring it into equilibrium by applying a torque to a bar placed across his shoulders. Hint: See the article picture.
1K20.00
1K20.01 A guide to the literature on the fundamental orgins of friction.
1K20.05
1K20.05
1K20.10 Pull a block with four different surfaces with a spring scale.
1K20.10 A set of blocks with different surfaces are pulled with a spring scale.
1K20.10 Pull blocks across the lecture bench with a spring scale.
1K20.10 A block with 4 different surfaces is pulled along a table with a spring scale.
1K20.10 Why this experiment gives inconsistent results and a look at some of the factors that contribute to those results.
1K20.10 A sequence designed for teaching about friction between solids using both experiments and models.
1K20.10 Attach a block to a spring scale with a string. Record the minimum force needed to pull the block with a constant velocity when the string is parallel to the table and then at different angles.
1K20.10 Tread for a good tire and a bald tire are attached to different blocks. Drag the blocks across the floor and see which is harder to pull.
1K20.10 Pull bricks or blocks across the lecture bench with a spring scale.
1K20.10 Place brass blocks on an incline with four surfaces: teflon, wood, sandpaper, and rubber.
1K20.11 Observe the relative motion of two battery operated toy cars engaged in a tug of war with and without friction, or with one car having more friction than the other.
1K20.12 Several ways to move a surface under a fixed block.
1K20.13 A look at why the coefficient of friction might increase with an increase in sliding speed for certain materials.
1K20.13 A spring scale is attached to an object on a rotating table.
1K20.13 A device includes both sliding surface and mounted spring scale.
1K20.13 A block is constructed with an built-in apparatus to measure coefficient of friction directly.
1K20.13 An apparatus pulls a block at a constant speed and measures the frictional force. Details in appendix, p. 550.
1K20.13 A block rests on a turntable and the string goes to a dynamometer.
1K20.13 A block rides on a pendulum platform. When the platform hits the edge of a table the block continues on for a short distance before being stopped by friction. Calculate the work done by friction.
1K20.13 Launch a sliding block with various initial velocities. Measure its stopping distance and calculate the coefficient of friction.
1K20.13 Slide cylinders with different height to diameter ratios so they come to a stop. Only those cylinders with a ratio less than the reciprocal of the coefficient of kinetic friction will not tip.
1K20.14 Use a sonic range probe to monitor the acceleration of a dynamic cart rolling up and down an inclined plane.
1K20.15
1K20.15 Pull a friction block with a spring scale, add a second equal block to the first and repeat.
1K20.15 Add mass to a board pulled along the table with a spring scale.

Demonstra	Bibligrqaphy	July 2015	
TPT 18(8),559	friction blocks	1K20.16	A loaded cart rolls down an incline and hits a barrier. The load continues sliding on a second incline until it stops. The mass on the slider is varied to show stopping distance independent of mass.
TPT 11(8),453	friction blocks	1K20.17	Two additional points relating to Geoffery Fox's "Stumpers" column TPT. 11, 288 (1973).
PIRA 500	area dependence of friction	1K20.20	
UMN, 1K20.20	area dependence of friction	1K20.20	A friction block has a rectangular shape with one side twice as big as the other. One of the smaller sides is routed out to $1 / 5$ the area.
Sut, M-49	friction blocks	1K20.20	Friction independent of area of contact - cut a block to form a prism whose cross section is an irregular polygon.
Disc 03-03	area dependence of friction	1K20.20	A 2X12 is pulled along the bench top while resting on either the narrow or wide face.
PIRA 200	static vs. sliding friction	1K20.30	Use a spring scale and block to show that static friction is greater than sliding friction.
Disc 03-02	static vs. sliding friction	1K20.30	Show that static friction is greater than sliding friction with a spring scale and block.
Ehrlich 2, p. 44	static vs. sliding friction	1K20.32	Use the coefficients of sliding and static friction to study the avalanches that occur in a plastic sandwich bag half filled with sand.
PIRA 500	angle of repose	1K20.35	
UMN, 1K20.35	angle of repose	1K20.35	An incline plane is lifted until a block begins to slide.
TPT 17(9),593	angle of repose	1K20.35	Using the familiar suspended incline block apparatus to examine normal and frictional forces in sliding up and down the plane.
F\&A, Mk-4	angle of repose	1K20.35	An inclined plane is raised until a block starts to slide.
D\&R, M-336	angle of repose	1K20.35	An inclined plane is lifted until a block begins to slide.
Sprott, 1.9	angle of repose	1K20.35	Show the effect of material on critical sliding angle.
Ehrlich 2, p. 45	angle of repose - constant velocity	1K20.36	A vibrating electric razor will slide down an incline at a constant speed for a certain range of angles.
AJP 46(8),858	tire friction	1K20.37	The automobile tire is a misleading example of static and sliding friction.
AJP 48(3),253	tire skid equation	1K20.37	Motivated by being an expert witness, the approximate expression for sliding friction coefficient as a function of speed was developed from published tables.
Mei, 8-4.3	angle of repose	1K20.37	A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.
Hil, M-11a	angle of repose	1K20.37	Using the incline plane for various friction demos.
AJP 53(9),910	how dry friction really behaves	1K20.38	A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.
Mei, 8-4.8	angle of repose	1K20.38	A tribometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.
Mei, 8-4.4	angle of repose	1K20.39	Glass - glass angle of repose with oil and oil/water.
Sut, M-48	angle of repose	1K20.39	The standard inclined plane and blocks + an interesting towel on a glass tube demo.
Ehrlich 2, p. 54	angle of repose - magnetic marbles	1K20.39	A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.
PIRA 500	front and rear brakes	1K20.40	
UMN, 1K20.40	front and rear brakes	1K20.40	A model car is rolled down an incline with either front or rear brakes locked.
TPT 28(8),522	front and rear brakes	1K20.40	Construction details for a model car in which pulling a pin applies front, rear, or both sets of brakes to a car rolling down an incline.
F\&A, Mk-3	front and rear brakes	1K20.40	A car slides down an incline with either front or rear wheels locked.
Mei, 8-4.7	front and rear brakes	1K20.40	A car rolls down an incline with either front or rear wheels locked.
Sut, M-53	front and rear brakes	1K20.40	A toy car is modified so either the front or rear brakes can be locked. Slide down the incline plane for each case.
D\&R, M-622	front and rear breaks	1K20.40	A toy car slides down an incline with either front or rear wheels locked.
Disc 03-06	stability of rolling car	1K20.40	A toy car slides down an incline with either front or rear wheels locked.
PIRA 1000	friction roller	1K20.42	
UMN, 1K20.36	friction roller	1K20.42	A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.
F\&A, Mk-2	friction roller	1K20.42	A cylindrical roller is pulled or slid across the lecture bench with a spring scale.
Mei, 8-4.5	friction roller	1K20.42	A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.
AJP, 75 (6), 571	rolling friction	1K20.42	A simple setup for measuring the rotational speed dependent coefficient of rolling friction using easily acquired equipment and apparatus.
PIRA 1000	frictional force rotator	1K20.45	
UMN, 1K20.45	frictional force rotator	1K20.45	

Demonstration Bibligrqaphy

AJP 50(7),631 frictional force rotator

AJP 51(9),804	cross friction
TPT 3(1),23	squeaky chalk
Sut, M-51	angle of friction with pencil TPT, 37(3), 184 why does it work?
Mei, 8-4.6	sliding chain
PIRA 1000	falling flask capstan
UMN, 1K20.70	falling flask capstan
AJP 59(10),951	falling keys capstan falling keys capstan
Ehrlich 2, p. 74	falling keys capstan
AJP 59(1),80 discussion of the capstan	
AJP 49(11),1080	capstan on a force table
TPT 14(7),432	capstan capstan fut, M-52
fut, M-54	going up a tree

Mei, 8-4.12
Snoek effect

AJP 37(6),665
PIRA 1000
Disc 03-01
TPT 11(6),362
Mei, 8-4.1
Mei, 8-4.2

PIRA 200 - Old
UMN, 1K30.10
F\&A, Ml-2
D\&R, F-035
D\&R, F-037

Disc 04-20
PIRA 1000
UMN, 1K30.20

AJP 59(1), 84
bed of nails
pop the balloons
pop the balloons

GRAVITY

Universal Gravitational

Constant

falling apple story

1K20.45 This article shows how to rotate a friction vector to make its component in a given direction as small as desired. Everyday unconscious applications of this method are presented along with some new demonstration equipment.

1K20.46 Push a block across the slope of an incline and the block will move with a straight line trajectory. Knock a coin across and it will move in a curved path but all stopping points will be in a straight line.
1K20.55 You don't have to break chalk to eliminate squeaking, only understand friction and hold the chalk accordingly.
1K20.55 Tilt a pencil until it slides along the table.
1K20.56 Friction and mass conspire to cause a counter-intuitive effect between rubber and steel balls.
1K20.60 Hang a chain over the edge of the table until the weight of the chain makes it slide.
1K20.70
1K20.70 Attach a 4 liter r.b. flask at the other end of a ball on a string and drape the flask over a horizontal rod 4' high. Let go of the ball.
1K20.70 A short analysis of the falling key capstan.
1K20.70 Hang a set of keys from a string draped over a pencil and when the string is released, the keys don't hit the floor.
1K20.70 A set of keys and a matchbook are tied to opposite ends of a 1 meter long string. Drape the middle of the string over a pencil and hold the matchbook end horizontal. Let go of the matchbook end and the keys do not hit the floor.
1K20.71 Friction experiments with the cord wrapped around a cylinder. Discussion of the donkey engine and capstan with a digression on sea chanties.
1K20.71 Tap a hole in the center of a force table and insert a bolt to use as a capstan.

1K20.71 Theory of the capstan along with discussion of applications.
1K20.71 Show the frictional force vs. the number of turns around a rod.
1K20.74 A ball is suspended by a loop of string over a slowly turning horizontal wooden bar. A large amplitude results.
1K20.76 The Phil Johnson humor continues with: "Very clever device. Look it up as it's hard to describe". A description would be: A string passes through 2 straws attached to a piece of cardboard. Hang the middle of the string off a nail in a wall. Hold both ends of the string taut, pull on each end of the string alternately, and the cardboard will climb the string.
1K20.80 The Phil Johnson humor continues with: "If you don't know about the Snoek effect, don't ask me - I had to read up on it too". A description would be: A tantalum wire torsion pendulum with electrically insulated ends is constructed. Running a current from a variac into the wire changes the oxygen diffusion, thus changing the amount of damping.
1K20.85 Friction caused dud torpedo in WWII.
1K20.90
1K20.90
1K20.95 Cut up a teflon coated cookie sheet for an inexpensive teflon surface.
1K20.95 Teflon sheet bent around corner replaces a pulley.
1K20.95 Dylite beads on a rimmed glass surface (window pane) provide a low friction surface.
1K30.00
1K30.10 Lie down on a bed of 16d nails on 1" centers.
1 K 30.10 Lie down on a bed of 16 d nails on 1 " centers.
1K30.10 The instructor lies on a large board with nails at 1" centers.
1 K 30.10 Lie down on a bed of 16 penny nails on 2 cm centers.
1K30.10
Inexpensive alternatives to the bed of nails using 24 balloons and an overturned table, standing on a board placed on three 25 watt light bulbs in a triangular arrangement, or 24 plastic soft drink cups and an overturned table.

1K30.10 Break a block on the chest of a person lying on a bed of nails.
1K30.20
1K30.20
A disc with points on one side can be placed on balloons so either the points or flats rest on the balloons.
1L00.00
1L10.00

1L10.01 Quotes from the original accounts of the falling apple and Newton.

PIRA 200	Cavendish balance film loop
UMN, 1L10.10	Cavendish balance film loop
PIRA 1000	Cavendish balance model
UMN, 1L10.20	Cavendish balance model
F\&A, Mn-1	Cavendish balance model
PIRA 500	Cavendish balance
UMN, 1L10.30	Cavendish balance
TPT 10(8),477	Cavendish balance
Mei, 8-8.7	Cavendish balance
Sut, M-128	Cavendish balance
Hil, M-9b	Cavendish balance
Disc 07-23	Cavendish balance
AJP 34(2),xv	Cavendish balance - damping
AJP 55(4),380	Cavendish balance wire replacement
AJP 33(11),963	do-it-yourself Cavendish balance
AJP 57(5),417	modified torsion balance
AJP 51(10),913	resonance Cavendish balance
AJP 49(7),700	servo mechanism Cavendish balance
AJP 51(4),367	servo mechanism Cavendish balance
AJP 54(11),1043	Cavendish balance compensation
AJP 55(9),855	automatic recording Cavendish
PIRA 1000	gravitational field model
UMN, 1L10.50	gravitational field model
PIRA 200	Orbits gravitational well - rubber diaphragm
PIRA 1000 - Old	gravitational well - rubber diaphragm
Mei, 8-8.2	gravitational well
$\begin{aligned} & \text { D\&R, M-822, S- } \\ & \text { 065, \& S-075 } \end{aligned}$	gravitational wells
AJP 70(1), 48	gravitational well - rubber diaphragm
AJP 70(10), 1056	gravitational well - rubber diaphragm
Bil\&Mai, p 364	gravitational well - rubber diaphragm
Ehrlich 1, p. 13	gravitational well - rubber diaphragm
Mei, 8-8.1	gravitational well on overhead projector
ref.	gravitational well on overhead projector
Ehrlich 1, p. 14	gravitational deflection on overhead projector
Ehrlich 1, p. 17	gravitational acceleration on overhead transparencies.

1L10.10 Time lapse of the Cavendish experiment
1L10.10 Time lapse of the Cavendish experiment.
1L10.20
1L10.20 A model of the Cavendish balance with sliding masses.
1L10.20 Model of the Cavendish balance.
1L10.30
1L10.30 Set up the standard Cavendish balance with a laser beam.
1L10.30 A platform is used to decouple the Cavendish balance from the building vibrations.
1L10.30 Quite a bit of discussion about the Klinger KM 1115 gravitational torsion balance.
1L10.30 Standard Cavendish experiment with lead balls and optical lever detection.

1L10.30 Mount the Cavendish balance permanently in the classroom and adjust hours before the experiment.
1L10.30 The commercial device with video over a $11 / 2$ hour period.
1L10.33 A small ball bearing attached to the bottom of the vane dips into a cup containing silicon oil.
1L10.34 Use amorphous metallic ribbon as a wire replacement which gives a higher spring constant and is more durable.
1L10.35 A simple Cavendish balance built by sophomore students.
1L10.36 A very small suspension wire is used allowing the linear accelerations to be measured directly.
1L10.41 The Cavendish balance is driven into resonance by swinging the external mass. Suitable for corridor demonstration.
1L10.42 Abstract from the apparatus competition.

1L10.42 The torsion bar does not appreciably rotate. A simple electronic servomechanism is used to maintain rotational equilibrium as an external mass is introduced. The resulting servo correction voltage is proportional to the torque introduced by gravity. This effect can be observed in tens of seconds.
Modify the Leybold Cavendish balance with a electromagnetic servosystem of damping that reduces the settling time to a few minutes.
1L10.45 The reflected laser light from the Cavendish balance falls on a two-element photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode.

1L10.50
1L10.50
1L20.00
1L20.10
1L20.10

1L20.10 On making a rubber diaphragm type potential well.
1L20.10 A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones.
1L20.10 Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface.
1L20.10 Additional comments on AJP 70(1), 48.

1L20.10 A potential well made from a large embroidery hoop and Spandex.
1L20.10 A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector.
1L20.12 Making a Lucite 1/R surface for use on the overhead projector.
1L20.12 See 8B40.35.

1L20.12 Draw a straight line on an overhead transparency. Tape the transparency into the shape of a cone and note that the original straight line is now a curve. The massive object that causes the curved space-time distortion is assumed to lie at the apex of the cone.
1L20.13 Special transparencies are used to show that particles accelerate due to the curvature of the "time" dimension.

Demonstration Bibligrqaphy	
Sut, M-131	elliptic motion
TPT 14(8),506	gravity surface
Ehrlich 2, p. 66	orbits in a hemisphere
AJP 30(7),531	orbits in a wineglass
Mei, 15-1.16	orbits in a spherical cavity
Mei, 8-8.3	rotating gravitational well
Ehrlich 2, p. 133	rotating gravitational well
Hil, M-17e	escape velocity
D\&R, M-815	escape velocity
Mei, 8-8.9	satellites
TPT 16(5),316	spin-orbit coupling
PIRA 1000	film "Motion of Attracting Bodies"
UMN, 1L20.36	"Motion of Attracting Bodies" film
PIRA 1000	conic sections
UMN, 1L20.40	conic sections
Disc 07-21	sections of a cone
Hil, M-17b	drawing ellipses
PIRA 1000	ellipse drawer
UMN, 1L20.50	ellipse drawer
D\&R, S-400	ellipse drawing aids
Disc 07-22	ellipse drawing board
AJP 44(4),348	orbit drawing machine
Mei, 10-2.15	dry ice puck orbits
Mei, 10-2.16	dry ice puck Kepler's law
Hil, M-17c	dry ice puck Kepler's law
Hil, M-17d	air table Kepler's laws
Mei, 10-2.17	dry ice puck Kepler's law
AJP 34(11),1063	areal velocity conservation
AJP 37(11)1134	fancy air puck Kepler's law
AJP 29(8),549	"gravity" with magnetic field
Ehrlich 2, p. 64	circular orbit - many impacts
Sut, M-130	inverse square law motion
PIRA 1000	film "Planetary Motion and Kepler's Laws"
UMN, 1L20.71	"Planetary Motion and Kepler's Laws"
	WORK AND ENERGY Work
PIRA 1000	shelf and block
UMN, 1M10.10	shelf and block
Bil\&Mai, p 78	shelf and block
PIRA 1000	block on table

1L20.14 A ball rolling in a funnel or cone.
1L20.16 Using the Playskool Baby Drum Drop as a gravity surface.
1L20.17 A steel ball bearing rolling in a transparent plastic hemisphere will precess in a predictable manner.
1L20.17 A properly shaped wine glass is used with ball bearings to show radius to orbit period, orbit decay, etc.
1L20.18 Derivation of the period of a ball orbiting in a spherical cavity. Strobe photography verifies as a demo.
1L20.20 A ball placed in a rotating potential well demonstrates the path of a satellite. Use a variable speed motor to show escape velocity.
1L20.20 A ball placed in a rotating parabolic potential well can oscillate only up to a critical angular velocity.
1L20.31 A Fake. Pour water into a can with a hole in it and then twirl around until "escape velocity" is reached. Show no water remains.
1L20.31 A spoof using a can with a hole in it that is twirled until " escape velocity" is reached.
1L20.32 A very complex satellite simulator.
1L20.35 A spinning ball orbits in a watch glass with increasing radii until it escapes.
1L20.36
1L20.36
Meeks film, 6:30 min. Computer animated. Covers Newton's laws, Earth's gravity variations, satellite and binary orbits.
1L20.40
1L20.40 A dissectible cone is cut several ways to give a circle, ellipse, parabola, and hyperbola.
1L20.40 The standard wood cone.
1L20.45 The two nail and string method for ellipse drawing.
1L20.50
1L20.50 An aluminum bar with adjustable pegs and a loop of string for drawing the ellipse.
1L20.50 A variety of acrylic ellipses with wooden handles for use on the chalk board.
1L20.51 The two nail and string method of drawing on paper.
1L20.55 Design for orbit drawing machines for use on the overhead projector. A simple one draws elliptical orbits only, an elaborate one draws general Coulomb orbits.
1L20.61 A dry ice puck on a large table is tethered through a hole in the center to a vacuum ping pong ball device under the table that gives an inverse square law force. Construction details p. 573.
1L20.62 A dry ice puck has a magnet mounted vertically with a second one below the table which may be inverted to show both attraction and repulsion.
1L20.62 A strong magnet is placed under the air table and a magnetic puck with a light is photographed.
1L20.62 With a strong magnet below the table, take strobe photos of a magnetic puck to demonstrate equal areas. TPT 8(4),244.
1L20.63 Motor at the center of the table with a special pulley arrangement.
1L20.64 Analyze a strobe photograph of one cylindrical magnet on dry ice approaching another and deflecting.
1 L 20.65 The puck has a variable thruster and is of variable mass. A Peaucellier linkage is used to apply central force.
1L20.66 Drop a ball near a magnetron magnet and watch it curve around about 150 degrees.
1L20.67 A ball traveling in a straight line can be made to move in a circular orbit by delivering many impacts at right angles to its direction of motion with a pen.

1L20.69 Pointer to A-62, A-63. Very crude models of planetary motion.
1L20.71
1L20.71 Meeks film, 8:45 min. Computer Animated. Shows orbits of the planets, covers Kepler's second and third laws.
1M00.00
1M10.00
1M10.10
1M10.10 Lift a block up and set it on a shelf.
1M10.10 Lift a block up and set it up on a shelf or a table.

Demonstration Bibligrqaphy	
UMN, 1M10.15	block on table
PIRA 1000	carry a block
UMN, 1M10.16	carry a block
Bil\&Mai, p 78	carry a block
PIRA 200	pile driver
UMN, 1M10.20	pile driver
F\&A, Mv-1	pile driver
Sut, M-133	pile driver
Bil\&Mai, p 83	pile driver
Disc 03-07	pile driver
PIRA 1000	pile driver with pop cans
UMN, 1M10.25	pile driver with soda cans
F\&A, Mv-3	work to remove tape
PIRA 1000	Simple Machines simple machine collection
Disc 04-06	simple machines
PIRA 200	pulleys
PIRA 500 - Old	pulleys
UMN, 1M20.10	pulleys
Sut, M-45	pulleys
PIRA 1000	pulley advantage
UMN, 1M20.11	pulley advantage
Disc 04-04	pulley advantage
TPT 16(9),645	pulleys
PIRA 1000	pulley and scales
UMN, 1M20.15	pulley and scales
Disc 04-05	pulley and scales
PIRA 500	bosun's chair
UMN, 1M20.20	bosun's chair
AJP 44(9),882	bosun's chair
Sut, M-46	bosun's chair
PIRA 1000	monkey and bananas
UMN, 1M20.25	monkey and bananas
AJP 33(4),348	monkey and bananas
AJP 33(8),662	monkey and the coconut
Mei, 12-5.4	climbing monkey
Hil, M-8e	climbing monkey
Sut, M-113	climbing monkey
Sut, M-44	windlass
F\&A, Mb-7	climbing pirate
Sut, M-47	fool's tackle
PIRA 500	incline plane
UMN, 1M20.30	incline plane
Mei, 6-3.1	screw and wedge
PIRA 1000	big screw as incline plane
UMN, 1M20.35	big screw
TPT 33(1), 28	screw threads
PIRA 1000	levers
UMN, 1M20.40	levers

1M10.15
1M10.16
1M10.16 Just carry a block around.
1M10.16 Just carry a block around.
1M10.20 Drive a nail into a block of wood with a model pile driver.
1M10.20 A model pile driver pounds a nail into wood.
1M10.20 A 10 lb block guided by side rails falls onto a nail in wood.
1M10.20 Drive a nail into a block of wood with a model pile driver.
1M10.20 Start a nail in a piece of wood. Place a long transparent fluorescent light disposal tube over the nail and drop a 1000 g . mass into the tube. Measure how far the nail is driven into the wood.
1M10.20 Drop a weight onto a nail in wood.
1M10.25
1M10.25 Smash pop cans with a pile driver.
1M10.99 Pull off a piece of tape stuck to the lecture bench.
1M20.00
1M20.01
1M20.01
1M20.10
1M20.10
1M20.10
1M20.10
1M20.11
1M20.11
Place a mass on a string over a pulley and hold a spring scale at the other side. Repeat with a mass hanging from a single pulley in a loop of string.
1M20.11 Hang a 10 newton weight on a string passing over a pulley and measure the force with a spring scale, then hang the weight from a free running pulley.

1M20.13 Pedagogy. Good diagram.
1M20.15
1M20.15 Same as encyclopedia disc 04-05.
1M20.15 This is a counter intuitive demonstration. A frame containing a spring scale and pulley hangs from another spring scale. Look it up.
1M20.20
1M20.20 Use a single pulley to help the instructor go up.
1M20.20 Using a block and tackle, the lecturer ascends. Full of pedagogical hints on how to do this effectively.
1M20.20 The instructor "lifts himself up by the bootstraps".
1M20.25
1M20.25 A wind up device and equal mass are placed at either ends of a string placed over a pulley.
1M20.25 A yo-yo and counterweight are suspended over a pulley. The counterweight and yo-yo rise and fall together.
1M20.25 A steel yo-yo and steel counterweight suspended over two low friction bearings.
1M20.25 A yo-yo and a counterweight are on opposite sides on a pulley. As the yo-yo goes up and down, so does the counterweight.
1M20.25 A steel yo-yo on one side of a pulley and a counterweight on the other. As the yo-yo goes up and down, so does the counterweight.
1M20.26 Two equal masses are hung over a pulley, one of which is equipped with a cord winding mechanism.
1M20.27 A model windlass is described.
1M20.28 String is wrapped around two different sized pulleys on a common axis.
1M20.29 A diagram of the "fools tackle" is shown.
1M20.30
1M20.30
1M20.30 A long triangular piece of sailcloth is wound around a mailing tube to show the relationship between a screw and a wedge. Diagram.
1M20.35
1M20.35 A large wood screw and nut (6"-1) show the relationship between a screw and incline.
1M20.36 How the torque required to compress a spring is different when using a course thread vise vs. a fine thread vise.
1M20.40
1M20.40 Show the three classes of levers with a mass, bar, pivot, and spring scale.

Demonstration Bibligrqaphy	
Sut, M-43	levers
D\&R, M-614	levers
Disc 04-07	levers
PIRA 1000	body levers
TPT 16(6),403	body levers
Hil, M-14c	wheel and axle
Mei, 6-3.2	black box
PIRA 1000	Non-Conservative Forces air track collision/sliding mass
UMN, 1M30.10	air track collision/sliding mass
F\&A, Mw-1	air track collision/sliding mass
Sut, M-109	negative acceleration due to friction
ref.	ref. friction blocks
Hil, M-14e	the woodpecker
PIRA 200	Conservation of Energy nose basher
UMN, 1M40.10	nose basher
TPT 22(6),384	nose basher, etc
F\&A, Mr-6	nose basher
Mei, 9-1.2	nose basher
Hil, M-14b	nose basher
D\&R, M-414	nose basher
Sprott, 1.10	nose basher
Bil\&Mai, p 89	nose basher
Disc 03-14	nose basher / bb pendulum
Mei, 9-1.7	recording pendulum motion
AJP 36(7),643	additional references
AJP 35(11),1094	weight of a pendulum
Sut, M-17	swinging on the halyards
Sut, M-146	break a pendulum wire
Ehrlich 1, p. 76	accelerometer pendulum
AJP 41(9),1100	burn the pendulum wire
PIRA 200	stopped pendulum
UMN, 1M40.15	stopped pendulum
F\&A, Mr-3	stopped pendulum
D\&R, M-414	stopped pendulum
AJP 71(11), 1115	stopped pendulum
Bil\&Mai, p 94	stopped pendulum

July 2015
1M20.40 The three classes of simple levers.
1M20.40 A first class lever with movable pivot. Can also be used as a seesaw and brought in to balance with the appropriate mass/distance ratio's on each side of the pivot.
1M20.40 A torque bar, spring scale, and pivot are used to illustrate the three classes of levers.
1M20.45
1M20.45 Construction and use of a device representing body levers.
1M20.60 The PIC-Kit used for demonstrating simple machines.
1M20.99 Hide a mechanism in a box and try to deduce what is inside.
1M30.00
1M30.10
1M30.10 An air glider with a mass that can be locked or free hits the end of the track.

1M30.10 Compare the bounce of an air glider on an inclined air track with a mass that is attached tightly and loosely.
1M30.15 A pendulum hits a tabletop, transferring a wood block rider to the tabletop. Potential to kinetic energy is wasted in friction.
1M30.16 see 1K20.16.
1M30.30 A toy bird slides down a rod giving up energy to friction and pecking. A "loose clamp" on the ringstand demo is also shown.
1M40.00
1M40.10 A bowling ball pendulum is held against the nose and allowed to swing out and back.
1M40.10 Hold a bowling ball suspended from the ceiling against your nose and let it swing.
1M40.10 Use bowling balls for the nose basher, drop out or project out of upper floor windows, collisions.
1M40.10 A large pendulum bob is suspended from the ceiling. Do the nose basher.
1M40.10 Head against the blackboard, long pendulum.
1M40.10 Hold a bowling pendulum to the nose and let it go.
1M40.10 Hold a bowling ball suspended from the ceiling against your nose and let it swing out and back.
1M40.10 A bowling ball is suspended from the ceiling with thin wire. Hold it against your nose and let is swing out and back.
1M40.10 A bowling ball pendulum is held against the nose and allowed to swing out and back.
1M40.10 A bowling ball pendulum is held against the nose and allowed to swing out and back.
1M40.11 A complicated device uses a spark timer to record interchange of kinetic and potential energy in a swinging pendulum.
1M40.12 A letter noting that AJP 35(11), 1094 has been published many times.
1M40.12 Suspend a pendulum from a double beam balance with a small block placed under the opposite pan to keep the system level. Swing the pendulum so it just lifts a weight off the stopped pan.
1M40.12 Swinging on the halyards to hoist a sail.
1M40.12 Suspend a heavy bob on a weak wire. As the ball descends in its swing, the wire breaks.
1M40.12 An inexpensive accelerometer is the pendulum bob. When swung through an angle of 90 degrees the accelerometer shows 3 g's at the bottom of the swing.
1M40.13 A Saran wrap pendulum support is burned to release the bob as it reaches the bottom of its swing. Measure the range of the bob.
1M40.15 A pendulum started at the height of a reference line reaches the same height when a stop is inserted.
1M40.15 A pendulum is started at the height of a reference line and returns to that height even when a stop is inserted.
1M40.15 A pendulum swing is started at the height of a reference line. A stop is inserted and the bob still returns to the same height.
1M40.15 A pendulum started at the height of a reference line reaches the same height when a stop is inserted.
1M40.15 The period of the interrupted pendulum is highly nonisochronous if the interruption is not located on the main verticals axis that contains the point of the suspension.
1M40.15 A pendulum started at the height of a reference line reaches the same height when a stop is inserted.

Demonstration Bibligrqaphy

Ehrlich 2, p. 96	stopped pendulum
Disc 03-13	Galileo's pendulum
Sut, M-132	blackboard stopped pendulum
PIRA 200	loop the loop
UMN, 1M40.20	loop the loop
AJP 30(5),336	loop the loop
TPT 15(6),368	loop the loop
F\&A, Mm-5	loop the loop
Mei, 12-5.7	loop the loop
Sut, M-157	loop the loop
Hil, M-16b. 2	loop the loop
$\begin{aligned} & \text { D\&R, M-422, M- } \\ & 674 \end{aligned}$	loop the loop
Bil\&Mai, p 140	loop the loop
Disc 06-09	loop the loop
AJP 42(2),103	water loop the loop
Ehrlich 1, p. 57	loop the loop on an incline
PIRA 1000	reverse loop the loop
UMN, 1M40.23	reverse loop the loop
AJP 29(1),48	reverse loop-the-loop
Mei, 12-5.5	reverse loop the loop
AJP 55(9),826	loop the loop with slipping analys
PIRA 1000	energy well track
Ehrlich 1, p. 62	energy well trough
Disc 03-12	energy well track
PIRA 1000	ball in a trough
UMN, 1M40.30	ball in a track
Mei, 7-1.5.9	ball in a trough
Bil\&Mai, p 91	ball in a track
Mei, 9-1.6	deformed air track
Mei, 11-1.7	air track potential well
Hil, M-14a	ball in curved tracks
PIRA 1000	triple track
UMN, 1M40.33	adjustable track
F\&A, Mr-2	ball in a track
Disc 03-15	triple track energy conservation
PIRA 1000	roller coaster
UMN, 1M40.35	roller coaster
AJP 59(3),283	roller coaster experiment
PIRA 500	ballistic pendulum with . 22
UMN, 1M40.40	ballistic pendulum
F\&A, Mi-3	ballistic pendulum

July 2015
1M40.15 A pendulum started at a marked height reaches the same height when a nail or peg is inserted
1M40.15 Intercept the string of a pendulum by a post at the bottom of the swing.
1M40.16 Do the stopped pendulum on the blackboard.
1M40.20 A ball rolls down an incline and then around a vertical circle.
1M40.20 A ball rolls down an incline and around a loop. Vary the initial height of the ball.
1M40.20 Apparatus Drawings Project No. 26: The vertical circle is made by flexing a thin stainless steel strip in a framework of Plexiglas.
1M40.20 How to make an inexpensive loop the loop from vinyl cove molding.
1M40.20 A steel ball is rolled down an angle iron bent to form a incline and loop.
1M40.20 An apparatus to do the loop the loop quantitatively. Construction details in appendix, p. 589
1M40.20 A ball rolls down an incline and then around a vertical circle.
1M40.20 Standard loop the loop.
1M40.20 Ball rolls down an incline and then around a vertical circle. Also, Hot Wheels track.

1M40.20 A golf ball is rolled down a bookshelf track bent to form an incline and loop.

1M40.20 A rolling ball must be released at 2.7 times the radius of the loop.
1M40.21 A water stream "loop the loop" demonstrates the effect of centripetal forces much more dramatically than when a ball is used.
1M40.22 A ball is rolled down a loop the loop track that is resting on a gently inclined flat plate. The ball completes the loop the loop only when released above a certain height.
1M40.23
1M40.23 The reverse loop-the-loop is placed on a cart hooked to a falling mass that produces an acceleration just large enough to make the ball go around backwards into the cup.
1M40.23 With a little practice, one can pull a reverse loop-the-loop with a large and prolonged acceleration. Plans and procedures.
1M40.23 In the reverse loop-the-loop a ball rolls up an incline and around a loop into a cup as the whole apparatus is accelerated.
1M40.24 Analysis of loop the loop, also dealing with slipping.

1M40. 25
1M40.25
Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed.
1M40.25 A ball can escape the energy well when released from a point above the peak of the opposite side.
1M40.30
1M40.30 A ball rolls in an angle iron bent into a "v" shape.
1M40.30 Roller coaster car on a track runs down one track and up another of a different slope
1M40.30 A ball rolls in an angle iron bent into a " v " shape.
1M40.31 Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised.
1M40.31 Curve an air track into an arc of a vertical circle.
1M40.32 Balls are rolled down a series of curved tracks of the same height but different radii.
1M40.33
1M40.33
1M40.33 A large steel ball rolls on a bent angle track with differing slopes.
1M40.33 Balls released from three tracks with identical initial angles rise to the same height independent of the angle of the second side of the " v ".
1M40.35
1M40.35 A ball rolls down a track with four horizontal sections of differing heights. The velocity is measured at each section.
1M40.35 Optoelectrical detectors measure the speed of a ball at specific points on a roller coaster track. Could be adapted for lecture demonstration.
1M40.40
1M40.40 Shoot a . 22 into a block of wood mounted as a pendulum. A slider device measures recoil.
1M40.40 A . 22 is fired into a suspended wood block. The recoil distance is used to determine the rise of the block.

Demonstration Bibligrqaphy

Mei, 9-5.15	ballistic pendulum
Sut, M-124	ballistic pendulum
Hil, M-15a.3	ballistic pendulum PIRA 1000
AJP 53(3),267	modify the ballistic pendulum
AJP 36(12),1161	Beck ballistic pendulum
Hil, M-13c	ballistic pendulum Disc 05-11
AJP 32(3),229	ballistic pendulum pendulum bow and arrow ballistic pendulum
AJP 40(3),430	bow and arrow ballistic pendulum
TPT 17(6),393	bow and arrow ballistic pendulum

AJP 36(6),558	blow gun ballistic pendulum
AJP 31(9),719	vertical ballistic pendulum
AJP 38(4),532	trouble with the ballistic pendulum
TPT 11(7),426	ballistic pendulum tutorial big yo-yo URA 500
AJP 41(11),1295	big yo-yo yo-yo
F\&A, Ms-2	big yo-yo
Mei, 12-5.2	big yo-yo Sig yo-yo
Hil, M-19b.2	big yo-yo Ehrlich 1, p. 53

Disc 06-08

TPT 28(2),92
Mei, 9-5.11
F\&A, Mt-8

Mei, 9-1.1

PIRA 500
UMN, 1M40.60
AJP 29(10), 709
Maxwell's yoyo cheap and simple yo-yos
swinging arm
spinner and pendulum

Pany device

Mei, 9-1.
PIRA 1000 1-D trampoline
UMN, 1M40.61 1-D trampoline

PIRA 1000
x-squared spring energy dependence
Disc 03-10

PIRA 1000
D\&R, M-288

July 2015
1M40.40 Shoot a . 22 straight up into a suspended block of wood.
1M40.40 The standard rifle ballistic pendulum setup.
1M40.40 Fire a air-gun into a wood block with a paraffin center.
1M40.41
1M40.41 Ignoring rotational dynamics results in a large error. Convert to a rotational dynamics device with an additional metal sleeve.
1M40.41 Comprehensive review of the Beck ballistic pendulum.
1M40.41 The commercial ballistic pendulum.
1M40.41 The commercial swinging arm ballistic pendulum.
1M40.42 A catapult/ballistic pendulum made of inexpensive materials.
1M40.43 The relation between bending of the bow and the velocity of the arrow was found to be linear.
1M40.43 Plans for a coffee can target for a bow and arrow ballistic pendulum. Includes slider.
1M40.43 A bathroom scale is used to measure the force needed to draw a bow to certain positions. Graph the results and propose a method to determine how much work was done.
1M40.45 Find the velocity of the dart fired from a blowgun by measuring the fall from the aiming point to the hit point on the target block.
1M40.47 A ball is dropped into a box of sand suspended from a spring and the extension of the spring is measured.
1M40.49 An analysis of the error introduced with non-parallel ropes.
1M40.49 Good tutorial on the ballistic pendulum.
1M40.50
1M40.50 A large disc is hung from bifilar threads wrapped around a small axle.
1M40.50 A shop drawing of axles with three different radii used to make a big yo-yo out of a force table.
1M40.50 A large (2') disc is suspended from a small axle so the string unwinds on the way down and rewinds on the way up.
1M40.50 Two large discs hung from bifilar thread wrapped around a small axle.
1M40.50 A large yo-yo is made by suspending a large spool from two threads wrapped around opposite ends of the axle.
1M40.50 A picture of a commercial Maxwell's wheel.
1M40.50 A large wheel hung from bifilar threads wrapped around the axle will descend very slowly. Can also be shown by running the wheel on its axle down inclined meter sticks.
1M40.50 Release a large yo-yo and it will bottom out and wind up again.
1M40.51 Yo-yos made with cardboard sides and paper towel centers routinely gave time of fall within 1\% of predicted
1M40.55 A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution.
1M40.56 A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle.
1M40.57 A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back.
1M40.60
1M40.60 Same as AJP 29(10),709.
1M40.60 Rotate a 15.3 in radius bar at 1 , 2 , or $3 \mathrm{rev} / \mathrm{sec}$, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1,4 , or 9 ft .
1M40.60 A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity.
1M40.61
1M40.61 A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches.

1M40.63

1M40.63 Measure the height of recoil of an air track glider on an incline after compressing a spring to different lengths.
1M40.64
1M40.64 Two identical dart guns, shoot a standard dart with one, and a dart with a marble epoxied to the end with the other. Aim up, down, or horizontal, and ask which dart will reach the target first.

Demonstration Bibligrqaphy

Bil\&Mai, p 64	spring gun - dart gun
PIRA 1000	height of a spring launched ball
AJP 31(5),392	height of a spring-launched ball
Bil\&Mai, p 87	height of a spring launched ball
Disc 03-08	spring ping pong gun
PIRA 1000	mechanical jumping bean
UMN, 1M40.66	mechanical jumping bean
TPT 1(3),108	mechanical jumping bean
Mei, 9-3.3	jumping tube
PIRA 1000	spring jumper
D\&R, M-406	spring jumper
Ehrlich 2, p. 89	spring jumper
Disc 03-09	spring jumper
AJP 53(11),1114	muzzle velocity - spring constant
AJP 28(7),679	rachet for inelastic collisions
Mei, 9-1.8	dropping bar
TPT 13(3),169	tension in wire when one mass swings
TPT 52(2), 88	air track glider and springs
Mei, 11-1.12	air track glider and falling mass
PIRA 1000	obedient can
Sprott, 1.11	obedient can, come-back can
Mei, 11-2.3f	air disc
AJP 53(10),962	push-me-pull-you sternwheeler
Mei, 9-1.3	sloping cart
PIRA 1000	rattleback
UMN, 1M40.90	rattleback
Ehrlich 1, p. 71	rattleback
TPT, 37(2), 80	curious Celts and riotous rattlebacks
PIRA 1000	high bounce paradox
Bil\&Mai, p 85	high bounce paradox
Ehrlich 1, p. 63	high bounce paradox
Disc 03-11	high bounce paradox
F\&A, Mp-10	acrobat

TPT 39(8), 471 trebuchet

July 2015
Mechanics
1M40.64 Two identical dart guns, shoot a standard dart with one, and a dart with a marble epoxied to the end with the other. Aim up, down, or horizontal, and ask which dart will reach the target first.
1M40.65
1M40.65 A 3/4" steel ball is launched upward by a "stopped spring" (shown), from which the initial velocity is calculated.
1M40.65 Place a golf ball on a depressed spring and then release. The ball will be launched upward about 30 cm . Redo the demonstration with a Ping Pong ball which goes much higher.
1M40.65 A spring gun shoots standard and loaded ping pong balls to different heights.

1M40.66
1M40.66 Same as TPT 1(3),108.
1M40.66 A mailing tube jumps when a hidden mass moves upward under rubber band power.
1M40.66 A spring loaded tube jumps two or three times its own height when triggered. Diagram.
1M40.67
1M40.67 Compress a spring under a toy held down by a suction cup.
1M40.67 Compress the spring of a retractable ballpoint pen to a tabletop. Release and observe the spring launch the pen upward.
1M40.67 Compress a spring under a toy held down by a suction cup.
1M40.68 A method of using the potential energy of the cocked spring to calculate the muzzle velocity. (15% of the energy is lost.)
1M40.69 A ratchet mechanism locks a spring in the compressed position giving an inelastic collision with the decrease in kinetic energy stored for later release by tripping the ratchet.
1M40.71 Lift a horizontal bar suspended from two springs and drop it through a photocell to measure velocity. Examine the exchange between gravitational, elastic potential, and kinetic energy.
1M40.72 A spring scale is suspended between two masses. Set one swinging- a lot of physics.
1M40.73 Energy analysis of a damped mechanical oscillator. A dynamics cart may also be used for this demonstration
1M40.74 A mass m attached to a glider M with a string and pulley. Compare kinetic energy gained by $\mathrm{m}+\mathrm{M}$ with potential energy lost by M .
1M40.75
1M40.75 A can rolls across a table, stops then comes back to where it started due to energy it stores winding an elastic band as the can rolls out.
1M40.76 A falling weight spins an air bearing supported rotating disc. Compare rotational (disc) and translational (weight) kinetic energy with potential energy.
1M40.80 Both upstream and downstream motion is possible in a system with a water stream running between the rails and a waterwheel mounted on the rear axle of the cart.
1M40.85 This is a counter intuitive demo. Nothing happens when a brick is placed on a slanted cart.
1M40.90
1M40.90
1M40.90 A piece of carved wood will reverse its direction of spin only when spun in one direction.
1M40.90 The rattleback enigma further explored by making them out of plastic spoons.
1M40.91
1M40.91 Flip a half racquetball inside out and drop on the floor. It bounces back higher than the height from which it was dropped.
1M40.91 Cut a rubber ball in half and flip inside out. Drop it from a low height and watch it bounce to a much higher height.
1M40.91 Flip a half handball inside out and drop on the floor. It bounces back higher than the height from which it was dropped.
1M40.93 Phil Johnson's response to this demo was: "?????????????". In actuality this is a toy with an acrobat figure (double or triple pendulum) with a rubber band through the hands and connected to two vertical flexible supports. Flex the supports and the acrobat does amazing tricks.
1M40.95 The dynamics, design, and some improvements that can be made to the classical trebuchet to maximize projectile range.

Demonstration Bibligrqaphy	
TPT 32(8), 476	trebuchet
TPT 24(9), 556	catapult
TPT 47(9), 574	siege engines / onager
	Mechanical Power
PIRA 1000	Prony brake
UMN, 1M50.10	Prony brake
F\&A, Mv-2	Prony brake
Mei, 12-4.1	Prony brake
Mei, 12-4.2	Prony brake
Sut, M-135	Prony brake
Sut, M-134	Prony brake
Bil\&Mai, p 93	Prony brake - stairs
Disc 03-18	Prony brake
Sut, M-136	power bicycle
ref.Mei, 9-3.7	ref. hand crank generator
	rocket wheel
	LINEAR MOMENTUM AND COLLISIONS
	Impulse and Thrust
PIRA 1000	colision time pendula
UMN, 1N10.10	collision time pendula
F\&A, Mw-4	collision time pendula
Mei, 9-4.3	time of contact
AJP 43(8),733	fleeting event timer
Mei, 9-4.4	contact time by oscillator
Mei, 9-4.1	measuring impulse
Mei, 9-4.2	measuring impulse by induction
PIRA 500	silicone ball on blackboard
UMN, 1N10.15	silicone ball on blackboard
AJP 51(5),474	ball on the blackboard
Sut, M-107	deform clay
PIRA 200	egg in a sheet
UMN, 1N10.20	egg in a sheet
D\&R, M-516	egg in a sheet
Bil\&Mai, p 100	egg in a sheet
Ehrlich 1, p. 32	egg in a sheet
Disc 05-09	egg in a sheet
PIRA 500	drop egg in water
UMN, 1N10.25	drop an egg in water
D\&R, M-520	drop an egg on foam
PIRA 500	pile driver with foam rubber
UMN, 1N10.30	pile driver with foam rubber
Disc 05-10	piledriver with foam rubber

July 2015

Mechanics

1M40.95 The trebuchet as an example of medieval energy conservation.
1M40.97 Students chose between two catapult designs to launch eggs over a wall while maximizing distance beyond the wall.
1M40.99 The classic onager siege engine and three improvements that can maximize projectile range.
1M50.00
1M50.10
1M50.10 Turn a large hand cranked pulley with the belt fastened to two spring scales.

1M50.10 A belt fastened to two spring scales is strung under tension around a large hand cranked pulley.
1M50.10 How to make a self adjusting Prony brake that provides constant torque.
1M50.10 Each end of the belt for a Prony brake is attached to a spring scale.
1M50.10 Measuring your horsepower by Prony brake and running up stairs. Hints on making a human sized Prony brake
1M50.10 Measuring delivered horsepower by turning a pulley under a stationary belt attached to spring scales at each end.
1M50.10 Measure your horsepower by running up stairs.
1M50.10 Rotate a shaft against a constant frictional resistive force.
1M50.20 Attach a 2" dia. axle to the rear of a bike and use it to lift a weight via a pulley on the ceiling.
1M50.30 see 5K40.80.
1M50.50 Two rockets are mounted on the rim of a bike wheel. The second is fired after effect of the first has been measured showing the power developed by a rocket is a function of its velocity
1N00.00

1N10.00
1N10.10
1N10.10 An electronic timer measures the impact time as two pendula collide.
1N10.10 Two metal wire bifilar pendula are suspended as part of a circuit to measure contact time on a counter.
1N10.11 A steel ball suspended from a conducting wire hits a vertical steel plate and the electrical signal gives time of contact.
1N10.12 Hitting two hammers together gates a fast oscillator to a counter.
1N10.12 A ball swings against a plate completing a circuit allowing an oscillator to feed a counter to measure collision time.
1N10.13 A pendulum strikes a piezoelectric crystal and generates a voltage spike which is viewed on an oscilloscope.
1N10.14 A pendulum strikes a magnet moving it in a coil inducing a current that deflects a galvanometer.
1N10.15
1N10.15 Throw a silicone ball at a dirty blackboard, measure the diameter of the mark, and place weights on the silicone ball until it is squashed to the same diameter.
1N10.15 Compare the imprint of a sponge ball thrown against a dirty blackboard with the force required to get an equal size deformation and calculate the interaction time.
1N10.16 Drop a 50 g mass on some softened clay, then add masses slowly to another blob of clay until the depression is equal.
1N10.20 Throw an egg into a sheet held by two students.
1N10.20 Throw an egg into a sheet held by two students.
1N10.20 Throw an egg into a sheet held by two students.
1N10.20 Throw an egg into a sheet held by two student. Make sure the bottom of the sheet Is pulled upward to form a pocket.
1N10.20 Throw an egg full force into a sheet held by two students.
1N10.20 Throw an egg at a sheet held by two people.
1N10.25
1N10.25
1N10.25 Drop an egg from a height of 1 meter onto the floor and then onto a thick piece of foam.
1N10.30
1N10.30 Break a bar of Plexiglas supported on two blocks with a pile driver. Add foam to a second bar and it doesn't break.
1N10.30 A pile driver breaks a plastic sheet supported at the sides. Add a piece of foam rubber and the plastic does not break.

PIRA 1000	car crashes
UMN, 1N10.35	car crashes
TPT 13(3),173	car crashes
AJP 41(11),1294	car saftey on the air track
PIRA 1000	auto collision videodisc
UMN, 1N10.40	auto collision videodisc
AJP 36(7),637	impulse on the air track
Mei, 9-4.14	impulse acceleration track
AJP 51(9),783	karate blows
AJP 43(10),845	karate strikes
Mei, 9-4.11	water stream impulse
TPT 9(7),413	jet velocity by impulse
Mei, 9-4.6	thrust with air carts
AJP 33(10),784	water jet thrust
PIRA 1000	model rocket impulse
TPT 13(7),435	model rocket impulse
TPT 18(4),315	model rocket thrust
Mei, 9-3.1	model rocket thrust
Mei, 9-3.5	model rocket thrust
Mei, 9-3.8	Dyna-Jet thrust
PIRA 1000	fire extinguisher thrust
TPT 12(8),488	fire extinguisher thrust
TPT 14(2),112	measuring impulse
Mei, 11-1.15	air glider rocket thrust
Mei, 9-3.4	thrust independent of medium
	Conservation of Linear Momentum
PIRA 500	see-saw center of mass
UMN, 1N20.10	see-saw center of mass
AJP 33(1),xxv	see-saw center of mass
F\&A, Md-3	magnetic reaction carts
F\&A, Mp-16	see-saw center of mass
Mei, 9-2.4	see-saw center of mass
Hil, M-15c	see-saw center of mass
Bil\&Mai, p 156	see-saw center of mass
Disc 02-26	see-saw reaction carts
Ehrlich 1, p. 84	rolling ball on balance beam

July 2015
1N10.35
1N10.35 Roll a car down an incline to smash beer cans. Vary the bumpers to change the impulse.
1N10.35 A cart rolls down an incline and smashes a beer can against a brick wall. Four interchangeable bumpers are used to vary the impulse.
1N10.36 Models of a person with a head, seat belt and a head rest are placed on an air track glider.
1N10.40
1N10.40 Show segments of the video disc.
1N10.50 A rubber band launcher provides an impulse to an air glider. Analysis given is for a lab.
1N10.50 A mass on a right angle lever imparts a known variable impulse to a cart on a track and the final velocity is measured.
1N10.55 Not many physics instructors will be able to perform these demonstrations.
1N10.55 Analysis of karate strikes and description of breaking demonstrations.
1N10.56 The force created by a momentum change in a fine water stream is calculated using measurements obtained with a large scale impulse balance. Construction details.
1N10.57 The impulse supplied by the counterweight equals the loss of horizontal momentum of a jet of water. The exit velocity of the water jet is then calculated and checked by measuring range.
1N10.63 Two carts, one with an air nozzle, the other with a reversible hemispherical deflector can be connected by a spring to show forces internal and external to a system and the effects on thrust resistance and thrust reversal.

1N10.64 Measure the vertical height of a water jet, collect water to determine the flow, and match the deflection of the nozzle by hanging weights with the flow turned off.
1N10.70
1N10.70 Using solid fuel model rocket engines as an impulse generator, demonstrate the impulse-momentum theorem by measuring the final velocity.

1N10.71 A device provides a method of measuring the thrust of a model rocket engine and recording it on graph paper. Impulse is calculated. Clever.
1N10.72 Modify a toy rockets to maintain continuous discharge. Attach to a platform scale.
1N10.74 An apparatus designed to measure the thrust of a rocket is used to check the manufacturer's specifications.
1N10.75 Thrust measurements are made on a pulse jet engine (Dyna-Jet).
1N10.80
1N10.80 Measure the thrust of a fire extinguisher.
1N10.81 Complete treatment of the fire extinguisher cart to get exhaust velocity and average thrust for a variable mass system.
1N10.85 A device (diagram) measures thrust of a gas propelled air glider. Speed and acceleration are determined by strobe photography.
1N10.90 A rocket pendulum maintains the same angle of recoil in air or water showing thrust is independent of medium.
1N20.00
1N20.10
1N20.10 Two carts magnetically repel each other on a teeter-totter. Mass of cars can be varied.
1N20.10 Magnet carts on a balanced board repel when a constraining string is burned. Also load carts unequally.
1N20.10 Two carts with opposing permanent magnets are held together by a string which is burned.
1N20.10 Magnet cars on a balanced board repel each other when a constraining string is burned. Carts may be loaded unequally.
1N20.10 A string holding two carts with opposing horseshoe magnets is burned and they remain balanced on a board as they repel.
1N20.10 Two spring loaded carts repel each other on a balanced board.
1N20.10 Two spring loaded carts repel each other on a balanced dynamics track.
1N20.10 Two spring loaded carts repel each other on a balanced board.
1N20.11 A ball rolls in the groove on a balance beam. The ball exhibits oscillatory motion for only precisely determined initial conditions.

Demonstr	Bibligrqaphy		y 2015 Mechanics
TPT 10(9),531	rolling ball on air glider	1N20.12	A ball rolls down a small inclined plane mounted on an air trackglider. Watch the glider start and stop.
PIRA 1000	car on a rolling board	1N20.15	
UMN, 1N20.15	car on a rolling board	1N20.15	Start and stop a radio controlled car on a board on rollers.
Sut, M-123	car on a rolling board	1N20.15	A straight train track is mounted on a movable board. Changing the weighting of the train will change the relative velocities of the train and track. Use a circular track for conservation of angular momentum.
Ehrlich 2, p. 82	car on a rolling board	1N20.15	A spring wound toy car on a ruler which is placed on rollers.
Disc 02-20	car on rolling board	1N20.15	Use a radio-controlled car on the board on a series of rollers.
Mei, 6-4.9	car on the road	1N20.16	A drawing board rides on perpendicular sets of steel rods to give 2D freedom of motion. Set a toy wind up car on it.
AJP 33(10),857	train on an air track	1N20.17	An HO gauge train and 36 " track mounted on a air glider.
PIRA 200	sprring apart air track gliders	1N20.20	Burn a string holding a compressed spring between two air gliders.
UMN, 1N20.20	spring apart air track glider	1N20.20	Two spring loaded gliders on the air track initially held together by a electromagnet repel and are timed photoelectrically.
F\&A, Md-4	spring apart air track glider	1N20.20	Air track gliders equipped with iron cores and a spring are held together by an electromagnet.
Mei, 11-1.10	spring apart air track glider	1N20.20	Compress spring and burn thread to release, or use a toy pistol cap and hand held tesla coil.
Bil\&Mai, p 110	spring apart dynamics carts	1N20.20	A spring between two dynamics carts is triggered. Use carts of equal mass and then double the mass of one cart.
Disc 02-19	reaction gliders momentum conservation	1N20.20	Burn a string holding a compressed spring between two unequal mass air gliders.
F\&A, Md-1	old reaction carts	1N20.21	Two spring loaded carts on a track with light bulbs at the ends of the track to indicate simultaneous arrival.
Mei, 7-1.5.5	old reaction cars	1N20.21	Two spring loaded cars on a track fly apart. If they reach the ends at the same time, lights flash.
Mei, 9-5.16	repelling gliders	1N20.22	Two gliders with magnets set to repel are tied together with string on an air track. The gliders start at rest, the string is burned so that they fly apart, and a measured distance for each glider to traverse is timed.
D\&R, M-554	repelling carts	1N20.22	Two carts, one spring loaded, are placed together. Starting at rest, the spring is triggered, the carts fly apart, and a measured distance for each cart to traverse is timed.
Ehrlich 1, p. 59	repelling balls	1N20.22	A variation with balls inside an embroidery hoop being driven apart by a sharp blow with the handle of a table knife. Where they collide is dependent on their mass ratio.
Ehrlich 2, p. 81	repelling balls	1N20.22	Two balls on a grooved ruler have a folded index card between them. When released the index card pushes the balls apart with recoil speeds having the inverse ratio of their masses.
AJP 41(1),136	magnetic release	1N20.23	The magnetic release for the spring apart air track gliders.
Ehrlich 2, p. 35	recoiling magnets	1N20.24	Equal mass horseshoe magnets are held together with like poles touching. When released they will fly apart into a symmetrical configuration.
TPT 28(2),112	recoiling magnets	1N20.24	Hold two small horseshoe magnets together on an overhead projector and observe the recoil.
PIRA 1000	elastic band reaction carts	1N20.25	
UMN, 1N20.25	elastic band reaction carts	1N20.25	Pull apart two carts of unequal mass attached with an elastic band.
Sut, M-121	elastic band reaction cars	1N20.25	A stretched rubber band pulls two carts together with accelerations inversely proportional to their masses.
Mei, 9-4.16	exploding pendula	1N20.30	Two large pendula of unequal mass are held together compressing a spring. When the spring is released, two students mark the maxima.
Sut, M-120	reaction swings	1N20.31	Planks with bifilar supports may be used in place of reaction carts.
AJP 41(7),922	exploding basketballs	1N20.32	Explode a firecracker between a light and heavy basketball that are suspended near the ceiling. Details of the basketball holder are given.
Mei, 9-4.19	big bertha	1N20.32	A dry ice cannon is mounted on model railroad tracks. Average velocity of the recoiling cannon and projectile are timed.
D\&R, M-550	big bertha	1N20.32	A test tube cannon is hung by bifilar supports. Add a small amount of water, stopper, and heat with a Bunsen burner. Average velocities of the recoiling test tube and stopper projectile or compared.
AJP 34(8),707	explosion	1N20.35	Explode a firecracker in an iron block $4 \times 4 \times 2$ " pieced together from three sections.
AJP 35(4),359	explosion - comment about friction	1N20.35	The center of mass will move due to friction.
AJP 57(2),182	air track center of mass collision	1N20.60	An inelastic air track collision with a glider and a spring coupled glider system.
	Mass and Momentum Transfer	1N21.00	

Demonstration Bibligrqaphy	
PIRA 200	floor carts and medicine ball
PIRA 500 - Old	floor carts and medicine ball
UMN, 1N21.10	floor carts and medicine ball
Sut, M-119	floor carts and medicine ball
PIRA 1000	catapult from cart to cart
UMN, 1N21.20	catapult from cart to cart
Mei, 7-1.5.4	catapult from cart to cart
Mei, 9-4.5	thrust cars
Mei, 9-4.7	thrust cars
PIRA 1000	ballistic air glider
UMN, 1N21.30	ballistic air glider
AJP 34(3), xxx	ballistic air glider
F\&A, Mi-4	ballistic air glider
Mei, 7-1.5.6	ballistic air glider
Mei, 11-1.11	ballistic air glider
PIRA 1000	drop sandbag on cart
UMN, 1N21.40	drop sandbag on cart
TPT 19(5),326	drop weight on moving cart
Mei, 9-4.18	drop shot on cart
PIRA 1000	vertical catapult from moving cart
UMN, 1N21.45	vertical catapult from moving cart
F\&A, Mg-5a	jump on the cart
AJP 57(10),858	air track ball catcher
	Rockets
TPT 20(2),107	historical note
PIRA 200	fire extinguisher wagon
UMN, 1N22.10	fire extinguisher rocket
D\&R, M-566	fire extinguisher wagon
Sprott, 1.13	fire extinguisher wagon
Disc 02-24	fire extinguisher wagon
PIRA 1000	rocket lift-off video
UMN, 1N22.15	rocket video
PIRA 200	water rocket
UMN, 1N22.20	water rocket
AJP 69(3), 223	water rocket
AJP, 78 (3), 236	water rocket
F\&A, Mh-3	water rocket
D\&R, M-558	water rocket
Bil\&Mai, p 114	water rocket
Ehrlich 1, p. 33	water rocket
Disc 02-23	water rocket
Bil\&Mai, p 2	altitude finder
Mei, 11-1.14	air track rocket

1N21.10
1N21.10
1N21.10 Two people on roller carts throw a medicine ball to each other.
1N21.10 Throw a medicine ball or baseball back and forth, throw several baseballs against the wall.
1N21.20
1N21.20 Catapult a ball of equal mass as the cart into a catcher in the second cart.
1N21.20 Two carts at rest on a track, one catapults a steel ball into the other, each is photoelectrically timed.
1N21.25 Conservation of momentum of a thrust producing stream on water is shown by two carts on a track: one has a nozzle, the other a bucket to catch the water.
1N21.26 How to pull the plug on a container of water on a cart to show conservation of momentum by reaction to discharging water stream.
1N21.30
1N21.30 Shoot a . 22 into a wood block mounted on an air glider. Use a timer to determine the velocity.
1N21.30 Shoot a . 22 into a block of wood on an air glider.
1N21.30 A . 22 is fired into a block of wood mounted on an air glider.
1N21.30 A . 22 rifle shoots a bullet into a glider on a track.
1N21.30 Shoot a . 22 into a block on an air glider.
1N21.40
1N21.40 A cart passes by a device that drops a sandbag of equal mass as the cart. Timers measure the velocity before and after the transfer.
1N21.40 Drop a weight on a moving cart, two people on roller carts push against each other.
1N21.41 Lead shot is dropped from a hopper into a box on a moving cart. The initial velocity is reproducible and the final velocity is measured with a photogate.

1N21.45
1N21.45 Shoot a ball of equal mass from a moving cart into a catcher. Time to determine the velocity before and after the transfer.
1N21.50 Run at constant velocity and jump on a roller cart.
1N21.55 Shoot a stream of balls at a moving air glider until the glider stops.
1N22.00
1N22.01 An article claims rockets will not work in space because there is nothing to push against.
1N22.10 Mount a fire extinguisher on a cart and take a ride.
1N22.10 Mount a fire extinguisher on a cart and take a ride.
1N22.10 Mount a large fire extinguisher on a cart and take a ride. Directions for orifice modification of fire extinguisher.
1N22.10 Mount the fire extinguisher to a cart or tricycle.
1N22.10 Mount a fire extinguisher on a wagon with the hose attached to a half inch plumbing fitting directed to the rear.
1N22.15
1N22.15 Show video of a rocket or shuttle launch.
1N22.20 Pump a toy water rocket the same number of times, first with only air, and then with water.
1N22.20 Pump a toy water rocket the same number of times, first with only air, and then with water.
1N22.20 Analysis of a water rocket to determine the optimum amount of water to use to achieve maximum height.
1N22.20 A through analysis of the water rocket taking into account water vapor condensation, downward acceleration of water within the rocket, and transient water flow.
1N22.20 A commercial water rocket is charged with air and then water.
1N22.20 A conventional water rocket adapted to run on a wire angled upward to the ceiling.
1N22.20 Pump a toy water rocket the same number of times, first with only air, and then with water.
1N22.20 A water rocket, rocket balloon, or balloon powered helicopter is used to demonstrate Newton's second and third laws.
1N22.20 Use a water rocket first with air only, and then with air and water.
1N22.21 Construction of a simple altitude finder / sextant from a protractor, straw, string, and weight.
1N22.23 Air from a rubber balloon propels an air glider.

Demonstration	Bibligrqaphy	July 2015	
PIRA 1000	balloon rocket	1N22.25	
UMN, 1N22.25	balloon rocket	1N22.25	"Balloon rockets" are available at toy stores. Normal balloons follow more random paths.
Bil\&Mai, p 65	balloon rocket	1N22.25	Blow up an oblong balloon. Keeping the balloon sealed by pinching the nozzle, tape the balloon parallel to a straw. Put a string through the straw and attach the ends of the string to opposite walls of the classroom. When released the balloon should travel across the room on the string.
PIRA 1000	CO2 cartridge rocket	1N22.30	
F\&A, Mh-1	rocket car	1N22.30	A CO2 powered car accelerates across the lecture bench.
Mei, 9-3.2	rocket car - CO2 cartridge	1N22.30	Cartridges of CO 2 are used to propel small automobiles or projectiles.
TPT 12(1),50	rocket to the Moon	1N22.32	A nice setup of the CO2 rocket on a wire.
F\&A, Mh-2	rocket to the Moon	1N22.32	A small CO2 powered rocket rides a wire across the classroom.
PIRA 1000	rocket around the Moon	1N22.33	
UMN, 1N22.33	rocket around the Moon	1N22.33	A CO2 cartridge in the back of a model plane propels it around in circles.
Disc 02-22	CO2 rocket	1N22.33	A small CO 2 cartridge rotates a counterbalanced bar.
D\&R, M-426	alcohol vapor rocket	1N22.35	Pour 12 ml of alcohol into a plastic 5 gallon water jug or 20 L carboy. Rotate the jug to distribute the alcohol evenly onto the jug walls. Drop a lighted match into the jug. The jug will bounce up and down on the table.
Bil\&Mai, p 112	alcohol vapor rocket	1N22.35	Pour 5 mL of alcohol into a 2 L plastic soda bottle. Swirl the alcohol around to vaporize the liquid and then pour out the excess alcohol. Use duct tape to secure the bottle to a straw mounted on a guideline stretched across the room. Securely insert a cork and then ignite the alcohol vapor with a piezo electric igniter.
Sprott, 1.13	methanol rocket	1N22.35	Methanol powered rocket using 5 gal plastic water bottle.
PIRA 1000	ball bearing rocket cart	1N22.40	
UMN, 1N22.40	ball bearing rocket cart	1N22.40	A cart is propelled down a track by $21 / 2^{\prime \prime}$ ball bearings rolling down a chute attached to the cart.
F\&A, Mh-4	ball bearing rocket cart	1N22.40	A cart is propelled down a track by 1 " ball bearings rolling down a chute.
Mei, 9-3.6	ball bearing rocket cart	1N22.40	Fifteen large steel ball bearings fall through a chute to propel a cart. The last ball moves in the same direction as the cart.
F\&A, Mh-5	reaction to a stream of water	1N22.51	A nozzle reacts against a water jet.
Mei, 9-4.8	reaction to a stream of water	1N22.51	Several techniques on making the deflection due to the reaction to a stream of water more graphic.
Mei, 9-4.9	reaction to a stream of water or air	1N22.51	With string, tie one end of a 3 ' rubber hose to a spring and turn on the air, then cut the string between the spring and the hose.
Sprott, 2.25	reaction to a stream of water or air - fire hose instability	1N22.51	A rubber hose connected to a source of compressed air dangles from a support and flails about.
AJP 57(10),943	computer plots of rocket motion	1N22.90	Data from a Smart-pulley Atwoods machine with a funnel on one side is used to generate speed, position, and acceleration graphs.
AJP, 75 (5), 472	altitude measurements for model rocketry	1N22.90	A look at the ballistic time of flight equation for maximum altitude of vertically launched rockets and why neglecting atmospheric drag makes almost no difference.
	Collisions in One Dimension	1N30.00	
ref.	ref. coef. of restitution	1N30.01	see 1R40.xx.
PIRA 200	collision balls	1N30.10	Two balls or many balls on bifilar suspension.
UMN, 1N30.10	collision balls	1N30.10	Six billiard balls are mounted on bifilar supports.
AJP 30(10),767	collision balls - croquet	1N30.10	Weigh the balls at the store to get nearly equal masses.
Mei, 9-5.3	collision balls	1N30.10	Eleven billiard balls on bifilar suspension.
Hil, M-15a. 1	collision balls	1N30.10	Two balls, five balls, six balls on bifilar suspension.
D\&R, M-586	collision balls	1N30.10	5 ball on bifilar suspensions.
Sprott, 1.12	collision balls	1N30.10	5 stainless steel balls on bifilar suspensions demonstrate the conservation of momentum and energy.
Ehrlich 2, p. 93	collision balls	1N30.10	An executive toy style Newton's cradle is used to investigate coefficient of restitution.
Disc 05-01	colliding balls	1N30.10	Two balls of equal mass collide, then balls of various mass ratios are used. Collisions with a string of equal balls are also demonstrated.
AJP, 50 (11), 977	collision balls	1N30.10	How the collision ball experiment can be described by a series of spatially separated mass points and springs of a special type.
PIRA 1000	bowling ball collision balls	1N30.11	
UMN, 1N30.11	bowling ball collision balls	1N30.11	A large frame holds seven bowling balls on quadfilar supports.
Sut, M-68	collision balls	1N30.12	Two balls on bifilar suspension.
Mei, 9-5.2	collision balls	1N30.13	A two ball collision ball apparatus for the overhead projector.
AJP 49(8),761	collision balls theory	1N30.14	In addition to conservation of momentum and energy, the system must be capable of dispersion-free propagation.

Demonstration Bibligrqaphy

AJP 50(11),977	collision balls theory
AJP 72(12), 1508	collision balls theory
TPT 35(7), 411	collision balls theory
AJP 36(1),56	pitfalls in rolling ball collisions
F\&A, Mg-2	billiard balls
Mei, 9-5.7	billiard balls
Hil, M-15a. 2	billiard balls
Hil, M-15b	billiard balls
D\&R, M-582	marbles
Bil\&Mai, p 105	steel balls
Ehrlich 1, p. 57	colliding balls
Mei, 9-5.8	billiard balls
PIRA 1000	3:1 collision balls
UMN, 1N30.20	collision balls - 3:1
F\&A, Mg-1	collision balls, 3:1
Mei, 9-5.13	3:1 collision balls
D\&R, M-586, S320	3:1 collision balls
Sut, M-127	collision balls, 3:1
TPT 33(3), 169	collision balls, 3:1
Ehrlich 1, p. 51	collision balls

AJP 41(4),574	time reversal invariance
PIRA 500	impedance match collision balls
UMN, 1N30.25	impedance match collision balls
AJP 36(1),46	impedance match collision balls
Mei, 9-5.12	impedance match collision balls
AJP 54(7),660	collision balls analysis
PIRA 1000	air track collision gliders
UMN, 1N30.30	air track collision gliders
AJP 33(10), 784	air trough collisions
Disc 05-03	elastic and inelastic collisions
AJP 42(8),707	air track collision tricks
F\&A, Mg-4	air track collision gliders
Mei, 7-1.5.3	air track collision gliders
PIRA 1000	equal and unequal mass air track collisions
F\&A, Mg-3	air track collision gliders
Mei, 11-1.1	air track collision gliders

Disc 05-02

AJP 33(10),784

TPT 10(7),416

July 2015
1N30.14 The collision balls are described as a series of spatially separated masspoints and springs with a force law exponent of 1.5.
1N30.14 A look at the complicated movement of the balls at the first collision and beyond.
1N30.14 How to teach about Newton's cradle using scientific explanation
1N30.15 Friction and other factors that affect rolling collisions.
1N30.15 Do collision balls with billiard balls in a "v" track.
1N30.15 A set of grooved billiard balls run on steel edges.
1N30.15 Roll a ball down an incline into a trough with five other balls.
1N30.15 Looks like a rolling bowling ball hits another.
1N30.15 Do collision balls with marbles in a "V" track.
1N30.15 Do collision balls with 5 steel balls in a curved "V" track.
1N30.15 Balls of the same and different masses colliding on a grooved plastic ruler

1N30.16 Duckpin balls slide on two taut parallel steel wires. Construction details in the appendix, p. 566.
1N30.20
1N30.20
1N30.20 A set of identical steel balls on bifilar suspensions. Also one ball can be three times the mass, insert wax for inelasticity.
1N30.20 Many collisions in a 3:1:1 system - elastic and inelastic.
1N30.20 Two ball collisions of pendula with 3:1 mass ratio on bifilar suspensions.
1N30.21 Two ball collisions of pendula on bifilar supports. Elastic, inelastic, and 3:1 mass ratio. ref.APT,3,36,1935.
1N30.21 The strange case of collisions between balls with masses in the ratio of 1 to 3.

1N30.22 Two ball inelastic collisions of pendula with the same mass on bifilar supports. The center of mass of the two balls after the collision will be one fourth the initial height of the first ball
1N30.23 The collisions of equal length pendula of different mass are used to demonstrate time reversal invariance. Also works with three balls.
1N30.25
1N30.25 A big ball hits a smaller ball in one frame, and a second frame holds a series of balls between the big and small balls.
1N30.25 Big ball hits a small ball with and without an intermediate series of impedance matching balls.
1N30.25 First a large ball hits a small ball, then other various sized balls are interposed to maximize energy transfer.
1N30.29 A simplified model of the collision balls that goes beyond conservation of energy and momentum but is still within the scope of an introductory course.

1N30.30
1N30.30 Two sets of air track gliders, one with springs and the other with velcro, give elastic and inelastic collision
1N30.30 Elastic and inelastic collisions on the air trough. A circuit is given for a light beam gated oscillator for use with a scaler.
1N30.30 Air gliders have springs on one end and the post/clay on the other.
1N30.31 Place a meter stick on two gliders and lift it up before one hits an end bumper, a simple spring release device momentarily held with beeswax.
1N30.31 Use a meter stick resting on top of two airtrack gliders to give equal velocities. After one hits the end bumper, you have equal and opposite velocities.
1N30.32 A moving glider runs into a stationary one and sticks. Photogate timing before and after.
1N30.33

1N30.33 Air track gliders with bumper springs.
1N30.33 A small glider hits a big one elastically. The big one is placed so that after the collision both gliders hit the ends simultaneously. The gliders will again collide at the original place.
1N30.33 Equal and unequal mass air gliders.

1N30.34 Elastic and inelastic collisions on the air trough. A circuit is given for a light beam gated oscillator for use with a scaler.
1N30.36 Uses Hot Wheels.

TPT 9(6),346	inelastic collisions
AJP 33(6),vi	inelastic collisions air glider clamp inelastic collisions with clay
AJP 37(9),941	inelastic collisons with velcro
AJP 36(9),851	inelastic collisions with velcro TPT 10(8),478 Mei, 9-5.6
inelastic collisions	
F\&A, Mi-1	velocity of a softball
Bil\&Mai, p 120	velocity of a softball

AJP 54(7),658	slow inelastic collision
PIRA 500	bouncing dart
UMN, 1N30.50	the bouncing dart
TPT 22(5),302	the bouncing dart
Bil\&Mai, p 101	rebounding pendula balls
D\&R, M-600	rebounding pendula balls
Ehrlich 1, p. 27	rebounding pendula balls
Mei, 9-5.10	ball - pendulum collisions
Ehrlich 2, p. 91	ball - pendulum collisions
TPT 5(5),124	pendulum - cart collisions
PIRA 1000	elastic and inelastic model
UMN, 1N30.55	elastic and inelastic model
PIRA 500	double ball drop
UMN, 1N30.60	double ball drop
TPT 21(7),466	dropping superballs
D\&R, M-595	double ball drop
AJP 75 (11), 10	double ball drop

Bil\&Mai, p 103	double ball drop
Ehrlich 1, p. 60	double ball drop
Disc 05-05	high bounce
AJP 55(2),183	double ball drop
AJP 72(12), 1492	double ball drop
AJP 39(6),656	velocity amplification in collisions
AJP 58(7),696	modified two ball drop

July 2015
1N30.41 A simple student experiment for elastic and inelastic collisions using PSSC collision carts.
1N30.41 A simple student experiment for inelastic collisions using PSSC collision carts.
1N30.43 Design of a simple rubber clamp for stopping Ealing air gliders.
1N30.43 Mount a plunger on one air track and a cylinder packed with modeling clay on the other.
1N30.43 Mount velcro on air gliders with Swingline paper binders.
1N30.43 Use velcro instead of wax.
1N30.43 Two latching carts that can be loaded come together with equal force. Construction details in appendix, p. 565.
1N30.45 A softball is thrown into a box (inelastic collision) and the velocity of the box is obtained from the recoil distance.
1N30.45 A softball is thrown into a box (inelastic collision) and the velocity of the box is obtained from the recoil distance. Calculate the initial speed of the softball.
1N30.46 An unrolling thread slowly transfers momentum between air track gliders.
1N30.50
1N30.50 Same as TPT 22(5),302.
1N30.50 A dart hits a block of wood with a thud (inelastic) but with the pointer removed (elastic) knocks the block over showing greater impulse associated with elastic collisions.
1N30.50 Two pendula, one made with a "happy ball", the other with an "unhappy" ball. The elastic pendulum will knock over a 2×4 block while the inelastic pendulum will not. Hint: use a bifilar arrangement.
1N30.50 Two pendula, one made with a "Happy" ball, the other with an "Unhappy" ball. The elastic pendulum will knock over a 2×4 block while the inelastic pendulum will not. HINT: use a bifilar arrangement.
1N30.50 A pendulum made from a Super Ball and another made from a lead or steel ball embedded in clay swing into an upright block of wood. Only the Super Ball pendulum will knock the block over.
1N30.51 A small ball rolls down an incline and strikes a larger pendulum bob on either a putty covered side or a plain steel side.
1N30.51 Inelastic collisions are investigated using the executive toy style Newton's cradle and a piece of clay.
1N30.52 Two pendulums of equal height are released simultaneously from the same height so as to strike low friction carts. The pendulum bobs are of equal mass, one of steel and the other of clay. Greater momentum transfer during the elastic collision is observed.
1N30.55
1N30.55 Two carts collide with a wall. One cart stops dead due to suspended masses on the inside oscillating with different frequencies. The cart with the masses oscillating at the same frequency will rebound.
1N30.60
1N30.60 Drop a softball on a basketball.
1N30.60 Analysis of dropping two stacked superballs. Application to "slingshot effect" of space probes on the grand tour.
1N30.60 A plastic ball on top of a steel ball are dropped. Acrylic tube can be used as a guide.
1N30.60 The usual tennis ball on a basketball drop shows the tennis ball projected vertically at high speed. However, a mass - spring model of the impact as well as air track data show that the tennis ball should be projected at low speed. Measurements of the forces on each ball and the use of superballs are used to resolve this problem.
1N30.60 A tennis ball is placed on top of a basketball and then this system is dropped.
1N30.60 Stack a small Super Ball on top of a large Super Ball or a Super Ball on top of a basketball and drop them.
1N30.60 Drop a softball on a basketball (1:3) mass ratio.
1N30.61 Some analysis of the double ball drop.
1N30.61 A billiard-theoretic approach to elementary one dimensional elastic collisions
1N30.62 The complete treatment: double object, double ball, multiple ball, analog computer circuit, linear and non-linear models.
1N30.64 A double mass-spring collision on a guide rod allows more control than the double ball method.

Mechanics

1N30.65
1N30.65 Let two air gliders accelerate down 30 cm of track and measure the rebound as the mass of the lead glider is increased.
1N30.65 Brief theory of the double ball drop. Suggests trying a double air glider collision on an inclined air track.
1N30.70 One cylinder slides down a track and collides with another on a horizontal track. Friction is factored in.
1N30.71 Modifications to AJP 42(1),54.
1N30.86 A strobed photo is made of the collision of two carts on a table.
1N30.86 Record air track collisions with strobe photography.
1N30.87 Plans for an electronic device to be used for velocity readout in air track collision demonstrations. Gives readout before and after collision.
1N40.00

1N40.10
1N40.10 A framework allows a billiard ball pendulum to strike another on an adjustable tee.
1N40.11 Identical hammers hung at right angles hit a ball.
1N40.12 An apparatus for recording collisions between ceiling mounted duckpin ball (5 " dia.) and bowling ball (8 1/2" dia.).
1N40.13 Ink coated balls roll down chutes onto a stage placed on the overhead projector.
1N40.14 A pool shooting box with a soapy glass surface and plans for a ball shooter.
1N40.15 Shoot one coin into a second stationary coin to make a quantitative test of the law of conservation of momentum in a two dimensional collision. Different size coins can be used.
1N40.16 Vertically shadow project two dimensional collisions onto the floor. Much Discussion.
1N40.18 Suspend two golf balls from a ring that mounts on the camera lens and do a time lapse photo of the collision after one is pulled to the side and released.

1N40.18 The collision of two suspended golf balls is photographed.
1N40.20
1N40.20
1N40.20 Use two Kick Dis self powered toy air pucks on the floor or a large table to do two dimensional collisions.
1N40.20 Vary the angle of impact between a moving and stationary air puck. Lines are drawn on the screen.

1N40.21 Use dry ice pucks to do two dimensional collisions.
1N40.21 Elastic collisions with unequal air pucks.
1N40. 22
1N40. 22
1N40.24
1N40.24
1N40.24 Use a spark timer to record collisions on an air table.
1N40.24 The path left by liquid air pucks on a table sprinkled with lycopodium powder show the 90 degree scattering law for particles of equal masses. Also a neutron diffusion demo. Construction details in appendix, p. 570.

1N40.24 Dry ice pucks with spark timer recording.
1N40.24 Use strobe photography to record air table collisions.
1N40.24 Observe collisions of balls on a vibrating plate covered with carbon paper.
1N40.25 The air pucks are modified so the line of force during the collision passes through the center of mass.
1N40.30 Collisions with an array of three by three balls on the overhead projector. Also a four-ball two-dimensional coupled pendula suspension.
1N40.40 Balls are suspended from one string and spaced at a distance of 3 r. Depending on the angle the collision is initiated, the collisions will either focus or defocus.
1N40.60 The bounce of balls and superballs in three dimensions. Looks at rebounds with and without sliding, and the grip behavior of superballs.

Demonstration Bibligrqaphy	
AJP 37(10),1008	bouncing ball simulation
AJP 72(7), 875	super ball bouncing
AJP 37(1),88	super ball bouncing
AJP 70(5), 482	super ball bouncing
AJP, 50 (9), 856 AJP 52(7),619	super ball bouncing
	computer collisions
	ROTATIONAL
	DYNAMICS Moments of Inertia
PIRA 200	inertia wands and two students
UMN, 1Q10.10	inertia wands and two students
Mei, 12-3.3	inertia wands and two students
Bil\&Mai, p 162	inertia wand and two students
TPT 15(9),546	inertia wands
Ehrlich 1, p. 87	inertia rotator
AJP 43(6),563	inertia rotator and two students
$\begin{aligned} & \text { PIRA 1000 } \\ & \text { TPT 21(7),456 } \end{aligned}$	torsion pendulum inertia
	torsion pendulum inertia
Mei, 12-3.10 Mei, 12-3.9 Sut, M-167 Mei, 11-2.3c	torsion pendulum inertia
	torsion pendulum inertia
	torsion pendulum inertia
	air bearing inertia
Mei, 11-2.3g	air bearing inertia
Mei, 11-2.3b	air bearing inertia
PIRA 200	ring, disc, and sphere
UMN, 1Q10.30	ring, disc, and sphere
F\&A, Ms-3	ring, disc, and sphere
D\&R, M-678	ring, disc, and sphere
Sprott, 1.9	ring, disc, and sphere
Bil\&Mai, p 164	ring, disc, and sphere
Ehrlich 1, p. 52	ring, disc, and sphere
PIRA 1000	rolling bodies on incline
Disc 06-04	rolling bodies on incline
Hil, M-19c	ring, disc
PIRA 500	all discs roll the same
UMN, 1Q10.35	all discs roll the same
AJP 73(10), 909	rolling can lab
TPT 18(8),600	coffee can lab
PIRA 500 UMN, 1Q10.40	racing discs
	racing discs
F\&A, Ms-1	racing discs

July 2015
1N40.60 An analog computer (circuit given) shows the path of a bouncing ball on an oscilloscope.
1N40.60 The kinematics of a superball bouncing between two vertical surfaces.
1N40.60 Analysis of the trajectory of a super ball from the floor to the underside of a table and back to the hand.
1N40.60 Measuring the horizontal coefficient of restitution for a superball and a tennis ball.
1N40.60 More experiments on the bouncing of a super ball.
1N40.90 A FORTRAN program for collisions on a Tektronix 4012 graphics terminal and Honeywell DPS8 computer.
1Q00.00

1Q10.00
1Q10.10 Students twirl equal mass wands, one with the mass at the ends and the other with the mass at the middle.
1Q10.10 Give students equal mass wands to twirl, one with the mass at the ends and the other with the mass at the middle.
1Q10.10 Two apparently identical tubes, one with a mass concentration in the center, the other with a mass concentration at the ends.
1Q10.10 Two students twirl equal mass wands made from 1 inch PVC pipe, one with the mass at the ends of the wand and the other with the mass in the middle of the wand.
1Q10.11 Weights taped to meter sticks are used as low cost and visually obvious alternates to commercial apparatus.
1Q10.12 Steel or lead weights are inserted into a hula hoop. The hula hoop can be rotated most easily when the axis of rotation is closest to the weights.
1Q10.12 Students rotate a "T" from a disc mounted on the bottom while holding the device by a sleeve. Weights are mounted at different distances on the cross bar.
1Q10.20
1Q10.20 The period of a torsion pendulum is used to determine moment of inertia. Tinker toys allow one to easily construct objects with the same mass but different moments of inertia. Many variations are presented.
1Q10.20 Objects are placed on a trifilar supported torsional pendulum.
1Q10.20 Objects are added symmetrically about the torsional pendulum axis.
1Q10.20 Use the torsion pendulum to determine the moment of inertia.
1Q10.25 Determine the ellipsoids of inertia of a rectangular steel bar with the air bearing supported rotating disc.
1Q10.25 A steel triangle is dropped on an air bearing supported rotating disc.
1Q10.25 Various objects are placed on an air bearing supported rotating disc.
1Q10.30 A ring, disc, and sphere of the same diameter are rolled down an incline.
1Q10.30 A ring, disc, and sphere of the same diameter are rolled down an incline.
1Q10.30 Rings, discs, and spheres are rolled down an incline.
1Q10.30 Rings, discs, and spheres are rolled down an incline.
1Q10.30 Roll cylinders, hollow spheres, balls, hoops, full cans of soda, etc. down an inclined plane.
1Q10.30 A ring, disc, and sphere of the same diameter are rolled down an incline.
1Q10.30 A ring, disc, and sphere are rolled down an incline.
1Q10.31
1Q10.31 Rings, discs, spheres, and weighted discs are rolled down an incline.
1Q10.32 Disc and ring on the incline plane.
1Q10.35
1Q10.35 A set of discs of different diameters are rolled down an incline. Also use hoops and spheres.
1Q10.37 How a non-axisymmetric distribution of mass may give a faster rolling can.

1Q10.37 Rolling an empty coffee can down an incline. A student lab with many tasks.

1Q10.40
1Q10.40 Two discs of identical mass, one weighted in the center and the other weighted at the rim, are rolled down an incline.
1Q10.40 Two wooden discs of the same mass and diameter are loaded with lead to give different moments of inertia. Roll on an incline.

Demonstration Bibligrqaphy

Sut, M-161	racing discs
F\&A, Ms-4	moment of inertia spools
PIRA 500	racing soups racing soups
TPT 16(8),553	racing soups
D\&R, M-682	winning ball
Sut, M-162	weary roller PIRA 1000 Sut, M-163
Sut, M-60	viscosity
AJP 34(2), xv	moment of inertia of a ball
TPT 20(1),50	errant pool balls rigid and non-rigid rollers rigid and non-rigid rotations
PIRA 1000 adjustable angular momentum angular momemtum	

Mei, 11-2.3e adjustable angular momentum

PIRA 1000 flywheel and drum with weight
Mei, 12-4.7 adjustable angular momentum

PIRA 1000 angular acceleration wheel
UMN, 1Q20.20

Mei, 12-4.6

Disc 06-02

PIRA 1000
UMN, 1Q20.25

July 2015
Mechanics
1Q10.40 Two equal mass discs are made to race down an incline, one with a lead core and the other with a lead rim. Both are made to roll up a second incline to show they had the same kinetic energy at the bottom.
1Q10.41 Aluminum wheels are joined by two brass cylinders that can be placed at different radii to change the moment of inertia.
1Q10.50
1Q10.50 Racing two soups first down an incline and then down and across the floor. Betting is used to make the demonstration more exciting.
1Q10.50 Two soup cans race down an incline. One is filled with mainly liquid and the other with mainly solid food.
1Q10.51 Use mercury filled rollers for sure winners.
1Q10.55
1Q10.55 Load a roller with fine dry sand or powdered tungsten.
1Q10.56 A raw egg in a torsion pendulum damps more quickly than a boiled egg due to internal friction. Also spinning eggs - angular momentum.
1Q10.65 An air spinner for a 2" bronze ball and a method of mapping out the three axes of moment of inertia.
1Q10.66 Directions for making several different types of weird acting pool balls.
1Q10.70
1Q10.70 Lead rings, the masses of a torsion pendulum, can be either locked or freed to show terms in Steiner's equation.
1Q10.70 Two lead rings are mounted as a torsion pendulum with rotational axes parallel to the pendulum. The period is measured with the rings freed and locked.
1Q10.70 Two masses on a horizontal bar fixed to a vertical shaft are spun by a falling weight. The masses can be locked or freed to rotate in the same plane as the vertical shaft.
1Q10.71 An adjustable double dumbbell on a rotating bar arrangement.
1Q10.75 The period of a bicycle wheel suspended as a pendulum is measured with the wheel spinning and locked.
1Q20.00
1Q20.10 A weight on a string wrapped around a wheel drives a radial rod with adjustable weights.
1Q20.10 A weight on a string wrapped around a wheel drives a radial rod with adjustable weights.
1Q20.10 A weight wrapped around a wheel drives a radial bar with adjustable weights.
1Q20.10 Hanging weights from three coaxial pulleys provides different applied torques to a radial bar with movable weights to provide adjustable moment of inertia.

1Q20.10 Two equal masses are mounted on a radial bar fixed to a horizontal axle with a pulley.
1Q20.10 A weight on a string wrapped around a one of two pulleys drives radial bars with movable weights.
1Q20.10 A weight over a pulley turns a bar with adjustable weights. On screen timer and protractor helps measurements.
1Q20.12 Hang various weights from the axle of a large wheel and time the fall.
1Q20.13 A horizontal bar mounted at its midpoint on a turntable has pegs for mounting weights at various distances, and is accelerated by a string to falling mass.
1Q20.14 Spin the air bearing supported rotatable disc with a mass hanging on a string.
1Q20.15
1Q20.17 A falling weight on a string wrapped around a spindle spins a variety of objects to show Newton's second law for angular motion.
1Q20.20
1Q20.20 Measure the acceleration of a bike wheel with a mass on a string wrapped around the axle.
1Q20.20 Measure the angular acceleration of a bike wheel due to the applied torque of a mass on a string wrapped around the axle.
1Q20.20 Use a spring scale to apply a constant torque to a bike wheel and measure the angular acceleration.

Hil, M-15f. 2	angular acceleration
Mei, 10-2.6	rotating dry ice puck
Mei, 10-2.7	rotational dynamics
PIRA 500	rolling spool
UMN, 1Q20.30	rolling spool
TPT 10(4),210	rolling spool
F\&A, Mr-4	rolling spool
Sut, M-165	rolling spool
Disc 06-05 Mei, 9-4.15	spool on incline rolling spool
PIRA 1000	bike wheel on incline
UMN, 1Q20.35	bike wheel on incline
Disc 06-06	bike wheel on incline
Mei, 12-5.6	rolling up an incline
Mei, 17-3.2	start a wheel
AJP 47(4),367	rolling pendulum
AJP 46(3),300	radius of gyration (Here?)
D\&R, M-684	rotational translation

Ehrlich 2, p. 97 rotational translation

AJP 28(4),405 spin a swing

PIRA 500	faster than "g"			
UMN, 1Q20.50	faster than "g" faster then gravity			
AJP 52(12),1142				
AJP 74(1), 82	falling chimney AJP 71(10), 1025			
falling chimney		F\&A, My-6 $^{\text {falling chimney }}$	Sut, M-206	falling chimney
:---	:---			
Hil, M-19k	falling chimney			
D\&R, M-104	falling chimney			
Bil\&Mai, p 157	falling chimney Ehrlich 1, p. 82 faster than "g"			

Disc 06-11 hinged stick and ball PIRA 1000 bowling ball faster than " g "

July 2015
Mechanics
1Q20.26 Use strobe photography to record the motion of a large disc accelerated by a mass on a string over a pulley.
1Q20.27 A dropping mass on a string wrapped around a massive dry ice puck gives both linear and angular acceleration.
1Q20.28 A dry ice puck with strings wrapped around two different radii going to equal masses hanging on opposite end of the table is stationary while a piece of masking tape is placed over one winding. Remove the tape and the puck spins and translates.
1Q20.30
1Q20.30 A spool rolled down an incline on its axle and takes off when it reaches the bottom and rolls on its rim.
1Q20.30 A large version of the rolling spool (16" dia.) is used as a lab. Construction hints and complete analysis.
1Q20.30 A large spool is rolled down an incline on its small axle. When the outer discs reach the table, the thing takes off.
1Q20.30 A spool rolls down a narrow incline on its axle. When it reaches the bottom, it rolls on the diameter of the outer discs.
1Q20.30 A spool rolls down an incline on its central radius.
1Q20.31 Place the rolling spool demonstration on a low friction sheet to show conservation of linear momentum as the sheet moves backward when the roller hits bottom.
1Q20.35
1Q20.35 A bike wheel rolls down an incline on its axle with the axle pinned to the wheel or free.
1Q20.35 A bike wheel rolls down an incline on its axle. The wheel can be pinned to the axle.
1Q20.41 A roller is timed as it rolls up an incline under the constant torque produced by a cord wrapped around over a pulley to a hanging mass.
1Q20.42 Use a large DC motor and a large wheel to show the angular acceleration of a rotating body with a constant driving torque. Picture. Diagram.
1Q20.44 A spherical bob can roll on a track of the same arc as its swing when suspended by a cord. Comparison of the motion in the two cases shows the effect of the rotational motion in rolling.
1Q20.46 Slide an air glider down an inclined instrumented air track, then add a wood track and roll a ball down the same incline.
1Q20.46 Two identical rolls of toilet paper. Drop one so it does not unroll simultaneously with dropping the other while continuing to hold onto the end so that it unrolls as it falls. One is the motion of a rigid body in free fall the other is rotation about the center of mass while falling.
1Q20.46 Two identical rolls of toilet paper. Drop one so it does not unroll simultaneously with dropping the other while continuing to hold onto the end so that it unrolls as it falls. The rolls will hit the floor at the same time if their initial heights have a specific ration.
1Q20.47 Wind up two balls on strings from a common support with a slack connecting string between them. As they unwind, the angular velocity decreases until the connecting string becomes taut, then increases. Ref: AJP 27, 611 (1959)

1Q20.50
1Q20.50 A ball jumps from the end of a hinged stick into a cup as the stick rotates.
1Q20.50 A ball at the end of a falling stick jumps into a cup.
1Q20.50 Comments on AJP 71(10), 1025.
1Q20.50 Small scale toy models are used to reproduce the dynamics of the falling chimney.
1Q20.50 A hinged incline with a ball on the end jumps into a cup a few inches down the board as the incline drops.
1Q20.50 Diagram. Ball on the end of a falling stick jumps into a cup attached near the end of the stick.
1Q20.50 A ball on the end of a pivoting stick jumps into a cup. Includes TPT 3(7),323.
1Q20.50 A ball at the end of a hinged stick falls into a cup mounted on the stick.
1Q20.50 A ball on the end of a pivoting stick jumps into a cup mounted on the stick.
1Q20.50 A meter stick with a row of pennies on it falls while remaining supported at the 0 cm end. Only the pennies up to the $662 / 3 \mathrm{~cm}$ mark remain in contact with the meter stick.
1Q20.50 A ball at the end of a hinged stick falls into a cup mounted on the stick.
1Q20.51

Demonstration Bibligrqaphy	
UMN, 1Q20.51	bowling ball faster than " g "
AJP 41(8),1013	faster than "g" - add mass
TPT 20(2),100	falling chimney
TPT 13(7),435	falling chimmey
Mei, 9-2.5	falling chimney
AJP 56(8),736	"faster than g" revisited
TPT 3(7),323	free fall paradox
PIRA 1000	pennies on a meter stick
UMN, 1Q20.55	pennies on a meter stick
F\&A, Mw-2	pennies on a meter stick
Disc 06-10	penny drop stick
PIRA 1000	falling meter sticks - scaling
UMN, 1Q20.60	falling meter sticks - scaling
	Transfer of Angular Momentum
PIRA 200	passing the wheel
UMN, 1Q30.10	passing the wheel
Sut, M-179	passing the wheel
PIRA 1000	pass bags o' rice
UMN, 1Q30.15	pass bags o' rice
PIRA 500	drop bags o' rice
UMN, 1Q30.20	bags o' rice
PIRA 1000	satellite derotator
UMN, 1Q30.25	satellite derotator
Mei, 13-7.1	de-spin device
Mei, 13-7.2	de-spin device
Disc 07-09	satellite derotator
PIRA 1000	catch the bag on the stool
UMN, 1Q30.30	catch the bag on the stool
F\&A, Mt-7	catch the bag on the stool
Sut, M-180	catch the ball on the stool
Mei, 11-2.3d	catch the ball on the stool
TPT, 37(3), 169	demonstrating angular momentum conservation
AJP 31(2),91	shoot ball at a shaft
AJP 33(8), iii	catch a ball on a rotating bar
Mei, 11-2.3a	drop disc on rotating disc
Ehrlich 1, p. 69	drop objects on a rotating disk
Ehrlich 1, p. 81	drop a jug on a rotating platform
TPT 22(6),391	spinning funnel
TPT 22(9),554	spinning funnel
TPT 11(5),303	stick-propeller device
	Conservation of Angular
	Momentum rotating stool and weights
UMN, 1Q40.10	rotating stool and dumbells

1Q20.51 A bowling ball at the end of ten foot ladder jumps into a five gallon pail.
1Q20.52 Analysis of adding mass to the plank.
1Q20.52 Use of a triangular board to increase R/I for the board. Analysis included.
1Q20.52 A mass can be added to the end of the bar to slow it down causing the ball to miss the cup.
1Q20.53 Hinged beam falls with paint brushes at and off the center of mass record the motion of the two points.
1Q20.54 An analysis three cases, one in which the particle catches up with the rod.
1Q20.54 Short derivation of the "faster than g" demonstration.
1Q20.55
1Q20.55 Line a meter stick with pennies and drop one end with the other hinged. Happens to fast to see well. Use with the video.
1Q20.55 A meter stick is loaded with pennies and held horizontally, then released at one end. Pennies on the first $2 / 3$ stay with the stick.
1Q20.55 A horizontal meter stick, hinged at one end, is loaded with pennies and released.
1Q20.60
1Q20.60 Compare the rate of fall of one meter and two meter sticks.

1Q30.00

1Q30.10 Pass a bicycle wheel back and forth to a person on a rotating stool.
1Q30.10 A bicycle wheel is passed back and forth to a person on a rotating stool.
1Q30.10 The lecturer on a rotating stool passes a spinning bike wheel back and forth to an assistant while turning it over.
1Q30.15
1Q30.15
1Q30.20
1Q30.20 A person on a rotating stool holds out 10 lb bags of rice and drops them.
1Q30.25
1Q30.25 Same a disc 07-09.
1Q30.25 Two heavy weights on cables are released from a vertically spinning disc to slow the system by conservation of angular momentum.
1Q30.25 A mass flies out on a string satellite de-spin device with derivation of proper dimensions and weights.
1Q30.25 Heavy weights fly off a rotating disc carrying away angular momentum.
1Q30.30
1Q30.30 Sit on the rotating stool and catch a heavy ball at arms length.
1Q30.30 Throw or catch a bag of lead shot off axis while sitting on a rotating platform.
1Q30.30 Baseballs or billiard balls may be thrown or caught at an arm's length by a demonstrator on a rotating stool.
1Q30.31 Roll a ball down an incline and catch it off axis on the air bearing supported rotating disc.
1Q30.32 Using a homemade set-up with smart pulleys, angular momentum conservation is explored quantitatively.
1Q30.33 Shoot a steel ball at a catcher on the end of an arm that rotates.
1Q30.34 Roll a ball down an incline and catch it on the end of a modified Welch Centripetal Force Apparatus (No. 930) Similar to AJP 31,91 (1963).
1Q30.40 A second disc is dropped on an air bearing supported rotating disc. Spark timer recording.
1Q30.40 A clay dumbbell is dropped onto a rotating casserole cover. Move the clay balls on the dumbbell closer together and drop again.
1Q30.40 Swirl a jug of water and then place it on a turntable that can rotate. Loss of angular momentum of the water results in a gain of angular momentum of the turntable.
1Q30.50 A funnel filled with sand spins faster as the sand runs out.
1Q30.50 A letter about TPT 22(6),391, "Demonstrating conservation of angular momentum".
1Q30.90 The stick-propeller device appears to produce angular momentum from nowhere.
1 Q40.00
1Q40.10 Spin on a rotating stool with a dumbell in each hand.
1Q40.10 A person on a rotating stool moves dumbbells out and in.

Demonstration Bibligrqaphy

F\&A, Mt-2	rotating stool and dumbells
Sut, M-176	rotating stool and dumbells
Hil, M-19i	rotating stool and dumbells
D\&R, M-764	rotating stool and dumbbells
Bil\&Mai, p 166	rotating stool and dumbbells
Ehrlich 1, p. 67	rotating stool and weights
Disc 07-04	rotating stool with weights
AJP 45(7),636	big rotating stool and dumbells
AJP 30(7),528	rotating platform and dumbells
Mei, 13-7.9	rotating stool
PIRA 500	rotating stool and long bar
UMN, 1Q40.15	rotating stool and long bar
Disc 07-05	rotating stool and long bar
F\&A, Mt-3	rotating stool and bat
Sut, M-172	rotating stool and bat
PIRA 500	squeezatron
UMN, 1Q40.20	squeezatron
AJP 33(4),345	rotating adjustable balls
F\&A, Mt-1	squeezatron
Mei, 13-7.13	squeezatron
Sut, M-177	squeezatron
Mei, 10-2.9	dry ice puck rotators
PIRA 200	rotating Hoberman sphere
PIRA 1000	centrifugal governor
F\&A, Mm-4c	governors
Sut, M-158	Watt's regulator
Hil, M-16f	govenors
Disc 05-26	centrifugal governor
PIRA 1000	pulling on the whirligig
UMN, 1Q40.25	pulling on the whirligig
F\&A, Ms-5	pulling on the whirligig
Mei, 13-7.6	pulling on the whirligig
Sut, M-186	pulling on the whirligig
PIRA 200	rotating stool and bicycle wheel
UMN, 1Q40.30	rotating stool and bicycle wheel
F\&A, Mu-1	rotating stool and bicycle wheel
Sut, M-178	rotating stool and bicycle wheel
D\&R, M-764	rotating stool and bicycle wheel
Sprott, 1.16	rotating stool and bicycle wheel
Disc 07-06	rotating stool and bicycle wheel
AJP 35(3),286	stool, bicycle wheel, and friction
Hil, M-19f	rotating stool and bicycle wheel
Sut, M-175	drop the cat
D\&R, M-800	drop the cat
TPT 11(7),415	skiing

1Q40.10 Instructor stands on a rotating platform with a heavy dumbbell in each hand.
1Q40.10 Extend and retract your arms while rotating on a stool.
1Q40.10 Spin on a rotating stool with a dumbbell in each hand.
1Q40.10 A person sits on a rotating stool with dumbbells in outstretched hands, moving them in and then out.
1Q40.10 Make a rotating platform with a Lazy Susan and some plywood. A student spins on the rotating platform with a dumbbell in each hand.
1Q40.10 A rotating platform made from plywood and a large Lazy Susan ball bearing plate.
1Q40.10 A person sits on a rotating stool and moves weights in and out.
1Q40.11 A cable pulley system moves large masses from 60 to 180 cm .
1Q40.12 Make a rotating platform out of two disks of $3 / 4$ " plywood and a large diameter thrust bearing.
1Q40.13 Rotating platform made out of an auto front wheel bearing.
1Q40.15
1Q40.15 Sit on a rotating stool holding a long bar with masses at the ends. Rotate the bar one way and you turn the other way.
1Q40.15 Sit on the stool and hold a long bar with weights on the ends. Rotate the bar and you will move in the opposite sense.
1Q40.16 Stand on a rotating platform and swing a bat.
1Q40.16 Stand on a rotating stool and swing a baseball bat.
1Q40.20
1Q40.20 A flyball governor can be expanded or contracted by squeezing a handle.
1Q40.20 Plans for a two ball adjustable governor type conservation apparatus.
1Q40.20 A flyball governor can be expanded or contracted by a squeeze handle.
1Q40.20 Pulling a string decreases the radius of two masses rotating at the ends of a rod.
1Q40.20 A mechanical device for showing the pirouette effect.
1Q40.21 Two dry ice puck rotators: a) steel balls separate, b) they come together.
1Q40.22 Connect a ball bearing fishing swivel to a Hoberman Sphere mobile. Spin the mobile and pull the string. The sphere will spin faster when it collapses.

1Q40. 23
1Q40.23 A small governor is spun on a hand crank rotator.
1Q40.23 Use a model of Watt's regulator.
1Q40.23 The Cenco Watt's governor shown with a valve regulating gear.
1Q40.23 A model of a governor.
1Q40.25
1Q40.25 Pull on the bottom ball of the whirligig.
1Q40.25 Balls are attached to either ends of a string that passes through a hollow tube. Set one ball twirling and pull on the other ball to change the radius.
1 Q40.25 Shorten the string of a rotating ball on a string
1Q40.26 A ball on a string rolls on the lecture table. In one case the cord wraps itself around a vertical rod. In the other, the cord is pulled through a hole in the table.
1Q40.30 Invert a spinning bike wheel while sitting on a rotating stool.
1Q40.30 A person sits on a rotating stool, spins a bicycle wheel and turns it over and back.
1Q40.30 Inverting a spinning bicycle wheel while on a rotating stool, passing it back and forth.
1Q40.30 Spin and turn a bike wheel while on a rotating stool.
1Q40.30 A person sits on a rotating stool, spins a bicycle wheel, and turns it over and back.
1Q40.30 A spinning bicycle wheel with handles is inverted while sitting on a rotating platform.
1Q40.30 Invert a spinning bike wheel while sitting on a rotating stool.
1Q40.31 Slow down the bike wheel deliberately to emphasize the role of friction in transfer of momentum.
1Q40.32 Wrap the bicycle wheel with no. 9 iron wire.
1Q40.33 Turn yourself around on a rotating stool by variation of moment of inertia. Also, make a model of a cat.
1Q40.33 Analysis of a dropped cat landing on its feet.
1Q40.34 Go skiing while holding a bike wheel gyro. By conservation of angular momentum, turn yourself with the gyro.

Mei, 13-7.7	skiing
PIRA 1000	train on a circular track
UMN, 1Q40.40	train on a circular track
F\&A, Mt-4	angular momentum train
Hil, M-8b	angular momentum train
Disc 07-02	train on a circular track
AJP 41(1),137	angular momentum train - air tab
Sut, M-185	frictional transfer of ang. momemtum
Sut, M-174	coupled windmills
AJP 44(1),21	counter spinning
D\&R, M-768	counter spinning
Ehrlich 2, p. 73	counter spinning
PIRA 1000	wheel and brake
AJP 57(10),951	noncoaxial rotating disks
Disc 07-08	wheel and brake
PIRA 1000	pocket watch
Mei, 13-7.8	pocket watch
Sut, M-173	pocket watch
D\&R, M-772	pocket watch
Disc 07-03	tail wags dog
Mei, 13-7.4	various demos
Mei, 13-7.3	various demos - angular momentum conservation
Mei, 13-7.5	various demos
AJP 31(1),42	orbital angular momentum
F\&A, Mt-5	buzz button
Sut, M-171	buzz button
Mei, 10-3.3	colliding air pucks
Mei, 10-2.11	colliding spinning orbiting pucks
PIRA 1000	sewer pipe pull
UMN, 1Q40.60	sewer pipe pull
AJP 54(8),741	sewer pipe pull
Mei, 13-7.10	various demos

1Q40.34 Stand on a rotating turntable with skis on to show the upper part of the body turning opposite the lower.
1Q40.40
1Q40.40 A HO gage train runs on a track mounted on a bike rim.
1Q40.40 A circular track on a rotating platform and a train have the same mass. The train and track move in opposite directions.
1Q40.40 A train on a rotating platform.
1Q40.40 A wind up train rides on a track mounted on the rim of a horizontal bicycle wheel.
1Q40.41 The circular track is mounted on a large air table puck.
1Q40.42 Diagram. A balanced framework constrains a spinning wheel. As the wheel slows down, the framework begins to rotate.
1Q40.43 Picture. Two angular momentum machines (M-166) are coupled by a spring. The spring is wound and both are released simultaneously to show opposite reactions.
1Q40.44 An induction motor is mounted so both the frame and armature can rotate freely. No torque is required to tilt the direction of axis of rotation unless either the frame or armature is constrained.
1Q40.44 A motor is placed on a lazy susan with rotation axes aligned. Turn on the motor and observe the motor and lazy susan rotate in opposite directions. Repeat with motor shaft displaced from lazy susan axis.
1Q40.44 A light portable fan is placed horizontally on the overhead projector. Turn on the fan and it will rotate in a direction that is opposite of the direction of blade rotation.
1Q40.45
1Q40.45 A battery driven turntable rotates noncoaxially on a frictionless turntable.
1Q40.45 A horizontal rotating bicycle wheel is braked to a large frame and the combined assembly rotates slower.
1Q40.50
1Q40.50 A small pendulum is suspended from the stem of a pocket watch placed on a small watch glass on a stand.
1Q40.50 Suspend a pocket watch by its ring from a sharp edge.
1Q40.50 Movement of a pocket watch balanced on an inverted watch glass is magnified with a laser and small mirror.
1Q40.50 Use a laser to magnify the motion of a pocket watch.
1Q40.52 You read this one. (If you aren't into Phil Johnson's humor it becomes: A simple mechanical system whose momentum is partly angular and partly linear).
1Q40.53 A pie plate or disk suspended by three threads. At its center is attached a screw that allows a weight on ball bearings to descend and touch the plate. If the plate is rotated the proper number of turns before the weight is released, the whole system comes to a stop when the weight meets the plate.
1Q40.53 A free system of two discs, one attached to a motor shaft and the other to the motor, is powered through slip rings. Show the discs rotate in opposite directions and come to rest at the same time.
1Q40.54 Apparatus Drawings Project No.33: A dumbbell pivoting on its center of mass, on a counterweighted rod rotated about its center of mass, remains oriented in the original direction until friction prevails.
1Q40.55 Pull on a twisted loop of string threaded through a large button to get the thing to oscillate.
1Q40.55 A 6 " wooden disc supported by a loop of string passing through two holes drilled $1 / 2^{\prime \prime}$ apart. Directions for showing constancy of axes.
1Q40.57 The linear and angular momentum are recorded with strobed photography. The pucks have an arrow to indicate rotation.
1Q40.59 One massive dry ice puck contains a motorized windlass that winds up a connecting string, the other has the string wound around it. One orbits, the other spins and when the come together they stop dead.
1Q40.60
1Q40.60 Put "o" rings around a section of large PVC pipe to act as tires. Place on a sheet of paper and pull the paper out from under it.
1Q40.60 A newspaper is pulled out from under a large sewer pipe with O ring tires. When the paper is all the way out, the pipe stops dead.
1Q40.60 Pull a strip of paper horizontally from under a rubber ball. As soon as the ball is off the strip, it stops dead.

AJP 28(1),76	off-center flywheel
AJP 53(8),735	double flywheel rotator
PIRA 1000	marbles and funnel Disc 07-01
marbles and funnel	

AJP 29(8),550	elementary analysis comment explaining top nutation
AJP 45(12), 1194	physical explanation
AJP 28(9),808	elementary analysis
TPT 20(1),34	physical explanation
TPT 18(3),210	physical explanation PIRA 200- Old
precessing disc	

AJP 28(5),504 cardboard precession

July 2015
1Q40.63 A flat plate is free to rotate on a block of dry ice. The plate rotates about its center of mass when the flywheel at one end slows down.
1Q40.65 Two flywheels free to rotate about a vertical axis on a bar which is also free to rotate about a vertical axis are coupled in various ways to demonstrate "spin-spin" and "spin-orbit" coupling with and without dissipation.

1Q40.70
1Q40.70 The angular speed of marbles increases as they approach the bottom of a large funnel.
1Q40.80
1Q40.80 Similar to disc 15-07.
1Q40.80 Plans for a machine shop built Hero's engine.
1Q40.80 A model of Hero's engine.
1Q40.80 A simple Hero's engine made of a tin can.
1Q40.80 Cylindrical boiler pivots on a vertical axis with tangential pressure relief nozzles.
1Q40.80 A suspended round bottom flask with two nozzles.
1Q40.80 A steam engine that spins when heated.
1Q40.80 A simple Hero's engine made from a soda can.
1Q40.80 The flask rotates on a horizontal axis.
1Q40.81 A lawn sprinkler.
1Q40.81 A gravity head of water is used to drive a Hero's engine device (lawn sprinkler).
1Q40.81 A lawn sprinkler powered by air.
1Q40.82
1Q40.82 Run an air sprinkler, then mount deflectors to reverse the jet.
1Q40.85 An inverse sprinkler demonstration made from a soda can, one inch ball bearing, large nail, string, duct tape, and a bucket.
1Q40.85 A demonstration showing the inverse sprinkler moves in a direction opposite to that of a normal sprinkler.
1Q40.85 An extension of the AJP 57(7) article.

1Q40.85 A design for the sprinkler/inverse sprinkler and a lot of analysis.
1Q40.86 Place an air jet Hero's engine in a bell jar and pump out some air.
1Q40.87 An inverse sprinkler made of soda straw in a carboy exhibits no motion.
1Q40.88 A conservation of angular momentum argument is invoked to show that no rotation will result in an inverse sprinkler.
1Q40.88 A letter full of opinions.
1Q40.88 The writer of the previous letter has comments "drawn from thin air", not unlike most of these little blurbs.
1Q50.00
1Q50.01 Precession explained using only Newton's laws.
1Q50.01 Analysis of the behavior of a real top with a round end spinning on a surface with friction.
1Q50.01 An elementary discussion of the gyroscope is presented. It is based on conservation of angular momentum and energy and does not require calculus.
1Q50.01 Comment on AJP 28(9),808.
1Q50.01 The stability of torque-free rotations and top nutation without sophisticated mathematics.
1Q50.01 Consider the rotation of two equal masses mounted on a frame of negligible mass. Also note that the mathematical simplification made in the study of rigid-body motion often tend to obscure what is happening.
1Q50.01 One approach to explaining the gyroscope in language familiar to the student.
1Q50.01 Precession explained qualitatively without recourse to right-hand rules, torques, etc. A train track displacement demo is presented as an analog.
1Q50.01 A simple physical explanation of precession.
1Q50.10 Spin a cardboard disc on a pencil inserted in a hole at the center and touch a finger to the rim.
1Q50.10 A phonograph record (or aluminum disc) is spun on a nail at the end of a wood dowel. Have the class predict which way the record will turn when touched with a finger.
1Q50.10 Spin a cardboard disc on a pencil inserted in a hole in the center and touch a finger to the rim.

Demonstration Bibligrqaphy

F\&A, Mu-7	precessing disc
Mei, 13-5.14	phonograph record
Hil, M-19h	phonograph record
PIRA 200 - Old	bicycle wheel gyro
UMN, 1Q50.20	bicycle wheel gyro
AJP 31(5),393	bicycle wheel gyro
TPT 21(5),332	bicycle wheel gyro
F\&A, Mu-2	bicycle wheel gyro
Mei, 13-5.2	bicycle gyro
Mei, 13-5.5	bicycle wheel gyro
Hil, M-19g	bicycle wheel gyro
Disc 07-11	gyro with adjustable weights
PIRA 1000	bike wheel on gimbals
Sut, M-187	bicycle wheel gyro
Sprott, 1.16	bicycle wheel gyroscope
AJP 30(7),528	suspended bike wheel
Mei, 13-5.1	bike wheel turnaround
Sut, M-189	suspended bike wheel
D\&R, M-706	suspended bike wheel
Disc 07-12	bike wheels on gimbals
PIRA 1000	bike wheel presession
AJP 34(4),xvii	path of a rim point
Ehrlich 1, p. 77	suspended gyroscope
Disc 07-10	bike wheel precession
PIRA 1000	walking the wheel
UMN, 1Q50.24	walking the wheel
F\&A, Mu-14	walking the wheel
PIRA 500	double bike wheel gyro
UMN, 1Q50.25	double bike wheel gyro
AJP 41(1),131	double bike wheel gyro
TPT 22(5),324	double bike wheel gyro
D\&R, M-706	double bike wheel gyro
Disc 07-13	double bike wheel
AJP 46(11),1190	inverted bike
PIRA 1000	MITAC gyro
UMN, 1Q50.30	MITAC gyro

July 2015
1Q50.10 A 6 " aluminum disc on a long axial rod is hand spun to show precession due to gravitational torque.
$1 Q 50.10$ A wood bar spinning in a horizontal plane on a pivot is tapped and the plane of rotation tips.
1Q50.10 Spin a cardboard disc on a nail driven into the center into the end of a stick. Place a finger on the disc to cause it to precess.
1Q50.20 Spin a bicycle wheel mounted on a long axle with adjustable counterbalance.
1Q50.20 A small weighted bicycle wheel is mounted at the end of a long axle pivoted in the middle with an adjustable counterweight.
1Q50.20 The counterbalanced bicycle wheel gyro with clip-on vector arrows for the angular momentum and torque vectors.
1Q50.20 Spinning bike wheel mounted on an adjustable counterbalanced axle.
1Q50.20 A bicycle wheel is mounted on a long axle with adjustable counterbalance.
1Q50.20 Drawings for making a very nice gyro out of a 24 " bike wheel.
1Q50.20 Weigh one end of a bike wheel gyro axle while the gyro is hanging vertically, spinning while supported horizontally, and precessing about the scale.

1Q50.20 A bicycle wheel gyro with a slightly different setup.
1Q50.20 A small gyro is at the end of a pivoting rod with an adjustable counterweight.
1Q50.21
1Q50.21 A spinning bike wheel with two handles is supported by a loop of string around one of the handles. Counterweights may be applied.
1Q50.21 A spinning bicycle wheel is attached to a wire and suspended from a support.
1Q50.22 A ball at one end of a bike wheel axle is placed into a socket on a bearing for demonstrating precession and nutation on a large scale.
1Q50.22 Posts from a rotating platform support both ends of the axle of a bike wheel. One post is hinged so the wheel can be supported from one end only as the platform rotates.
1Q50.22 A bicycle wheel with handles is supported by loops of string tied to a crossbar that is hung by a single string. Push the ends of the handles horizontally in opposite directions.
1Q50.22 A spinning bicycle wheel with handles is supported by a loop of string around one of the handles.
1Q50.22 A bicycle wheel on gimbals has a long axle that can be weighted.
1Q50.23
1Q50.23 Photograph a flashing light attached to the rim of a spinning wheel during forced precession.
1Q50.23 A spinning gyroscope is supported by a string at each end of the axle. Cut one string and observe the precession.
1Q50.23 A spinning bicycle wheel is supported by a rope at one end of a long axle.
1Q50. 24
1Q50.24 A spinning bicycle on a short axle dangles from a string held in the hand. Try to apply a torque that will bring the axle to a horizontal position.
1Q50.24 A spinning bike wheel is mounted on one end of an axle and the other end has a loop of string. Try to get the bike wheel in the vertical position by applying a torque to the string.
1Q50.25
1Q50.25 Two bike wheel are mounted coaxially. Try the standard demos with the wheels rotating in the same direction and in opposite directions.
1Q50.25 Do the standard single bike wheel demos with two coaxial bike wheels counter rotating.
1Q50.25 Two bike wheels are mounted on the same axle. The standard demos are done with the wheels rotating in the same and opposite directions.
1Q50.25 Two bike wheels are mounted coaxially. Try the standard demos with the wheels rotating in the same and in opposite directions.
1Q50.25 The double bike wheel gyro precesses when both wheels rotate in the same direction. Has a nonstandard mount.
1Q50.26 Three demos involving bike wheel demos, one of which is a double wheel device.
1Q50.30
1Q50.30 A commercial motorized gyro on gimbals.

Demonstration Bibligrqaphy	
AJP 28(1),78	MITAC gyro
F\&A, Mu-10	MITAC gyro
D\&R, M-710	MITAC gyro
Disc 07-14	motorized gyroscope
PIRA 1000	ride a gyro
UMN, 1Q50.31	ride a gyro
AJP 56(7),657	a large gyro
PIRA 1000	gyro in gimbals
UMN, 1Q50.35	gyro in gimbals
Sut, M-170	gyro on turntable
Disc 07-07	gyroscopic stability
PIRA 1000	suitcase gyro
UMN, 1Q50.40	suitcase gyro
AJP 34(12),1201	suitcase gyro
F\&A, Mu-4	suitcase gyro
F\&A, Mu-8	feel of a gyro
Hil, M-19a	various gyros
Hil, M-19b. 1	magnetic gyro
PIRA 500	air bearing gyro
UMN, 1Q50.45	air bearing gyro
AJP 33(4),322	air bearing gyro
AJP 28(2),150	air bearing gyro
AJP 32(9),xiii	air bearing gyros
TPT 11(6),361	air bearing gyro
Mei, 11-2.2	air bearing gyro
Mei, 13-5.3	air-bearing gyro
Mei, 13-5.7	air bearing gyro
PIRA 200	precessing gyro
Sut, M-188	precession with quality gyro
Mei, 13-5.12	precession
F\&A, Mu-6	instantaneous axis
Mei, 13-5.11	precession of the equinoxes
AJP 44(7),702	precessing Earth model
UMN, 1Q50.55	wobbly Earth
Mei, 13-5.15	precessing ball
Mei, 13-5.8	Kollergang
Mei, 13-5.13	nutations
AJP 42(8),701	motorcycle as a gyro
F\&A, Mu-9	tip a bike wheel
PIRA 1000	gyrocompass
F\&A, Mu-5	gyro on turntable
Mei, 13-5.6	2 degrees of freedom
Sut, M-192	gyrocompass
Mei, 13-6.2	gyrocompass
Sut, M-193	airplane turn indicator
Mei, 13-6.1	gyrocompass
PIRA 1000	stable gyros

July 2015
Mechanics
1Q50.30 Evaluation of the MITAC gyro. Paint the gimbals as suggested by AJP 14,116 (1946).
1Q50.30 A commercially built motorized gyro on a gimbal includes counterweights.
1Q50.30 A commercial motorized gyro on gimbals.
1Q50.30 A motorized gyro in gimbals.
1Q50.31
1Q50.31 Same as AJP 56(7),657.
1Q50.31 Make a gyro out of an auto wheel and tire. This is big enough to sit on.
1Q50.35
1Q50.35 Push a cart with a gyro around the room.
1Q50.35 A gyro set in gimbals is carried around.
1Q50.35 Move a gyro mounted on gimbals.
1Q50.40
1Q50.40
Spin up a flywheel hidden in a suitcase and have a student turn around with it.
1Q50.40 A battery powered motor runs a flywheel in a suitcase.
1Q50.40 A large gyro is mounted in a suitcase.
1Q50.41 Hold a heavy gyro outfitted with good handles.
1Q50.42 pictures of various gyros.
1Q50.43 Two magnetic gyros.
1Q50.45
1Q50.45 A large air support for a bowling ball.
1Q50.45 Shop drawings and construction hints for making a air bearing for a 4" diameter ball.
1Q50.45 Apparatus Drawings Project No.3: Air suspension gyro for a hardened steel ball bearing. Designed for use lab.
1Q50.45 A bowling ball air gyro spins for a half hour when spun by hand. The uneven weight distribution produces precession. Also shows a 4" steel ball bearing air gyro.
1Q50.45 Directions for making an air bearing for a bowling ball.
1Q50.45 The air bearing gyro. Construction details in appendix, p. 587.
1Q50.45 A large air bearing gyro has a long horizontal shaft with arrow heads for visual emphasis.
1Q50.45 Small mirrors on an air bearing gyro are used to demonstrate instantaneous axis of rotation, angular momentum vector, etc.
1Q50.50
1Q50.50 A high quality gyroscope with a counterweight is used to show the fundamental precession equation with fair precision.
1Q50.51 A model shows precessing axes.
1Q50.52 A bicycle wheel is pivoted at the center of mass and has a disc mounted above the wheel in a parallel plane. The instantaneous axis can be seen as the point of no motion on the upper disc.
1Q50.53 A rubber band provides a torque to a gyro framework hanging from a string causing precession.
1Q50.54 A fairly complex gyroscope.
1Q50.55 A model that illustrates precession of the Earth's axis.
1Q50.56 A ball placed on a rotating table precesses about the vertical axis with a period $7 / 2$ of the table.
1Q50.57 A device induces precession and change of weight is noted.
1Q50.58 A vertical gimbal mounted shaft has a gyro on the bottom end and a light bulb and lens on the top. Nutations of the gyro are shown by the moving spot of light on the ceiling.
1Q50.59 The handlebars are twisted (but not moved) in the direction opposite to the turn to lay the machine over.
1Q50.59 A bike wheel on a front fork is hand spun and tipped to one side.
1Q50.60
1Q50.60 A gyro in a gimbal sits on a rotating table. Remove the degree of freedom about the vertical axis and the gyro will flip as the table is reversed.
1 Q50.60 Spin flip on turning a restricted gyroscope.
1Q50.60 A gyroscope in gimbals is deprived of one degree of freedom. A slight change of direction will cause a spin flip.
1Q50.61 Shows the origin of the error of an uncorrected gyrocompass.
1Q50.62 Diagram. Model of an airplane turn indicator in which the gyro precesses about the axis of the fuselage.
1Q50.63 A model of a gyrocompass for any latitude on the spinning Earth.

Demonstration	Bibligrqaphy	July 2015	
F\&A, Mu-11	stable gyros	1Q50.70	A gyro on a ladder will become stable when spinning.
F\&A, Mu-16	stable gyro car	1Q50.71	A spinning gyro mounted on a two wheel cart rides a stretched wire.
Sut, M-198	stable gyro	1Q50.71	A very clever gyro "rider" on a model bike.
Sut, M-200	stable gyro monorail car	1Q50.71	A monorail car stabilized by a gyro.
PIRA 1000	ship stabilizer	1Q50.72	
Sut, M-194	ship stabilizer	1Q50.72	Model of a ship stabilizer.
Sut, M-196	ship stabilizer	1Q50.72	A large boat model you can sit in with a motor driven gyroscope.
Disc 07-18	ship stabilizer	1Q50.72	A motorized gyro is free to turn on a vertical axis when the ship model is rocked.
Sut, M-199	gyro on stilts	1Q50.73	A top-heavy gyro on stilts teeters about its position of unstable equilibrium.
F\&A, Mu-15	trapeze gyros	1Q50.74	A gyro on a trapeze is stable only when spinning.
Mei, 13-5.4	trapeze gyros	1Q50.74	Gyro on a trapeze shows stability when there are two degrees of freedom.
Sut, M-197	trapeze gyros	1Q50.74	Gyro on a trapeze.
Mei, 13-5.10	ganged gyros	1Q50.75	Ganged gyros are spun in the same or opposite directions.
Sut, M-195	gyro damped pendulum	1Q50.76	Picture. Frictional torque can be applied to the precession axis to damp the motion of the pendulum.
Sut, M-201	gyro pendulum	1Q50.80	A gyroscope is hung from one end of its spin axle by a string and is swung as a pendulum.
F\&A, Mu-13	Maxwell's gyro	1Q50.90	The extended shaft of a gyro supported at its center of mass will trace out complex contours.
Sut, M-191	Maxwell's gyro	1Q50.90	The spindle of a heavy spinning wheel pivoted at its center of gravity will follow an irregularly shaped object.
Sut, M-190	walking gyro	1Q50.90	An apparatus for walking a gyroscope along a cradle.
AJP 30(7),503	air bearing Maxwell's top	1Q50.95	Plans for an air bearing Maxwell's top resting on a 2" dia ball with matching air bearing cup with tangential air jets to provide torque.
AJP 30(7),528	gyroscope accelerator	1Q50.99	A six inch wheel from a child's wagon in a $1 / 4^{\prime \prime}$ drill is used to spin up a gyroscope.
	Rotational Stability	1Q60.00	
PIRA 200 - Old	bicycle wheel top	1Q60.10	Extend the axle of a weighted bike wheel and terminate with a rubber ball.
UMN, 1Q60.10	bike wheel top	1Q60.10	Extend the axle of a weighted bike wheel and terminate with a rubber ball.
PIRA 1000	humming top	1Q60.15	
UMN, 1Q60.15	humming top	1Q60.15	The standard toy top that you pump up.
TPT 22(1),36	yo-yo top	1Q60.15	Description of an antique toy demonstrating various aspects of rigid body rotational motion. Several pictures should make it possible to duplicate the thing.
F\&A, Mu-3	old fashioned top	1Q60.16	An old fashioned top that you throw with a string.
Mei, 13-5.9	gyro gun	1Q60.18	A shell is spun by hand before being fired by a gun.
AJP 70(10), 1025	Euler's disk	1Q60.25	A look at the motion of a spinning disk on a smooth surface. Does the disk slip during its motion.
TPT 45(7), 430	Euler's disk	1Q60.25	Non calculus treatment of a spinning disk on a smooth surface.
AJP 40(10), 1543	spinning coin	1Q60.25	Understanding the spinning coin by looking at the standard treatment of top motion.
AJP 51(5), 449	spinning coin	1Q60.25	An analysis of "wobbling", exhibited by common objects (coins, bottles, plates, etc) when they are spun on horizontal, flat surfaces. The apparatus maintains "wobbling" motion of a metal cylinder, which can be observed in slow motion by means of stroboscopic illumination.
AJP 78(5), 467	spinning tubes - Wobbler	1Q60.25	Press the end of a short tube with your finger and then let it slip out. The tube will "wobble" with a stroboscopic rotation.
PIRA 500	tippe top	1Q60.30	
UMN, 1Q60.30	tippe top	1Q60.30	The tippe top.
AJP 28(4),407	tippe top	1Q60.30	A tippe top was spun on smoked glass. Photos show the path of the stem until flip and the soot marks on the top.
AJP 68(9), 821	tippe top	1Q60.30	Aspects of motion for the tippe top and other tops with spherical pegs are examined.
AJP 70(8), 815	tippe top	1Q60.30	Geometric theory of rapidly spinning tops, tippe tops, and footballs.
TPT 16(5),322	tippe top	1Q60.30	A brief review of the history of the tippe top problem.
F\&A, Mu-17	tippe top	1Q60.30	The tippe top flips when spun.
Mei, 13-3.1	tippe top	1Q60.30	Show that the tippe top spins in the opposite of the expected direction when inverted.
D\&R, M-788	tippy top	1Q60.30	A tippy top or heavy class ring will undergo a 180 degree change of orientation when spun.
Ehrlich 2, p. 183	tippy top	1Q60.30	A tippy top is used to illustrate the two states of electron spin.
Disc 07-17	tippy top	1Q60.30	The tippe top flips.

Demonstration Bibligrqaphy

AJP 45(1),12	tippe top analysis
PIRA 500	spinning football
UMN, 1Q60.35	spinning football
AJP 40(9),1338	spinning football
F\&A, Mu-18	spinning football
F\&A, Mu-19	spinning football
D\&R, M-788	spinning football
Disc 07-16	football spin
AJP 72(6), 775	spinning egg
TPT 15(3),188	spinning L'Eggs
TPT 9(5),262	spinning egg
Sut, M-202	spinning eggs, etc.
D\&R, M-646	spinning eggs or L'Eggs
PIRA 1000	billiard ball ellipsoid
UMN, 1Q60.37	billiard ball ellipsoid
AJP 44(11),1080	billiard ball ellipsoid
F\&A, Mu-12	billiard ball ellipsiod
PIRA 1000	tossing the book
UMN, 1Q60.40	tossing the book
AJP 46(5),575	tossing the book
TPT 17(9),599	tossing the book, etc
F\&A, Mu-20	tossing the book
Mei, 12-3.2	tossing the book
Disc 07-20	stable and unstable axes of rotation
PIRA 1000	tossing the hammer
UMN, 1Q60.45	tossing the hammer
TPT 28(8),556	the hammer flip simplified
PIRA 1000	spinning lariat, hoop, and disc
F\&A, Mu-21	spinning lariat, etc.
Sut, M-168	spinning lariat
Hil, M-16b. 1	spinning lariat
PIRA 1000	spinning rod and hoop
UMN, 1Q60.51	spinning lariat, hoop, and disc
Disc 07-19	spinning rod and hoop of wire
Mei, 12-3.4	spinning lariat, bar
Mei, 12-3.1	spinning box
AJP 48(1),54	rotating vertical chain
F\&A, Mz-8	spinning bifilar pendula
AJP 30(8),561	orbital stability
Mei, 8-7.1	quadratic restoring force

July 2015
1Q60.31 Physical arguments are presented which support the convention that the influence of sliding friction is the key to the understanding of the top's behavior. A rigorous analysis of the top's mechanics is offered, together with computer-generated solutions of the equations of motion.
1Q60.35
1Q60.35 Spin a football and it raises up on end.
1Q60.35 Spin a football on its side.
1Q60.35 Spin a football and it rises onto its pointed end.
1Q60.35 An iron slug cut in the shape of a football is put on a magnetic stirrer.
1Q60.35 Spin a football or a panty hose container and they will rise up and spin on the pointed end.
1Q60.35 Spin a football on its side and it will rise up on its end.
1Q60.36 Examines the behavior of spinning eggs and the question of which end will rise.
1Q60.36 Instead of hard and soft boiled eggs, fill L'Eggs with water, paraffin, or air. Instructions and a little analysis are included. On a separate subject, a hint to use an egg instead of a ball in the floating ball demo.
1Q60.36 Try the spinning egg demo with eggs boiled for different lengths of time.
1Q60.36 Positional stability of various shaped objects.
1Q60.36 Spin raw and hard boiled eggs. L'Eggs containers may be filled with different substances or water for a more permanent alternative.
1Q60.37
1Q60.37 Same as AJP 44(11),1080.
1Q60.37 A billiard ball on an air bearing shows the spectacular motion of free rotating rigid and semirigid bodies moving near their inertial singularities. Or, the billiard ball on an air bearing acts goofy when you spin it in certain ways.

1Q60.37 A billiard ball weighted with brass rods along orthogonal axes will show spin flip.
1Q60.40
1Q60.40 Throw a book or board up in the air spinning it about its three principle axes.
1Q60.40 Directions of constructing blocks of inhomogeneous mass distribution for use in demonstrating the intermediate-axis theorem.
1Q60.40 A simple method of measuring the moments of inertia about the three axes before tossing the book. Also has a simple straw and paperclip inertia wand.

1Q60.40 A board of unequal dimensions is tossed and spins about various axes.
1Q60.40 Toss a $8 \times 4 \times 1$ block into the air.
1Q60.40 Toss a rectangular board into the air.

1Q60.45
1Q60.45
1Q60.46 An explanation of the hammer flip using only the concept of centrifugal force in a rotating reference frame.
1Q60.50
1Q60.50 A rod, hoop, and flexible chain are attached to a hand drill.
1Q60.50 A hand drill held vertically is used to rotate loops of rope or chain.
1Q60.50 A loop of flexible chain is attached to a hand drill.
1Q60.51
1Q60.51 A hoop and disc suspended from the edge are spun with a hand drill until they reach stability.
1Q60.51 Spin a hoop and long rod with a drill.
1Q60.52 A bar is hung from one end by a string on a hand drill. When spun, the bar will rise. Also spin a loop of chain.
1Q60.53 A rectangular box rotated from a chain around any of the three principle axes will rotate about the axis of maximum rotational inertia.
1Q60.54 The five stable patterns observed in a vertical rotating chain are used to introduce Bessel's function.
1Q60.56 A variable speed motor drives a horizontal rod in a horizontal plane with bifilar pendula of different lengths attached.
1Q60.70 Identical masses slide out on a horizontally rotating crossarm both attached to the same central hanging mass.
1Q60.71 A leaf spring provides a quadratic restoring force to dumbbells rotating on a crossarm. Each angular velocity corresponds to only one stable orbit.

AJP 58(1),80	rotational instability
Mei, 8-6.1	linear restoring force
PIRA 1000	static/dynamic balance
UMN, 1Q60.80	static/dynamic balance
Disc 07-15	static/dynamic balance
AJP 40(1),199	dynamic tire balancing
D\&R, M-720	dynamic tire balancing
Ehrlich 2, p. 72	Spin a penny
AJP 42(2),100	Marion's dumbell
	PROPERTIES OF
	MATTER Hooke's Law
PIRA 200	stretching a spring
UMN, 1R10.10	stretching a spring
TPT 18(8),601	stretching a spring
D\&R, M-438	stretching a spring
Disc 08-01	Hooke's law
Ehrlich 2, p. 53	suspended Slinky
PIRA 1000	strain gauge
UMN, 1R10.20	strain gauge
PIRA 1000	pull on a horizontal spring
UMN, 1R10.25	pull on a horizontal spring
PIRA 1000	springs in series and parallel
UMN, 1R10.30	springs in series and parallel
	Tensile and Compressive Str
PIRA 200 - Old	breaking wire
UMN, 1R20.10	breaking wire
F\&A, MA-10	breaking wire
Sut, M-63	breaking wire
PIRA 1000	elastic limits
Disc 08-04	elastic limits
AJP 28(4),404	breaking wire support
PIRA 1000	Young's modulus
Disc 08-05	Young's modulus
F\&A, MA-11	Poisson's ratio
PIRA 1000	bending beam
UMN, 1R20.20	bending beam
Mei, 18-1.5	rectangular bar under stress
Sut, M-66	bending the meter stick
Disc 08-06	bending beams

July 2015
Mechanics
1Q60.72 Different springs will result in conservation of angular momentum or instability in a spring loaded dumbbell.
1Q60.73 Two dumbbells slide out as a crossarm rotates with a spring providing the restoring force. At the critical angular velocity the orbits are stable at any radius.
1Q60.80
1Q60.80 Same as disc 07-15.
1Q60.80 A rotating system suspended by springs shows both the difference between static and dynamic balance.
1Q60.81 Analysis of dynamically balanced wheels shows they must also be statically balanced.
1Q60.81 Using masses on a bicycle wheel to analyze tire balancing and mass placement.
1Q60.85 Spin a new penny on a smooth hard surface. The slight weight imbalance favoring the heads side of the coin means it will come to rest tails side up more than 80 percent of the time.
1Q60.90 A simple apparatus to demonstrate the non-colinearity of the angular velocity vector and the angular momentum vector. Helps students increase their understanding of angular velocity, angular momentum, and the inertial tensor. Theory and construction details.
1R00.00

1R10.00
1R10.10 Add masses to a pan balance and measure the deflection with a cathetometer.
1R10.10 Add masses to a pan balance and measure the deflection with a cathetometer.
1R10.10 Examining the force-displacement curve at small extensions.
1R10.10 Add masses to a spring and measure displacement. Do the same for a rubber band or Bungee cord.
1R10.10 Add 10, 20, and 30 newtons to a large spring.
1R10.15 The spacing between turns of a Slinky suspended vertically under its own weight can be used to test Hooke's law.
1R10.20
1R10.20 A spring attached to a Pasco dynamic force transducer is pulled to various lengths. Display the resulting force on a voltmeter.
1R10.25
1R10.25 Pull on a horizontal spring with a spring scale.
1R10.30 Pull on a spring, springs in series, and springs in parallel with a spring scale. Compare the force required to stretch each case 60 cm .
1R10.30 Hang a mass from a spring, 1/2 mass from two springs in series, and 2 masses from two springs in parallel.

1R20.00

1R20.10 Add weights to baling wire attached to the ceiling until the wire breaks.
1R20.10 Add heavy masses to a thin copper wire until the wire breaks.
1R20.10 Add weights to baling wire attached to the ceiling until the wire breaks.
1R20.10 Contains several hints about stretching wires.
1R20.11
1R20.11 Stretch springs of copper and brass. The copper spring remains extended.

1R20.12 Drill a hole axially up a 1/4" eye hook and solder the wire in.
1R20.15
1R20.15 Hang weights from a wire. Use a laser and mirror optical lever to display the deflection.
1R20.18 A rubber hose is stretched to show lateral contraction with increasing length.
1R20.20
1R20.20 Ten lbs. is hung from the center of a meter stick supported at the ends. Orient the meter stick on edge and then on the flat.
1R20.20 A rectangular cross section bar is loaded in the middle while resting on narrow and broad faces.
1R20.20 Some techniques for making the amount of bending visible to the class.
1R20.20 Hang weights at the ends of extended beams. Use beams of different lengths and cross sections.

Demonstration	Bibligrqaphy	July 2015	
PIRA 1000	sagging board	1R20.25	
UMN, 1R20.25	sagging board	1R20.25	Place the ends of a thin board on blocks, then add mass to the center.
TPT 28(6),416	aluminum/steel elasticity paradox	1R20.27	Copper and brass rods sag different amounts under their own weight but steel and aluminum do not.
Mei, 18-1.3	stretch a hole	1R20.31	Holes arranged in a circle in a rubber sheet deform into an ellipse when stretched.
Sut, M-67	deformation under stress	1R20.32	A pattern is painted on a sheet of rubber and deformed by pulling on opposite sides.
Mei, 18-1.7	stress on a brass ring	1R20.38	A strain gauge bridge is used to measure the forces required to deform a brass ring. Diagram. Construction details.
ref.	squeeze the flask	1R20.39	See 2B20.53 for a demo of stress and elasticity of a glass flask or bottle.
PIRA 1000	buckling tubes	1R20.40	
PIRA 1000	Bologna bottles	1R20.60	
Hil, M-19j. 2	bologna bottles	1R20.60	Carborundum and bologna bottles.
Disc 08-08	bologna bottle	1R20.60	Pound a nail with a Bologna bottle, then add a carborundum crystal to shatter the bottle.
PIRA 1000	Prince Rupert's drops	1R20.70	
F\&A, MA-6	Prince Rupert's drops	1R20.70	Prince Rupert's drops.
Sut, H-26	Prince Rupert's drops	1R20.70	Drops of glass cooled quickly can be hit with a hammer but shatter when the tip is broken off.
Hil, M-19j. 3	Prince Rupert's drops	1R20.70	Prince Rupert's drops.
	Shear Stress	1R30.00	
PIRA 1000	shear book	1R30.10	
UMN, 1R30.10	shear book	1R30.10	Use a thick book to show shear.
F\&A, MA-8	shear book	1R30.10	Use a very thick book to demonstrate shear.
Sut, M-65	shear block	1R30.10	Stacks of cards or a big book.
PIRA 500	foam block	1R30.20	
UMN, 1R30.20	foam block	1R30.20	Push on the top of a large foam block to show shear.
TPT 14(6),373	foam block	1R30.20	Nice pictures of a foam block for sheer demonstrations.
F\&A, MA-9	foam block	1R30.20	A large sponge is used to show shear.
Sut, M-64	foam block	1R30.20	Use a rectangular block of rubber.
Bil\&Mai, p 176	foam block	1R30.20	A large foam block with squares drawn on the side with a marker is used to model a beam that is loaded in the middle. The top of the block shows compression while the bottom shows it is being stretched.
PIRA 500	spring cube	1R30.30	
UMN, 1R30.30	spring cube	1R30.30	A $3 \times 3 \times 3$ cube of cork balls is held together with springs.
F\&A, MA-1	spring cube	1R30.30	A cube of 27 cork balls fastened together with springs.
Mei, 18-1.5	plywood sheets	1R30.31	A stack of plywood sheets with springs at the corners is used to show shear, torsion, bending, etc. Diagram.
AJP 45(1),45	shear and stress modulus	1R30.35	Unsophisticated apparatus for measuring elastic constants of a thin flexible strip and rod.
PIRA 1000	torsion rod	1R30.40	
UMN, 1R30.40	torsion rod	1R30.40	
F\&A, MA-12	modulus of rigidity	1R30.40	A rod is twisted by a mass hanging off the edge of a wheel.
F\&A, MA-13	bending and twisting	1R30.40	Wind a copper strip around a rod and then remove the rod and pull the strip straight to show twisting.
Disc 08-03	torsion rod	1R30.40	Rods of various materials and diameters are twisted in a torsion lathe.
AJP 31(5), 391	shear and twist in screw dislocation	1R30.45	Rule a thick walled vacuum tube with a grid, slit lengthwise, and dislocate one unit.
	Coefficient of Restitution	1R40.00	
PIRA 500	bouncing balls	1R40.10	
UMN, 1R40.10	bouncing balls	1R40.10	Drop balls of different material on a tool steel plate.
AJP 68(11), 1025	dead and live balls	1R40.10	The coefficient of restitution for collisions of happy ball, unhappy balls, and tennis balls is examined and modeled.
F\&A, Mw-3	bouncing balls	1R40.10	Balls of various materials are bounced off plates of various materials.
Mei, 9-1.5	bouncing ball	1R40.10	Loss of mechanical energy in the coefficient of restitution.
Sut, M-69	bouncing balls	1R40.10	Drop balls on a glass plate.
D\&R, M-595	bouncing balls	1R40.10	Balls of different materials are bounced off plates of different materials and even flexible diaphragms.
Disc 05-04	coefficient of restitution	1R40.10	Drop glass, steel, rubber, brass, and lead balls onto a steel plate.
TPT 15(7),420	bouncing balls	1R40.11	An eight inch or larger reflecting telescope mirror blank provides a concave surface for bouncing balls.
Mei, 9-5.5	coefficient of restitution	1R40.11	Drop a small ball bearing on a concave lens.

Demonstration Bibligrqaphy	
Hil, M-19j. 1	coefficient of restitution
AJP 58(2),151	coef. of restitution in baseballs
PIRA 200	dead and live balls
UMN, 1R40.30	dead and live balls
AJP 37(3),333	dead and live balls
Mei, 9-5.4	dead ball
F\&A, MA-3	Crystal Structure solid shapes
Hil, A-1e	solid models
Mei, 40-1.17	sphere packing
AJP 31(3),190	Moduledra crystal models
AJP 39(5),545	elastic crystal models
PIRA 1000	crystal models
UMN, 1R50.20	crystal models
AJP 68(10), 950	crystal models
AJP 70(2), 187	crystal models
Hil, A-1d	crystal lattice models
Disc 16-15	crystal models
F\&A, MA-4	ice model
F\&A, MA-2	tennis ball crystals
D\&R, S-200	tennis ball crystals
TPT 5(7), 311	crystals - mirror images
Mei, 18-1.7	Poisson contraction model
Mei, 40-1.18	crystal overlays
Sut, H-43	crystal structure
D\&R, S-195	crystal structure in atomic planes
AJP 41(5),744	crystal growth from melt
F\&A, Om-13	crystal growth in a film
F\&A, H-11	ice nuclei
AJP 34(2),167	make tin crystal
PIRA 1000	crystal fault model
AJP 37(8),789	array of spheres
AJP 34(11),1064	stacking fault model
F\&A, MA-5	crystal faults
D\&R, S-200	faults in a crystal
Disc 16-16	faults in crystal
AJP 40(4),618	deformation front model
PIRA 1000	crushing salt
UMN, 1R50.45	crushing salt
F\&A, MA-7	crushing salt

1R40.12 Rubber balls of differing elasticity and silly putty are dropped in a tube onto a steel surface.
1R40.13 Analysis leading to a prediction of up to 15 foot difference in long fly balls due to variation in coefficient of restitution.
1R40.30 Drop bounce and no-bounce balls.
1R40.30 Drop bounce and no-bounce balls.
1R40.30 Drop a black super ball and a ball rolled from apiezon wax.
1R40.31 A non-bounce ball: fill a hollow sphere with iron filings or tungsten powder.
1R50.00
1R50.10 How to make solid tetrahedrons and octahedrons.
1R50.15 Styrofoam balls and steel ball bearings are used to make crystal models.
1R50.16 Balls are stacked on vertical rods mounted on a board to build various crystal structures. Diagram.
1R50.17 Tetrahedral and octahedral building blocks are used to construct a large variety of crystal shapes. Many pictures.
1R50.18 Crystal models are built with a combination of compression and tension springs.
1R50.20
1R50.20
1R50.20 An argument for a 15th Bravais lattice.
1R50.20 Comments on AJP 68(10), 950 and why there is no need to invoke a 15th lattice type.
1R50.20 Have many crystal lattice models available.
1R50.20 Show lattice models of sodium chloride, calcium carbonate, graphite, and diamond.
1R50.21 How to make ball and stick water molecules that can be stuck together to make ice.
1R50.22 Old tennis balls glued together to give two close packed crystals.
1R50.22 Various crystal models constructed from layers of tennis balls.
1R50.24 Mirror images and symmetry in crystals and physics.
1R50.25 A two dimensional spring model to show Poisson contraction in crystals.
1R50.29 Colored overlays of crystal structure for use on the overhead projector. Picture.
1R50.30 Show natural crystals of salt, quartz, and other minerals, and lantern slides of snow crystals.
1R50.30 Periodicity of crystal structure of atomic planes illustrated by "egg crate foam".
1R50.31 Several organic compounds produce good crystals from melts on microscope slides.
1R50.31 Crystal growth on a freezing soap film is observed through crossed Polaroids
1R50.31 Large ice crystals form on the surface of a supercooled saturated sugar solution.
1R50.32 Pour pure tin into a Pyrex mold, other steps.
1R50.40
1R50.40 Prepare a slide with a monolayer of 2.68 micron diameter polymer spheres that exhibits grain boundaries, extended dislocations, etc.
1R50.40 A closest packing spheres model that demonstrates a fault going from fcc to hcp.
1R50.40 One layer of small ball bearings between two Lucite sides.
1R50.40 A single layer of small ball bearings in an acrylic enclosure on the overhead display vacancies and dislocations.
1R50.40 Show natural faults in a calcite crystal, then the single layer of small spheres model.
1R50.42 A water film evaporating from an array of mesas shows the film edge pinned at several locations.
1R50.45
1R50.45 Crush a large salt crystal in a big clamp.
1R50.45 A large salt crystal is crushed in a "c" clamp.

Ehrlich 1, p. 110	SURFACE TENSION Force of Surface Tension water filled cup
PIRA 500	sliding wire
UMN, 2A10.10	sliding wire
F\&A, Fi-7	force on a film
Sut, M-233	sliding wire
Disc 13-21	soap film pullup
Mei, 16-5.1	sliding wire
Hil, M-21a	sliding wire, etc.
PIRA 1000	submerged float
UMN, 2A10.15	submerged float
F\&A, Fi-1	submerged float
Sut, M-213	submerged float
PIRA 200	floating metals
Sut, M-213	floating metals
D\&R, F-330	floating metals
PIRA 1000	floating metal sheet
Mei, 16-5.5	floating aluminum sheet
Disc 13-20	floating metal sheet
PIRA 1000	leaky boats
UMN, 2A10.25	leaky boats
F\&A, Fi-16	leaky boats
Sut, M-218	watertight sieves
D\&R, F-330	watertight sieves
Bil\&Mai, p 182	leaky boats
Mei, 16-5.6	waterproof fabric model
PIRA 1000	surface tension balance
AJP 58(8),791	surface tension balance
Sut, M-261	adhesion balance
Sut, M-211	surface tension of mercury
Sut, M-210	pull on the ring
PIRA 1000	surface tension disc
Disc 13-19	surface tension disc
PIRA 1000	cohesion plates
UMN, 2A10.35	cohesion plates
F\&A, Fi-10	cohesion plates
Sut, M-259	cohesion plates
AJP 32(1),61	cohesion plates fallacy
Disc 11-13	adhesion plates
Sut, M-260	cohesion tube
PIRA 1000	drop soap on lycopodium powder
F\&A, Fi-6	surface reaction
Sut, M-222	drop soap on lycopodium powder

2A00.00
2A10.00

2A10.05

2A10.10
2A10.10
2A10.10
2A10.10 A soap film pulls a sliding wire up a U shaped frame
2A10.10 A soap film pulls a sliding wire up a "U" shaped frame.
2A10.11 A sliding wire frame film with a spring on one end and a string pull on the other shows that tension does not increase with length.
2A10.12 The sliding wire, wire cubes, and other soap film stuff is pictured.
2A10.15
2A10.15
When submerged, a wire hoop keeps a float beneath the surface of water due to surface tension
2A10.15 Surface tension holds a brass ring on a float beneath the water.
2A10.15 A cork and lead device floats with a wire ring above the surface. Push the ring below the surface and it remains until soap is added to reduce the surface tension
2A10.20 Float needles, paperclips, rings of wire, etc. on water.
2A10.20 Float needles, paper clips, rings of wire, etc. on water.
2A10.20 Float a needle in a petrie dish of water.
2A10.21
2A10.21
2A10.21 Float a sheet of metal on the surface of distilled water and add weights until the metal sinks
2A10.25
2A10.25 Try to float several large (one foot long) flat bottomed boats made of different screen material or aluminum with different size holes.
2A10.25 A screen boat, razor blade, or small metal boat with a large hole all float on water.
2A10.25 A mesh boat floats until a drop of water is placed inside it. Dry cheesecloth holds water in an inverted beaker.
2A10.25 A fine sieve will hold water if it is added carefully, but will leak if the underside is touched with a finger.
2A10.25 A mesh basket floats until a drop of soap is added to the water.
2A10.28
2A10.30
2A10.30

2A10.30

2A10.31

2A10.32
2A10.33
2A10.33

2A10.35
2A10.35
2A10.35

2A10.36
2A10.37

2A10.38 A long ($2-4 \mathrm{~m}$) tube full of water and sealed at the top will support the water

2A10.40
2A10.40
2A10.40
Many pennies can be dropped into a "filled" cup of water before it overflows.

A soap film provides the force to slide a light wire on a frame.
soap film pulls a wire up a frame.

A sheet of aluminum will float on the surface of clean water.

Paraffin coated pegs serve as large model fibers. Pictures.
An improved method for measuring surface tension by the direct pull method.
A glass plate on one end of a balance beam is in contact with a water surface.
Use a Joly balance to measure the force required to pull a razor blade out of mercury.
Pull a large ring away from the surface of a liquid with a spring scale.
A flat glass disc on a soft spring is lowered onto the surface of distilled water and the extension upon pulling the disc off the water is noted.

Two heavy glass plates stick together when a film of water is between them.
There is a difference in cohesion of dry and wet plate glass.
If they demonstrate cohesion, why do they fall apart when placed in a bell jar that is evacuated?
2A10.37 Atmospheric pressure holds two plate glass panes together. column against gravity.

Some soap is dropped onto a water surface covered with sawdust.
Sprinkle lycopodium powder on the surface of water, then place a drop of liquid soap on the surface.
D\&R, F-330
Bil\&Mai, p 182

Ehrlich 1, p. 111
AJP 33(7),v liquid fracture

PIRA 500
UMN, 2 A10. 50

AJP 46(10),978

F\&A, Fi-3

Disc 13-23
PIRA 1000
UMN, 2A10.51
AJP 46(10),976

Sut, M-240

Sut, M-242
PIRA 500
UMN, 2A10.60
F\&A, Fi-2
Mei, 16-5.3

Mei, 16-5
Sut, M-249

Sut, M-252
Sut, M-250

Sut, M-256

Sut, M-257

Sut, M-241

Sut, M-248
PIRA 1000
F\&A, Eb-14

Mei, 16-5.4

Mei, 29-1.16

Mei, 29-1.17

Sut, M-247

Sut, M-258

TPT 3(6),285
pepper and soap
pepper and soap
pepper and soap bubbles
soap bubbles
two soap bubbles
rubber balloons
rubber balloons
rubber balloons
pressure in a bubble
water balloon
surface tension bottle
surface tension bottle wet mop
sponge action
surface tension
water droplets
rolling drops
tears of wine

Plateau's spherule
bursting water bubble
mercury bubbles
mercury drops tension drops
changing drop size
temperature effects
Minimal Surface
soap film recipe
bubbles blowing bubbles
bubbles blowing bubbles
analysis of bubbles blowing
bubbles blowing bubbles
???
charge and surface tension
effect of charge on surface tension
surface tension with electric field
electrostatic breakdown of surface
elecrostatic dispersion of water

2A10.40 Pepper is floated on water in a petrie dish on the overhead. A small amount of soap touched to the middle will make the pepper move to the perimeter.

2A10.40 Pepper is floated on water in a petrie dish on the overhead. A small amount of soap touched to the middle will make the pepper move to the perimeter of the dish.
2A10.40 Sprinkle pepper onto the surface of a cup of water. Add a drop of soap in the middle of the pepper and observe.
2A10.45 Directions on making a tube filled with Freon 113 which will completely fill the tube on warming and fracture on cooling or when a weak neutron source is brought near after partial cooling.
2A10.50
2A10.50 A "T" tube apparatus allows one to blow two soap bubbles of different diameters, then interconnect them.
2A10.50 The complete analytical solution to the two bubbles problem.

2A10.50 A smaller bubble blows up a larger one when connected by a tube.
2A10.50 Blow bubbles of different size on a "T" tube. The smaller one will blow up the larger one.
2A10.50 The smaller soap film bubble blows up the larger one.
2A10.51
2A10.51 Do the bubbles with large rubber balloons.
2A10.52 The equation relating the internal pressure to the radius is derived and applied to the problem of the two interconnected unequal balloons.
2A10.55 Connect a slant water manometer to a tube supporting a bubble. Vary the size of the bubble and note the change of pressure.
2A10.58 Make a large water balloon.
2A10.60
2A10.60
2A10.65 Surface tension pulls the strands of a small fluffy mop together when wet.
2A10.68 Water picked up by a wet sponge is greater than that picked up by a dry one.

2A10.69 Discussion of eight surface tension demonstrations.
2A10.70 Small water droplets form on a surface not wet by water, droplets bounce off when sprayed on with an atomizer. Water droplets will roll across the surface of an overfull glass of water when projected out of a pipette at a small angle.

2A10.71 A drop of alcohol can roll on the surface of an alcohol dish.
2A10.72 As 50 proof alcohol evaporates in a watch glass, the remaining liquid forms drops that run down the sides.
2A10.73 A method of projecting and strobing drops forming down from a vertical orifice.
2A10.74 A jet of water directed upward against the apex of a cone will cause the water to flow around and form a bubble. A drop of ether will decrease the surface tension and the bubble will collapse.
2A10.75 Air is blown into mercury covered by a dilute solution of ammonium chloride. Mercury bubbles rise to the surface and burst.
2A10.76 Spray clear mercury into distilled water - no coalescence. Then add a little acid - coalescence.
2A10.80
2A10.80
Dripping rate is much greater from an electrically charged buret.
2A10.81 Droplets from a orifice become a steady stream when connected to a Wimshurst generator.
2A10.83 Droplets shoot out of a pond of carbon tetrachloride on a Van de Graaff generator as electrostatic breakdown of surface tension takes place.
2A10.84 Water drops from a pipette at high potential are dispersed into droplets.
2A10.85 As the amount of sodium hydroxide is varied in a dilute solution, the size of drops formed by a olive oil jet changes with the variation of surface tension.

2A10.95 Olive oil sprayed on hot water forms droplets but on cold water forms a slick.
2A15.00
2A15.01 A Joy(2.5)/water(8)/glycerine(6.5) recipe.

AJP 69(8), 920	soap film recipes \& measuremen
PIRA 200 - Old	ring and thread
UMN, 2A15.10	pop the center
F\&A, Fi-13	ring and thread
Sut, M-237	pop the center
Disc 13-24	minimim energy thread
Sut, M-234	soap film minimal surfaces
PIRA 1000	soap film minimal surfaces
UMN, 2A15.20	soap film minimal surfaces
Sut, M-236	soap film minimal surfaces
D\&R, F-360	soap frame minimal surfaces
Disc 13-22	soap film shapes
PIRA 1000	catenoid soap film
UMN, 2A15.21	catenoid soap film
F\&A, Fi-4	cylindrical soap film
Mei, 16-5.9	catenoid soap film
Sut, M-235	catenoid soap film
Ehrlich 1, p. 111	liquid catenoid
AJP 59(5),415	soap films - phase transition model-
Sut, M-232	surface energy
Mei, 16-5.8	soap bubbles
Sut, M-251	castor-oil drop
F\&A, Fi-14	size of drops
	Capillary Action
PIRA 500	capillary tubes
UMN, 2A20.10	capillary tubes
F\&A, Fi-8	capillary tubes
Sut, M-214	capillary tubes
Hil, M-22g	capillary tubes
Disc 13-26	capillary tubes
F\&A, Fi-11	depression and rise in capillary
Hil, M-22h	project capillary tubes
PIRA 1000	surface tension hyperbola
F\&A, Fi-9	surface tension hyperbola
Sut, M-215	capillary hyperbola
Mei, 16-5.2	meniscus
Sut, M-216	drops in tapered tubes
PIRA 1000	capillary action
Disc 13-25	capillary action
Sut, M-220	meniscus
Sut, M-217	meniscus

ubble for two different soap solutions. Surface tension is then calculated using the YoungLaplace equation.
2A15.10 A loop of thread in the middle of a soap film forms a circle when the center is popped.
2A15.10 A circle will form when the center of a loop in a soap film is popped.
2A15.10 A loop of thread forms a circle when popped in the middle of a soap film.
2A15.10 A loop of thread is attached to wire ring. Dip in soap and pop the center of the loop to form a circle.
2A15.10 Dip a frame with a loop of thread in soap, then pop the film in the center of the thread.
2A15.11 Puncture various parts of the film that forms on a wire cube to get different geometrical shapes.
2A15.20
2A15.20
2A15.20
Wire frames dipped in soap film form minimal surfaces. Pictures.
2A15.20 Wire frames of different sizes and shapes will form minimal surfaces when dipped in soap solution.
2A15.20 A pyramid, cube, and triangular prism.
2A15.21
2A15.21 A soap film is established between two concentric rings which are pulled apart.
2A15.21 Two rings pulled apart with a soap film form a catenoid.
2A15.21 Picture of a catenoid. setup, some theory and diagrams.
2A15.21 Dip two concentric circles of wire in soap and separate them to form a catenoid.
2A15.21 Three liquids of different densities form a catenoid when the top and bottom layer are connected.
2A15.23 Use soap films to show phase transitions by changing sizes of variable frameworks.
2A15.25 A soap film on an inverted funnel ascends.
2A15.30 Blow half bubbles on a glass plate. More.
2A15.42 A large drop of castor oil is drawn under water where it forms a spherical drop.
2A15.50 Different size drops form on the ends of different O.D. capillary tubes.
2A20.00
2A20.10
2A20.10 Two sets of capillary tubes, one filled with water and one filled with mercury.

2A20.10 Sets of capillary tubes with water and mercury are compared.
2A20.10 Sets of capillary tubes of various diameters show capillary rise with water and capillary depression with mercury.
2A20.10 Two sets of capillary tubes.
2A20.10 Fill a set of capillary tubes with water.
2A20.11 "U" tubes with a large and small bore arm are filled with water and mercury and compared.
2A20.12 An optical setup to project capillary tubes.
2A20.20
2A20.20 A large meniscus forms between two sheets of glass held at an angle in a pan of water.
2A20.20 Two glass plates are clamped on one edge and separated by a wire on the other.
2A20.21 Project the meniscus of water and mercury at the apex of wedge shaped containers.
2A20.30 A drop on water in a tapered tube moves to the narrow end and a mercury drop moves away from the narrow end.
2A20.35
2A20.35 Touch the end of a small glass surface with a small glass tube and the water is drawn into the tube.
2A20.40 Add 4-penny finishing nails to a full glass of water until it overflows.
2A20.45 Objects floating in a vessel cling to the edge until it is over full when they go to the middle.

Demonstratio	Bibliography	July 2015	
TPT, 36(7), 410	position of objects floating in a glass	2A20.46	Corks floating in a container cling to the edge when a water layer is below the brim and float in the middle when the layer is above the rim. Objects with densities greater than water (floating metals) float in the middle when the water layer is below the brim and float to the edge when the layer is above the brim.
Sut, M-219	capillary phenomena	2A20.50	Four items: dip your finger in water covered with lycopodium powder, a wet paintbrush in and out of water, pour water down a wet string, pour water in a flexible paper box.
	Surface Tension Propulsion	2A30.00	
PIRA 1000	surface tension boat propulsion	2A30.10	
F\&A, Fi-17	surface tension boats	2A30.10	A crystal of camphor is attached to the back of a small boat.
Sut, M-224	surface tension boat	2A30.11	Pieces of camphor placed on the edges of a light aluminum propeller cause it to spin on the surface of water.
Sut, M-226	surface tension boat	2A30.12	How to use alcohol in a surface tension boat.
Sut, M-225	surface tension boat	2A30.13	Rub a match stick on a cake of soap or attach a piece of camphor and place in water.
Sut, M-223	surface tension flea	2A30.20	Bits of camphor dart around on the surface of water until soap is introduced.
Sut, M-227	surface tension flea	2A30.21	A drop of Duco cement will dart around on the surface of water, two drops will play tag.
PIRA 1000	mercury heart	2A30.30	
F\&A, Fi-5	mercury amoeba	2A30.30	A watch glass containing mercury and a solution of sulfuric acid and potassium dichromate is touched with a nail.
Sut, M-230	mercury heart	2A30.30	A globule of mercury is covered with 10% sulfuric acid with a few crystals of potassium dichromate. Touch the mercury with an iron wire to produce rhythmic pulsation.
Sut, M-228	mercury amoeba	2A30.31	Place a crystal of potassium dichromate near a globule of mercury covered with 10% nitric acid.
Sut, M-229	mercury heart	2A30.32	Cover a globule of mercury with 10% hydrogen peroxide and add 1% sodium bicarbonate. A yellow film appears on the mercury and breaks down regularly.
Sut, M-231	pulsating air bubble	2A30.35	An inverted watch glass traps an air bubble over water. Alcohol is introduced at the edge of the bubble through a bent tube at a rate that causes pulsations.
	STATICS OF FLUIDS	2B00.00	
	Static Pressure	2B20.00	
PIRA 200 - Old	pressure independent of direction	2B20.10	Insert a rotatable thistle tube with a membrane into a beaker of water.
UMN, 2B20.10	pressure independent of direction	2B20.10	A thistle tube covered with a diaphragm and connected to a manometer is lowered into water and oriented in different directions.
F\&A, Fa-1	pressure independent of direction	2B20.10	A rubber membrane covers a thistle tube connected to a manometer. The assembly is inserted into a beaker of water and oriented in various directions.
D\&R, F-010	pressure independent of direction	2B20.10	A funnel covered with a rubber balloon diaphragm and connected to a water manometer is lowered into water and oriented in different directions.
Disc 12-04	pressure independent of direction	2B20.10	Membrane on a tube connected to a manometer.
Sut, M-273	pressure independent of direction	2B20.11	Three thistle tubes filled with colored alcohol and capped with rubber membranes are joined with the thistle ends bent to be oriented in various directions. Immerse in water to show equal pressure. Or, one tube may be turned to show the same thing.
PIRA 1000	pressure dependent on depth	2B20.15	
AJP 32(1),xiv	pressure dependent on depth fallacy	2B20.15	The manometer used in the demonstration is calibrated on the basis of the law under investigation.
Hil, M-20b. 1	pressure dependent on depth	2B20.15	Lower a small funnel covered with a rubber membrane attached to a manometer into a water filled vessel.
Disc 12-02	Pressure vs. depth	2B20.15	A pressure sensor is connected to a LED bar graph.
PIRA 1000	pressure vs. depth in water and alcohol	2B20.16	
Disc 12-03	pressure vs. depth in water and alcohol	2B20.16	The electronic pressure sensor and LED bar graph display are used first in water, then in alcohol.
AJP 56(7),620	electronic depth dependence	2B20.17	A circuit based on the Motorola MPX100AP pressure sensor displays a pressure depth curve on an XY recorder. An interesting feature is the use of two liquids showing a change of slope at the interface.
PIRA 500	dropping plate	2B20.20	

Demonstration	Bibliography
UMN, 2B20.20	dropping plate
F\&A, Fc-1	dropping plate
Mei, 16-4.2	dropping plate
Sut, M-276	dropping plate
PIRA 1000	Pascal's paradox
Sut, M-277	Pascal's paradox
Mei, 16-4.10	lateral hydrostatic pressure
AJP 59(1),89	hydrostatic paradox - vector analysi
PIRA 1000	weigh a water column
UMN, 2B20.30	weigh a water column
AJP 28(6),557	weigh water in a tube
Mei, 16-4.9	hydrostatic paradox
PIRA 1000	chicken barometer
UMN, 2B20.32	chicken barometer
PIRA 1000	hydrostatic paradox - truncated cone
Disc 12-08	hydrostatic paradox
F\&A, Fd-3	weigh a barometer
Mei, 16-4.8	weigh a barometer
PIRA 200	Pascal's vases
UMN, 2B20.40	Pascal's vases
F\&A, Fa-3	Pascal's vases
Sut, M-275	Pascal's vases
Hil, M-22f. 1	Pascal's vases
Disc 12-01	same level tubes
F\&A, Fa-2	Pascal's vases
Hil, M-22e. 2	Pascal's vases
D\&R, F-005	Pascal's vases
AJP, 75 (10), 915	Pascal's vases
AJP 53(11),1106	simplified hydrostatic paradox
F\&A, Fa-4	water level
PIRA 1000	Pascal's fountain
F\&A, Fb-2	Pascal's fountain
Sut, M-271	Pascal's fountain
F\&A, Fb-1	Pascal's fountain
Sut, M-272	Pascal's diaphragms
Mei, 16-2.3	squeeze the flask

2B20.20
2B20.20 Pressure holds a glass plate on the bottom of a glass tube inserted into a beaker of water until the pressure is equalized by another fluid poured into the tube.
2B20.20 A thin glass plate stays at the bottom of a glass tube immersed in water and water is poured into the tube until the plate drops off.
2B20.20 Water pressure holds a plate against the bottom of a glass cylinder in a beaker of water. Pour water into the cylinder until the plate drops off. A variation uses a lead plate.
2B20.25
2B20.25 Two identical truncated cones are in equilibrium on a platform balance, one small end down, the other large end down. Replacing the bottoms with rubber diaphragms and supporting only the extended diaphragms on the scale does not give equilibrium.
2B20.26 An inverted funnel with a cork on the stem floats in a beaker of water. When pushed down into a layer of mercury, it stays; but if the stem is immersed, it floats back up.
2B20.27 Use the hydrostatic paradox to introduce vector analysis instead of some electromagnetism example.
2B20.30
2B20.30 Same as AJP 28(6),557.
2B20.30 Suspend a tube from a spring scale in a beaker of water and suck water up into the tube. Why does the scale reading increase?
2B20.30 Suspend a tube, open at the bottom, from a spring scale in a beaker of water and partially evacuate the air from the tube.
2B20.32
2B20.32
2B20.34
2B20.34 A glass plate is held against the large end of a truncated cone when it is placed under water. The plate drops away when placed against the small end.
2B20.35 A barometer tube is weighed empty and filled with mercury, then inverted in a vat of mercury and weigh again.
2B20.35 A spring scale, barometer tube, and mercury in a glass tube that can be evacuated.
2B20.40 Six tubes of various shapes are connected to a common water reservoir.
2B20.40 A set of tubes of different geometries rising from a common reservoir of water.
2B20.40 A common reservoir connecting several weirdly shaped tubes.
2B20.40 Tubes of various shapes rise from a common horizontal tube. When filled with water, the level is the same in each tube.
2B20.40 Six tubes of various shapes are connected to a common water reservoir.
2B20.40 A commercial device.
2B20.42 A commercial device with a pressure gauge and interchangeable vessel shapes.
2B20.42 Vessels of various shapes are interchangeable on a base equipped with a pressure gauge.
2B20.42 A commercial device with a pressure gauge and interchangeable vessel shapes.
2B20.42 A short article with picture describing an antique set of Pascal's vases with leak type pressure gauge.
2B20.43 Replace the sloped side vessels with stepped sides that include only horizontal and vertical components.
2B20.45 Two open tubes are connected by a long water filled hose.
2B20.50
2B20.50 A piston applies pressure to a round glass flask with small holes drilled at various points.
2B20.50 Water squirts out equally in all directions when forced out of a sphere by a tube fitted with a piston.
2B20.51 A piston applies pressure to a flask with vertical jets originating at various points on the flask.
2B20.52 A closed container has several protruding tubes capped with rubber diaphragms. Push on one and the others go out.
2B20.53 Squeeze a flask capped with a stopper and small bore tube.

Demonstration Bibliography

TPT 17(9),595	squeeze the flask
PIRA 500	hydraulic press
UMN, 2B20.60	hydraulic press
Sut, M-282	hydraulic press, etc.
Hil, M-20e	hydraulic press
Disc 12-07	hydraulic press
PIRA 1000	two syringes
F\&A, Fb-3	two syringes
Bil\&Mai, p 184	two syringes
PIRA 1000	hydraulic can crusher
PIRA 1000	garbage bag blowup
UMN, 2B20.65	garbage bag blowup
D\&R, F-060	garbage bag lift
Disc 11-17	air pressure lift
PIRA 1000	weight on a beach ball
UMN, 2B20.66	weight on a beach ball
Mei, 16-4.6	weight on the beach ball
Sut, M-268	incompressibility of liqiuds
Sut, M-274	hydraulic balance
PIRA 1000	compressibility of water
F\&A, Fn-1	compressibility of water
Mei, 16-3.1	compressibility of water
Sut, M-270	compressibility of water
PIRA 1000	water/air compression
Disc 12-05	water/air compression
Mei, 16-3.3	Weinold piezometer
Mei, 16-3.2	near-incompressibility of water
Sut, M-269	incompressibility of liquids
D\&R, F-065	incompressibility of fluids
PIRA 500	hovercraft
UMN, 2B20.80	hovercraft
D\&R, M-282	hovercraft
PIRA 1000	Atmospheric Pressure lead bar
UMN, 2B30.05	lead bar
PIRA 200	crush the can
Sut, H-77	crush the can
Sut, M-326	crush the can
Hil, M-22d	crush the can
$\begin{aligned} & \mathrm{D} \& R, \mathrm{~F}-025, \mathrm{H}- \\ & 068 \end{aligned}$	crush the can
PIRA 1000	crush the soda can
UMN, 2B30.15	crush the soda can
Sprott, 2.4	crush the soda can

2B20.53 Fill a whisky flask with a stopper and a small bore tube. Squeeze the bottle and watch the colored water rise in the tube.
2B20.60
2B20.60
2B20.60
A hydraulic press is used to break a piece of wood.
Use a large hydraulic press to break a 2×4. Glass models show the action of valves of suction and force pumps.
2B20.60 A hydraulic press with a pressure gauge breaks a board or compresses a large spring.
2B20.60 Break a piece of wood in a hydraulic press. The press has a pressure gauge.
2B20.61
2B20.61 Two syringes of different size are hooked together and passed around the class for students to feel the pressure difference.
2B20.61 Two syringes of different size are connected together with tubing. Pass the system around the class so that the students can feel that the smaller diameter syringe will always be able to move the larger diameter syringe.
2B20.62
2B20.65
2B20.65
2B20.65
2B20.65
Lift a person sitting on a garbage bag by inflating with an air blower. Lift a person supported by two hot water bottles by blowing them up with the mouth.
2B20.66
2B20.66
Place a 45 lb weight on a circular wood disc on a beach ball and blow up the beach ball per os.
2B20.66 Lift a 25 lb weight with your lungs by blowing it up on a beach ball.
2B20.66 Pound in a nail with a bottle completely filled with boiled water.
2B20.67 A $2 m$ vertical glass tube is connected to a hot water bottle. Have students sit on the bottle.
2B20.70
2B20.70
A piston in a heavy walled glass cylinder is screwed in causing mercury to move in a capillary in a second enclosed container.
2B20.70 A heavy walled glass cylinder filled with water is pressurized mechanically and mercury in the capillary tube of a internal water bottle indicates the compression.
2B20.70
2B20.71
2B20.71
A syringe filled with air is compressed when a large weight is placed on it, but a water filled syringe does not compress.
2B20.72 Humor from Phil Johnson as he wrote" Diagram. Complicated and delicate. The actual description is a labor intensive device using mercury to calculate the decrease in total volume of water upon compression.
Shoot a . 22 at a water filled half pint paint can and the cover flies off. ALSO Hammer a nail with the side of a glass bottle filled with water.
2B20.76

2B20.76
2B20.80
2B20.80
2B20.80
2B30.00
2B30.05
2B30.05
2B30.10

2B30.15
2B30.15
2B30.15

A 1"x1" lead bar 35" long weighs 14.7 lbs.
Boil water in a can and cap. As the vapor pressure is reduced by cooling, the can collapses.
2B30.10 Boil water in a can and cap. As the vapor pressure is reduced by cooling, the can collapses.
2B30.10 Boil water in a can and seal it. Or, pump out a can slightly, put it in a vacuum chamber and blow it back up.
2B30.10 Boil some water in a one gallon can, then stopper and pour water over it. ALSO - evacuate.
2B30.10 Boil water in a soft drink can or one gallon can, then stopper and plunge into cold water.
With a hammer, strike the stopper of a large bottle completely filled with water and shatter the bottle.
A baggie taped onto a jar cannot be forced into or pulled out of the jar.

Three cushion hovercraft made from motorcycle innertubes and plywood.

A soft drink can is crushed by rapid condensation of steam.

Demonstratio	Bibliography	July 2015	
AJP 47(11),1015	crush the soda can	2B30.15	Heat water in the bottom of an aluminum soft drink can, then invert it over a pan of water.
TPT 28(8),550	crush the soda can	2B30.15	Boil water in a soda can, invert it over water, and then calculate the thermal efficiency during the collapse.
PIRA 500	crush a 55 gal drum	2B30.20	
UMN, 2B30.20	crush a 55 gal drum	2B30.20	Boil water in a 55 gal. drum using three LP gas burners. A vacuum gage in the smaller bung hole is optional. The barrel crushes at about a half atmosphere.
D\&R, F-025	crush a 55 gal drum	2B30.20	Boil water in a 55 gal drum, seal, and cool. Force approaches 3-4 tons.
Sprott, 2.4	crush a 55 gallon drum	2B30.20	Boil water in a 55 gal drum, seal, and cool.
Disc 11-16	barrel crush	2B30.20	Boil water in a 55 gal drum, seal, and cool.
PIRA 1000	crush the can with vacuum pump	2B30.25	
UMN, 2B30.25	crush the can with pump	2B30.25	A 1 gallon can is evacuated with a pump. A pop can heated with water and inverted on cold water.
F\&A, Fd-1	crush the can	2B30.25	Pump on a gallon can to collapse it.
Disc 11-14	crush can with pump	2B30.25	A one gallon can is evacuated with a vacuum pump.
Mei, 16-2.2	blow up the crushed can	2B30.26	Take a deep breath and blow up a crushed can.
Bil\&Mai, p 186	vacuum pack a student	2B30.28	A garbage bag with a hole in it for your head is place over a student with their arms crossed over their chest. Seal around the neck and the waist with tape and remove the air in the bag with a vacuum. When vacuum packed, the student will not be able to move their arms.
PIRA 200	Magdeburg hemispheres	2B30.30	Evacuate Magdeburg hemispheres and try to separate them.
UMN, 2B30.30	Magdeburg hemispheres	2B30.30	A set of Magdeburg hemispheres are evacuated with a pump.
AJP 36(3),ix	Magdeburg flat plates	2B30.30	Pump out flat plates separated by an o ring and hang weights.
TPT 3(6),285	Magdeburg hemispheres	2B30.30	Separate the hemispheres by placing in a bell jar and evacuating.
F\&A, Fd-2	Magdeburg hemispheres	2B30.30	Evacuate Magdeburg hemispheres and try to separate them.
Hil, M-22b. 3	Magdeburg hemispheres	2B30.30	Picture of two Magdeburg hemispheres.
D\&R, F-015	Magdeburg hemispheres	2B30.30	A set of Magdeburg hemispheres are evacuated with a pump. Try to separate.
Sprott, 2.1	Magdeburg hemispheres	2B30.30	Evacuate Magdeburg hemispheres and try to separate them.
Disc 11-12	Magdeburg hemispheres	2B30.30	An evacuated Magdeburg hemisphere set supports a large stack of weights.
Sut, M-323	Magdeburg hemispheres	2B30.31	Pump out a cylinder at least 5 " in diameter and lift a student.
PIRA 1000	Magdeburg hemisphere swing	2B30.33	
UMN, 2B30.33	Magdeburg hemisphere swing	2B30.33	Evacuate two Plexiglas plates with a 7.5 " "O" ring in between. Hook to the ceiling, grab onto the bottom plate and swing.
PIRA 1000	Magdeburg tug-of-war	2B30.34	
UMN, 2B30.35	Magdeburg tug-of-war	2B30.35	Evacuate two Plexiglas plates with a 12 " "O" ring in between and hook a 2 " rope to each plate. Have students do the tug of war.
AJP 48(11),987	Magdeburg hemispheres	2B30.35	A fifteen inch set used in a pull off between a Clydesdale and small 4-wheel drive.
PIRA 1000	suction cups	2B30.36	
UMN, 2B30.36	suction cups	2B30.36	Lift a 6 " cube of aluminum with a glass handler's suction cup.
Ehrlich 1, p. 101	suction cups	2B30.36	The power of atmospheric pressure can be demonstrated by pressing two plungers together to remove the air between them and then trying to pull them apart.
PIRA 1000	soda straw contest	2B30.40	
UMN, 2B30.40	soda straw contest	2B30.40	Ask how far a person can suck. Start with a 3^{\prime} tube, then try $6^{\prime}, 12^{\prime}$, and $18{ }^{\prime}$.
Ehrlich 2, p. 102	soda straw contest	2B30.40	4 situations where a person can not suck water up through a straw.
AJP 44(6),604	inverted glass	2B30.45	A 2 m long Plexiglas tube is used for the inverted glass demo. More on dissolved gases in liquid and cavitation using the same tube.
D\&R, F-310	inverted glass	2B30.45	Fill a glass or funnel with water, place a stiff card over opening and invert. Card remains in place due to atmospheric pressure below card.
D\&R, F-315	inverted glass spoof	2B30.45	A pop bottle with a hole drilled in the side can be made to release water when inverted by uncovering the hole with a finger.
Ehrlich 1, p. 102	inverted glass	2B30.45	Fill a bottle with water and place a stiff card over the opening. Invert the bottle and the card stays in place due to atmospheric pressure.
AJP 29(10),711	card on inverted glass modification	2B30.46	Replace the glass by a tube of 50 cm and when half filled, it cannot be inverted. Explanation.
D\&R, F-305	egg in a bottle	2B30.47	A lit match is put into a milk bottle and a hardboiled egg put on the mouth of the bottle. The egg is pushed into the bottle by atmospheric pressure.
TPT, 37(3), 178	the jumping pencil	2B30.48	Atmospheric pressure pushes a pencil out of a bottle.

Demonstration Bibliography

atmospheric pressure demos

PIRA 500	lift a stool
UMN, 2B30.50	lift a stool
Disc 11-19	rubber sheet lifting chair
PIRA 1000	adhesion plates
PIRA 500	stick and newspaper
Mei, 16-4.5	stick and newspaper
Disc 11-18	inertia shingles
PIRA 1000	vacuum bazooka
AJP 74(12), 1071	vacuum bazooka
AJP 72(7), 961	vacuum bazooka
Disc 11-15	vacuum bazooka
Sut, M-325	pressure due to height
PIRA 1000	Measuring Pressure mercury barometer
UMN, 2B35.10	mercury barometer
PIRA 1000	barometer in a tall bell jar
Hil, M-22b. 1	barometer in a tall bell jar
Disc 11-10	barometer in vacuum
AJP 29(6),369	balance barometer

F\&A, Fd-4 low barometric pressure
PIRA 500
UMN, 2B35.20
AJP 30(11), 807

F\&A, Ff-3
Sut, M-324

AJP 57(5),467

PIRA 200
PIRA 1000 - Old
UMN, 2B35.30
Mei, 16-4.1
AJP 29(2),123

PIRA 1000 aneroid barometer
F\&A, Ff-2 aneroid barometer
Hil, M-22b. 2
Disc 11-11
TPT 33(4), 224
Mei, 16-4.7
F\&A, Ff-1

PIRA 200

Ehrlich 1, p. 104
UMN, 2B40.10 weigh submerged block

F\&A, Fg-4 loss of weight in water

2B30.49 Four demos: 1) Hollow out a "suction cup" in the bottom of a cork so it will stay stuck at the bottom of a beaker as water is poured in. 2) Lift a heavy object by using rubber suction cups. 3) A smaller test tube is pulled into a larger water filled one as the system is inverted and the water runs out. 4) An aspirator is attached to a glass tube coming out of a sealed bottle of water.

2B30.50
2B30.50

2B30.50

2B30.55
2B30.60
2B30.60
2B30.60
2B30.70
2B30.70

2B30.70

2B30.70

2B30.80

2B35.00
2B35.10
2B35.10
2B35.15
2B35.15
2B35.15
2B35.16

2B35.18
2B35.20
2B35.20
2B35.20

2B35.20
2B35.20

2B35.26

2B35.30
2B35.30
2B35.30
2B35.31
2B35.35 A mercury manometer that when tipped over backward to an inclined position, has an angle whose sine is $1 / 10$.
2B35.40
2B35.40
2B35.40
2B35.40
2B35.45
2B35.50
2B35.60
2B40.00
2B40.10
Lower a 3 Kg block of aluminum suspended from a spring scale into water and note the new weight.
2B40.10 A weight hanging from a spring scale is lowered into a bucket of water. The scale reading is reduced by the amount of the buoyant force.
2B40.10 Suspend a 3 Kg block of aluminum from a spring scale and then lower the block into water and note the new weight.
2B40.11 An aluminum block on a spring scale is lowered into a beaker of water tared on a platform balance.

Mei, 8-1.8	reaction balance
Mei, 16-2.4	weigh submerged block
PIRA 1000	buoyant force
Disc 12-11	buoyant force
PIRA 1000	finger in beaker
UMN, 2B40.15	finger in beaker on balance
Bil\&Mai, p 188	finger in a beaker on balance
Ehrlich 2, p. 102	finger in a beaker on balance
AJP 52(2),184	improved hydrobalance
F\&A, Fg-7	Nicholson balance
PIRA 1000	board \& weights
UMN, 2B40.18	board \& weights float
Ehrlich 1, p. 97	board and weights float
Disc 12-13	board and weights float
PIRA 200	Archimedes' principle
2B40.20	Archimedes' principle
F\&A, Fg-1	Archimedes' principle
Sut, M-283	Archimedes' principle
Hil, M-20c	Archimedes' principle
D\&R, F-105	Archimedes' principle
Disc 12-12	Archimedes' principle
Sut, M-284	Archimedes' principle

AJP 50(11),968

AJP 50(11),968

AJP 50(6),491
PIRA 1000
F\&A, Fg-5
Mei, 16-2.5

Mei, 16-2.6

D\&R, F-130

Disc 12-17
PIRA 1000
UMN, 2B40.26
UMN, 2B40.26
TPT 28(7),510
TPT 25(1), 48
AJP, 78 (2), 139
reaction balance
weigh submerged block
buoyant force
yant force
finger in beaker
finger in a beaker on balance
improved hydrobalance
board \& weights
board \& weights float
board and weights float
board and weights float

Archimedes' principle

Archimedes' principle

Archimedes' - historical discussion 2B40.22

Archimedes - historical discusson

Archimedes' original experiment
battleship in a bathtub
float a battleship in a cup of water
float a battleship in a cup of water
float a battleship in a cup of water
battleship in a bathtub
battleship in bathtub
ship empty and full
ship empty and full
battleship in a bathtub
battleship in a bathtub
metal boats
metal boats
2B40.14

2B40.15
2B40.15

2B40.18
2B40.18

2B40.22

2B40.25

2B40.25
2B40.26
2B40.26

2B40.12 A beaker of water tared on a balance is displaced when an empty test tube is immersed.
2B40.13 Immerse a lead block suspended from a counterweighted balance in a beaker of water on a counterweighted platform balance and then transfer a weight to bring the system back into equilibrium.

2B40.14 A weight suspended from a spring scale is lowered into a beaker of water suspended from a spring scale.

2B40.15 A beaker of water is placed on a balance. Have students predict what the scale reading will be when you insert your finger into the water.
2B40.15 Place a cup of water on a scale. Insert your finger into the water and observe the scale reading.
2B40.17 An improvement of the Nicholson hydrometer.
2B40.17 A float that allows determination of loss of weight in water very accurately.

2B40.18 The amount of weight needed to sink a block of known weight which is floating in water is determined by the density of the block.
2B40.18 A board sinks equal amounts as equal weights are added.
2B40.20 Suspend a pail and weight from a spring scale, lower the weight into water, collect the overflow, pour it into the pail.
2B40.20 A mass and bucket of the same volume hang from a spring scale. Lower the mass into water, catch the overflow, and pour the overflow into the bucket.

2B40.20 A cylinder and bucket of the same volume hang from a scale. Immerse the cylinder in water, catch the runoff, pour it back into the bucket.
2B40.20 Hang a cylinder turned to fit closely inside a bucket from the bottom of the bucket while suspended from the bottom of a balance. Immerse the cylinder in water and then pour water into the bucket.
2B40.20 The four step Archimedes' principle with a close fitting cylinder and bucket.
2B40.20 Suspend a pail and weight from a trip balance, lower the weight into water, collect the overflow, and pour into the pail to re-establish balance.
2B40.20 Suspend a pail and weight from a spring scale, lower the weight into water, collect the overflow, pour it into the pail.
2B40.21 A beaker with a spout is tared on a balance. As an object is lowered into the water, the overflow is run into a beaker on the table and the balance remains in equilibrium. Also, the instructor puts a hand into a beaker of water in a tared platform balance.
Archimedes did not experience buoyancy, only how to measure volume.

2B40.22 Volume uncertainties make it impossible to show adulteration.

2B40.25 A small amount of water floats a wood block shaped to just fit in a graduate.
2B40.25 A juice can with ballast floats in a 1000 ml graduate. Also - sink the can and look at the water level.
Float a 2500 g can in 500 g water.

2B40.25 A small amount of water floats a wood block shaped to just fit in a tall beaker.

Add mass to an empty model boat and show pictures of a ship empty and full.
2B40.26 Same as TPT 28(7),510.
2B40.26 Will a cup three quarters full float in a cup one quarter full?
2B40.28 Why do metal boats float?
2B40.28 Can bubbles rising through a body of water sink a ship?

2B40.29 A block with a rock or metal cube tied to the top floats in water. Measure the waterline on the block. Now turn the block over so that the rock is in the water under the block. The waterline is lower (the block floats higher) because of the increase in surface area supplied by the rock.
2B40.30 Push on a diaphragm at the top of a large graduate or squeeze a stoppered whisky flask to make the diver sink.
2B40.30 A whiskey bottle version and a large bottle with a rubber bulb version of the Cartesian diver
2B40.30 Try a sharp blow on the countertop, prepare the diver with water warmer than room temp and allow it to cool during the class, set the diver so it will remain on the bottom after squeezing.
2B40.30 Squeeze the flat sides to sink the diver, squeeze the narrow sides to raise the diver.
2B40.30 A review of two Cartesian diver toys.
2B40.30 A study of an oscillating Cartesian diver at constant pressure. It sinks if the oscillation gets too large.
2B40.30 Push on a diaphragm at the top of a large graduate or squeeze a stoppered whisky flask to make the diver sink.
2B40.30 An inverted test tube diver in a jar.
2B40.30 A small vial Cartesian diver submerged by squeezing the bottle.
2B40.30 A large soda bottle version and a Windex bottle version of the Cartesian diver. Medicine droppers used as the diver.
2B40.30 A Cartesian diver made from a soda bottle and a medicine dropper or a piece of soda straw.
2B40.30 A buoyant bottle in a water column.
2B40.31
2B40.33 The picture is unclear, but the diver is in a graduate.
2B40.34 Insert matches with the head down.
2B40.37 A Plexiglas container of agitated plastic spheres forms a "fluid" in which various objects sink or float.
2B40.40
2B40.40 A brass weight counterbalanced by a aluminum sphere filled with air is placed in a bell jar.
2B40.40 A balance with a brass weight and a hollow sphere is placed in a bell jar and evacuated.
2B40.40 A toilet tank float is balanced against brass weights in air and in a vacuum.
2B40.40 A glass ball is balanced with a brass weight in a bell jar and then the air is pumped out.
2B40.40 The Leybold buoyancy of air apparatus.
2B40.40 A balance with a brass weight and a hollow sphere is placed in a bell jar and evacuated.

2B40.42
2B40.42 Place a balloon with some powdered dry ice in it on a balance. Tare, and watch as the balloon expands.
2B40.42 Fill a balloon with dry ice, seal it, place it on a scale, and watch the weight decrease as the balloon inflates. Also determine the volume by immersion.
2B40.43
2B40.43 A helium balloon floats in an inverted container but sinks when the container is filled with helium.
2B40.44
2B40.44
2B40.45
2B40.45
2B40.45
2B40.45 Place a large evacuated glass flask on a balance, then let air in and note the increased weight.
2B40.45 A one liter flask is tared on a balance, then pumped out and the loss of weight is about one gram.
2B40.45 Weigh a 1 gallon deflated Baggie. Fill with air, natural gas, propane, and note changes in apparent mass.
2B40.45 Place a hollow sphere on a balance scale and balance with small weights. Evacuate the sphere and rebalance.

Ehrlich 2, p. 136 weight of air

Ehrlich 2, p. 111 weight of air

Disc 12-10
Hil, M-22e. 1
TPT 28(6),406
Mei, 16-4.4

F\&A, Fh-2
TPT 36(1), 10
PIRA 1000
F\&A, Fh-1
Disc 12-06
PIRA 1000
Disc 12-18
PIRA 1000
Disc 12-19
TPT 24(3), 164
D\&R, F-110

Bil\&Mai, p 190

PIRA 1000
F\&A, Fg-2
D\&R, F-135
Disc 12-15
PIRA 1000
Sut, M-286
Disc 12-09
PIRA 1000
Disc 12-14
Hil, M-20a. 3
F\&A, Fi-12
Mei, 16-5.7

Sut, M-238
Sut, M-245

Sut, M-246
Sut, M-244
Sut, M-243
Mei, 16-2.8
Mei, 16-2.21

Sut, M-328
weight of air
density of hot and cold air CO2 balloon method density of air
liquid density comparison
specific gravity of fluids
specific gravity with electronic balances
water and mercury "U" tube
comparison of fluid densities
water and mercury u-tube
buoyancy in various liquids
buoyancy in various liquids
floating square bar
floating square bar
density of a soft drink
density of a soft drink
density of a soft drink
density ball
buoyancy of hot and cold water
density ball
density ball
hydrometers
hydrometers
hydrometer
different density woods
different density woods
density of wood
spherical oil drop
large drop
equidensity bubbles
equidensity drops
equidensity drops
equidensity drops
equidensity drops
kerosene/carbon tet. mixtures
chloroform bubbles
lifting power of balloons

2B40.45 Place a 1 inch steel ball bearing in a balloon, blow it up, and tie it to a large rubber band. The ratio of the oscillations of the balloon when blown up and when empty will allow you to calculate the density of the air in the balloon.

2B40.45 A balloon is weighed when fully inflated and when it is empty on a digital scale. An estimate can be made as to the air pressure inside the inflated balloon.
2B40.45 A glass sphere is weighed on a pan balance, then evacuated and weighed again.
2B40.46 Heat one of two cans hanging from a balance.
2B40.47 Use CO2 from carbonated water to fill a balloon for use in measuring the density of air.
2B40.50 Put one branch of a " Y " tube in brine and the other in colored water and suck.
2B40.51 Water and an unknown liquid are raised to different heights in vertical tubes by a common low pressure.
2B40.52 Finding the specific gravity of objects using an electronic balance.
2B40.53
2B40.53 A "J" tube with mercury in the short side and another fluid in the longer.
2B40.53 Water and mercury rise to different heights in a "J" tube.
2B40.54
2B40.54 Iron, bakelite, and wood are dropped into a column containing mercury, carbon tetrachloride, and water.
2B40.56
2B40.56 A long bar floats in one orientation in alcohol and switches to another orientation when water is added.
2B40.57 Cans of regular Coke and Pepsi sink, diet Pepsi and diet Coke float.
2B40.57 Cans of regular Coke sink, cans of diet Coke float. Will not work with plastic bottles.
2B40.57 Cans of regular Coke or Pepsi sink, diet Coke and diet Pepsi will float in a container of water. Add salt to the water and the regular Coke or Pepsi will rise.
2B40.59
2B40.59 A hydrometer is made so it sinks in warm water and floats in cold.
2B40.59 A plastic ball will float in salt water but sink in pure water. Create a density gradient so it will float at the halfway mark
2B40.59 A metal sphere barely floats in cold water and sinks in hot water.
2B40.60
2B40.60 A constant weight hydrometer, constant volume hydrometer (Nicholson), and Mohr-Westphal balance are used with liquids of various density.
2B40.60 A hydrometer is placed in water, then in alcohol.
2B40.61
2B40.61 Float blocks of balsa, pine, and ironwood in water.
2B40.62 Place a wood dowel in a graduate.
2B40.65 Olive oil forms a large spherical drop in a stratified mixture of alcohol and water.
2B40.65 A large drop of water is formed in a mixture of benzene and carbon disulfide. Picture.
2B40.65 Blow a soap bubble with air and then gas to give a bubble of the same density as the surrounding air.
2B40.65 A beaker of water has a layer of salt solution on the bottom. Place a drop of mineral oil on top and pipette in some colored salt solution. The drop in an oil sac sinks to the interface.
2B40.65 A globule of oil floats at the interface in a bottle half full of water with alcohol on top.
2B40.65 Aniline forms equidense and immiscible drops when placed in 25 C water. Pour 80 ml in cool water and heat.
2B40.65 Orthotoluidine has the same density as water at 24 C and is immiscible.
2B40.66 Kerosene and carbon tetrachloride can be mixed to give $.9 \mathrm{~g} / \mathrm{cc}$ to $1.6 \mathrm{~g} / \mathrm{cc}$ densities.
2B40.67 Chloroform bubbles, formed by heating a layer of chloroform covered by a lot of water, move up and down.
2B40.70 Fill balloons to the same diameter with different gases and show difference in lifting power.

Sprott, 2.18	lifting power of balloons - the impossible balloon
Sprott, 2.19	lifting power of balloons - neutral buoyancy balloon
Ehrlich 1, p. 103	lifting power of balloons
Sut, M-285	floating and density
Hil, M-20a. 4	adding salt
Mei, 16-2.7	kerosene and water
TPT 1(2),82	freon and air
Sut, M-316	pouring gases
Sprott, 2.16	carbon dioxide trough
Sut, M-317	gasoline vapors
Mei, 16-2.11	sticking to the bottom
PIRA 1000	density balls in beans
TPT 28(7),500	rising stones
D\&R, F-125	density balls in beans
AJP 73(1), 8	granular physics
TPT 28(2),104	Beans
Bil\&Mai, p 192	density balls in beans
Disc 12-16	density balls in beans
	Siphons, Fountains, Pumps
PIRA 1000	Hero's fountain
UMN, 2B60.10	Hero's fountain
F\&A, Fc-2	Hero's fountain
Sut, M-280	Hero's Fountain
Bil\&Mai, p10	Hero's fountain
Mei, 27-3.2	fountain in a flask
PIRA 1000	siphon
F\&A, Fe-1	siphon
Disc 13-10	siphon
Mei, 16-4.12	siphon in a bell jar
Mei, 16-4.11	siphons
Ehrlich 2, p. 104	siphon
Sut, M-281	pressure measurement in siphon
Sut, M-318	gas siphon
Sut, M-278	siphons
Mei, 15-10.12	self starting siphon

2B40.70 A spoof on the lifting power of balloons demonstration. A balloon that has a string through it which is attached to the ceiling appears to have a lifting power greater than permitted by Archimedes' principle.
2B40.70 A helium filled balloon attached to a heavy string rises until its buoyancy just balances its weight plus the string. (Variation on lifting power of balloons).

2B40.70 Hang the appropriate amount of weight from a helium filled balloon to achieve neutral buoyancy.
2B40.71 A tall tube is filled with several immiscible liquids of various densities. Solid objects are inserted that will float at the various interfaces. ALSO, Drop an egg in a tall jar of water and add a handful of salt.
2B40.72 Salt is added to a beaker of water to make a density ball float.
2B40.73 Float a test tube in water, kerosene, and a combination.
2B40.74 Fill a pan with freon and float a balloon on it to show the difference in density with air.
2B40.75 Pour sulfuric ether or carbon dioxide into one of two beakers on a platform balance. Shadow projection may be used to make it visible.
2B40.75 Carbon dioxide pours down a trough and extinguishes candles.
2B40.76 A teaspoon of gas placed at the top on a model staircase with a candle at the bottom.
2B40.80 Push a rubber stopper that floats on mercury down and squeeze out the mercury between the dish and the stopper.
2B40.85
2B40.85 Rising of rocks in the spring is the same as the sifting of fine particles to the bottom of a cereal box.
2B40.85 A ping pong ball will rise and a steel ball will sink in a bottle of shaken beans.
2B40.85 A listing of references on the following topics: Packing, Angle of Repose, Avalanches and Granular Flow, Hoppers and Jamming, Vertically Vibrated Induced Phenomena, Avalanche Stratification, and Axial Segregation.

2B40.85 The size of an aluminum ball determines whether it goes up or down in a shaking bowl of beans.
2B40.85 Bury a 40 mm Ping Pong ball in a bowl of Pinto beans and then place a 40 mm steel ball on top. Shake the bowl and the Ping Pong ball will rise to the top while the steel ball will sink to the bottom.
2B40.85 A ping pong ball in the middle of a beaker of beans will rise when the beaker is shaken.
2B60.00
2B60.10
2B60.10 An arrangement of reservoirs connected by tubes that forces a stream of water above the highest reservoir.
2B60.10 A clever arrangement that allows water to fountain higher than the reservoir.
2B60.10 A variant of Hero's fountain in which water shoots up above the level of the reservoir. Diagram.
2B60.10 A Hero's fountain constructed from 4 L bottles, rubber tubing, glass tubing, and a funnel.
2B60.15 A little water is boiled in a flask, a stopper with a single tube is inserted, the whole thing is inverted into a water reservoir.
2B60.20
2B60.20 A glass "U" tube demonstrates a siphon.
2B60.20 Start with two beakers half full of water and with a connecting hose full of water. Lift one beaker, then the other.
2B60.23 Water is transferred through a "U" tube from a sealed flask to an open beaker when the assembly is placed in a bell jar and evacuated.
2B60.24 An apparatus that shows atmospheric pressure (not cohesion) to be the basis for the siphon action.
2B60.24 A demonstration to show that the maximum height of a water siphon is about 10 meters under usual conditions.
2B60.25 Hook a manometer to the upper portion of a siphon.
2B60.26 Carbon dioxide is siphoned from one beaker to another.
2B60.29 A mechanical model of a siphon consists of chain hung over a pulley to a lower level. A diagram of a intermittent siphon (Tantalus cup) is shown.
2B60.30 An inverted " U " tube sealed in the side of a beaker makes a self starting siphon.

Demonstratio	Bibliography
Sut, M-279	self-starting siphon
F\&A, Fe-2	intermittent siphon
Hil, M-20a. 1	intermittent siphon
PIRA 1000	Mairotte flask and siphon
F\&A, Fe-3	Mariotte flask and siphon
F\&A, Fk-1	Mariotte flask
PIRA 1000	hydraulic ram
UMN, 2B60.60	hydraulic ram
AJP 48(11),980	hydraulic ram
Mei, 17-11.1	hydraulic ram
Sut, M-291	hydraulic ram
Hil, M-20d	hydraulic ram
Hil, M-22f. 2	spiral pump
PIRA 1000	lift pump
Hil, M-22f. 3	lift pump
Hil, M-22f. 4	force pump
Hil, M-22f. 5	hydraulic lift
	DYNAMICS OF FLUIDS Flow Rate
PIRA 200	velocity of efflux
PIRA 500 - Old	velocity of efflux
UMN, 2C10.10	velocity of efflux
AJP 73(7), 598	velocity of efflux
TPT 1(3),126	velocity of efflux
F\&A, Fk-2	velocity of efflux
Sut, M-314	velocity of efflux
Hil, M-20b. 2	velocity of efflux
D\&R, F-045	Torricelli's tank
Ehrlich 1, p. 98	velocity of efflux
Disc 13-15	Toricelli's tank
Sut, M-313	Toricelli's tank
Mei, 16-2.1	Mariotte's flask
PIRA 500	uniform pressure drop
F\&A, Fj-7	pressure drop along a line
Sut, M-58	viscosity
Ehrlich 1, p. 99	uniform pressure drop
Disc 13-12	uniform pressure drop
Sut, M-59	viscosity
PIRA 1000	syringe water velocity
Ehrlich 1, p. 100	bottle water velocity
Disc 13-11	syringe water velocity
Ehrlich 2, p. 107	falling water stream
Mei, 17-2.11	Forces in Moving Fluids hydrodynamic attraction
PIRA 500	Venturi tubes
UMN, 2C20.10	Venturi tubes

2B60.30 A diagram of a self-starting siphon.
2B60.35 A funnel with a "?" tube inside makes a self starting intermittent siphon.
2B60.35 The picture looks like the intermittent siphon.
2B60.40
2B60.40 A Mariotte flask is used to make a siphon with a constant flow rate.
2B60.40 The height of an open tube inserted through the stopper of a jug with an outlet at the bottom regulates flow.
2B60.60
2B60.60
2B60.60 Analysis of the hydraulic ram with picture of a demonstration device.
2B60.60 A large quantity of water falling a small height pumps a small quantity of water a large height.
2B60.60 A diagram of how to construct a demonstration hydraulic ram.
2B60.60 A glass model of a hydraulic ram that lifts water higher than the supply.
2B60.70 A spiral pump made of a glass tube coil.
2B60.75
2B60.75
2B60.80
2B60.85
$2 \mathrm{C00.00}$
2C10.00
2C10.10
2C10.10
2C10.10 A tall tube of water has holes top, middle, and bottom. Compare the range of the water streams.
2C10.10 A study of the drainage of a cylindrical vessel using video capture so that stream trajectory vs. water height can be plotted.
2C10.10 One page analysis and some teaching hints.
2C10.10 Small holes are drilled top, bottom, and middle of a cylinder of water.
2C10.10 A tall reservoir of water with holes at different heights.
2C10.10 A bottle has horizontal outlets at three heights.
2C10.10 Water streams from holes at different heights in a vertical acrylic tube.
2C10.10 Water streams from holes drilled in the top, middle, and bottom of a bottle. The hole in the middle shoots water the farthest.
2C10.10 Water streams from holes at different heights in a vertical glass tube.
2C10.11 Determine the velocity of efflux by the parabolic trajectory method or attach a manometer to the various openings. Holes of different size at the same height show independence of diameter.
2C10.12 A flask with three holes drilled in the side at different heights is filled with water and closed with a stopper fitted with an open glass tube. The flow from the holes changes as the tube is moved up and down.
2C10.20
2C10.20 Open tubes along a drain pipe show pressure drop along a line.
2C10.20 A series of small holes in a long $3 / 4^{\prime \prime}$ water pipe shows pressure drop due to friction. Do the same thing with $3 / 8$ " gas pipe.
2C10.20 The range of water streaming from a hole in the bottom of a can decreases linearly with time as the can empties.
2C10.20 Water flows in a horizontal glass tube with three pressure indicating standpipes fitted with wood floats.
2C10.22 Run a water pipe around the lecture hall with pressure gauges at the top and bottom of each side. Show the difference between static and kinetic pressure.
2C10.26
2C10.26 Find the pressure you need to squeeze a plastic bottle filled with water to achieve the maximum range of the water stream.
2C10.26 Squirt water out of a syringe. The water moves faster through the constriction.
2C10.30 A water stream from a faucet narrows as it falls allowing you to calculate the flow velocity and the flow rate.
2 C 20.00
2C20.05
2C20.10
2C20.10

Move a small sphere in water and another in close proximity will move due to hydrodynamic attraction. Pictures.

Air flows through a restricted tube. Manometers show the pressure differences.

Demonstration Bibliography

F\&A, Fj-1	Venturi tubes
Hil, M-12d	Venturi tubes
D\&R, F-210	Venturi tubes
PIRA 200	Venturi tubes with vertical pipes
F\&A, Fj-8	Venturi tubes with vertical pipes
Sut, M-294	Venturi tubes with vertical pipes
Disc 13-13	Venturi tubes
PIRA 500	atomizer
F\&A, Fj-2	atomizer
Ehrlich 1, p. 109	atomizer
Sut, M-304	aspirator, etc.
PIRA 1000	pitot tube p\&A, Fj-11
pitot tube	
pitot tube	
Disc 13-01	
Sut, M-305	venturi meter
PIRA 200- Old	floating ball
UMN, 2C20.30	floating ball
floating ball	
Sut, M-292	floating ball
Hil, M-12b	
D\&R, F-225, F-	floating ball
230	floating ball
Sprott, 2.2	floating ball
Bil\&Mai, p 198	floating ball in air jet
Disc 13-04	free flowing air stream
TPT 45(6), 379	floating objects
F\&A, Fj-9	floating object with a leaf blower
D\&R, F-232	

Mei, 17-2.9	oscillating floating balls
PIRA 200 - Old	funnel and ball
UMN, 2C20.35	ball and funnel
F\&A, Fj-4	funnel and ball
Sut, M-293	ball in a funnel
D\&R, F-220	funnel and ball
Sprott, 2.2	funnel and ball
Ehrlich 1, p. 105	ball in a funnel
PIRA 1000	ball in a stream of water
UMN, 2C20.36	ball in a stream of water
D\&R, F-225	ball in a stream of water
AJP 34(5),445	ball in a water stream
PIRA 200 - Old	lifting plate
UMN, 2C20.40	lifting plate
F\&A, Fj-5	lifting plate
AJP 71(2), 176	lifting plate
Disc 13-05	suspended plate in air jet

2C20.10 Air is blown through a constricted tube and the pressure measured with a manometer.
2C20.10 A series of manometers measures pressure of flowing air at points along a restricted tube.
2C20.10 Air is blown through a constricted tube and the pressures measured with a three-arm manometer.

2C20.15
2C20.15 Open vertical pipes show the drop in pressure as water flows through a constriction
2C20.15 Vertical tubes show the pressure as water flows along a restricted tube.
2C20.15 Three pressure indicating manometers with bright wood floats are located at and on either side of a constriction in a horizontal tube with water flow.
2C20.20
2C20.20 A jet of air is blown across one end of a "U" tube.
2C20.20 An atomizer made from a plastic straw in a water filled cup.
2C20.21 Three demos. 1) Water runs through a 1/2 " dia tube constricted to .1". The dissolved water boils in the constriction. 2) Hook a water faucet aspirator to a mercury manometer. 3) Blow one tube across the end of a second vertical tube dipped in water.
2C20.25
2C20.25 A small Pitot tube is constructed from glass.
2C20.25 A pitot tube is connected to a water manometer and the air stream velocity is varied. Graphics.
2C20.26 A manometer measures the pressure difference between the restricted and unrestricted flow in a tube.
2C20.30 A ball is suspended in an upward jet of air.
2C20.30 A ball is suspended in an upward jet of air.
2C20.30 A ping pong ball is supported on a vertical stream of water, air or steam.
2C20.30 Float a ball in an air stream.
2C20.30 A beach ball, plastic egg, and screwdriver suspended in a upward jet of air.
2C20.30 A balloon or ping pong ball is suspended in an upward jet of air.
2C20.30 A beach ball is supported on a vertical stream of air from a leaf blower.
2C20.30 A styrofoam ball is suspended in an air jet from a vacuum cleaner.
2C20.30 A demonstration showing that the static pressure in a free air stream is the ambient pressure.
2C20.31 Balls, screwdrivers, etc. float in a jet of air.
2C20.31 2 liter soda bottles, small footballs, file handles, and soda cans suspended in the air stream of a commercial leaf blower with reducing nozzle. Also use the air stream to unroll toilet paper from a dowel rod type dispenser.

2C20.33 An air jet keeps two balls at the high edge of semicircular tracks.
2C20.35 Support a ping pong ball by air or water streaming out of an upside-down funnel.
2C20.35 Air blowing out an inverted funnel will hold up a ball.
2C20.35 A ball will stick in the apex of a funnel hooked to an air supply.
2C20.35 A ping pong ball is supported by air or water streaming out of an upsidedown funnel.
2C20.35 Blow air through an inverted funnel suspending a ball in the apex.
2C20.35 Air blowing out an inverted funnel will hold up a ball.
2C20.35 A Ping-Pong ball is supported by air that is blown through an inverted funnel.

2C20.36
2C20.36 Same as AJP 34(5), 445 .
2C20.36 A ping pong ball suspended in an upward stream of water.
2C20.36 Drill out a clear Plexiglas tube to different diameters, connect water, and show that the ball sits at the change of diameter despite being tipped upside down.
2C20.40 Air blows radially out between two plates, supporting weights hung from the bottom plate.
2C20.40 Air blowing out between two horizontal plates supports a mass.
2C20.40 A stream of air flowing radially between two plates will lift the bottom plate.

2C20.40 Quantitative analysis of the levitation of a large flat plate.
2C20.40 Air blows radially out between two plates, supporting weights hung from the bottom plate.

Sut, M-295	lifting plate	2C20.41	A pin is stuck through a card and it is inserted into the hole in a wooden spool. Blow in the spool and the card sticks. This can be scaled up if higher air pressure is available.
Hil, M-12c	lifting plate	2C20.41	Blow into a spool and lift a paper with a pin stuck through into the hole in the spool.
D\&R, F-215	lifting plate	2C20.41	Blow into a spool and lift a paper with a thumb tack through it inserted into the hole in the spool.
AJP 47(5),450	spin out the air	2C20.43	When a disc hanging from a spring scale is mounted just above an identical spinning disc, the spring scale will show an increase in force.
PIRA 1000	coin in cup	2C20.44	
UMN, 2C20.44	blow coin into cup	2C20.44	Place a coin on the table a few inches in front of a coffee cup, give a puff, and the coin jumps into the cup.
Ehrlich 1, p. 106	blow coin into cup	2C20.44	Blow over the surface of a coin to get it to jump into a tilted cup.
PIRA 500	attracting sheets	2C20.45	
UMN, 2C20.45	attracting sheets	2C20.45	Blow a stream of air between two sheets of aluminum or aluminum foil.
Sut, M-296	attracting sheets	2C20.45	Blow air between two sheets of paper or two large balls and observe the attraction.
D\&R, F-235	attracting balls	2C20.45	Blow air between two suspended light bulbs or balls and observe the attraction.
Sprott, 2.2	attracting sheets	2C20.45	Blow air between two suspended pieces of paper. Observe the attraction.
Ehrlich 1, p. 107	attracting sheets	2C20.45	A fan blows upward between two sheets of paper. The top edges of the paper will show attraction.
Disc 13-06	suspended parallel cards	2C20.45	Blow an air stream between two parallel cards on bifilar suspensions.
F\&A, Fj-6	sticking paper flap	2C20.46	A stream of air blown between a paper and a surface will cause the paper to cling to the surface.
Ehrlich 1, p. 105	magnetic Ping-Pong ball	2C20.48	A Ping-Pong ball on a string brought near a falling stream of water will appear to be sucked into the stream.
PIRA 1000	airplane wing	2C20.50	
AJP 28(8),ix	airplane wing projection	2C20.50	A small cross section of an airplane wing with manometers at various locations is built into a projector assembly. A vacuum cleaner provides the air source.
F\&A, Fl-1	wind tunnel	2C20.50	An airplane wing element in a small wind tunnel shows lift.
Sut, M-302	airplane wing	2C20.50	A balanced model airplane shows lift when a stream of air is directed onto it.
Sut, M-301	airplane wing	2C20.51	Hold one edge of a sheet of paper horizontally and let the rest hang. Blow across it and watch the sheet rise.
Sut, M-303	airplane wing	2C20.52	Connect a slant manometer to holes on the top and bottom of an airfoil.
Mei, 17-2.5	raise the roof	2C20.53	Air blown over a model house raises the roof. Picture.
AJP 44(8),780	paper dirigible	2C20.54	A paper loop in an air stream and a falling card.
Mei, 17-2.13	Rayleigh's disk	2C20.54	A lightweight disk turns perpendicular to the air flow.
AJP 53(6),524	straight boomerang	2C20.55	Make a light straight boomerang from balsa. The theory is different from the usual one.
TPT 28(3),142	boomerang flight	2C20.55	An article explaining boomerang flight along with directions for throwing and building one.
AJP 45(3),303	fly wing mechanism	2C20.56	How to build a working model of Pringle's fly wing mechanism.
AJP 29(7),459	flying umbrella	2C20.57	A motor mounted inside an umbrella is attached to a centrifugal fan mounted above the umbrella pulling air through a hole in the top so it flows down over the side. Develops a few oz of lift.
Mei, 17-2.10	dropping wing sections	2C20.58	A folded index card, a paper pyramid, or a paper cone are stable when dropped apex down.
AJP 55(1),50	explaining lift	2C20.59	Explain lift based on repulsive forces.
TPT 28(2),84	aerodynamic lifting force explained	2C20.59	An article explaining that the longer path length does not cause lift.
TPT 28(2),78	aerodynamic lifting force	2C20.59	Lift is explained as a reaction force of the airstream pushed down by the airfoil. Several demonstrations are shown.
PIRA 200 - Old	curve ball	2C20.60	Use a "V" shaped launcher to throw curve balls.
UMN, 2C20.60	curve ball	2C20.60	A sandpaper covered wood track helps give a ball lots of spin.
TPT 3(7),320	curve ball	2C20.60	Throw a 3" polystyrene ball with a " V " shaped launcher lined with emery cloth.
F\&A, Fj-3	curved ball trajectory	2C20.60	A ping pong ball is thrown with a sandpaper covered paddle.
Mei, 17-2.12	curve ball	2C20.60	A "V" shaped launcher lined with styrofoam is used to launch curve balls.
Sut, M-299	autorotation	2C20.60	A half round stick used as a propeller will rotate in either direction given a start.
Sut, M-297	curve ball	2C20.60	A mailing tube lined with sandpaper helps give spin while throwing curve balls.

Demonstration Bibliography

D\&R, F-260	curve balls
Bil\&Mai, p 196	curve ball
Disc 13-03	curve balls
Mei, 17-2.1	spinning ball
Mei, 17-2.3	spinning ball device
AJP 76 (2), 119	spinning baseball
PIRA 1000	Bjerknes' tube UMN, 2C20.70 Bjerknes' tube
F\&A, Fj-10	Bjerknes' tube
Sut, M-298	Bjerknes' tube
D\&R, F-265	foam cup loop the loop

AJP 47(2),200	foam cup loop the loop
PIRA 500	spinning pen barrel spinning pen barrel
UMN, 2C20.75	
PIRA 1000	Flettner rotator
AJP 55(11),1040	Flettner rotor ship on air track

Sut, M-300	Flettner rotator
Disc 13-02	Flettner rotator
Mei, 17-2.4	Magnus effect
TPT 21(5), 325	frisbee
TPT 24(8), 502	flying ring, Aerobie
TPT 27(5), 406	flying ring
TPT 16(9), 662	flying ring
TPT 17(5), 286	flying ring
	Viscosity
PIRA 1000	viscosity disc
Sut, M-62	viscosity disc
Sut, M-61	viscosity disc
Sut, M-56	viscosity disc
Sut, M-55	viscosity - viscosimeter
Mei, 17-3.1	pulling an aluminum plate
AJP 33(10),848	viscocity in capillary
PIRA 1000	viscosity of oil
F\&A, Fm-2	viscosity of oil
Disc 14-06	oil viscosity
Mei, 17-3.3	temperature and viscosity
Sut, M-57	viscosity and temperature
F\&A, Mb-32	termimal velocity - drop ba

July 2015
Fluid Mechanics
2C20.60 A PVC tube lined with sand paper gives spin to Styrofoam balls when thrown.
2C20.60 Use a sandpaper covered "V" shaped launcher to throw curve balls.
2C20.60 Throw a styrofoam ball with a throwing tube. Animation.
2C20.61 Direct a high speed stream of air at a ball spinning on a rotating rod free to pivot perpendicular to the air stream. Pictures.
2C20.62 A device to spin and throw a ping pong ball. Diagrams and details.
2C20.62 Measurements of the Magnus force on a spinning baseball using a pitching machine and high speed motion analysis system.
2C20.70
2C20.70 Cloth webbing wrapped around a mailing tube is jerked out causing the tube to spin through a loop the loop motion.
2C20.70 Pulling a cord wrapped around a mailing tube spins it into a loop the loop path.
2C20.70 Wrap three feet of cloth tape around the middle of a mailing tube and give a jerk. The tube does a loop-the-loop.
2C20.72 A stretched rubber band wrapped around two Styrofoam cups attached bottom to bottom will spin through a loop the loop motion. A string wrapped mailing tube will also display this motion when the string is quickly jerked.

2C20.72 Glue the rims of two Styrofoam cups together and launch by letting them roll off the fingers while throwing. Four glued together works better.
2C20.75
2C20.75 Remove the filler from a ball point pen, place under your thumbs at the edge of the lecture bench. Pop the barrel out from under your thumbs giving it lots of spin.
2C20.80
2C20.80
An aluminum can spun with a battery operated motor (and reversing switch) is mounted on an air track glider. A vacuum cleaner exhaust provides the cross wind.
2C20.80 Direct an air stream at a rotating vertical cylinder on a light car. The car will move at right angles to the air stream.
2C20.80 A car with a spinning styrofoam cylinder moves perpendicular to an air stream. Animation.
2C20.85 Construction details for a very light cylinder and a method of spinning and releasing. Diagram. ALSO - Vertical motorized cylinder on a cart.
2C20.95 Of frisbees, can lids, and gyroscopic effects.
2C20.96 A description and the aerodynamics of the Aerobie flying ring.
2C20.96 A flying ring that is thrown like a football. Description and construction details.
2C20.96 Why does a cylindrical wing fly? Also construction details.
2C20.96 More on the flying cylinder.
2C30.00
2C30.10
2C30.10 A horizontal disc is hung on a single thread and a second disc is spun below it causing deflection.
2C30.11 A disc is spun between two parallel plates of a platform balance and the deflection is noted.
2C30.12 A metal sheet and a disc are mounted parallel in a container of fluid. Rotate the disc and observe the displacement of the sheet by projection.
2C30.13 Coaxial cylinders are separated by a fluid. As the outer cylinder is rotated, the drag induced motion of the inner cylinder is observed by optical lever magnification.
2C30.15 Use a string and pulley to a mass to pull an aluminum plate out of a viscous fluid (GE Silicone Fluid, SF-96/10,000).
2C30.20 A Mariotte flask with a capillary out on the bottom permits varying the pressure at cm of water.
2C30.25
2C30.25 Invert several sealed tubes filled with oil. Air bubbles rise.
2C30.25 Quickly invert tubes of oil and watch the bubbles rise to the top.
2C30.30 Tubes filled with motor oil and silicone oil are inverted at room temperature and after cooling with dry ice/alcohol.
2C30.30 Rotate a cylinder of castor oil in a water bath on a turntable. Heated from 540 C, the viscosity falls 15:1.
2C30.45 Precision ball in a precision tube.

Demonstra	Bibliography	July 2015	
PIRA 500	terminal velocity in water, glycerin	2C30.50	
UMN, 2C30.50	terminal velocity in water, glycerin	2C30.50	Drop balls in large 1 meter test tubes, one filled with water, the other with glycerine.
F\&A, Fm-1	terminal velocity - drop balls	2C30.50	A steel ball is dropped into a graduate filled with oil.
Disc 14-02	viscous drag	2C30.50	Steel, glass, and lead balls are dropped in a tall cylinder filled with glycerine.
Mei, 17-4.1	terminal velocity - diameter	2C30.51	Steel balls of different diameters are dropped in glycerine.
Mei, 17-4.3	terminal velocity - diameter	2C30.52	Three steel balls of different diameters are sealed in a 4' tube. Illuminate with a lamp at the bottom.
Mei, 17-4.2	terminal velocity - specific gravity	2C30.53	Four balls of the same diameter with carefully adjusted specific gravity are dropped in glycerine.
PIRA 1000	ball drop	2C30.55	
AJP 34(4),xvii	terminal velocity - styrofoam ball	2C30.55	A 2" dia. styrofoam ball reaches terminal velocity in $51 / 2 \mathrm{~m}$.
Disc 14-03	ball drop	2C30.55	Several balls including styrofoam balls of three diameters are dropped four meters. Use stop frame and take data.
AJP 35(2), xx	terminal velocity - dylite beads	2C30.56	Dylite beads reach terminal velocity quickly in water, and when expanded by heating in boiling water, are also useful in air.
PIRA 500	terminal velocity - styrofoam	2C30.60	
UMN, 2C30.60	terminal velocity - styrofoam	2 C 30.60	Drop styrofoam half round packing pieces.
PIRA 1000	terminal velocity coffee filters	2C30.65	
UMN, 2C30.65	terminal velocity coffee filters	2C30.65	Drop a coffee filter and it descends with low terminal velocity. Crumple one and drop it.
D\&R, M-136	coffee filters	2C30.65	Drop coffee filters with masses of 1and 4 simultaneously. Hold 4 mass filters at twice the height of 1 mass filter.
Bil\&Mai, p 31	terminal velocity coffee filters	2C30.65	Coffee filters, one crumpled, are dropped over a motion sensor. Compare the graphs.
Ehrlich 2, p. 40	terminal velocity coffee filters	2C30.65	Drop coffee filters from different heights and measure their terminal velocity.
TPT, 37(3), 181	measuring friction on falling muffin cups	2C30.65	Using a set-up of muffin cups and a motion detector to explore terminal velocity.
Disc 14-01	air friction	2C30.65	Drop crumpled and flat sheets of paper.
	Turbulent and Streamline Flow	2C40.00	
AJP 45(1),3	swimming bacteria	2C40.01	A transcription of an interesting talk about the world of low Reynolds number.
PIRA 1000	streamline flow	2C40.10	
UMN, 2C40.10	streamline flow	2C40.10	The Cenco streamline flow apparatus.
AJP 59(11),1051	streamline and turbulent flow	2C40.10	A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source.
Sut, M-306	streamline flow	2C40.10	A commercial apparatus to show flow around objects in projection cells.
Mei, 17-2.2	streamline flow	2C40.11	Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers.
Mei, 17-2.6	streamlines	2C40.12	a simple gravity streamline apparatus.
AJP 37(9),868	streamlines on the overhead	2C40.14	Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails.
Mei, 17-8.2	inverse square law patterns	2C40.14	Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620.
Sut, M-307	dry ice fog	2C40.16	Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow.
Sut, M-312	streamline design	2C40.17	The effect of moving air on a disc and streamlined object of the same cross section is demonstrated.
Mei, 17-8.1	fluid mappers	2C40.18	Several types of fluid mappers. Pictures and diagrams. Construction details in appendix, p. 614.
Sut, M-308	streamline flow - blow out candle	2C40.20	Place a lighted candle on one side of a beaker and blow on the other side to put out the candle.
Bil\&Mai, p 194	streamline flow - blow out candle	2C40.20	Place a lighted candle on one side of a beaker and blow on the other side to put out the candle.
Sut, M-309	streamline flow - blow over a card	2C40.21	A technique to blow a card over using upward curling streamlines.
PIRA 1000	Poiseuille flow	2C40.25	
Mei, 17-5.1	Poiseuille flow	2C40.25	Colored glycerine is placed on top of clear glycerine in a square cross sectioned tube and a stopcock is opened at the bottom to adjust flow.

Sut, M-310	streamline flow
Sut, M-254	vena contracta
PIRA 1000	laminar and turbulent flow
UMN, 2C40.50	laminar and turbulent flow
F\&A, Fk-3	turbulent flow
AJP 28(2),165	Reynold's number
Mei, 17-7.1	Reynold's number
Mei, 17-7.2	Reynold's number
Mei, 17-7.5	Reynolds' number
Mei, 17-7.3	Reynolds' number
Mei, 17-2.7	laminar and turbulent flow
Sut, M-311	streamline vs. turbulent flow
Mei, 17-2.8	laminar and turbulent flow
TPT 12(5),297	laminar \& turbulent flow
AJP 44(10),981	stero shadowgraph
Hil, M-22c	weather maps
AJP 53(5),484	Rayleigh-Taylor instability in Prell
	Vorticies
PIRA 200 - Old	smoke ring
UMN, 2C50.10	smoke ring
F\&A, Fp-1	vortex rings
Sprott, 2.24	smoke ring
Mei, 17-8.6	smoke rings
Hil, S-2i	vortex box
PIRA 1000	vortex cannon
D\&R, F-285, W-	vortex cannon
005	
Bil\&Mai, p 200	vortex cannon
Disc 13-07	vortex cannon
PIRA 1000	liquid vortices
Sut, M-253	liquid vortices
Mei, 17-8.4	ring vortices in liquid
Ehrlich 1, p. 108	ring vortices in liquid
Mei, 17-8.5	semicircular vortex in water
TPT 28(7),494	detergent vortex
Mei, 17-8.7	whirlpool
PIRA 1000	tornado tube
UMN, 2C50.30	tornado tube
F\&A, Fp-2	tornado vortex
D\&R, F-280	tornado vortex
Ehrlich 1, p. 70	tornado vortex
Disc 13-09	tornado tube
PIRA 1000	flame tornado

PIRA 1000

2C40.25 Watch the interface between clear oil on the bot
colored oil on top as oil is drawn off the bottom.
2C40.30
2C40.50
2C40.50
2C40.50
2C40.51 A tapered nozzle introduces tracer fluid into a tube at the bottom of a reservoir.
2C40.51 A device for varying the flow in a tube and introducing a tracer into the flow. Several hints. Reference: AJP 28(2),165.
2C40.52 A funnel feeds methylene blue into a vertical tube with adjustable water flow.
2C40.52 Water with potassium permanganate flows through a vertical tube. Flow is varied and rate is determined by timing 1 liter.
2C40.53 The flow rate in a long thin brass tube is adjusted until spitting starts. Flow rate is determined by collecting water for a given time.
2C40.60 Shadow project rising warm air flowing around objects.
2C40.61 Drop a ball into a viscous liquid or water. Shadow project a hot iron ball in slowly or rapidly moving air.
2C40.63 The Krebs apparatus is used to show flow of water around objects.
2C40.71 A discussion of the various types of friction involving the air track.
2C40.73 On viewing fluid flow with stereo shadowgraphs.
2C40.80 Daily weather maps show large scale fluid dynamics.
2C40.90 A air bubble rising in a tube of Prell shampoo demonstrates Rayleigh-Taylor instability. Other examples are given.
2C50.00
2C50.10 Tap smoke rings out of a coffee can through a 1" dia. hole.
2C50.10 Smoke rings are tapped out of a coffee can through a 1" dia. hole.
2C50.10 Tap smoke rings out of a can with a rubber diaphragm on one end and a hole in the other.
2C50.10 A cardboard box with a hole in one side produces smoke ring vortices.
2C50.11 A rubber sheet at the back on a large wooden box is struck with a hammer to produce smoke rings capable of knocking over a plate. Fuming HCL and conc. ammonia produce the smoke.
2C50.12 A 15 inch square, 4 inch deep vortex box with a 4 inch diameter hole.
2C50.15
2C50.15 Use a large box with a hole in one end and a heavy plastic diaphragm in the other is used to blow smoke rings and blow out candles.
2C50.15 Blow smoke rings with a 5 gallon bucket that has a hole in the bottom and a plastic diaphragm over the top. Use a fog machine to make the "smoke".
2C50.15 Use a large barrel to generate a smoke ring. Blow out a candle with the vortex. Animation.
2C50.20
2C50.20 A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep.
2C50.21 Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water.
2C50.21 A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring.
2C50.22 A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector.
2C50.23 A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds.
2C50.25 Water is introduced tangentially into a cylinder with a hole in the bottom.
2C50.30
2C50.30
2C50.30 A vortex forms in a large cylinder on a magnetic stirrer.
2C50.30 A vortex forms in a gallon jug when inverted and swirled about the vertical axis.
2C50.30 Swirling a water filled jug that has a hole in its cap creates a tornado vortex that lasts a long time.
2C50.30 Couple two soft drink bottles with the commercial tornado tube coupler and spin the top bottle so the water forms a vortex as it drains into the bottom bottle.

Demonstration Bibliography

$\left.$| AJP 37(9),864 | paraboloids and vortices
 growing a large drop |
| :--- | :--- |
| F\&A, Fo-1 | |\quad| Non-Newtonian Fluids |
| :--- |
| fluidization | \right\rvert\, | Mei, 17-10.1 | cornstarch |
| :--- | :--- |
| PIRA 1000 | cornstarch |
| UMN, 2C60.30 | |
| PIRA LOCAL | |\quad| cornstarch on a speaker |
| :--- |

2C50.35 A transparent cylinder is rotated at speeds up to 1000 RPM.
2C50.40 A vortex is formed in an air stream allowing one to form a large water drop.

2 C 60.00
2C60.10 A bed of silica powder acts like a fluid when air is forced through it. Diagram.
2C60.30
2C60.30 Add water to cornstarch until it is goo. Pour it, throw it, punch it.
2C60.32 Cover a large speaker with Saran wrap. Pour the cornstarch mixture into it and make the mixture "dance" when you run the speaker with a wave generator or music.
2C60.35
2C60.35 Borax and resin glue will produce an elastic ball.
2C60.35 A commercial product "Slime" flows like a liquid under normal conditions but bounces on impact.
2C60.40
2C60.40
2C60.50 Asphalt splinters when smashed but flows gradually, sand flows when poured but remains in a conical pile.
2C60.55
2C60.55 Fill a super soaker with ketchup. Shoot it across the room and it blobs on the wall.

	OSCILLATIONS Pendula simple pendulum
PIRA 200	simple pendulum simple pendulum
D\&R, M-900	
Bil\&Mai, p 172	simple pendulums

Mei, 15-7.2
PIRA 1000
Hil, M-14f.2

Disc 08-19

AJP 52(1),85
Sut, M-129

TPT 13(6),365

Mei, 15-4.1

Sut, M-94

Mei, 15-1.14
variable g pendulum
torsion pendulum
variable g pendulum
variable g pendulum
variable angle pendulum
variable g pendulum
variable g pendulum
cycloidal pendulum
cycloidal pendulum
nonisochronism of pendulum

3A00.00
3A10.00
3A10.10 Suspend a simple pendulum from a ringstand.
3A10.10 Suspend a simple pendulum from a ringstand.
3A10.10 A pendulum made from a hacksaw blade with a mass on the end. Length of the pendulum is easily adjusted with a clamp.
3A10.10 A set of 5 pendulums hung from the same support. Three have different lengths strings so that their periods can be compared. Three have different mass bobs but the same length strings so that the effect of mass can be observed.
3A10.13 An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime.
3A10.13 An apparatus for open-ended investigation of the simple pendulum. Bobs have adjustable length and are of different shape.
3A10.14
3A10.14 8 pendula of differing lengths designed to lead students to the conclusion that length and period are related by the square of the period
3A10.14 4:1 pendula have 2:1 period.
3A10.15
3A10.15 Suspend a bowling ball from the ceiling
3A10.17
3A10.17 Long pendula made of lead and cork are released simultaneously.
3A10.17 Pendula of the same length and different mass oscillate together.
3A10.20
3A10.20 A vertical leaf spring supported at the base has a movable mass
3A10.20 A piece of clock spring mounted vertically on a heavy base has an adjustable mass to change the period.
3A10.21 The metronome as an adjustable pendulum.
3A10.30
3A10.30 A metal spoked wheel is suspended as a torsional pendulum by a wire attached to the axle.
3A10.30 A wheel is suspended as a physical pendulum by a flexible axle.
3A10.30 A brass disk or bar is suspended as a torsion pendulum by a wire attached to the axle.
3A10.30 Add weight to a torsion pendulum to decrease the period.
3A10.31 A large clock spring oscillates an air bearing supported disc. Vary mass, damping, etc.
3A10.31 A large clock spring oscillates a vertical rod with an adjustable crossbar.
3A10.32 Calculate angular velocity and acceleration with a large slow torsion pendulum that has movable timer contacts.
3A10.34 Crossed dumbbells with adjustable masses are mounted on an axle as spokes of a wheel. Show the dependence of the period on rotational inertia and on the distance between the center of gravity and axis of the pendulum.

Strobe photography of a torsion pendulum.
3A10.40
3A10.40 A pendulum with a bifilar support of solid rods can be inclined to decrease apparent g.
3A10.40 A physical pendulum is mounted on a bearing so the angle of the plane of oscillation can be changed.
3A10.42 Use an electromagnet under the pendulum bob to increase the apparent g .
3A10.42 A hidden electromagnet causes a variation in period of a iron pendulum bob.

3A10.44 An evaluation of the model M110 Variable g Pendulum manufactured by Physics Apparatus Research Inc. Good pictures of the device for those interested in building their own.
3A10.50 Demonstrate that a cycloidal pendulum with any amplitude has a period identical to a equal length simple pendulum at small amplitude. Construction details p. 603
3A10.50 A pendulum made to swing at large amplitude in the cusp of an inverted cycloid is compared to a simple pendulum.
3A10.55 Two identical pendula, started with large and small amplitudes, have different periods.

AJP 28(1),76	sliding pendulum
PIRA 200	Physical Pendula physical pendulum
Ehrlich 2, p. 122	other symmetrical shap
Ehrlich 2, p. 123	physical pendulum
AJP 48(6),487	physical pendulum set
TPT 28(1),51	other symmetrical shap
AJP 55(1),84	balancing man physica
Mei, 15-5.2	rocking stick
Ehrlich 2, p. 124	rocking stick
PIRA 500	oscillating bar
UMN, 3A15.20	oscillation bar
TPT 17(1),52	oscillating bar
TPT 12(8),494	oscillating bar
Sut, M-203	oscillating bar
D\&R, M-904	physical pendulum
Disc 08-18	physical pendulum
Hil, M-14d	two rods and a ball
PIRA 500	oscillating hoop
UMN, 3A15.25	oscillating hoop
F\&A, My-3	oscillating hoop
PIRA 1000	paddle oscillator
UMN, 3A15.30	paddle
F\&A, My-1	paddle
Mei, 12-3.8	triangle oscillator
F\&A, My-8	bent wire
PIRA 500	truncated ring
UMN, 3A15.40	truncated ring
Ehrlich 2, p. 126	truncated ring
AJP 35(10),971	truncated ring
Disc 08-16	hoops and arcs
PIRA 1000	oscillating lamina
UMN, 3A15.45	oscillating lamina
PIRA 500	sweet spot
UMN, 3A15.50	sweet spot
AJP 44(8),789	center of percussion
AJP, 73 (4), 330	a better bat
F\&A, My-7	sweet spot
D\&R, M-694	sweet spot

3A10.61 A block of dry ice is placed on a large parabolic mirror or bent sheet metal trough or other (i.e., cycloidal) curves.
3A15.00
3A15.10
Any distributed mass pendulum.
The frequency with which you swing your arms while walking is that of a physical pendulum of the same length.
3A15.10 A physical pendulum made from a meter stick.
3A15.10 A reconstruction of a nineteenth-century physical pendulum set of four shapes of equal length mounted from a common bar.
Twenty various physical pendula are shown.

3A15.12 The balancing man usually used to show stable equilibrium is used here as a physical pendulum.
3A15.13 A meter stick with small masses at the ends rocks on a large radius cylinder. Derivation.
3A15.13 A ruler is balanced on a cylinder or soda can and set into oscillation.
3A15.20
3A15.20 A bar is suspended from pivots at $1 / 6$ and $1 / 4$ of its length. A companion simple pendulum is used for comparison.
3A15.20 Analysis of the oscillating bar with a graph of typical data.
3A15.20 Analysis of the oscillating bar includes suspending the bar from a string.
3A15.20 Suspend the meter stick from one end and find the center of oscillation with a simple pendulum of the same period.
3A15.20 A board 2 m long with holes drilled every 4 cm from one end to the center. Find the minimum period.
3A15.20 Compare the period of a bar supported at the end with a simple pendulum of 2/3 length.
3A15.21 A rod pivots at a point $2 / 3 \mathrm{I}$, a second rod $2 / 3 \mathrm{I}$ pivots at the end, and a simple pendulum has length $2 / 3 \mathrm{I}$. Then pivot the long rod from the end and compare periods.
3A15.25
3A15.25 A hoop and pendulum oscillate from the same point.
3A15.25 Adjust a simple pendulum to give the same period as a hoop.
3A15.30
3A15.30 A physical pendulum that oscillates with the same frequency from any of a series of holes.
3A15.30 An odd shaped object oscillates from conjugate points that give the physical pendulum equal periods.
3A15.31 Suspend a meter stick four different ways with the same period of oscillation. Holes are drilled on two concentric circles about the center of mass of a large triangle such that the period of oscillation is always the same.

3A15.35 Measure the period of a two corks on a bent wire physical pendulum with the wire bent to various angles.
3A15.40
3A15.40 Same as AJP 35(10),971.
3A15.40 Any partial ring regardless of its fraction of the entire ring will oscillate with the same period if they have the same radius.
3A15.40 Removing any part of the hoop will not change the period.
3A15.40 A hoop oscillates with the same period as arcs corresponding to parts of the hoop.
3A15.45
3A15.45
3A15.50
3A15.50 A baseball bat on a frame is rigged to show the motion of the handle end when the bat is hit on and off the center of percussion.
3A15.50 Hang a rod from a thin steel rod that acts as both a support and a pivot. A styrofoam ball on the thin rod is an indicator of the motion of the end of the hanging rod.
3A15.50 Experimental results on the large amplitude motion of a double pendulum are presented and analyzed. Results show how a "perfect" bat could be designed.
3A15.50 Hit a baseball bat on a rail suspension at points on and off the center of percussion.
3A15.50 A baseball bat on a pivot where the hands would be is hit on and off the center of percussion.

Demonstration	Bibliography	July 2015	
Bil\&Mai, p 214	sweet spot	3A15.50	A baseball bat on a pivot where the hands would be is hit on and off the center of percussion by a baseball suspended from a string.
Disc 06-12	center of percussion	3A15.50	Hang a long metal bar by a string from one end. Strike the bar with a mallet at various points.
Mei, 15-6.2	sweet spot	3A15.52	Fire a spring powered gun at a meter stick loosely supported on one end. The top jumps one way or the other when hit off the center of percussion.
Sut, M-204	sweet spot	3A15.53	Strike a meter stick supported by a matchstick at its center of percussion. Repeat off the center of percussion and break the matchstick. May be scaled up.
Mei, 15-6.1	sweet spot	3A15.54	A bunch of corks sit on a meter stick on the lecture bench. Hit the stick near the end and as it moves down the table the cork at the center of percussion will remain on the stick.
F\&A, My-5	sweet spot	3A15.55	A rectangular bar suspended by a thread along with an adjustable simple pendulum. Strike the bar.
Sut, M-205	sweet spot	3A15.55	Strike a heavy metal bar suspended by a string at various points.
F\&A, My-4	sweet spot	3A15.56	A rectangular bar is supported as a physical pendulum from one of two pivots along with a simple pendulum.
PIRA 1000	sweet spot of a meter stick	3A15.57	
UMN, 3A15.57	sweet spot of a meter stick	3A15.57	
Mei, 15-3.6	sweet spot	3A15.58	A bat is suspended from a horizontal cable under tension. When struck off the center of percussion, vibrations in the cable cause a neon lamp to light.
AJP 49(9),816	sweet spot analysis	3A15.59	The different definitions of the term "sweet spot" are discussed, each one based on a different physical phenomenon.
AJP 54(7),640	analysis of the sweet spot	3A15.59	Analysis of the three sweet spots of the baseball bat and the location of the impact point that gives maximum power.
AJP 77 (1), 36	measurements on the swing of a bat	3A15.59	Measurements on the swing of a baseball bat are analyzed to extract the basic mechanics of the swing.
PIRA 1000	Kater's pendulum	3A15.70	
AJP 48(9),785	Kater's pendulum	3A15.70	Modification of a Welch Kater pendulum so that it may be used more systematically and with improved precision to measure the acceleration due to gravity.
F\&A, My-2	Kater's pendulum	3A15.70	An elaborate pendulum that allows "g" to be determined accurately.
TPT 10(8),466	Kater's pendulum	3A15.72	Analysis of: if the center of mass is halfway between the pivots, g cannot be determined from measurements of equal period alone.
AJP 69(6), 714	Kater \& Bessel's pendulum	3A15.73	A Bessel pendulum is used in the laboratory and measurements of the local acceleration of gravity made to an accuracy of 1 part in 10,000 . Physical principles underlying the Kater pendulum as well as Bessel's refinement are also reviewed.
	Springs and Oscillators	3 A 20.00	
PIRA 200	mass on a spring	3A20.10	A mass oscillates slowly on a large spring.
UMN, 3A20.10	mass on a spring	3A20.10	A kg and other masses oscillate on a spring with a constant of about $30 \mathrm{~N} / \mathrm{m}$.
F\&A, Mx-3	mass on a spring	3 A 20.10	Mass on a spring.
Disc 08-11	mass on spring	3A20.10	Double the mass on the same spring. Try identical springs in parallel.
AJP 49(11),1074	bouncing students	3A20.11	Students are bounced from GM car hood springs. Examine the period with different students on board.
TPT 14(3),174	mass on a spring	3A20.12	A shortcut method for constructing a vertical spring oscillator of predetermined period.
TPT 16(2),114	mass on a spring	3 320.13	Use a Slinky for a spring and vary k by using different numbers of turns.
TPT 14(9),573	mass on a spring	3A20.16	A discussion of the complexities of the vertical mass on the spring in comparison to the horizontal case.
PIRA 1000	springs in series and parallel	3A20.20	
UMN, 3A20.20	springs in series and parallel	3A20.20	Hang a mass from a spring, $1 / 2$ mass from two springs in series, and $2 m$ from springs in parallel.
Disc 08-02	air track glider and spring	3 320.30	An air cart is attached to a single horizontal coil spring.
PIRA 200 - Old	air track glider and spring	3 320.30	An air glider is attached to a single horizontal coil spring.
UMN, 3A20.30	air track glider and spring	3 320.30	An air glider is attached to a single horizontal coil spring.
F\&A, Mx-7	air track glider and spring	3A20.30	Horizontal mass and single spring on the air track.
Mei, 11-1.13	air track glider and spring	3 320.31	Four methods of determining Hooke's law with an air glider and spring.
PIRA 1000	air track glider between springs	3A20.35	
UMN, 3A20.35	air track glider between springs	3A20.35	
Hil, S-1g	air track mass between springs	3 A 20.35	A mass between two springs on an air track.
Disc 08-12	air track simple harmonic motion	3A20.35	Place an air track glider between two springs. A video overlay shows the sinusoidal path.

Demonstration Bibliography

Mei, 10-2.13	dry ice puck oscillator
PIRA 1000	roller cart and spring
UMN, 3A20.40	roller cart and spring
PIRA 1000	oscillating chain
UMN, 3A20.50	oscillating chain
F\&A, Mz-4	oscillating chain
Mei, 15-7.3	oscillating chain
F\&A, Mz-5	"U" tube
Hil, S-1h	ball in spherical dish
Mei, 15-1.17	differences in harmonic motion
Mei, 10-2.14	diatomic molecule oscillator
Ehrlich 2, p. 142	burn a candle at both ends
Sut, S-7	simple non-harmonic motion
PIRA 200	Simple Harmonic Motion circular motion vs. mass on a spring
UMN, 3A40.10	projected SHM
Bil\&Mai, p 170	circular motion vs. mass on a spring
D\&R, M-876	projected SHM
Disc 08-20	circular motion vs. spring and weight
Sut, S-5	circular motion
	vs.pendulum/spring
Mei, 10-2.12	pendulum vs. mass on spring
PIRA 200 - Old	circular motion vs. pendulum
UMN, 3A40.20	circular motion vs. pendulum
Mei, 15-1.2	pendulum SHM
Mei, 15-1.4	pendulum SHM
Sut, S-3	pendulum SHM
D\&R, M-884	pendulum SHM
Disc 08-21	circular motion vs. pendulum
TPT 3(3),127	pendulum SHM
PIRA 1000	ball on track vs. pendulum
Ehrlich 2, p. 130	ball on a track vs. pendulum
AJP 49(6),557	portulum

AJP 49(6),557 portulum

PIRA 1000	arrow on the wheel
UMN, 3A40.30	arrow on the wheel
F\&A, Mx-1	arrow on mounted wheel

July 2015
3A20.36 A dry ice puck between two springs on a plate of glass. Projection, photocell velocity measurement, etc.
3A20.40
3A20.40
3A20.50
3A20.50 Tie the ends of a short logging chain with heavy thread and suspend the thread over a pulley.
3A20.50 A chain suspended on both ends by a string which runs over a pulley.
3A20.50 Ends of a chain are connected with string and hung over a large pulley.
3A20.55 An open "u" tube filled with mercury.
3A20.60 A ball oscillates in a clear spherical dish on the overhead.
3A20.65 A plastic hemisphere rocking in water has a higher frequency than when rocking on a level surface.
3A20.70 Two dry ice pucks coupled with vertical hacksaw blades attached to a steel bar.
3A20.75 A long candle free to pivot in the middle is lit at both ends. The candle oscillates with a predictable frequency.
3A20.90 A light car is fastened between two springs and then between two pulleys with hanging weights. In the second case the period is dependent on amplitude.
3A40.00
3A40.10 Shadow project a ball at the edge of a disc rotating at the same frequency as a mass on a spring.
3A40.10 A rotating disc with a ball and a mass on a spring are shadow projected on the wall.
3A40.10 Shadow project the motion of a dowel on the edge of a turntable rotating at the same frequency as a mass on a spring.
3A40.10 Shadow project a rotating disk with arrow and a mass on a spring with identical frequencies.
3A40.10 Front on view of a marker on a disc and a mass on a spring.
3A40.12 A bike wheel with a ball mounted on the rim can be oriented with the axle vertical when shadow projected with a pendulum or with the axis horizontal when shadow projected with a mass on a spring.
3A40.15 A dry ice puck between two horizontal springs oscillates under a long pendulum.
3A40.20 Shadow project a pendulum and turntable which have identical frequencies.

3A40.20 Shadow project a pendulum and a turntable with a ball mounted on the rim.
3A40.20 Shadow project a pendulum and turntable which have identical frequencies.
3A40.20 Using a 78 rpm phonograph turntable to synchronize a pendulum and ball on a turntable.
3A40.20 A pendulum bob and shadow projection of circular motion of the same frequency appear coupled.
3A40.20 Shadow project a pendulum and turntable with an arrow on the rim which have identical frequencies.
3A40.20 Front view of a marker on a disc and a pendulum.
3A40.21 A pendulum bob is shadow projected along with a post rotating on a turntable.
3A40.25
3A40.25 A ball oscillates in a track made of plastic rulers that has an approximate parabolic shape. The simple harmonic motion displayed is compared to that of a simple pendulum.
3A40.27 In a variation of the simple swinging pendulum, the "portulum", a ball, driven by short blasts of air, rolls along a curved tube. The oscillations of the rolling ball have the same mathematical form as the oscillations of a ball swinging along the same path, but with a lower frequency.
3A40.30
3A40.30 An arrow that can be oriented tangentially or radially is mounted at the edge of a rotating disc and shadow projected on the wall.
3A40.30 A large arrow that can be oriented either tangentially or radially is mounted on the periphery of a rotating disc and shadow projected on a screen.

Demonstration	Bibliography
Mei, 15-1.1	mounted wheel
D\&R, M-194	arrow on the wheel
Sut, S-1	arrow on the wheel
AJP 30(6),470	SHM vectors
D\&R, M-892	SHM vectors
PIRA 1000	SHM slide
UMN, 3A40.35	SHM slide
F\&A, Mx-2	SHM slide
Sut, S-4	SHM Slide
Sut, S-2	SHM slide
TPT 15(7),436	SHM on CRO
Sut, S-6	project SHM
PIRA 1000	tuning fork with light
Disc 08-10	tuning fork with light
AJP 54(10),953	pendulum interface - Apple II
TPT 17(1),58	displaying pendulum motion
Mei, 15-1.7	plotting SHM
PIRA 1000	strain gauge SHM
UMN, 3A40.50	strain gauge SHM
F\&A, Mx-4	strain gauge SHM
TPT 20(3),186	mass-spring on scope
Mei, 15-1.6	mass-spring accelerometer
Ehrlich 1, p. 90	mass-spring accelerometer
TPT 16(6),404	acceleration in a pendulum
PIRA 1000	phase shift disc
Disc 08-22	phase shift
Mei, 15-1.11	plotting SHM on the overhead projector
Mei, 15-1.8	plotting SHM with spray paint
D\&R, M-876	plotting SHM with spray paint
Mei, 15-1.9	plotting SHM
D\&R, M-880	plotting SHM
TPT 10(7),377	analysis,etc
Mei, 15-1.5	plate on drums
AJP 56(12),1151	"Atwood's" oscillator

July 2015
3A40.30 An arrow at the edge of a rotating disc that can be oriented radially or tangentially is shadow projected onto a wall.
3A40.30 Place an arrow on a rotating disk. Project the shadow of the arrow on a screen to show SHM.
3A40.31 Shadow project a crank handle oriented perpendicular to the wall or screen.
3A40.32 Three arrows are soldered on a rotating spindle: acceleration, velocity, and displacement vectors. The device is shadow projected on a screen.
3A40.32 Same setup as in 3A40.10 but with arrow pointed tangentially to indicate SHM velocity and radially inward to indicate SHM acceleration.
3A40.35
3A40.35 A motorized device inserted in a lantern slide projector shows a rotating spot and a SHM spot.
3A40.35 A motorized lantern slide showing both rectilinear SHM and uniform circular motion.
3A40.35 A projection slide device that shows one spot moving in circular motion and another in SHM.
3A40.36 Use a scotch cross mechanism (drawing) and mount colored discs on the circular pin and SHM pin.
3A40.38 Using electronics and three oscilloscopes to show a spot moving in a circle, up and down with SHM, and a sine wave. A method for doing this sequentially on only one oscilloscope is also given.
3A40.40 Project a beam of light off a mirror on a tuning fork to a rotating mirror onto a screen.
3A40.41
3A40.41 Attach a small light to a large slow fork and pan it by a video camera. A sine wave is visible by camera retention.
3A40.45 An induced EMF from the magnet bob and an ADC forms the basis for this interface.
3A40.45 The free end of the pendulum carries a pin electrode in a water trough with electrodes at each end. The signal is displayed on a oscilloscope.
3A40.48 A bifilar pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.
3A40.50
3A40.50 A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.
3A40.50 Mass on spring hangs from a Pasco strain gauge with the output to a oscilloscope.
3A40.52 An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.
3A40.53 A "U" tube manometer is placed on a cart between springs to show acceleration in SHM.
3A40.53 An accelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.
3A40.60 Use the Project Physics accelerometer as a pendulum with a ballistic pendulum suspension.
3A40.65
3A40.65 Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.
3A40.71 An acetate roll is motorized on the overhead projector. Another motor drives a pen in SHM.
3A40.72 A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.
3A40.72 A can of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.
3A40.75 A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.
3A40.75 A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.
3A40.80 A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.
3A40.81 A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.
3A40.82 An advanced SHM system of a weight hanging from the edge of a solid disk weighted with an additional off center mass.

Demonstration Bibliography	
TPT 11(1),46	photographing SHM
Mei, 15-1.3	photographing SHM
Mei, 15-1.10	photographing SHM
PIRA 500	Damped Oscillators dash pot
UMN, 3A50.10	dash pot
F\&A, Mx-9	dash pot
Mei, 15-2.2	dash pot
Bil\&Mai, p 178	damped mass on spring
PIRA 1000	damped SHM tracer
UMN, 3A50.20	damped SHM tracer
Mei, 11-1.8	double spring damped air glider
AJP 51(10)954	small air track oscillator
PIRA 1000	oscillating guillotine
UMN, 3A50.45	oscillating guillotine
AJP 73(11), 1079	damped physical pendulum
TPT 20(3),188	bouncing magnets
Mei, 15-2.1	tuning fork
Mei, 15-2.4	steel bar
Mei, 15-2.3	ship stabilizer
AJP 30(9),654	water balloon oscillator
Mei, 15-9.7	analog computer simulation
	Driven Mechanical Resonance
PIRA 200	Tacoma Narrows film
UMN, 3A60.10	Tacoma Narrows film/videodisc
TPT 15(3),189	Tacoma Narrows
AJP 74(8), 706	engineering analysis of the bridge
AJP 59(2),118	engineering analysis of the bridge
PIRA 500	driven glider on air track
UMN, 3A60.20	driven glider on air track
Mei, 11-1.9	driven glider on air track
AJP 31(12), xiii	driven cart between springs
Mei, 15-10.14	driven cart between springs
Mei, 15-10.8	driven cart between springs
TPT 20(4),257	driven glider on air track
PIRA 500	Barton's pendula
UMN, 3A60.30	Barton's pendula

3A40.90 How to photograph a mass on a spring using a camera and a strobe. Also a hint about using a slit in a cardboard mask in front of an oscilloscope with a sine wave.
3A40.91 Take strobe wheel photographs of a pendulum light and a mass on a spring light.
3A40.93 Photograph a blinky that translates and oscillates.

3A50.00
3A50.10
3A50.10
3A50.10
3A50.10
3A50.15

3A50.20
3A50.20

3A50.40 One end of two long springs are attached to each end of the air track. The pulls off a roll. other end of the springs is then attached to a glider in the center of the track. Magnets are used for damping.
3A50.42 A small specially constructed air track and optoelectric transducer provide output of position vs. time. Details of circuit and description of air track construction are included.
3A50.45
3A50.45
3A50.45
3A50.50
A damped physical pendulum is measured with a data acquisition system. Magnets are levitated on a rod. A large area photocell is used to detect the position of the levitated magnet as it oscillates.
3A50.60 Display tuning fork vibrations on an oscilloscope. Modeling clay between the forks increases damping.
3A50.65 Apparatus to displace a small steel bar and pick up the vibrations electromagnetically for display on an oscilloscope.
3A50.70 A rocking closed circuit "U" tube half filled with colored water has a rubber hose and tube clamp for adjusting the damping. Demonstrates a ship stabilizing system
3A50.75 Two balloons full of water are mounted on the ends of a glass tube. Flatten one balloon and the system will oscillate about six times.
3A50.90 Simulating an automobile suspension system with an analog computer.
3A60.00
3A60.10 A film of the collapse of the bridge due to resonance.
3A60.10 The film loop lasts 4:40. The first eleven minutes of the video disc is excellent.
3A60.11 On building a model of the Tacoma Narrows bridge.
3A60.12 A physical model for the failure of the Tacoma Narrow bridge. Computational, experimental, and historical data support the model.
3A60.12 Understanding gained from full, dynamically scaled models of the bridge is fundamentally different form the explanation in most physics texts.
3A60.20
3A60.20 A glider is placed between two long springs driven by a variable speed motor.
3A60.20 Drive an air glider between two springs.
3A60.24 A PSSC cart is driven by a ratio motor between two springs. Use eddy current damping.
3A60.24 A more complex driven cart between two springs with eddy current damping and recording. Construction details p. 549.
3A60.24 A cart between stretched rubber bands is driven by an eccentric on a variable speed motor. Eddy current damping.
3A60.25 A driven air track glider has an adjustable vane in a tank of water. Graphs of amplitude with varying damping are generated the old fashioned way.
3A60.30
3A60.30 A set of pendula of increasing length are driven in common at varying frequencies.

TPT 12(3),178	Barton's pendula
F\&A, Sd-1	Barton's pendula
Sut, S-20	Barton's pendula
Ehrlich 2, p. 121	Barton's pendula
PIRA 1000	resonant driven pendula
Disc 09-02	resonant driven pendula
PIRA 1000	bowling ball pendulm resonance
TPT 21(5),333	torsion resonance
Mei, 11-2.3i	torsion resonance
Disc 09-01	bowling ball pendulum resonance
AJP 30(2),115	impulse driven torsional oscillator
Mei, 15-10.9	driven torsional oscillator
PIRA 1000	driven mass on spring
Mei, 15-10.11	driven spring
Sut, S-13	driven mass on a spring
Ehrlich 1, p. 93	driven mass on spring
Sut, A-22	mechanical analog of electrical res.
F\&A, Mx-8	driven resonance tracer
PIRA 1000	driven spring weight
Disc 09-03	driven spring weight
PIRA 1000	drunken sailor
UMN, 3A60.44	drunken sailor
F\&A, Mx-5	drunken sailor
Mei, 15-10.1	hand driven rubber tube
Mei, 15-10.7	spring driven spring on a spring
AJP 28(6),534	driven mass on spring
AJP 56(4),352	driven mass spring apparatus
AJP 55(12),1126	electromagnetically driven apparatus
AJP 53(3),278	electromechanical shaker/accelerometer
PIRA 500	resonance reeds
UMN, 3A60.50	resonance reeds
F\&A, Mx-13	resonance reeds
Mei, 15-10.4	resonance reeds
Sut, S-15	resonance reeds
Hil, S-4a. 2	resonance reeds
D\&R, M-968	resonance reeds
Disc 09-05	reed tachometer
Mei, 15-10.3	resonance reeds

3A60.30 A simple implementation of Barton's pendula
3A60.30 Several pendula of graduated length are hung from the same driven support.

3A60.30 Many of different length small pendula are hung from a rod driven by an adjustable heavy pendulum.
3A60.30 Several pendula of different length are hung from the same bar. Small movements of the bar at the right frequency will exite large amplitude oscillations in the pendulum of your chosing.
3A60.31
3A60.31 A massive pendulum drives three different length bifilar pendula.
3A60.35
3A60.35 Driving a torsion pendulum with a jigsaw.
3A60.35 An air bearing supported disc/large clock spring arrangement is variably driven. Also vary damping, mass.
3A60.35 Strike a bowling ball pendulum with random blows, then with blows at the normal frequency.
3A60.36 Apparatus Drawings Project No. 23: Plans for a simple impulse driven torsion pendulum with a natural period of 2 sec .
3A60.37 Upper and lower discs are connected by an axial wire. The upper is driven in SHM and the resulting motion of the lower is studied.
3A60.40
3A60.40 A small DC motor with an eccentric on the shaft is suspended from a spring and run up through the various resonances.
3A60.40 The vibrator in S-9 is used to drive a vertical mass on a spring to show phase differences above and below resonance.
3A60.40 A mass on a spring is gently shaken from the top of the spring to find the resonant frequency.
3A60.41 A driven system of a mass hanging between two springs.
3A60.42 A driven mass between two springs carries a felt tip marker that traces on graph paper pulled at a steady rate.
3A60.43
3A60.43
3A60.44
3A60.44 A hollow toy "Donald Duck" is driven between two vertical springs. Enough "wine" is poured in to reach resonance and then enough "coffee" is poured in to overshoot resonance.
3A60.44 A bottle (sailor) between two springs is driven at resonance when half full of water. Start empty, add wine to half full, fill with coffee to sober him up.

3A60.45 Longitudinal oscillations are induced by hand on a long rubber tube with a wood block attached in the middle.
3A60.46 A large spring and adjustable mass on a lever arm drives a small mass on a spring with provisions for damping.
3A60.47 Apparatus Drawings Project No.8: A vertical mass on a spring with a variable frequency driver and adjustable damping.
3A60.48 Optical transmission wedges are used to measure positions of both sides of the spring.
3A60.48 A magnet hanging on a spring oscillates in a tube with several windings, one serves as a pickup to an oscilloscope, another as a driver, others as means of introducing damping forces.
3A60.48 A small accelerometer is placed on a mass driven by a commercial electromagnetic shaker.

3A60.50
3A60.50
3A60.50 A set of steel reeds is mounted on a common excited strip.
3A60.50 A large scale resonance reed set is driven by a motor.
3A60.50 A set of resonance reeds is mounted on a slightly unbalanced gyrowheel.
3A60.50 A set of resonance reeds is mounted on a out of balance gyroscope.
3A60.50 A set of hacksaw resonance reeds clamped to a board are driven by a variable speed drill strapped to the board.
3A60.50 A set of reeds is attached to a small unbalanced gyro.
3A60.51 A steel bar has pairs of inverted pendula attached along its length. Vibrating a particular rod will cause its mate to vibrate but not the others of different length.

Demonstration	bliography
Ehrlich 1, p. 92	resonance reeds
Ehrlich 2, p. 128	resonance reeds
Ehrlich 2, p. 129	resonance rings
Mei, 15-10.5	resonance reeds
PIRA 1000	driven torsion pendulum
AJP 56(9),839	galvanometer movement resonance
AJP 45(11),1113	galvanometer movement oscillations
AJP 43(10),926	galvanometer movement oscillations
Sut, S-16	water dropper resonance
PIRA 1000	upside-down pendulum
UMN, 3A60.60	upside-down pendulum
F\&A, Mz-9	upside-down pendulum
Ehrlich 2, p. 134	inverted pendulum - ruler
AJP 53(11),1079	inverted pendulum - portable jigsaw
AJP 37(9),941	inverted pendulum - sabre saw
AJP 59(9),816	inverted pendulum - liquid
AJP 50(10),924	inverted pendulum - an analog
AJP 38(7),874	inverted pendulum - speaker driven
Mei, 15-10.2	upside-down pendulum
PIRA 1000	lamppost resonance
AJP 52(7),662	lampost resonance
Sut, S-14	driven conical pendulum
Mei, 15-10.10	Calthrop resonance pendulum
Sut, S-21	Rayleigh's driven pendulum
Sut, S-140	pendulum in a dish ????
TPT 28(6),417	paddleball - non SHM
	Coupled Oscillations
PIRA 200 - Old	Wilberforce pendulum
UMN, 3A70.10	Wilberforce pendulum
F\&A, Mx-11	Wilberforce pendulum
Sut, S-18	Wilberforce pendulum
Hil, M-14f. 1	Wilberforce pendulum
Hil, S-4a. 4	Wilberforce pendulum
D\&R, M-964	Wilberforce pendulum

July 2015
3A60.51 A tin can has vertical strips of varying lengths cut on each side. Pluck a strip on one side and cause a strip of the same length on the other side to resonate.
3A60.51 A plastic ruler held against a block at its midpoint. Pluck one end and the other end will resonate.
3A60.51 5 circular paper rings of different diameters are attached to a base. The frequency at which you shake the base will determine which ring vibrates with the greatest amplitude.
3A60.53 A vacuum cleaner motor with an eccentric mass is clamped to a long steel strip hanging over the edge of the lecture bench.
3A60.55
3A60.56 A galvanometer movement (observed by reflected laser beam) driven by a slow function generator (observed on an oscilloscope) shows both driving and driven motions.
3A60.56 Record the motion of the galvanometer movement by modulating the radial magnetic field at a frequency beyond the response of the movement and detecting the induced current.
3A60.57 Drive a wall mount galvanometer (period 20 sec .) with a low frequency signal generator.
3A60.58 The frequency of drops striking a bar clamped at one end is adjusted so that they match the natural frequency of a bar.
3A60.60
3A60.60 Same as Mz-9.
3A60.60 A variable speed motor provides vertical undulatory motion for a vertical rod with an adjustable mass.
3A60.61 An inverted pendulum with a vibrating platstic ruler as the driving oscillator.
3A60.61 Strobe pictures along with some theory of an inverted pendulum driven with a portable jigsaw.
3A60.61 Mount a short stick on the blade of an inverted saber saw.
3A60.62 Demonstration and theory of an inverted liquid pendulum.
3A60.63 The inverted pendulum is presented as an analog of the quadrupole mass filter. Theory of the inverted pendulum is discussed.
3A60.64 The inverted pendulum is analyzed using a series of short impulses instead of sinusoidal excitation. A large loudspeaker with a $3 / 4^{\prime \prime}$ movement is used to drive simple and compound inverted pendula.
3A60.67 A massive (20 lb .) weight is bolted to an upright leaf spring from an auto and excited by a thread.
3A60.70
3A60.70 A three meter steel rod model of a lampost weighted at the top is easily resonated by hand until a bolt in the support platform breaks.
3A60.75 A variable length conical pendulum is driven at a single frequency and the phase is compared to a reference.
3A60.80 Drive a heavy compound pendulum which in turn drives a light simple pendulum.
3A60.81 Lord Rayleigh's method of suspending a light pendulum from a heavy driving pendulum.
3A60.85 Some more Phil Johnson humor which reads: "This is a model of aeolian sounds. Read it yourself". A description is: An adjustable period pendulum is dipped into a shallow washbasin of water near the periphery. Rotate the pan until the pendulum reaches maximum oscillations due to eddies forming first on one side, and then on the other.
3A60.89 A paddleball is a non-SHM system that can be used to demonstrate resonance.
3A70.00
3A70.10 Energy transfers between vertical and torsional modes.
3A70.10 A mass on a spring with outriggers is tuned so the three modes of oscillation will couple.
3A70.10 The Wilberforce pendulum.
3A70.10 Transfer of energy between torsional vibration and vertical oscillation in the Wilberforce pendulum.
3A70.10 Shows two Wilberforce pendula.
3A70.10 A small Wilberforce pendula.
3A70.10 The Wilberforce pendulum and directions to make one out of a doorspring.

Sprott, 1.19	Wilberforce pendulum
Ehrlich 1, p. 89	Wilberforce pendulum
Disc 09-08	Wilberforce pendulum
AJP 58(9),833	Wilberforce pendulum analysis
TPT 21(4),257	Wilberforce pendulum
AJP 46(1),110	swinging mass on a spring
PIRA 1000	swinging mass on a spring
UMN, 3A70.15	swinging mass on a spring
AJP 44(12),1121	swinging mass on a spring
Mei, 15-1.12	swinging mass on a spring
AJP 48(6),488	swinging mass on a spring uncoupled
Mei, 15-1.13	spring pendulum
PIRA 200	coupled pendula
UMN, 3A70.20	coupled pendula
Mei, 15-9.2	coupled pendula
Hil, S-4a. 3	coupled pendula
Ehrlich 1, p. 94	coupled pendula
F\&A, Mx-12	coupled pendula
F\&A, Sa-1	coupled pendula
F\&A, Sa-2	projection coupled pendula
AJP 70(10), 992	synchronizing metronomes
PIRA 500	spring coupled pendula
UMN, 3A70.25	spring coupled pendula
F\&A, Mx-10	spring coupled pendula
Mei, 15-9.1	spring coupled pendula
PIRA 1000	spring coupled physical pendula
Mei, 15-9.3	coupled pendula
Sprott, 1.18	coupled pendula
Disc 09-07	coupled pendula
PIRA 1000	string coupled pendula
UMN, 3A70.30	string coupled pendula
AJP 49(12),1245	string coupled pendula
Sut, S-17	string coupled pendula
Hil, S-4a. 1	string coupled pendula
D\&R, M-960	coupled pendula
Bil\&Mai, p 174	string coupled pendula
AJP 45(11),1022	triple pendula

AJP 53(11),1114 resonant double pendulum
Mei, 15-9.4

3A70.10 A spring pendulum constructed such that the torsional and longitudinal frequencies are nearly identical. Energy is transferred back and forth between the two modes of oscillations.
3A70.10 Make a Wilberforce pendulum from a spring, a steel rod, a ball or clay, and a straw.
3A70.10 Energy transfers between vertical and torsional modes.
3A70.11 Analysis of the Wilberforce pendulum. Compare theory with experiment.
3A70.12 Directions for making an inexpensive Wilberforce pendulum, including winding the spring.
3A70.14 Derivation with the additional hint that you can use a weak spring by adding a length of string to increase the period of the pendulum motion.
3A70.15
3A70.15 The oscillation mode of a mass on a spring couples with the pendulum mode.
3A70.15 Analysis of autoparametric resonance that occurs when the rest length of a spring is stretched by about one third by a mass.
3A70.15 Oscillations couple if the frequency of a mass on a spring is twice the pendulum mode frequency.
3A70.16 The special case in which the angular frequency of the spring and the frequency of the pendulum are equal, where the equations of motion actually uncouple and yield independent vertical and pendular motion. The simple apparatus is shown.
3A70.17 Time the period of a 12" pendulum, take a 12" spring and add mass until the period is the same. Show the extension is $122^{\prime \prime}$
3A70.20 Hang two or three pendula from a flexible metal frame.
3A70.20 Two pendula are hung from a flexible metal frame. A third can be added.
3A70.20 Two bobs suspended from a suspended horizontal dowel.
3A70.20 Rods and spring steel support two pendula. The picture is less than clear.
3A70.20 Two pendula hung from a horizontal rod or taut horizontal string will transfer energy back and forth between them.
3A70.21 Three identical pendula are coupled by a slightly flexible support.
3A70.21 Three identical pendula hang from a slightly flexible stand.
3A70.22 Two small coupled pendula hang from a slightly flexible stand on a clear base.
3A70.23 Multiple metronomes are spaced atop a foam board and started. When the board and metronomes are placed onto two empty soda cans set on their sides, the metronomes quickly synchronize.
3A70. 25
3A70.25
3A70.25 Two equal adjustable pendula coupled with a light spring.
3A70.26 Two identical bobs are coupled with a leaf spring.
3A70.27
3A70.27 Two bowling ball bobs on aluminum rods allowing for length adjustments are coupled with a light spring between the rods.
3A70.27 A rubber band connects two pendula causing the energy to transfer back and fourth between the two.
3A70.27 Two physical pendula are coupled by a spring.
3A70.30
3A70.30 Pendula are suspended from a horizontal string.
3A70.30 Theory and diagram of the string-coupled pendula.
3A70.30 Two pendula are coupled on a string. Coupling time depends on the string tightness, amplitude depends on the mass.
3A70.30 Two pendula are suspended from a common string.
3A70.30 Pendula of the same and different lengths are suspended from a loosely supported horizontal string.
3A70.30 Six pendula are suspended from a horizontal string.
3A70.31 A spring coupled triple pendulum used to demonstrate the character of normal modes and in particular a mode that has high Q even with the center pendulum highly damped. This is mathematically similar to the equations of three coupled quantum mechanical levels.
3A70.32 This double pendulum system with modes that differ by a factor of two has not yet been completely solved.
3A70.33 A symmetrical arrangement of seven steel balls are coupled 6 " below their anchor points with a long wooden bar through which the cords pass. Energy transfers from one end to the other.

AJP 38(4),536	double simple pendulum
Mei, 15-9.6	over-under pendula
Mei, 29-4.9	electrostatically coupled pendula
PIRA 1000	inverted coupled pendula
Hil, A-8b	inverted coupled pendula
AJP 69(11), 1191	inverted coupled pendula
Mei, 15-9.5	coupled upside down pendula
PIRA 1000	coupled masses on springs
PIRA 1000	oscillating magnets
Ehrlich 2, p. 153	oscillating magnets
TPT 18(1),39	oscillating magnets
AJP 76 (2), 125	oscillating magnets
TPT, 36(7), 417	cheap and easy coupledoscillations demonstration
AJP 56(3),200	coupled compass needles
D\&R, M-960, B060	coupled compass needles
AJP 28(8),744	coupled magnets
AJP 56(4),345	ball \& curved track pendulum
AJP 37(8),841	rotating 2D coupled oscillations
PIRA 500 UMN, 3A75.10	Normal Modes coupled harmonic oscillators coupled harmonic oscillators
AJP 31(12),915	coupled harmonic oscillators
F\&A, Mx-14	coupled harmonic oscillators
Mei, 11-1.17	coupled harmonic oscillators
Mei, 11-1.16	coupled harmonic oscillators
AJP 35(11),1065	coupled harmonic oscillators
Mei, 10-2.18	coupled harmonic oscillators
PIRA 1000	masses on a string
Sut, S-19	masses on a string
Mei, 18-7.2	weighted string
PIRA 1000	bifilar pendulum modes
Mei, 15-8.2	bifilar pendulum
Mei, 15-8.1	bifilar pendulum
Mei, 15-10.15	selsyn motor pendula
Mei, 15-10.6	double pendulum
AJP 45(9),882	exposing normal modes
	Lissajous Figures
PIRA 1000	Lissajous sand pendulum
UMN, 3A80.10	Lissajous sand pendulum

July 2015
3A70.35 Analysis of two masses on the same string with combinations of the masses and strings being equal or unequal.
3A70.36 A light pendulum suspended from a heavy pendulum.
3A70.38 Two pith ball pendula couple only when they are charged with the same polarity.
3A70.40
3A70.40 Two vertical hacksaw blades with weights at the top are coupled at the bottom.
3A70.40 Weakly magnetically coupled pendula are studied experimentally, computationally, and theoretically.
3A70.41 Two adjustable upside down pendula are coupled with a rubber band. Also shows beats.
A.70.45

3A70.50
3A70.50
Tape magnets to the 4 corners of a long note card with like poles all pointing up. Fold the note card in half and time the oscillations of the unit with a metronome.
3A70.50 Original Phil Johnson humor is shown in this statement: "You really have to see the picture of this to believe it". The official description is: Three rectangular magnets arranged so that the inner edges of the outer two magnets are suspended in mid air. Tap one so that it oscillates and the energy will be transferred to the other.
3A70.50 A demonstration of coupled oscillations on magnets suspended by a thread which can act as a pendulum and also exhibit torsion as the magnets align with the Earth's magnetic field.
3A70.51 Long term and accurate coupled oscillations are produced with magnets and a hall probe.
3A70.55 Oscillations of two compass needles couple.
3A70.55 Compasses or magnets in horizontal cradles. Start one oscillating and a nearby one will start oscillating .
3A70.56 Two magnets are suspended from a suspended wooden wand, all horizontal Oscillations couple and attain a final north-south alignment.
3A70.60 Analysis of the peculiar motion of a quarter circle track pendulum with a ball bearing.
3A70.70 Examine the oscillations of a " Y " pendulum as it is rotated at varying speeds.
3A75.00
3A75.10
3A75.10
Many identical air track gliders are coupled with springs and driven with a variable frequency motor.
3A75.10 Article on identical spring coupled air gliders includes theory.
3A75.10 Several identical air track gliders are coupled with identical springs.
3A75.10 A driven chain of air gliders and springs. Big write up.
3A75.11 Five blocks coupled with coil springs ride in an air trough.
3A75.12 A six meter chain of air supported pucks connected by a Slinky.
3A75.12 Six meters of dry ice pucks on a driven slinky.
3A75.30
3A75.30 Clamp 1,2,3, or 4 equal masses to a variably driven wire to show normal modes.
3A75.31 Small lead weights on a string driven by a large motor show the lower normal modes of a many body system.
3A75.40
3A75.40
All three modes of oscillation are discussed for horizontal rods supported with bifilar suspensions.
3A75.40 Discusses two of three modes - transverse in the plane of the cords and twisting.
3A75.45 Pendula are hung from the shafts of two selsyn motors. The second mode can be demonstrated.
3A75.50 Normal modes of a two pendula spring coupled driven system.
3A75.80 When two modes are simultaneously exited, strobing the system at the frequency of one normal mode will allow the other to be observed independently. A double hacksaw system is used as an example.

F\&A, Sn-2	sand track Lissajous figures
Sut, S-43	Lissajous sand pendulum
D\&R, M-926	Lissajous sand pendulum
F\&A, Sn-1	Lissajous figures in sand
AJP 59(4),330	Blackburn pendulum
AJP 38(9),1116	double pendulum "art machine"
Mei, 15-3.1	Lissajous figures - double pendulum
PIRA 500	Lissajous figures - scope
UMN, 3A80.20	Lissajous figures - scope
F\&A, Sn-3	Lissajous figures on the scope
D\&R, M-930	Lissajous figures - scope
Disc 08-26	Lissajous figures - scope
Hil, S-1e	Lissajous figures
Mei, 15-3.3	Lissajous figures - scope
Sut, S-8	Lissajous bar
Sut, S-44	Lissajous figure vibrations
PIRA 1000	Lissajous figures - laser
Sut, S-45	Lissajous figures - projected
Sprott, 6.2	Lissajous figures - laser
TPT 17(9),593	Lissajous figures - projected
Sut, S-46	Lissajous figures - harmonograph
Mei, 15-3.2	Lissajous figures - projected
AJP 47(11),1014	Lissajous figures - mechanical
Sut, S-48	Lissajous figures - 3d
Sut, S-47	Lissajous figures - 3d
AJP 52(7),657	textbook corrections
Mei, 15-3.4	characteristic triangle method
F\&A, Sn-3	Lissajous coordinate system
PIRA 1000	Non-Linear Systems water relaxation oscillator
Mei, 33-1.4	water relaxation oscillator
AJP 39(5),575	electrical and water relaxation osc
AJP 40(2),360	pipet rinser oscillator
UMN, 3A95.15	wood relaxation oscillator
PIRA 1000	wood block relaxation oscillator
Mei, 15-10.13	water feedback oscillator
AJP 45(10),994	compound pendulum
AJP 51(7),655	stopped spring

3A80.10 A compound pendulum drops sand out of the pendulum bob in a Lissajous pattern.
3A80.10 A simple sand pendulum made by passing a bifilar suspension through an adjustable collar.
3A80.10 A sand or salt filled compound pendulum traces out a Lissajous pattern on black paper.
3A80.11 A compound pendulum bob traces a Lissajous figure in sand.
3A80.13 A historical note on Blackburn's role in the "Y suspended" pendulum. ref: AJP 49,452-4
3A80.15 Design for a double pendulum machine that draws with a pen.
3A80.15 Two adjustable physical pendula at right angles coupled to a pen. Diagram.
3A80.20
3A80.20 Two generators are fed into the x and y channels of a scope.
3A80.20 Two oscillators generate Lissajous figures of the X and Y channels on an oscilloscope.
3A80.20 Two function generators are fed into the x and y channels of a scope.
3A80.20 Use two independent generators to show Lissajous figures on a scope.
3A80.21 Lissajous figures on a scope and three other methods in a reprint.
3A80.22 Two sine waves are produced by coupling a variable speed motor to one pot in each of two Wheatstone bridge circuits.
3A80.30 An oscillating one meter long bar with the width to length ratio a small integer will show a Lissajous pattern when clamped at one end and viewed from the other.
3A80.35 A rectangular cross section rod is mounted vertically and the top is bent over at right angles. When the protruding end is struck it will describe Lissajous patterns.
3A80.40
3A80.40 Use small mirrors on tuning forks to project a beam of light on the wall.
3A80.40 A laser beam is reflected off small mirrors glued to two speakers and then onto a screen. Vary the frequency of each speaker with a frequency generator.
3A80.41 Bounce a laser off a soap film excited by a audio speaker and a Lissajous figure can be projected onto a screen.
3A80.43 An elaborate apparatus made to reflect beams off mirrors - two oscillations in SHM and one that is the combination.
3A80.44 A sine wave of an integral number of periods is drawn on a clear cylinder. When projected on an overhead, any phase may be obtained by turning the cylinder
3A80.46 Chains, gears, etc., that allow control of amplitude, initial phase, and frequency of the two component vibrations.
3A80.50 An elaborate setup that uses three motors to produce a spot of light on a card that is the result of three mutually perpendicular SHM's.
3A80.51 A slit in a lantern projector is driven in SHM and the resulting light beam is projected onto a white pencil mounted on a disc rotated by a motor in the perpendicular direction.
3A80.60 Most Lissajous figures illustrated in textbooks are wrong.
3A80.90 A Lissajous ellipse is drawn using the characteristic triangle method. Fully derived instructions.
3A80.91 A coordinate system with the grid proportional to the sines of $0,30,60$, and 90 degrees is sketched on the board.
3A95.00
3A95.10
3A95.10 A cylinder is filled with water at a constant rate and periodically empties.
3A95.12 A water relaxation oscillator models a neon flasher relaxation oscillator.
3A95.13 The commercial pipet rinser is a much better relaxation oscillator than that in AJP 39(5),575.
3A95.15 A wood block rides up and slides back on the inside of a turning hoop.
3A95.20
3A95.20 A tubing and bellows arrangement to generate oscillations by feedback. Picture.
3A95.22 A driven, damped, adjustable compound pendulum for intermediate demonstrations and labs.
3A95.25 Complete discussion and analysis of a stopped spring system.

Demonstratio	Bibliography		(Oscillations and Waves
AJP 32(2),xiii	non-linear springs	3A95.26	Two springs are attached in a " Y " arrangement, tie a string at two points along a spring so it becomes taut when extended, commercial "constant tension springs".
AJP 42(8),699	rubber band oscillations	3A95.28	A review of the foundations a of the rubber band force law and how it applies to the oscillations of a loaded rubber band.
TPT 13(6),367	beyond SHM	3A95.31	Shadow project an inertial pendulum onto a selenium photocell and display the resulting voltage on an oscilloscope. Distortion at large amplitude is apparent.
AJP 44(7),666	beyond SHM	3A95.32	The design of a pendulum that can demonstrate the dependence of period on amplitude. Common laboratory supplies are used for construction, and timing is done with a stopwatch. Agreement between experimental data and theory to 1 in 1000 is conveniently obtainable.
AJP 45(4),355	large amplitude pendulum	3A95.32	Use a rod instead of a string to support the bob and angles can reach 160 degrees. Construction details are given.
PIRA 1000	pendulum with large amplitude	3A95.33	
Disc 08-17	pendulum with large amplitude	3A95.33	Vary the from 5 to 80 degrees.
AJP 40(5),779	non-harmonic air glider	3A95.35	A Jolly balance spring is attached from a point above the middle of an air track to the top of a glider.
AJP 50(3),220	nonlinear air track oscillator	3A95.36	A length of rubber perpendicular to the air track axis provides a restoring force. Relative strengths of linear and nonlinear terms can be easily varied.
AJP 59(2),137	saline nonlinear oscillator	3A95.37	A small cup with a hole in the bottom and filled with salt water is placed in a large vessel of pure water. The system does all sorts of nonlinear stuff that can be reproduced by numerical simulation.
PIRA 1000	perodic non-simple harmonic motion	3A95.38	
Disc 08-23	periodic non-simple harmonic motion	3A95.38	A large pendulum drives a restricted vertical pendulum.
AJP 53(6),574	anharmonic LRC circuit	3A95.41	A linear LRC circuit demonstrates "soft" and "hard" spring nonlinear resonant behavior.
AJP 52(9),800	anharmonic oscillator	3A95.43	An op amp with RC feedback network that behaves as a SHM oscillator for small inputs and then shifts to anharmonic when slew limiting occurs.
PIRA 1000	amplitude jumps	3A95.45	
AJP 35(10),961	amplitude jumps	3A95.45	Non linear oscillators driven by a variable periodic force: two systems are described.
AJP 36(4),326	anharmonic air track oscillator	3A95.46	A driven air glider between two springs has a magnet on top. Perturbations are introduced by other magnets. Jump effect is shown.
AJP 38(6),773	amplitude jumps	3A95.46	Use the small Cenco string vibrator to demonstrate amplitude jumps.
PIRA 1000	chaos systems	3A95.50	
AJP 55(12),1083	five chaos systems	3A95.50	Five simple systems, both mechanical and electronic, designed to demonstrate period doubling, subharmonics, noisy periodicity, and intermittent and continuous chaos.
AJP 77 (3), 216	double pendulum	3A95.50	A variation of the simple double pendulum where the two point masses are replaced by square plates.
AJP 60(6), 491	double pendulum	3A95.50	Chaos in the double pendulum system is discussed and experiments to evaluate the sensitive dependence on initial conditions of the motion of the double pendulum are described.
Sprott, 1.20	chaos systems	3A95.50	Other chaos systems available for lecture or laboratory exploration.
Sprott, 2.26	chaos system - dripping faucet	3A95.50	A dripping faucet illustrates periodic and chaotic behavior
AJP 58(1),58	chaos in the bipolar motor	3A95.51	A simple bipolar model demonstrates chaos on the overhead projector. Plots require a digital scope or other equipment.
TPT, 37(3), 174	a chaotic pendulum	3A95.52	A cheap and simple chaotic pendulum made with magnets and fishing line.
Sprott, 1.20	a chaotic pendulum	3A95.52	A simple chaotic pendulum made with disk magnets, string, and another magnet concealed in a tennis ball. Can be scaled up or down for use on the overhead projector or for a large classroom demonstration.
Ehrlich 1, p. 35	a chaotic pendulum	3A95.52	A chaotic pendulum made from two disk magnets with a pendulum made from a steel bob or paper clip. Make this from acrylic for use on an overhead projector.
AJP 69(9), 1016	a chaotic pendulum	3A95.52	A cheap magnetically driven chaotic pendulum is analyzed with data acquisition equipment.
AJP 71(3), 250	a chaotic pendulum	3A95.52	A commercially available chaotic pendulum connected to an interface. Used to study nonlinear dynamics including the determination of Poincare sections, fractal dimensions, and Lyapunov exponents.
TPT 28(1),26	mechanical chaos demonstrations	3A95.53	Three mechanical chaos demonstrations: paperclip pendulum over two disk magnets, balls in a double potential well, ball rolling on a balanced beam.

Demonstration Bibliography	
AJP 59(11),987	inverted pendulum chaos
Sprott, 4.9	electronic chaos circuit
AJP 58(10),936	double scroll chaotic circuit
AJP 53(4),332	electronic chaos circuit
AJP 35(1), 31	chaos of a diode parametric resonance
PIRA 1000	parametric resonance

July 2015
Oscillations and Waves
3A95.54 A driven inverted pendulum goes through the transition from periodic to chaotic motion and a sonic sensor is used to get data to a computer which does a FFT to get the power spectrum.
3A95.55 A specially constructed electrical circuits produce chaotic output that can be seen and heard.
3A95.55 A simple electronic circuit shows double scroll chaotic behavior on an oscilloscope. A simple program to display computer simulation is also included.
3A95.55 An electronic circuit implementing a coupled logistic equation is used to demonstrate chaotic behavior in one or two dimensions on an oscilloscope

3A95.55 A simple circuit built around a diode that exhibits chaos.
3A95.60
3A95.60
A connecting-rod crank system to give vertical SHM to a pendulum. The parametric resonance state occurs when the pendulum is driven vertically at twice its frequency.
3A95.61 Parametric excitation of a resonant system is self excitation caused by a periodic variation of some parameter of the system. A brief history.
3A95.62 On using a self-oscillating pendulum driver to demonstrate parametric amplification.
3A95.63 The hula-hoop as an example of heteroparametric excitation.
3A95.66 Beak on a dunking duck is a magnet that triggers the driving circuit.
3A95.70
3A95.70 Periodically pull on the string of a pendulum.
3A95.70 A ball on a string hangs over a pulley. Increase the amplitude by pulling on the string periodically.
3A95.70 Diagram. A electromagnet on a swing allows one to raise and lower the center of mass by a switch.
3A95.70 Work up a swing by pulling on the cord at the right time.
3A95.70 Periodically pull on the string of a pendulum.
3A95.71 A pumped swing is analyzed and demonstrated as a simple pendulum whose length is a function of time.
3A95.71 Also discuss as an example of parametric amplification. Demonstration of the amplification process is shown.
3A95.72 Analysis and a picture tracing out three and one half cycles.
3A95.73 Parametric amplification and starting from rest.
3A95.73 The point-mass model of AJP 36(12), 1165 prohibits starting from rest. This simplified rigid body model is sufficient to demonstrate the start from rest.

3A95.73 More on the first pump.
3A95.73 Now we use a rigid swing support instead of a rope.
3A95.80
3A95.80
3A95.80 Two springs in parallel support a block from which a " Y " pendulum swings. The two lowest order resonances are described in detail.
3A95.85 See 1N22.51.

3B00.00

3B10.00

3B10.01 A physical realization of the Klein-Gordon equation. Sort of looks like half a bell labs model but the rods hang down out of a horizontal coil spring.
3B10.05
3B10.05 Have students in the class do the standard stadium wave.
3B10.10 Give a heavy piece of stretched rope a quick pulse.
3B10.10 Create pulses and waves by hand on a long rope stretched across the lecture bench.
3B10.10 A heavy piece of stretched rope is given a quick pulse.
3B10.10 Fix one end of a rope and shake the other.
3B10.10 Two students stretch a spring and one student hits it to give a transverse pulse.
3B10.10 A heavy piece of stretched rope is given a quick pulse.
3B10.10 Stretch a helical spring to show transverse and longitudinal pulses.
3B10.10 Stretch a helical spring or a rubber hose to show transverse and longitudinal waves.

3B10.10 Excite standing waves in a long spring to show that the frequencies of the harmonics are multiples of the fundamental frequency.
3B10.10 A long rope is attached to a wall.
3B10.11 Epoxy split-shot fishing sinkers on model airplane elastic (1/16" x 3/16") every inch to give a wave speed of about $15 \mathrm{~m} / \mathrm{sec}$.
3B10.12 Mount two small pieces of paper on a stretched string so they will interrupt a photocell gate when a pulse from plucking passes by.
3B10.12 Microswitches at two ends of a stretched rope trigger a timer as a pulse passes. Weights are used at one end to vary the tension.
3B10.13 A pulse on a steel string passes between two magnets and an oscilloscope is used to measure the time between voltage peaks due to the passing pulse.
3B10.15

3B10.15 Use pairs of ropes or tubes to compare speed of pulses as tension and mass per unit length are changed.
3B10.15 Hold a rubber tube under different tensions and send a pulse along it.
3B10.16
3B10.16 Show the difference in wave speed and pulse shape on Shive machines with long and short rods.
3B10.17
3B10.17 Critically damp one end of a stretched Slinky by hooking over a steel bar. Measure mass per unit length, time a pulse, etc.
3B10.17 Motion of a Slinky walking down a set of stairs is modeled. The motion exhibits a periodic gait.
3B10.18
3B10.18
Pluck two ropes of different mass per unit length, each under the same tension, and compare the speed of the pulses.
3B10.18 The difference in wave propagation speed for transverse waves on ropes of different masses and tensions is illustrated.
3B10.19 Transverse pulses and waves are demonstrated on a tilted board. ALSO hanging Slinky.
3B10.20
3B10.20 Create pulses and waves by hand on a Slinky stretched down the lecture bench.
3B10.20 A transverse pulse is sent down a Slinky on the table.
3B10.20 Students stretch a Slinky and send longitudinal waves down from one end.
3B10.20 Show transverse and longitudinal modes with a Slinky.
3B10.20 Create pulses and waves by hand on a Slinky stretched down the lecture bench.
3B10.23 Longitudinal standing waves are generated in a Slinky wrapped around a cylinder and joined end to end.
3B10.25
3B10.25 Same as Sa-5.
3B10.25 A pulse in a loaded rubber tube driven by a motorized pulley remains almost stationary.
3B10.25 An endless belt running at constant speed over two pulleys is struck with a sharp blow and the pulse is nearly stationary. Picture. Reference AJP 16(4)248; Sutton p. 139.
3B10.25 A 12' loop of bead chain is suspended over and driven by a large motorized pulley. Ball bearing rollers deform the chain and the pulse moves slowly.

3B10.25 Run a belt over a pulley at a high enough speed so a wave traveling along it appears to stand still.
3B10.25 An endless belt running over two pulleys. Reference: AJP 16(4),248.
3B10.25 A motor drives a large loop of chain suspended between horizontal pulleys.
3B10.26 Suspend a heavy cord formed into a circle from strings below a rotating disc. Spin at speed sufficient that a pulse will appear stationary.
3B10.30 Excite a horizontal torsional wave machine by hand. The other end is open, clamped, or critically damped.
3B10.30 Excite a horizontal torsional wave machine by hand. The other end is open, clamped, or critically damped.

Demonstratio	Bibliography	July 2015	
AJP 31(11),xvi	Bell Labs wave machine	3B10.30	Bell Telephone Company wave machine - source of film, booklet, and apparatus (as of 1963).
Mei, 18-2.1	Bell Labs model	3B10.30	A long article on the Bell Labs torsional wave model.
D\&R, W-030	Bell Labs wave model	3B10.30	A horizontal torsion wave machine that is excited by hand.
Disc 09-12	torsional waves	3B10.30	Show a torsional wave on a Shive wave machine.
AJP 37(1),104	toothpick wave machine	3B10.31	A method of looping No. 32 rubber bands through toothpicks to make a traveling wave machine.
AJP 49(4),375	horizontal torsion bars	3B10.31	Use soda straws and seamless elastic to make an inexpensive bell wave motion machine.
Mei, 18-8.3	horizontal torsion bars	3B10.31	Wood dowels are mounted to a section of steel tape.
TPT, 36(7), 392	making waves: a classroom torsional wave machine (part 1)	3B10.31	Directions for constructing a large scale torsional wave machine.
TPT, 36(8), 466	making waves: a classroom torsional wave machine (part 2)	3B10.31	Further discussion of experiments to do using a large scale torsional wave device.
F\&A, Sa-6	traveling wave	3B10.32	A torsion wave machine hangs from the ceiling. Also, a rope from the ceiling.
PIRA 1000	Kelvin wave apparatus	3B10.40	
Sut, S-31	Kelvin wave machine	3B10.40	A ladder style hanging wave apparatus with strings for the two sides.
Mei, 18-3.2	stationary pulse - lariat	3B10.41	A variable speed motor driven brass chain lariat is struck with a stick and the pulse is stationary at all speeds. simpler version also shown. Diagram and construction details.
Mei, 18-2.2	hanging torsional waves	3B10.41	A vertical torsion wave machine made with electrical terminal clips on a rubber tape. Pictures.
Sut, S-32	damped Kelvin wave machine	3B10.45	A long steel band with metal crossbars carrying balls on the ends is suspended from a copper disc between the poles of an electromagnet.
PIRA 500	vertical rods wave model	3B10.50	
Sut, S-26	vertical rods wave model	3B10.50	A wave template is slid under an array of vertical rods.
TPT 28(7),508	transverse wave machine	3B10.51	A cheap modern version of a nineteenth century wave machine with vertical rods driven from the bottom by an eccentric.
Sut, S-27	vertical rods wave model	3B10.51	The bottoms of a series of identical rods rest on a series of discs mounted eccentrically on a common shaft. The tops of the rods execute a wave when the shaft is rotated.
Hil, S-2a. 3	wave generator	3B10.53	Picture of a series of balls at different phase angles that seem to be connected to rotating rods. Demonstrates both transverse and longitudinal waves.
TPT 3(8),376	transverse waves on the overhead	3B10.55	Four demos: a rotating coil, wave templates, a sinusoidal wave plotter, and a superposition wave adder.
Mei, 18-8.4	project rotating wire	3B10.56	A wire spiral is rotated by a motor and projected to demonstrate transverse waves. Construction details.
Sut, S-22	water waves	3B10.60	Water waves in a long trough with glass sides. Put a cork in to show particle motion. Show standing waves with proper timing.
Ehrlich 1, p. 128	water waves	3B10.60	Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves.
TPT 28(5),337	traveling wave on a scope	3B10.65	Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave.
Sut, S-38	pendulum waves	3B10.70	A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it.
PIRA 1000	pendulum waves	3B10.75	
AJP 59(2),186	uncoupled pendulum waves	3B10.75	A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval.
AJP 69(7), 778	pendulum waves	3B10.75	The cycling of the pendulum wave patterns arise from aliasing.
Disc 08-25	pendulum waves	3B10.75	The apparatus from AJP 59(2),186.
AJP 52(9),826	solitons in a wave tank	3B10.80	A 5.5 m wave tank is described along with analysis.
UMN, 3B10.85	non-recurrent wavefronts	3B10.85	See Mechanical Universe \#18 ch 3-5, film loop Ealing \#217.
	Longitudinal Pulses and Waves	3B20.00	
PIRA 1000	the wave - longitudinal	3B20.05	
UMN, 3B20.05	the wave - longitudinal	3B20.05	Not the standard stadium wave. The students bump into each other to propagate the wave.
PIRA 200	hanging Slinky	3B20.10	A long Slinky is supported on bifilar suspension every four inches.
UMN, 3B20.10	hanging Slinky	3B20.10	A long Slinky is supported on bifilar suspension every four inches.

Demonstration Bibliography	
F\&A, Sa-12	hanging Slinky
Mei, 18-3.4	hanging Slinky
Sut, S-39	hanging Slinky
Disc 09-15	Iongitudinal Slinky waves
AJP 57(10),949	wave cutoff with a hanging Slinky
PIRA 1000	longitudinal wave on air track
F\&A, Sa-13	longitudinal wave on the air track
AJP 33(4),269	traveling \& standing waves/air track
AJP 50(6),569	air tube magnetic waves
PIRA 1000	longitudinal wave model (PASCO)
UMN, 3B20.30	springy snow fence
Disc 09-14	longitudinal wave model
PIRA 1000	longitudinal wave machine
UMN, 3B20.35	longitudinal wave machine
Sut, S-40	ball and spring waves
Hil, S-2d	hanging magnets
Sut, S-41	hear the reflection
PIRA 1000	speed of particles vs. waves
UMN, 3B20.60	speed of particles vs. waves
F\&A, Sa-11	speed of particles, waves
PIRA 1000	Crova's disc
F\&A, Sa-15	Crova's disc
Hil, S-7c. 2	Crova's Disc
	Standing Waves
PIRA 200	Melde's vibrating string
UMN, 3B22.10	Melde's
F\&A, Sa-9	Melde's
Mei, 18-7.1	Melde's
Mei, 18-5.1	Melde's
Sut, S-35	Melde's
D\&R, W-120	Melde's vibrating string
D\&R, W-125	Melde's vibrating string variation
D\&R, W-122	Melde's - DC motor on a string
D\&R, W-150	Melde's - standing waves in a hanging chain or spring
Bil\&Mai, p 210	Melde's vibrating string
Disc 09-28	rubber tube standing waves
AJP 43(10),926	Melde's driver
AJP 33(10),856	Melde's driver

3B20.10 Compression pulses are sent along a hanging Slinky.
3B20.10 Time a longitudinal pulse and compare to calculated. ALSO normal mode.
3B20.10 A long helical spring suspended every few turns with a bifilar suspension. Directions for making the spring.
3B20.10 Show longitudinal waves on a bifilar suspended Slinky with paper flags every fifth coil.
3B20.15 Waves do not propagate below a critical frequency if the Slinky is supported by short strings.
3B20.20
3B20.20 A pulse is sent down a set of gliders coupled with springs on the air track.

3B20.21 Complete discussion of traveling and standing waves on an air track with the critical point being the special mass and damping necessary for the last glider in the traveling case.
3B20.25 An air tube support magnetically coupled beads for demonstrating longitudinal waves. Replacing half the beads with larger mass demonstrates a different medium.

3B20.30 The Pasco longitudinal wave machine has vertical rods pivoted at the center and coupled with springs.
3B20.30 The Pasco device.
3B20.35
3B20.35
3B20.40 A series of croquet balls are hung from bifilar suspensions and connected with coil springs. Balls of different mass can be used.
3B20.45 About twenty magnets on bifilar suspension are used to show longitudinal waves.
3B20.50 Stretch a stiff helical spring across the room to a sounding board and listen as a longitudinal pulse strikes.
3B20.60
3B20.60
3B20.60
3B20.70
3B20.70 Non-concentric circles ruled into a Plexiglas disc appear to be compressions when projected through a slit.
3B20.70 A projection Crova's disc.
3B22.00
3B22.10 Drive one end of a string over a pulley to a mass with variable frequency SHM
3B22.10 A jigsaw drives a rope at variable speed.
3B22.10 A DC motor is driven at variable speeds to generate standing waves on an attached rope.
3B22.10 A 3 m rubber tube with a variable speed drive and high intensity strobe.
3B22.10 A string under tension is driven to show standing waves.
3B22.10 Use a length of white clothesline and a mechanical vibrator to generate standing waves.
3B22.10 Drive a string with an electromagnetic vibrator. Run other end of string over a pulley and produce different standing waves by adjusting the tension.

3B22.10 Substitute the string for a Melde's apparatus with a tapered fishing leader. Decreasing diameter decreases node to node distance.
3B22.10 A small unbalanced DC motor and battery are attached to the end of a string and suspended vertically. Varying the string length will produce transverse standing wave patterns and amplitude changes.
3B22.10 Standing waves can be produced in a hanging chain or heavy coil spring with a node at the upper end and an antinode at the lower or free end. Note that it does not matter if the loops in the chain or spring appear to rotate.

3B22.10 Drive a string with a variable speed hand drill. Run the other end of the string over a ring stand and produce different standing waves by adjusting the tension with a set of masses.
3B22.10 A long rubber tube driven by a variable speed motor.
3B22.11 Bend the clapper away from the magnet of a 110 V ac buzzer.
3B22.11 Use a dc to ac vibrator-converter for generating ac power from batteries to drive the string.

Demonstration Bibliography	
AJP 33(4),340	driving mechanism for Melde's
AJP 50(10),910	speaker driven string
AJP 50(12),1170	Melde's driver for overhead projector
AJP 36(1),63	Melde's with fluorescent light
Mei, 18-7.6	hair cutter driver
Hil, S-2b	Melde's
F\&A, Sa-10	Melde's - tuning fork
Sut, S-36	Melde's - tuning fork
Hil, S-2c	tuning fork Melde's
Mei, 18-7.5	piano wire
Mei, 18-5.5	electromagnetically excited wire
Mei, 18-7.4	$A C$ driven wire
Sut, S-37	wire standing waves
D\&R, W-270	wire standing waves
PIRA 1000	three tensions standing waves
Disc 09-27	three tensions standing waves
AJP 43(12),1112	phase changes in Melde's
Hil, S-2e. 1	multiple Melde's
Mei, 18-5.4	AC heated stretched nichrome wire
D\&R, W-105	wire standing waves
Mei, 18-5.3	air driven rubber tube
Sut, S-33	nice wave machine
Mei, 18-5.11	stroboscopic projection with wire
Mei, 18-5.10	projecting a standing wave on a wire
PIRA 500	Shive /Bell Labs standing waves
UMN, 3B22.30	Bell Labs standing waves
Disc 09-26	standing waves
PIRA 1000	vertical vibrating bar
AJP 48(9),786	vertical vibrating bar
Mei, 18-7.3	transverse waves in a rod
Ehrlich 1, p. 138	transverse waves in a rod
Sut, S-135	vertical steel bar Melde's
Ehrlich 1, p. 138	horizontal vibrating rod
Mei, 18-5.9	free boundary hanging tube
PIRA 1000	Slinky standing waves
UMN, 3B22.50	Slinky standing waves
Disc 09-25	Slinky standing waves
AJP 55(7),666	hanging spring standing waves

3B22.11 A quiet double solenoid driver for Melde's operates at line frequency.
3B22.11 Couple a loudspeaker cone to a string for a variable driver. Use two drivers to show beats.
3B22.11 A quiet electromagnetically driven string driver suitable for use on the overhead projector.
3B22.11 On the colors seen with fluorescent light illumination.
3B22.11 A hair cutter powered with a variac is modified to drive a string.
3B22.11 A Melde's driver. Reference: AJP 20(5),310.
3B22.12 A tuning fork drives a string into resonances with varied tension.
3B22.12 Vary the tension of yarn driven by an electrically driven tuning fork.
3B22.12 An electrically driven tuning fork sets up standing transverse waves in a string.
3B22.13 A motor driven, variable frequency oscillator gives transverse impulses to a stretched piano wire.
3B22.14 An electromagnet is placed at the center of a stretched wire and connected to a signal generator to produce several modes of oscillations.
3B22.14 The tension is changed on a wire carrying AC in the field of a magnet and the fundamental and various harmonics are shown.
3B22.14 Use iron wire and an electromagnet or AC current and a magnet to generate standing waves in wire.
3B22.14 Use iron wire, AC current supplied by a function generator, and a magnet to produce standing waves. Impedance matching may be provided by a speaker transformer.
3B22.15
3B22.15
Three strings driven by the same driver have weights of 0.9:2:8 to produce the first, second, and third harmonics.

3B22.16 Show two positions of max amplitude, one red and one blue, with fluorescent lighting and a vibrator synchronous to the lamp flutter.
3B22.17 The same motor drives two horizontal strings and one vertical string of equal length. All strings are in resonance.
3B22.18 Standing waves are produced by stretching nichrome wire and heating with AC.
3B22.18 Run AC through a stretched iron wire. Add magnet at various locations to make desired standing waves. Turn up AC until nodes glow red.
3B22.21 Standing waves are produced in a stretched rubber tube by a jet of air.
3B22.22 A weighted rubber tube is hung horizontally from the ends of short pivoted and counterweighted bars. Friction adjustments at the pivots allow any amount of energy to be absorbed. When driven from one end, many wave properties may be shown.
3B22.25 Waves in a wire are stroboscopically projected.
3B22.25 A rotating mirror arrangement projects the shape of a standing wave on a wire.
3B22.30
3B22.30 Excite the Bell Labs machine at various rates to obtain standing waves with one, two, and three nodes.
3B22.30 Drive the Shive wave machine by hand to produce standing waves.
3B22.40
3B22.40 Vibrate a yardstick or meter stick by hand through the fundamental and first overtone. Due to the rule, the position of the node can be measured easily.

3B22.40 Hold a long rod at the center or at an end and vibrate it at the natural frequency with the other hand. ALSO - chalk squeak and breaking.
3B22.40 Excite the fundamental transverse standing wave in a rod with a karate chop to the middle.
3B22.41 A steel bar is clamped vertically and driven mechanically through the first three harmonics.
3B22.41 A rod is clamped horizontally. Higher harmonics are produces with a mechanical vibrator.
3B22.45 A support designed to excite a hanging tube while maintaining free boundary conditions.
3B22.50
3B22.50
3B22.50 Drive a hanging Slinky by hand to produce standing waves.
3B22.51 A solenoid drives a magnet attached to a hanging spring.

Hil, S-2e. 2	hanging Slinky standing waves	3B22.51	A motor oscillator drives a hanging Slinky.
Mei, 18-5.2	driven jolly balance spring waves	3B22.52	A tuning fork drives a jolly balance spring to produce standing longitudinal waves. A lantern projector with a rotating disk slows the motion stroboscopically.
PIRA 1000	longitudinal standing waves	3B22.60	
Disc 09-24	longitudinal standing waves	3B22.60	Excite the Pasco longitudinal waves machine to get standing waves.
Mei, 18-5.8	magnetostrictive standing waves	3B22.65	A feedback circuit to a coil around a nickel rod drives magnetostrictive standing waves indicated by a ball bouncing at one end.
PIRA 1000	soap film oscillations	3B22.70	
Mei, 18-5.7	soap film standing waves	3B22.70	Large wire frames dipped in soap film are manipulated by hand to produce standing waves. Nice pictures.
Ehrlich 1, p. 142	soap film standing waves	3B22.70	Immerse a large frame in soap bubble solution. Shake the frame to create large amplitude standing waves.
Sut, S-105	standing waves	3B22.75	Use a sensitive flame to detect standing waves from a loudspeaker between two boards.
TPT, 37(4), 228	standing microwaves on the overhead projector	3B22.80	Using a microwave/overhead set-up, quantitatively illustrate standing waves to a large lecture.
PIRA 1000	crank slide	3B22.90	
UMN, 3B22.90	crank slide	3B22.90	Same as Sa-8.
F\&A, Sa-8	traveling and standing wave models	3B22.90	A projection device that gives the appearance of waves traveling in opposite directions and the sum of the waves.
Sut, S-25	crank wave model	3B22.90	Wire helixes turned about their axes in a lantern projector appear as waves traveling in opposite directions. An additional bent wire shows the resulting standing wave.
$\begin{aligned} & \text { D\&R, W-045, W- } \\ & 115 \end{aligned}$	crank wave model	3B22.90	Wire helixes made from a Slinky and turned about their axes on the overhead show traveling waves.
Ehrlich 1, p. 129	traveling and standing wave models	3B22.90	A standing longitudinal wave is simulated by two cylinders made from transparencies.
AJP 44(3),284	analog computer simulation	3B22.99	An analog computer used with a dual trace storage scope to demonstrate traveling and standing waves.
	Impedance and Dispersion	3B25.00	
PIRA 500	impedance matching - Shive model	3B25.10	
UMN, 3B25.10	impedance matching - Bell model	3B25.10	Two sections of a horizontal torsion machine with different lengths are joined abruptly for unmatched coupling and with a section of gradually lengthening rods for matched coupling.
F\&A, Sa-7	wave reflection at a discontinuity	3B25.10	Two Bell Labs torsion machines with different length rods are hooked together.
Disc 09-19	wave coupling	3B25.10	Shive wave machines with long and short rods are coupled abruptly or with a tapered section.
Sut, S-24	impedance mismatching in rope	3B25.15	Pulses are sent down a cord with part of its length half the diameter of the other part.
PIRA 1000	reflection - Shive model	3B25.20	
UMN, 3B25.20	reflection - Bell labs	3B25.20	
Disc 09-17	reflection of waves	3B25.20	A pulse sent down a Shive wave machine reflects from either a fixed or free end.
PIRA 1000	spring wave reflection	3B25.25	
Disc 09-18	spring wave reflection	3B25.25	Reflections from a long horizontal brass spring with fixed and free ends.
PIRA 1000	fixed and free rope reflection	3B25.26	
UMN, 3B25.26	fixed and free rope reflection	3B25.26	Tie a rope to a bar with a loose knot or tie it to a clamp.
$\begin{aligned} & \text { AJP, 65(4), 310- } \\ & 313 \end{aligned}$	transverse standing waves in a string with free ends	3B25.26	A nice demonstration of standing waves with free ends using a long soft spring, and the Pasco mechanical wave driver.
PIRA 1000	effect of bell	3B25.30	
PIRA 1000	acoustic coupling with speaker	3B25.35	
Disc 10-17	acoustic coupling	3B25.35	Sound a 2" loudspeaker alone and with an exponential horn.
PIRA 1000	soundboard	3B25.40	
PIRA 1000	dispersion in a plucked wire	3B25.50	
Mei, 18-3.5	dispersion in a plucked wire	3B25.50	A crystal phonograph cartridge attached to one end of a long stretched wire will pick up the reflected waves when plucked.
AJP 55(2), 130	Slinky whistlers	3B25.51	Audible whistlers from a Slinky.
AJP 55(10), 952	Slinky whistlers	3B25.51	A correction to AJP 55(2), 130.
AJP 58(10),916	Slinky-whistler dispersion	3B25.51	An analysis of and directions for performing the Slinky-whistler dispersion.
PIRA 1000	space phone (spring horn toy)	3B25.55	
UMN, 3B25.55	space phone	3B25.55	

Demonstratio	Bibliography	July 2015	
TPT 27(3), 201	whistlers	3B25.55	Producing whistlers in a stretched spring that is tapped with a pencil.
Sut, S-54	dispersion	3B25.55	A long helical coil of fine wire transmits sound slowly. Speak into a sound box on one end and somewhat distorted sound emerges.
AJP 36(11),1022	echoes in a pipe	3B25.62	A 10" dia 85' tube yields five clearly discernible echoes.
AJP 38(3),378	chirped handclaps	3B25.65	Clap your hands while standing next to a corrugated wall.
TPT 21(9), 605	whistlers/chirps	3B25.65	How the whistler is produces by high frequency sound arriving before the low frequencies.
AJP 59(2),175	racquetball court whistlers	3B25.65	Whistlers rise in frequency in the racquetball court.
AJP 41(7),857	chirp radar	3B25.66	Modify a simple microwave Doppler shift apparatus to study chirp concepts.
AJP 59(11),1050	dechirping Slinky whistlers	3B25.66	Record a single whistler on the Mac, play it backwards into the whistlerphone, and hear a "ch".
AJP 59(2),181	comment on "culvert whistlers"	3B25.67	A comment clarifies the relationship between culvert whistlers and ionospheric whistlers.
AJP 56(8),752	culvert whistlers revisited	3B25.67	An analysis of "echo tube" corridor demonstrations that also deals with ionospheric whistlers, tweeks and chirped handclaps.
AJP 39(6),610	culvert whistlers	3B25.67	Long article on culvert whistlers.
AJP 68(6), 531	culvert whistlers	3B25.67	Culvert whistlers are analyzed with both wave and geometrical ray models.
AJP 48(8),639	shear, Lamb, and Rayleigh waves	3B25.80	A panametrics $5022 \mathrm{P} / \mathrm{R}$ pulser/receiver driving a piezoelectric transducer in a water bath directed at solid blocks is used with an oscilloscope to show traces of different waves.
	Compound Waves	3B27.00	
PIRA 1000	Slinky and soda cans	3B27.10	
UMN, 3B27.10	Slinky and soda cans	3B27.10	Persons at each end of a stretched Slinky generate a pulse. The addition of the pulses kicks one soda can out from a line of cans placed along the Slinky. Also cancel opposite pulses.
PIRA 1000	wave superposition - Shive model	3B27.15	
Disc 09-16	wave superposition	3B27.15	Start positive pulses from each end of a Shive wave machine.
PIRA 1000	adding waves apparatus	3B27.20	
Mei, 18-8.5	adding waves apparatus	3B27.20	A framework allows brass tubes representing two sine waves to be combined point by point to give the resultant. Projected on the overhead.
TPT 28(8),568	harmonic sliders	3B27.21	A template with a sine wave shape is slid under a set of vertical wood bars cut to various lengths to forming a different sine waves.
Mei, 18-8.7	adding waves	3B27.21	A machine with pins cut to form a sine wave riding on a plate machined to a sine wave. Picture. Construction details in appendix, p. 635.
Sut, S-28	wave addition model	3B27.21	Stack several sets of vertical rods that describe sine waves to show the resultant.
Mei, 18-8.14	carousel waves	3B27.22	630 knitting needles are mounted on a bicycle wheel riding on a second coaxial bicycle wheel with a sine wave cam. Pictures. Construction details in appendix, p. 639.
Mei, 18-8.6	wood block interference	3B27.23	A framework holds wood blocks cut to length to form a sine wave. A template in the shape of another wave is pushed against the bottom of the blocks.
PIRA 1000	double pendulum beat drawer	3B27.30	
F\&A, Si-6	beat pendula	3B27.30	Two physical pendula with slightly different periods oscillate in parallel planes and the sum is shown by reflecting a laser beam off mounted mirrors.
Sut, S-42	sand pendulum compound wave	3B27.30	A compound sand pendulum with both oscillations in the same plane dumps onto an endless belt.
Mei, 18-4.1	beat pendula	3B27.31	Three mirrors are mounted on two pendula of slightly different frequencies. Two show the motion of each pendulum and one shows the combination. Pictures, Diagram. Construction details in appendix, p. 625.
Mei, 18-4.2	recording beat pendula	3B27.32	Inductive pickup of the position of two pendula of slightly different frequencies. Construction details.
Mei, 18-4.3	photo of beat pendula	3B27.33	Lenses on beat pendula focus spots of light on moving photographic paper.
AJP 35(11),1043	turntable oscillators	3B27.35	A phono turntable drives a horizontal platform in SHM, and two can demonstrate beats and Lissajous figures.
Sut, S-106	beats	3B27.40	Light is reflected off mirrors on two slightly different tuning forks to a rotating mirror and onto a screen.
Mei, 33-2.8	beat lights	3B27.45	The output of an audio oscillator is added to line frequency through a step-up transformer with 15 W lamps as indicators.
	Wave Properties of Sound	3B30.00	

AJP 38(1),110	rasonic wave phenomena
AJP 52(9),854	phase of a reflected acoustic wav
PIRA 500	speed of sound by phase difference
UMN, 3B30.10	speed of sound by phase difference
TPT 3(4),170	speed of sound by phase difference
F\&A, Sh-1	wavelength of sound by phase diff
Mei, 19-2.1	velocity of sound by phase shift
D\&R, W-080	speed of sound by phase difference
Sprott, 3.2	speed of sound by phase difference
TPT 2(8),390	speed of sound by phase difference
TPT 3(2),79	speed of sound by phase difference
AJP 52(5),465	sound wave visualization
$\begin{array}{lll} \text { AJP, } & 50 \\ 1025 \end{array}$	speed of sound and gravity
PIRA 500	direct speed of sound
UMN, 3B30.20	direct speed of sound
AJP 37(2),223	direct speed of sound
Hil, S-3g	direct speed of sound
AJP 31(1),xiv	direct speed of sound
AJP 57(10),920	time of flight
AJP 49(6),595	time of flight - ultrasonic ranger
Ehrlich 2, p. 138	speed of sound by echo
AJP 48(6),498	speed of sound by clapping
PIRA 200 - Old	bell in a vacuum
UMN, 3B30.30	bell in a vacuum
F\&A, Sh-2	bell in a vacuum
Sut, S-53	bell jar
Sut, S-52	bell in a jar
Hil, S-3a	bell in a vacuum
D\&R, W-015	bell in a vacuum
Sprott, 3.4	bell in a vacuum
Bil\&Mai, p 207	bell in a vacuum
Disc 10-09	siren in vacuum
PIRA 1000	speaker and candle
UMN, 3B30.40	speaker and candle
PIRA 1000	bubbles and bugle
UMN, 3B30.45	bubbles and bugle
Sprott, 3.7	bubbles and trumpet - clarinet saxaphone

3B30.01 Use 40Khz transducers to show standing waves, spherical propagation, angular distribution, two source interference, etc. by observing the output on an oscilloscope.
Note: Physics textbooks incorrectly state that a sound wave reflected at a rigid boundary is 180 degrees out of phase with the incident wave.
3B30.10

3B30.10 A function generator drives a speaker. A dual trace oscilloscope displays both the generator output and a microphone signal as the microphone is moved on the lecture bench.
3B30.10 An electronic switch is used to show both speaker and microphone traces on a single sweep scope.
A microphone is moved away from a speaker while an oscilloscope shows the generated and detected sine waves.
3B30.10 Measure the speed of sound by the phase shift of a trace on the oscilloscope as the source is moved back and forth.
3B30.10 A function generator drives a speaker. An oscilloscope displays both the generator output and microphone signal as the speaker is moved along the lecture bench.
3B30.10 The speed with which sound travels through the air is illustrated with a function generator, microphone, and an oscilloscope.
3B30.11 A microphone is moved back and forth in front of a speaker and the Lissajous figure from the generator and microphone is examined on an oscilloscope.
3B30.11 More comments on the TPT 2,390 (1964) article. Additional references.
3B30.12 A probe detects the phase difference between the sampling microphone and the speaker and lights either a red or green LED.
3B30.13 The effect of gravity on the speed of sound in a gas is shown to decrease linearly with altitude.
3B30.20
3B30.20
3B30.20 Striking a gong with a metal rod triggers an oscilloscope and a microphone picks up the sound.
3B30.20 Striking a gong with a metal rod triggers an oscilloscope and a microphone picks up the sound. Reference: AJP 37(2),223.
3B30.21 Spark a 10,000 V . 02 microF capacitor and pick up the sound with a piezoelectric transducer.
3B30.22 A circuit triggers an oscilloscope and coincidentally produces bursts of sound from a speaker.
3B30.23 Polaroid Corporation's ultrasonic ranging system is used as the basis of a time of flight determination of the speed of sound.
3B30.25 A metronome, hammer, and a metal pipe are used to find the speed of sound using the echo from a building about 80 meters away.
3B30.25 Use a clap,echo,rest,rest sequence with a second student as a director.
3B30.30 Pump air from a bell jar as a battery powered bell rings inside.
3B30.30 Evacuate a bell jar while a ringing bell is suspended inside.
3B30.30 A doorbell is placed in a bell jar which is then evacuated.
3B30.30 You can hear a bell in a closed jar while air is present.
3B30.30 Ring a bell in an evacuated bell jar. Other methods and hints.
3B30.30 Air is pumped from a bell jar as a battery powered bell rings inside.
3B30.30 Pump air from a bell jar as a battery powered bell rings inside.
3B30.30 An electric bell in a jar makes a sound that decreases in intensity as the air is evacuated from the jar.
3B30.30 A ringing bell is placed into a container filled with air, without air, and then filled with other gases.
3B30.30 Place an electronic siren with a LED in series in a bell jar.
3B30.40
3B30.40 Place a candle in front of a large speaker and make the candle flicker with large amplitude low frequency oscillations.
3B30.45
3B30.45 Dip a toy bugle in soap solution and blow. The size of the bubble changes imperceptibly.
3B30.45 Dip the bell of a wind or brass instrument in soap solution. You can play the instrument without popping the bubble showing that sound is a wave that does not result in a net motion of the air

Demonstration	Bibliography	July 2015	
Bil\&Mai, p 206	bubbles and trumpet	3B30.45	Dip the bell of a trumpet into a shallow pan of soap solution. Play the trumpet and show that the size of the bubble changes imperceptibly.
PIRA 1000	helium talking	3B30.50	
UMN, 3B30.50	helium talk	3B30.50	Sing, talk or laugh while breathing helium.
Sut, S-86	medium and speed of sound	3B30.50	Fill your lungs with hydrogen or helium and speak or sing.
Sprott, 3.3	helium and sulfur hexafluoride talking	3B30.50	Breathing helium and sulfur hexafluoride demonstrates the variation of the speed of sound with the density of a gas.
Bil\&Mai, p 207	helium talking	3B30.50	Fill your lungs with helium from a helium filled balloon and then speak or sing. Sulfur hexafluoride gas may also be used.
Disc 10-14	sound in helium	3B30.50	Blow an organ pipe with air and helium, then talk with helium.
Sut, S-85	medium and speed of sound	3B30.51	Two organ pipes are adjusted to unison, then one is filled with hydrogen. A long tube is attached to a whistle and when the gas reaches it the pitch rises.
TPT 14(8), 510	speed of sound in water	3B30.52	A classic experiment that measured the speed of sound in water.
TPT 15(8), 453	speed of sound in water	3B30.52	More on the classic experiment in TPT 14(8), 510
AJP 39(3),340	speed of sound in liquid	3B30.52	Shop drawings and circuit diagram for a ultrasonic echo pulse chamber for measuring the velocity of sound in liquids. Designed for laboratory use.
TPT 28(2),125	medium and speed of sound with PZT	3B30.52	Use a piezoelectric element as a detector for measuring the speed of sound in solids and liquids.
AJP 41(3),433	speed of sound in liquid	3B30.53	An ultrasonic transducer is pulsed in a liquid cavity and the initial and reflected pulses are observed on an oscilloscope.
AJP 45(6),588	modified circuit	3B30.53	Add a simple circuit to chop the initial pulse down to a low value, preventing amplifier overload.
PIRA 1000	sound velocity at different temperatures	3B30.55	
Sut, S-83	temp and speed of sound	3B30.55	Two organ pipes are blown simultaneously and then the air in one is heated by an internal coil.
Sut, S-84	temp and speed of sound	3B30.55	Two whistles of the same pitch are blown and one is then heated with a match.
Disc 10-13	sound velocity of different temperat	3B30.55	Blow two identical organ pipes from the same source, then heat the air going to one of the pipes with a Bunsen burner.
Mei, 19-2.4	velocity of sound with temperature	3B30.56	Attach a whistle to a coil of copper tubing placed in liquid nitrogen.
TPT, 37(1), 53	the speed of sound in air as a function of temperature	3B30.57	The speed of sound in air at room temperature is found and compared to the speed of sound in the air of a walk-in freezer.
PIRA 1000	speed of sound in rod and air	3B30.60	
UMN, 3B30.60	speed of sound in rod and air	3B30.60	Hit a twelve foot aluminum rod on one end with a hammer. Trigger an oscilloscope with a microphone at the hammer end and display the signal from microphones at the end of the rod and at the same distance.
Mei, 19-2.3	velocity of sound in a rod	3B30.61	A timer is triggered by metal balls bouncing off brass blocks mounted one meter apart on a brass rod when one end of the rod is struck with a hammer.
D\&R, W-365	velocity of sound in a rod	3B30.61	Excite fundamental in a rod, then compute the wavelength by measuring the length of the rod. Use function generator to determine frequency. Can be used to determine speed of sound and Young's Modulus or rod material.
AJP 78 (12), 1429	velocity of sound in a rod	3B30.61	Tap on one end of a rod with a microphone connected at the other end. Use sound analysis software to obtain the resonance spectrum of the bar. The speed of sound, Young's modulus, and the Poisson's ratio of steel are obtained.
AJP 38(9),1151	direct speed of sound in a rod	3B30.62	A bell clapper hits one end of a rod and triggers an oscilloscope, a phonograph needle and crystal pickup on the other end generates a signal that is displayed on the scope.
PIRA 1000	music box	3B30.65	
UMN, 3B30.65	music box	3B30.65	Sound is transmitted through a long wood rod from a music box in the basement to a sounding box in the classroom.
F\&A, Sf-3	transmission of sound through wood	3B30.65	A long 1 " $x 1$ " wood bar is placed on top of a music box in the basement, through a hole in the floor, to a sounding box in the classroom.
Sut, S-87	medium and speed of sound	3B30.66	Stand near a railroad track and listen as a hammer is struck against the rail 200' away.
	Phase and Group Velocity	3B33.00	
PIRA 500	group velocity on scope	3B33.10	
UMN, 3B33.10	group velocity on scope	3B33.10	Two sine waves of almost equal frequencies and their sum are displayed on a oscilloscope.

Demonstratio	Bibliography	July 2015	
AJP 31(12),xiii	wave and group velocity on scope	3B33.10	Directions for showing wave and group velocities on the oscilloscope.
AJP 46(5),579	phase and group velocity	3B33.10	This article spells out the subtleties for getting both traces to move in one direction.
F\&A, SI-2	phase and group velocity	3B33.10	An oscilloscope shows signals from two oscillators and the sum.
Mei, 38-6.1	group and phase velocity	3B33.10	Two sine waves are added and displayed on an oscilloscope. Picture, Diagram.
Mei, 38-6.2	group velocity	3B33.11	Measuring group velocity using two sine waves and an oscilloscope. Diagram.
AJP 41(11),1283	group velocity - gated pulse	3B33.12	An amplifier circuit is given that gates a sine wave generator with a square wave generator. The resulting packets of sine waves are found to be superior to the beat method.
Hil, S-2k	group and phase vel.- apple peeler	3B33.18	This group and phase velocity device was made from an apple peeler.
PIRA 1000	two combs	3B33.20	
AJP 37(8),842	two combs	3B33.20	Superimpose two combs on the overhead projector to show phase and group velocity.
AJP 38(4),547	two combs	3B33.20	This was published in AJP, 21,388 (1953).
Mei, 18-8.9	two combs	3B33.20	Move two combs across each other on an overhead projector to demonstrate phase and group velocity. Picture.
Mei, 18-8.10	phase and group velocity with bars	3B33.21	Two sheets of bars of ratio 9:10 are superimposed on the overhead projector A revolving model works too.
Mei, 18-8.13	densimeter comb	3B33.22	Two densimeter plates are used in place of combs. Pictures.
Mei, 18-8.8	phase and group velocity on the overhead projector	3B33.25	A sheet with black bands is pulled across an overhead projector covered except for slits parallel, perpendicular, and at 45 degrees to the motion. Picture, diagram, construction details in appendix, p. 635.
AJP 54(12),1064	R H Good software	3B33.30	Free Apple II software showing, among other things, group and wave velocity. This is the best Apple II software ever written.
AJP 54(7),656	group velocity software	3B33.31	A short review of group velocity that happens to mention some software.
AJP 41(10),1203	group and phase velocity in a pool	3B33.40	Make a large scale demonstration in a fountain pool (14' $\times 25^{\prime} \times 1$).
	Reflection and Refraction (Sound)	3B35.00	
PIRA 1000	gas lens	3B35.10	
Mei, 19-8.1	gas lens	3B35.10	Hydrogen and carbon dioxide balloons are used as diverging and converging lenses. Picture.
Sut, S-95	refraction lens - CO2	3B35.10	Make an acoustical lens by cementing the edges of two circular sheets of cellophane and filling the space between with CO 2 .
AJP 77 (3), 197	gas lens	3B35.10	A demonstration showing that scattering theory is required to understand a gas filled balloon used as an acoustic lens.
PIRA 1000	refraction prism - CO 2	3B35.20	
Sut, S-96	refraction prism - CO2	3B35.20	Direct a beam of sound through a prism of CO2.
Sut, S-97	refraction with CO 2	3B35.22	Set up a source, reflector, and detector. Then pour CO2 into the path of the incident beam to scatter the sound.
PIRA 1000	parabolic reflector and sound source	3B35.30	
Sut, S-93	curved reflectors	3B35.30	Place a watch at the focal point of a mirror and project the beam around the class.
F\&A, Sg-2	directional transmission	3B35.35	A Galton whistle at the focus of a parabolic mirror produces a beam detected by a microphone placed at the focus of a second parabolic mirror.
Sut, S-92	curved reflectors	3B35.36	Place a whistle and sensitive flame several meters apart, then place a parabolic reflector behind the whistle.
Sut, S-91	reflection of sound waves	3B35.37	A whistle and detector are placed in a line parallel with a reflector. Precautions may have to be taken to insure directionality of the sound waves.
Sut, S-94	curved reflectors	3B35.39	Take a field trip a dome to observe the "whispering gallery" effect.
Sut, S-90	wave properties of sound	3B35.50	Using a shrill whistle of wavelength from 2-8 cm, many properties of waves usually shown only with optics can be demonstrated. Many diagrams.
PIRA 1000	refraction of water waves	3B35.60	
Disc 09-20	refraction of water waves	3B35.60	Plane waves refract in a tank with deep and shallow sections.
	Transfer of Energy in Waves	3B39.00	
PIRA 1000	water wave model	3B39.10	

F\&A, Sa-4	water wave model showing phase velocity	3B39.10	Balls that rotate vertically on the end of rods hooked to horizontal shafts and are coupled together with a regular phase difference.
Mei, 18-8.15	water wave model	3B39.12	A set of 28 rotating arms driven in circular motion with constant successive phase difference. Pictures. Construction details in appendix, p.644.
Mei, 18-8.12	rotating phasors	3B39.14	Synchronous motors drive a set of balls in a circle with phase relationship such that the balls describe a sine wave.
PIRA 1000	dominoes	3B39.20	
D\&R, W-010	dominoes	3B39.20	Dominoes illustrate energy transfer mechanism.
AJP, 78 (7), 721	dominoes	3B39.20	The physics of a row of toppling dominoes is discussed and analyzed, including the effect of friction.
D\&R, W-020	coat hanger on a string	3B39.30	Hang a coat hanger in the middle of a 3 foot long string. Loop the ends of the string over your fingers and then place your fingers in your ears. Swing the coat hanger to strike a table or other object. A booming sound is heard.
TPT 31(7), 400	coat hanger on a string	3B39.30	Mathematical analysis of the coat hanger on a string and why it produces sounds like Big Ben.
TPT 30(4), 239	coat hanger on a string	3B39.30	Adapting the coat hanger on a string demonstration to a large classroom using a microphone and rubber stopper.
D\&R, W-020	cup telephone	3B39.40	Each end of a long string is run through tin cans or plastic cups and secured with a big knot. Pull the string taut and talk into one cup while someone listens at the cup on the other end.
Mei, 18-8.11	multiple wave types	3B39.50	A machine demonstrates transverse, longitudinal, and water wave motion. Picture. Construction details in Appendix, p. 636.
Hil, S-2j	seismograph	3B39.60	The output from seismographs are shown on an oscilloscope.
	Doppler Effect	3B40.00	
PIRA 200	Doppler buzzer	3B40.10	Swing a battery powered buzzer on a string around in a horizontal circle.
UMN, 3B40.10	Doppler buzzer	3B40.10	A battery powered buzzer on a string is swung around in a horizontal circle.
AJP 29(10),713	Doppler buzzer	3B40.10	Mount a buzzer and a battery on opposite ends of a meter stick and rotate about the center of mass.
AJP 41(5),727	Doppler buzzer	3B40.10	Attach a Sonalert to a 2 m string and the shift is almost a minor third. MORE: interference and radiation resistance.
Bil\&Mai, p 222	Doppler buzzer	3B40.10	A battery powered buzzer is placed inside a Nerf ball on a string. Swing in a horizontal circle.
F\&A, Si-3	Doppler speaker on turntable	3B40.10	A battery operated oscillator drives a speaker mounted on a 3' turntable.
Ehrlich 1, p. 143	Doppler buzzer	3B40.10	A beeper tied to the end of a string is whirled in a horizontal circle.
Disc 10-21	Doppler effect	3B40.10	Mount two speakers on a rotating frame and attach to an audio oscillator through slip rings.
AJP 30(4),307	Doppler speaker pendulum	3B40.12	Swing an earphone driven by an audio oscillator suspended as a pendulum.
Mei, 19-6.6	intermittent Doppler speaker	3B40.13	A rotating speaker is switched on and off so sound is emitted only when the speaker is moving towards or away from the observer and arranged so the cone of sound is directed at the observer only. Reference: AJP 21(5)407.
PIRA 1000	Doppler whistle	3B40.15	
UMN, 3B40.15	Doppler whistle	3B40.15	A whistle on the end of a tube is blown while swung around in a horizontal circle.
F\&A, Si-1	Doppler whistle	3B40.15	A small whistle at the end of a rubber tube is twirled around the head while being blown.
Mei, 19-6.2	Doppler whistle	3B40.15	A compressed air whistle on the end of a rubber tube is twirled around the head.
Mei, 19-6.1	Doppler rocket	3B40.16	A whistling rocket mounted on a rod is rotated in a three foot radius circle.
Sut, S-150	Doppler effect	3B40.18	A moving tuning fork, rotating reed, rotating whistle, and rotating speaker all show the Doppler effect.
D\&R, W-380	Doppler effect	3B40.18	A whirled tuning fork, rotating reed, and moving aluminum rod, all show the Doppler effect.
PIRA 500	Doppler spear	3B40.20	
UMN, 3B40.20	Doppler spear	3B40.20	Stroke a twelve foot aluminum rod until it sings, then hold it at the midpoint and thrust it toward the class.
Ehrlich 1, p. 144	Doppler spear	3B40.20	Excite a "singing rod". Move the rod toward or away from the listener.
PIRA 1000	Doppler reed	3B40.25	
UMN, 3B40.25	Doppler reed	3B40.25	A reed is turned at the end of a motorized shaft.

Demonstration	Bibliography	July 2015	
F\&A, Si-2	Doppler reed	3B40.25	A reed on an arm is rotated by a motor.
Hil, S-6b	Doppler reed	3B40.25	An adjustable speed motor rotates an arm with a reed ta the end.
Sprott, 3.5	Doppler reed	3B40.25	A reed mounted on the end of a rotating arm produces a tone whose pitch wobbles up and down as the arm rotates.
PIRA 1000	Doppler beats	3B40.30	
Mei, 19-6.3	Doppler beats	3B40.30	A naked tuning fork is moved back and forth in front of a wall; a poster board is moved back and forth behind a fork. Reference: AJP 10(2),120.
Mei, 19-6.5	Doppler beats	3B40.30	The complete discussion of Doppler beats: swinging tuning forks and speakers of equal or unequal frequencies, moving reflector. Diagrams.
AJP 39(2),229	Doppler radio on air track	3B40.32	Modulate an rf generator and tune two transistor radios to the frequency. Mount one on an air track and listen to the beats with the stationary radio.
AJP 69(12), 1231	Doppler speaker on air track	3B40.32	Direct acquisition of Doppler shifted sound intensity as a function of time using a computer sound card.
AJP 35(6),530	moving detector Doppler	3B40.33	A moving microphone detector is tuned to the Doppler shifted frequency of a loudspeaker.
Mei, 19-6.4	Doppler speakers	3B40.35	The difference tone between a stationary speaker and a pendulum speaker is amplified through a third speaker. Diagrams. Reference: AJP 12(1),23.
Sut, S-151	Doppler effect analog	3B40.50	A student drops paper riders on an endless string over two pulleys and the instructor picks them up while walking toward the student.
	Shock Waves	3B45.00	
Ehrlich 2, p. 139	Doppler effect - shock waves	3B45.05	Shock waves can be shown by equally spaced pins on a square wooden dowel being dunked into a long water tank. The angle at which you hold the dowel while dunking determines whether you see a shock wave pattern or a Doppler pattern.
PIRA 200 - Old	ripple tank film loops	3B45.10	A 3:45 film loop shows Doppler effect and shock waves.
UMN, 3B45.10	ripple tank film loop - shock waves	3B45.10	The film loop lasts 3:45.
AJP 48(6),498	continuous ripple-tank Doppler	3B45.11	A loudspeaker wave generator is used with a large slowly turning disk of water for continuous generation of Doppler and shock waves. Only the small portion of the disk of interest is illuminated at one time.
Mei, 17-9.4	shock wave in water	3B45.13	A film of water flowing down an incline is interrupted by a point, producing waves.
PIRA 1000	shock waves in ripple tank	3B45.15	
AJP 43(1),101	ripple tank Doppler and bow shock	3B45.15	Mount a burette on a carriage over a large pan of water.
PIRA 1000	pop the champagne cork	3B45.20	
Mei, 17-9.3	pop the champagne cork	3B45.20	Pop a plastic cork out of a water filled champagne bottle by hitting the base on a pine board.
Ehrlich 2, p. 141	shock waves - coins	3B45.25	A penny is flicked into a second penny being held down with your finger causing another penny in contact on the other side to fly off due to the created shock wave.
PIRA 1000	solition tank	3B45.30	
AJP 58(11),1100	nonpropagating hydrodynamic solitons	3B45.31	Theory and apparatus for producing solitons of $(0,1)$ and $(0,2)$ modes are discussed.
TPT, 36(8), 498	build your own soliton generator	3B45.32	A soliton is easily produced with a frequency-generator driven speaker under a tank of water/chemical solution.
Mei, 17-9.1	water trough tidal bore	3B45.35	Water in a long tank is given a sudden impulse with a paddle and a shock wave is produced.
PIRA 1000	tsunami tank	3B45.40	
AJP 44(11),1073	tsunamis	3B45.40	A simple sloping tank with ground glass side for recording the peak profile.
Mei, 17-9.5	supersonic jet	3B45.60	Schleirin optics are used to project the flow of a supersonic jet.
TPT 31(6), 376	bull whip and towel snap	3B45.61	The audible crack of a bull whip or snapped towel is produced when the tip breaks the sound barrier.
Mei, 17-9.2	shock waves in argon	3B45.65	An elaborate setup to introduce helium into a low pressure argon tube and cause a yellow glow from the compressed argon.
	Interference and Diffraction	3B50.00	
PIRA 500	ripple tank - single slit	3B50.10	
UMN, 3B50.10	ripple tank - single slit	3B50.10	The film loop lasts 3:30.
F\&A, Sm-4	ripple tank - single slit	3B50.10	Diffraction from a plane wave passing through a single slit on the ripple tank.
Disc 09-21	single slit diffraction of water wave	3B50.10	Ripple tank single slit diffraction with varying slit and wavelength.
Sut, S-144	ripple tank diffraction	3B50.12	Use the ripple tank to show radiation patterns from different baffle, pipe, and horn configurations.

Demonstratio	Bibliography	July 2015	
Ehrlich 1, p. 139	ripple tank - standing waves	3850.13	Standing waves are generated in a ripple tank by holding a mechanical vibrator against the edge of the tank.
Ehrlich 1, p. 140	ripple tank - standing waves	3B50.13	Long wavelength standing waves are created in a ripple tank by moving the tank back and forth in simple harmonic motion.
Ehrlich 1, p. 141	ripple tank - standing waves	3B50.13	Circular standing waves are created in a ripple tank by dunking a pencil in the middle of the tank at the right frequency.
PIRA 500	ripple tank - two point	3B50.20	
UMN, 3B50.20	ripple tank - two point	3B50.20	Two point sources show interference. A plane wave through a slit shows diffraction.
F\&A, Sm-2	ripple tank - double source	3B50.20	A ripple tank with two point sources in phase.
Mei, 18-6.3	ripple tank - two point	3B50.20	Waves produced by audio oscillators drive beads attached to earphone diaphragms. Picture. More.
Ehrlich 1, p. 192	ripple tank	3B50.20	A ripple tank constructed from a clear plastic storage box, a ruler, clay, paper clips, and a block of wood. An old comb is used to construct a multiple point source.
AJP, 50 (2), 136	ripple tank - two point	3B50.20	Two point sources are used to display dynamic interference patterns responsible for producing beats.
PIRA 1000	ripple tank - double slit	3B50.25	
F\&A, Sm-5	ripple tank - double slit	3B50.25	Interference from a plane wave passing through a double slit in the ripple tank.
Disc 09-22	double slit interference of water waves	3B50.25	Ripple tank double slit interference with varying wavelength and slit separation.
AJP 34(2),170	mechanical double slit	3B50.28	Lead shot drops from two hoppers and shows a single distribution with no interference pattern.
PIRA 500	ripple tank - film loops	3B50.30	
UMN, 3B50.30	ripple tank film loop	3B50.30	
PIRA 200	Moire pattern transparencies	3B50.40	A double slit representation of Moire patterns from two sheets of semicircular ruled transparencies.
UMN, 3B50.40	Morie pattern transparencies	3850.40	Transparencies with identical circular patterns are placed on top of each other with a slight offset.
Mei, 35-2.1	Moire pattern	3B50.40	Moire patterns from two sheets of semicircular ruled transparencies form a double slit representation.
$\begin{aligned} & \text { D\&R, W-325, O- } \\ & 420 \end{aligned}$	Moire pattern	3B50.40	A pattern of concentric rings that can be copied for use on the overhead.
Bil\&Mai, p 348	Moire pattern	3B50.40	Moire patterns from two sheets of semicircular ruled transparencies form a double slit representation.
Ehrlich 1, p. 186	Moire' pattern transparencies	3B50.40	Superimpose transparencies of circle patterns to simulate interference and diffraction of waves from point sources.
Ehrlich 1, p. 191	Moire' pattern	3B50.40	Interference effects that can be shown with silk fabric, a coiled spring, or inexpensive commercially available Moire' patterns.
Disc 09-23	Moire pattern	3B50.40	Two transparencies of equally spaced circles on the overhead.
AJP 32(4),247	Morie pattern - complete treatment	3B50.42	All you ever wanted to know about Morie patterns.
AJP 30(5),381	Moire' pattern	3B50.43	Electronic chassis covers (with holes kind) are mounted several inches apart and the pattern changes as your viewing distance changes.
Mei, 34-1.24	Moire pattern	3B50.43	Moire patterns with chassis boxes. Pictures.
PIRA 1000	double slit transparency	3B50.50	
UMN, 3B50.50	double slit transparency	3B50.50	Two strips of clear acetate with identical sine waves are pivoted from two points representing two slits to demonstrate constructive and destructive interference.
Mei, 18-8.2	two ropes	3B50.51	Two ropes mounted on the wall 3^{\prime} apart and painted with $6^{\prime \prime}$ black and white sections are stretched and crossed by the demonstrator to simulate constructive or destructive interference.
PIRA 1000	interference model	3B50.55	
AJP 59(9),857	interference model	3B50.55	Painted wave trains on wood lath are attached to magnets for use on a steel blackboard
D\&R, W-320	interference model	3B50.55	Corrugated strips with painted troughs and crests will show constructive and destructive interference.
Sut, S-149	ripple tank scattering	3B50.80	A brass disc is used as an obstacle for various wavelength plane waves to show scattering.
	Interference and Diffraction of Sound	3B55.00	
PIRA 200	two speaker bar	3B55.10	Two speakers driven from a common source are mounted at the ends of a long bar.

Demonstration	Bibliography	July 2015	
UMN, 3B55.10	speaker bar	3B55.10	Two speakers driven from a common source are mounted at the ends of a long bar. The bar can be moved slightly or the students can move their heads to hear the interference pattern.
AJP 42(5),413	large speaker bar	3B55.10	Use high power speakers and a 50 Watt amplifier.
F\&A, SI-3	speaker bar	3B55.10	Two speakers 2 m apart are driven from the same oscillator while students move their heads around to hear the interference pattern.
Mei, 19-5.1	speaker bar	3B55.10	Two speakers mounted at the ends of a board on a turntable are fed the same high frequency audio signal.
Mei, 19-5.2	speaker bar	3B55.10	The pattern from two speakers 3^{\prime} apart is investigated with a microphone and microammeter.
Sut, S-102	interference	3B55.10	Two speakers fed from the same source at the ends of a 12' bar. Project the pattern into the room and move the bar.
D\&R, W-330	two speaker interference	3B55.10	Speakers in phase are mounted on a turn table or lazy susan.
Disc 10-20	two speaker interference	3B55.10	Speakers in phase are mounted at the ends of a rotatable bar.
Sut, S-101	interference	3B55.11	Investigate the interference pattern from two rectangular aperture megaphones hooked to the same source.
Ehrlich 1, p. 199	interference	3B55.11	Two source interference demonstrations can be shown with a piezo buzzer placed at the center of a hollow tube.
AJP 32(2),xiv	speaker bar, etc.	3B55.12	A set of interference from two coherent sources demonstrations: slides, ripple tank, speaker bar, microwave, homemade handout optics double slits.
Sut, S-104	interference	3B55.13	Send a parallel beam against a board with two slits and investigate the result with a sensitive flame.
AJP 44(12),1120	speaker bar room acoustics problems	3B55.14	The effects of reflections from the room surfaces are often underestimated.
AJP 44(4),400	speakers on a bar	3B55.15	Mount twelve 3 " diameter speakers on a bar with a 25 ' radius.
PIRA 500	baffle and speaker	3B55.30	
UMN, 3B55.30	baffle and speaker	3B55.30	Hold up a 1" speaker oscillating at 350 Hz , then add a baffle in front of the speaker.
D\&R, W-335	baffle and speaker	3B55.30	Play a small speaker with a tape player. Intensity increases with the addition of a baffle with speaker cone size hole.
Ehrlich 2, p. 171	baffle and speaker	3B55.30	A cassette tapr recorder is connected to a small speaker. The sound intensity from the speaker increases if a piece of cardboard with a hole is placed in front of the speaker.
Mei, 19-4.10	baffles and resonators	3B55.31	A baffle is held between the forks of a tuning fork on a resonator box with the open end facing toward and away from the class.
Sut, S-109	interference of a tuning fork	3B55.31	Hold a tuning fork in the hand with and without a cardboard baffle.
PIRA 200	trombone - interference / Quinckes' tube	3B55.40	A speaker drives two tubes, one variable, that come together into a common horn.
UMN, 3B55.40	trombone - interference	3B55.40	A speaker drives two tubes, one variable, that come together into a common horn.
F\&A, Sg-4	trombone - interference	3B55.40	A horn driver is connected to tubing that splits into two variable path lengths and is recombined at a horn.
Mei, 19-5.3	trombone - interference	3B55.40	Two identical trombone slide assemblies are connected in parallel between a driver and detector. One of the slides is lengthened to produce a path length difference of one half wavelength.
Sut, S-103	trombone - interference	3B55.40	Two "U" tubes, one of them of variable length, are both connected to the same source and ear piece.
TPT 3(6),282	large trombone interference	3B55.41	A large trombone interferometer made out of 1' copper tubing.
AJP 28(1),77	Herschel divided tube	3B55.42	Interference of sound in a double tube, one side of variable length. Made of Plexiglas.
AJP 34(10),946	acoustical interferometer	3B55.45	A speaker is mounted at one end of telescoping plastic tubes, and a microphone is mounted at one end of the inner tube.
Sut, S-99	diffraction	3B55.51	A board with a variable slit is placed in a parallel sound beam. The detector is moved about and the slit width is varied.
Sut, S-98	diffraction	3B55.51	A whistle and parabolic mirror form a parallel beam. Interrupt the beam with a barrier and move the detector back until it responds again. Or - use successively smaller barriers until the detector responds but is still in the shadow of the barrier.
Ehrlich 1, p. 196	diffraction - carpet tubes	3B55.51	Piezo buzzers are placed in one end of a 4 inch diameter carpet tube and a 12 inch diameter carpet tube. Sweep the tubes across the room and hear appreciable diffraction from the 4 inch tube but very little from the 12 inch tube.
Ehrlich 1, p. 195	diffraction with a fan	3B55.53	A high frequency piezo buzzer is placed in front of a spinning fan. The listener behind the fan hears a warbling sound.
PIRA 1000	diffraction pattern of a piston	3B55.55	

Demonstration Bibliography	
Mei, 19-7.2	diffraction pattern of a piston
Sut, S-100	diffraction
Ehrlich 1, p. 199	diffraction around objects
AJP 54(7),661	hearing around a corner
PIRA 1000	diffraction fence
F\&A, Sg-3	diffraction of sound
Mei, 19-7.3	diffraction with a wire mesh
Ehrlich 1, p. 200	diffraction fence
Mei, 19-7.1	diffraction of coherent and incoherent
AJP 40(5),697	diffraction by ultrasound in liquid
Mei, 19-7.4	ultrasound camera
	Beats
PIRA 200	beat forks
UMN, 3B60.10	beat forks
Hil, S-5a. 1	beat forks
D\&R, W-355	beat forks
Sprott, 3.8	beat forks
Ehrlich 1, p. 145	beat forks
Ehrlich 2, p. 140	beat forks
Disc 10-18	tuning fork beats
PIRA 1000	beat bars
F\&A, Si-4	beat bars
Hil, S-4d. 2	beat bars
Sprott, 3.8	organ pipe beats
Bil\&Mai, p 221	singing rods - beats
PIRA 1000	beat whistles
UMN, 6C30.15	beat whistles
F\&A, Si-5	beat whistles
Sut, S-107	beat notes
Hil, S-5a. 2	Knipp singing tubes beats
Hil, S-5a. 3	Galton whistle beats
PIRA 200	beats on scope
UMN, 3B60.20	beats on scope
AJP 29(9),645	beats on scope
Mei, 19-5.5	beats on scope
D\&R, W-315	beats on scope
Disc 10-19	beats with speaker and oscilloscope

July 2015
3B55.55 A speaker cone is removed and replaced with a Lucite disc. The intensity is measured with a microphone as the speaker assembly is rotated.
3B55.55 Attach a megaphone of rectangular cross section $3 / 2$ wavelength by wavelength $/ 3$ to a whistle. A detector off to the side is placed so it will respond only when the long dimension is vertical.
3B55.58 A 12 inch diameter carpet tube with a piezo buzzer in the end is moved from above to below a desk creating a noticable drop in sound intensity. Doing the same thing with a lower frequency source shows no appreciable drop in sound intensity.
3B55.58 Things aren't simple, seeing and hearing are different.
3B55.60
3B55.60 The beam from a Galton whistle at the focus of a parabolic mirror is passed through a picket fence to a detector.
3B55.60 Parabolic reflectors are used to produce parallel sound waves that are directed through an audio diffraction grating to a movable microphone.
3B55.60 A piezo buzzer in the end of a tube with equally spaced holes creates an acoustic diffraction grating.
3B55.80 Plot the intensity vs. angle of four speakers driven by four oscillators and by a single oscillator.
3B55.91 The physical origin of the "shadow" seen in the visual display of standing wavefronts in liquids.
3B55.92 A description with construction details of a ultrasonic camera for demonstrating real image formation and Fraunhofer and Fresnel diffraction. Pictures and Diagrams.
3B60.00
3B60.10 Two tuning forks differing by about 1 Hz are mounted on resonance boxes.
3B60.10 Two tuning forks on resonance boxes, one adjustable. A microphone and scope can be used to display the beat pattern.
3B60.10 Two tuning forks differ by 1 Hz but are not mounted on resonance boxes.
3B60.10 Two tuning forks on resonance boxes, one adjustable by up to 3 Hz .
3B60.10 Two tuning forks on resonance boxes, one adjustable. A microphone and scope can be used to display the beat pattern.
3B60.10 Two tuning forks which have frequencies that differ by several Hz . A beat frequency is produced when they are struck.
3B60.10 Listeners can hear beats if you hold a vibrating tuning fork while walking away from sound reflecting wall.
3B60.10 Two tuning forks are on resonant boxes. Adjust the frequency of one to be slightly different.
3B60.11
3B60.11 Two identical bars mounted on resonator boxes are detuned by a movable weight on one. Listen to the beats and show on an oscilloscope.
3B60.11 The standard tunable bars on a resonance box.
3B60.13 Two organ pipes are slightly detuned to produce a beat frequency.
3B60.13 Hold a long aluminum rod at the midpoint and stroke with rosined fingers. Stroke another identical rod that is 1 cm shorter and listen to the beats.
3B60.15
3B60.15 Two air whistles can be adjusted to the same pitch.
3B60.15 Two tunable air whistles are used to demonstrate beats.
3B60.15 Start two whistles in unison and change the frequency of one until the difference in frequencies is enough to produce a musical beat note.
3B60.16 Two Knipp singing tubes are tuned to produce beats.
3B60.17 Two Galton whistles can be adjusted to produce "dog beats".
3B60.20 Two audio transformers are fed thru an audio interstage transformer to an oscilloscope and audio amp.
3B60.20 Dual function generators are used to generate a beat pattern that can be amplified and listened to and/or displayed on a scope.
3B60.20 The output of two audio transformers is fed into the secondary of an audio interstage transformer and from there to both an oscilloscope and an audio output transformer.
3B60.20 An interstage audio transformer and an audio output transformer couple two oscillators to an oscilloscope and speaker.
3B60.20 Two function generators are used to generate a beat pattern or group that can be amplified and listened to and/or displayed on a scope.
3B60.20 Two function generators are used to make beats that are displayed on a scope and amplified to a speaker.

TPT, 37(3), 177	a visual and acoustic demonstration of beats and interference
AJP 43(12),1103	beat oscillator switch
ref.	beats vs. diff.tone
AJP 30(11),840	reply to beats misconceptions
AJP 30(5),386	beats vs. difference tones
AJP 42(7),603	beat demodulation
PIRA 1000	ripple tank beats
AJP 31(10),794	ripple tank beats
AJP 50(2),136	ripple tank beats
PIRA 200 - Old	Coupled Resonators coupled tuning forks
Sut, S-115	resonance in forks
Sut, S-50	sympathetic vibrations
D\&R, W-265	resonance in forks
Sprott, 3.8	resonance in forks
PIRA 200 - Old	coupled speaker/tuning forks
Mei, 19-4.7	sympathetic vibrations in forks
Sut, S-116	resonance of strings
Hil, S-4b	tuning fork driven sonometer
	ACOUSTICS
	The Ear
PIRA 1000	model of the ear
UMN, 3C10.10	model of the ear
TPT 52(2), 77	eardrum model
PIRA 500	time resolution of the ear
F\&A, SI-1	binaural hearing
D\&R, W-035	time resolution of the ear
Sut, S-153	direction judgment of the ear
Sut, S-152	direction judgment of the ear
PIRA 500	bone conduction
D\&R, W-425, M945	bone conduction
	Pitch
TPT 17(2), 102	infrasound
PIRA 200	range of hearing
UMN, 3C20.10	range of hearing
F\&A, Sh-3	range of hearing

3B60.20 Two function generators, a stereo system, and an oscilloscope are used to show and hear beats at the same time.

3B60.22 A circuit to switch between inputs or the sum of the inputs to allow either the individual frequencies or the beats to be heard.
3B60.30 see 3C55.35
3B60.31 Beat notes are what the misconceptions are about, beats are just combined frequencies.
3B60.31 Hey, guys, simple "mixture" of frequencies gives difference tones. Beats are only present when modulation operations are used.
3B60.38 Two oscillators drive a loudspeaker, switch a diode into the circuit and the modulation frequency can be detected.
3B60.40
3B60.40 Two point sources in a ripple tank run at different frequencies. Theory included.
3B60.40 Beats are demonstrated as a moving interference pattern in the ripple tank by using two separate point source generators with variable frequency controls.
3B70.00
3B70.10 Two matched tuning forks are mounted on resonance boxes. Hit one and the other vibrates too.
3B70.10 Two identical tuning forks on resonance boxes - strike one and the other starts vibrating.
3B70.10 Two tuning forks on resonance boxes: hit one and the other vibrates too. Several hints on showing this effect.
3B70.10 Two identical tuning forks on resonance boxes. Point open ends of cavities at each other and strike one, the other will start to vibrate.
3B70.10 Strike one tuning fork mounted on a box and a second of the same frequency will vibrate sympathetically.
3B70.20 Drive a tuning fork on a resonant box with a speaker.
3B70.25 A horn driver directed at a box coupled to a tuning fork produces sympathetic vibrations which are detected by a crystal pickup and shown on an oscilloscope.
3B70.30 A tuning fork is held against a three string sonometer with one string tuned to the fork frequency. Only the tuned string will vibrate.
3B70.31 Place a tuning fork on the bridge of a tuned sonometer and observe the motion of a small piece of paper placed on the wire at its center.
3C00.00
3C10.00
3C10.10
3C10.10
3C10.15 A model eardrum is constructed using a wave generator, speaker, membrane, mirror, and a laser. An audio amplifier may also be needed.
3C10.20
3C10.20 Hold the ends of a long tube to each ear and have someone tap in the center and then a few centimeters to each side.
3C10.20 A long tube with funnels connected to the ends. Hold a funnel over each ear and have someone tap the tube in the center and then slightly off center.

3C10.21 High frequency location depends on difference in intensity produced by the shadow of the head.
3C10.21 Location of low pitched sounds depends on phase difference. Use a model stethoscope with one tube longer than the other.
3C10.30
3C10.30

3C20.00
3C20.05 Using infrasound to understand the atmosphere and the ocean.
3C20.10 Use an oscillator driving a good audio system to demonstrate the range of hearing.
3C20.10 A set of good speakers is used to test the student's range of hearing.
3C20.10 An oscillator driving a good audio system is used to demonstrate the range of hearing.

Demonstration Bibliography	
D\&R, W-085	range of hearing
Sprott, 3.7	range of hearing
Sut, S-122	range of hearing
F\&A, Sg-1	Galton whistle
F\&A, Sf-4	ultrasonic waves
Sprott, 3.10	ultrasonic waves
AJP, 75 (6), 574	tonometers - ultrasonic rods
Mei, 19-10.1	ultrasonic vibrations of quartz
AJP, 75 (5), 415	quartz tuning fork
PIRA 500	zip strips
PIRA 500	bottle scale
F\&A, Se-4	musical bottles
D\&R, W-260	musical bottles
Bil\&Mai, p 216	musical bottles
ref.	see 3C60.30
PIRA 1000	siren disc
UMN, 3C30.20	siren disc
F\&A, Sc-1	siren disc
Sut, S-120	siren disc
D\&R, W-050	siren disk
Disc 10-10	siren disc
TPT 42(7), 418	siren
PIRA 1000	Savart's wheel
AJP 32(2),xiv	frequency and pitch
F\&A, Sc-2	musical saw
Mei, 19-4.3	tooth ratio scale
Sut, S-121	Savart wheel
Hil, S-3b	Savart's wheels
Disc 10-11	gear and card
Mei, 19-4.4	saw blade organ
Sut, S-118	pitch sort of
TPT 36(8), 508	increasing pitch with decreasing amplitude
AJP 47(2),199	sound cart
PIRA 200	Intensity and Attenuation dB meters and horn
PIRA 500 - Old	dB meters and horn
UMN, 3C30.20	dB meters and horn

3C20.10 Connect a function generator to a speaker. Adjust frequency while students plot their cutoff. Show waveforms on the oscilloscope during test.

3C20.10 Use a function generator connected to speakers to demonstrate the range of human hearing and deterioration with age.
3C20.11 Use whistles, forks, etc. to establish upper range of hearing or an audio oscillator from 10 to $30,000 \mathrm{~Hz}$.
3C20.15 The Galton whistle can be adjusted to produce an intense sound into the ultrasonic range.
3C20.16 A set of steel rods tuned to frequencies up to 30 KHz are struck with a hammer and the sound both heard and displayed on an oscilloscope.
3C20.16 Various sources of sound with frequencies above the range of audibility illustrate the distinction between a physical sound wave and the perception of sound.
3C20.16 A short article with picture describing the tonometers as secondary frequency standards and how they are used.
3C20.17 Making an ultrasonic transducer and using it to make a fountain and emulsion.
3C20.17 Using a common quartz tuning fork to demonstrate the principle of shear force scanning probe microscopy on a simple profiler constructed with equipment found in a teaching laboratory.
3C20.20
3C20.25
3C20.25
3C20.25 Participants blow across a set of bottles with water levels adjusted to give an 8 note scale which is enough to play Jingle Bells.
3C20.25 Blow across an empty bottle and then add water to the bottle as you continue to blow.
3C20.30 see 3C60.30
3C20.30
3C20.30
3C20.30 An air jet is directed at a rotating disc with holes.
3C20.30 Air is blown through concentric rows of regularly spaced holes on a spinning disc. Change of speed of the disc changes frequencies but not intervals.

3C20.30 An air jet is directed at a rotating disc with concentric rows of holes.
3C20.30 A disc with concentric ring of equally spaced holes is spun by a motor and a jet of air is blown at each circle of holes.
3C20.35 Pictures, functions, and characteristics of typical demonstration sirens.
3C20.40
3C20.40 A set of gears on a single shaft of a variable speed motor have the ratios of 44-47-49-52-55-59-62-66-70-74-78-83-88.
3C20.40 A card is held against a dull saw as the speed is varied.
3C20.40 A set of gears with 44-47-49-52-59-62-66-70-74-83-88 teeth are mounted coaxially on a shaft connected to a variable speed motor. Varying the speed shows intervals are determined by frequency ratios rather than absolute pitch.
3C20.40 Hold a stiff cardboard against the rim of a spinning toothed wheel. Use wheels on the same shaft each with different numbers of teeth.
3C20.40 A major chord is produced when a cardboard is held against rotating wheels with tooth ratios of 3:4:5:6.
3C20.40 Hold a card against gears on a common shaft with teeth in ratio of 4:5:6:8.
3C20.41 Several saw blades are mounted on the same rotating shaft with sound produced by amplifying the output of a coil pickup. A band of switches selects the active blades, allowing chords to be played.
3C20.45 Many examples of sound of poor quality but with some definite pitch. E.g., a thumbnail on a book cover.
3C20.60 Euler's disk, buzzing magnets, and glass bottles that are gently struck together demonstrate an increasing audible pitch with the decrease in motion amplitude.
3C20.70 All the instrumentation for a physics of sound course is loaded on one mobile cart.
3C30.00
3C30.20
3C30.20
3C30.20 Place dB meters in the class at 2 meter intervals, then blow a loud horn.

Demonstration Bibliography	
PIRA 1000	dB meter and horn
UMN, 3C30.21	dB meter and horn
F\&A, Sc-4	air horn
D\&R, W-090	dB meter and horn
Hil, S-3c	sound level meter
PIRA 1000	loudness (phones and sones)
PIRA 1000	hearing -3dB
UMN, 3C30.35	hearing -3dB
Mei, 19-4.15	3 dB
Sut, S-88	attenuation of materials
Mei, 19-9.2	modified tuning fork resonance box
D\&R, M-945	modified tuning fork resonance box
Sut, S-89	attenuation in CO 2
Hil, S-7f	acoustical tiles
PIRA 500	Architectual Acoustics
AJP 48(1),32	room reverberation time
Mei, 19-4.14	reverberation time
Mei, 19-4.13	reverberation time
Sut, S-146	reverberation time
Sut, S-147	reverberation tube
Sut, S-148	ripple tank acoustics
	Wave Analysis and Synthesis
PIRA 200 - Old	Pasco Fourier synthesizer
UMN, 3C50.10	Pasco Fourier synthesizer
F\&A, Sk-3	Pasco Fourier synthesizer
D\&R, W-075	Pasco Fourier synthesizer
Disc 10-15	Fourier synthesizer
AJP 43(9),755	electronic music synthesizer
AJP 29(6),372	electric organ as synthesizer
AJP 40(7),937	electromechanical Fourier synthesize
Mei, 18-4.4	mechanical multichannel generator
AJP 43(10),899	synthesizer
AJP 42(9),754	waveform synthesizer
AJP 53(9),874	waveform synthesizer
D\&R, W-055	waveform synthesizer
PIRA 1000	mechanical square wave generator
UMN, 3C50.15	mechanical square wave generator

3C30.21
3C30.21 An air horn driven by a compressed air tank gives a 120 dB sound at close range. Use a dB meter to measure the intensity at various ranges.
3C30.21 A railroad horn blown from a tank of compressed air has a nearby intensity of 110 dB .
3C30.21 Students measure air horns and other readily available sound sources.
3C30.22 A sound level meter is used to measure the instructor speaking, etc.
3C30.30
3C30.35
3C30.35 A function generator with a dB meter is used to quickly adjust to half power.
3C30.36 One and two students pound the table equidistant from an observer.
3C30.41 Place various materials between a sounding board and a tuning fork stuck in a block of wood.
3C30.42 The tuning fork is removed from a resonance box and a rod, string, and water are interposed.
3C30.42 Place a tuning fork on different tables or objects to increase the volume.
3C30.43 A high pitched tone transmitted through a 10' pipe will be attenuated when filled with CO2.
3C30.45 Show various acoustical tiles.
3C40.00
3C40.10
3C40.10 Go around and record pistol shots in various rooms, then determine reverberation time at different frequencies with some equipment in the classroom.
3C40.10 Students clap hands to generate sound for reverberation time.
3C40.10 Study the reverberation time of a room.
3C40.10 Measure reverberation time of the classroom with a dB meter. (-60 dB)
3C40.11 Measure the time required for sound to die in a tube that can be fitted with caps of various materials.
3C40.20 Cross sectional models of various auditoriums are used in a ripple tank to show scattering and reflection.
3C50.00
3C50.10 The Pasco Fourier synthesizer allows one to build an arbitrary waveform with up to nine harmonics.
3C50.10 The Pasco Fourier synthesizer is used to build up a square wave.
3C50.10 The Pasco Fourier synthesizer allows one to build an arbitrary waveform out of up to nine harmonics.
3C50.10 A Pasco Fourier synthesizer allow on to build arbitrary waveforms out of nine harmonics. An oscilloscope is attached for viewing.
3C50.10 Use the Pasco Fourier synthesizer to demonstrate building square and triangle waves.
3C50.12 The principles of an electronic music synthesizer and its use in demonstrations.
3C50.12 The timbre of a musical note is demonstrated by showing an oscilloscope trace of an electric organ while changing the drawbars.
3C50.13 A set of eight mechanically geared potentiometers generate sine/cosine waves and harmonics.
3C50.13 A four channel mechanical signal generator is used to show a fundamental and two harmonics. Picture. Construction details in appendix, p. 626.

3C50.14 The PAiA 2720 Synthesizer used with an oscilloscope for ten demonstrations.
3C50.14 Oscillators tuned to 1, 2, 3, 4, and 5 Khz have variable amplitude and phase. External input and an audio amp are also included.
3C50.14 A waveform synthesizer based on the Intel 8748 microcontroller is described along with some theory and an experiment.
3C50.14 Multiple oscillators to make waveforms, or a microphone, drives an audio system with speaker. Connect an oscilloscope to make the waveforms visible.
3C50.15
3C50.15 Shadow project a mechanism with a small disc mounted at the edge of a larger disc with $1 / 3$ the diameter geared to rotate 3 times as fast as the larger disc.

Demonstratio	Bibliography	July 2015	
Mei, 33-2.9	arbitrary waveform generator	3C50.18	Sweep a high freq signal at a low freq on an oscilloscope with a mask cut out to the shape of the wave desired and look at it with a photocell.
PIRA 200 - Old	Helmholtz resonators and microphone	3C50.30	Hold a small microphone individually to a set of Helmholtz resonators.
UMN, 3C50.30	Helmholtz resonators and microphone	3C50.30	
Mei, 19-4.6	Helmholtz resonator	3C50.31	Sound from a loudspeaker is directed at a series of Helmholtz resonators with pinwheel detectors at their small apertures.
Mei, 19-4.8	ganged resonance boxes	3C50.31	A pistol is fired in front of a set of tuning fork resonance boxes equipped with inductive pickups. Picture.
Mei, 19-4.11	resonance in a box	3C50.33	A complex setup to plot the frequency spectrum of a box. Pictures, Diagrams.
Sut, S-117	resonant response of vocal cavities	3C50.34	Use a fake larynx to talk without using the vocal cords.
PIRA 1000	resonance tube spectrum	3C50.35	
UMN, 3C50.35	resonance tube spectrum	3C50.35	Drive a speaker at one end of a tube with the swept frequency output of a spectrum analyzer.
AJP 48(1),24	air column resonance spectra	3C50.36	Use a storage scope and two function generators to display the swept spectrum. Interesting additions are end corrections, tone holes, and adding a bell.
Sut, S-145	radiation patterns of horns	3C50.37	Feed an oscillator or other sound to any one of four different types of horns to show differences in quality at various frequencies.
PIRA 1000	harmonic tones (vibrating string)	3C50.40	
AJP 50(6),570	string resonance spectra on oscilloscope	3C50.40	Sweep the source generator and oscilloscope horizontal from a generator. Use a steel wire and guitar pickup.
AJP 52(5),470	resonances in strings	3C50.40	Excite a steel string with a linearly swept sinusoidal signal and show the output on a spectrum analyzer or storage oscilloscope.
PIRA 1000	noise (pink and white)	3C50.50	
PIRA 1000	distinguishing harmonics with the ear	3C50.55	
UMN, 3C50.55	distinguishing harmonics	3C50.55	A generator with an adjustable high Q bandpass filter allows one to train the ear to pick out the harmonics of a complex sound.
AJP 53(11),1112	distinguishing harmonics	3C50.55	The circuit diagram for the Gronseth device.
PIRA 1000	wave analysis (PASCO filter)	3C50.70	
PIRA 1000	spectrum analyzer	3C50.80	
Mei, 33-3.7	RLC bank harmonic analyzer	3C50.81	A bank of RLC circuits covering to the tenth harmonic of 235 Hz is used as a harmonic analyzer. Diagram.
AJP 28(4),405	LC harmonic analyzer	3C50.82	Sweep a square wave generator through a single LC filter and detect maxima at harmonics of the fundamental.
AJP 45(1),103	low cost spectrum analyzer	3C50.83	A circuit for a 100 kHz spectrum analyzer using a standard oscilloscope for display.
AJP 48(6),451	spectrum analyzer - Tek 5L4N	3C50.83	The Tek 5 L 4 N spectrum analyzer plug-in is used with a camera (instead of a storage scope) to show the spectrum of sustained tones from musical instruments at different pitch and loudness.
AJP 52(8),713	FFT on 6502	3C50.94	A FFT algorithm relocatable to any 6502 is available from the author.
AJP 53(11),1107	microcomputer based analyzer Music Perception and the Voice	$\begin{aligned} & 3 C 50.94 \\ & 3 C 55.00 \end{aligned}$	Discusses algorithms for cross correlation and sound intensity analysis.
PIRA 1000	pitch of complex tones	3C55.20	
AJP 50(9),855	pitch of complex tones	3C55.20	Use an Apple computer to generate complex tones. Students judge the pitch.
PIRA 1000	missing fundamental	3C55.25	
AJP 52(5),470	missing fundamental	3C55.25	Microcomputers with built-in tone generators are handy for generating "missing fundamental" demonstrations.
AJP 41(8),1010	sing/whistle - which octave	3C55.26	Whistle and sing into a three foot pipe and use the resonances to show your whistling range is much higher than your singing range.
PIRA 1000	difference tones	3C55.30	
UMN, 3C55.30	difference tones	3C55.30	
AJP 42(7),616	subjective tones	3C55.30	A toy whistle emits tones at 2081, 1896, and 1727 Hz . Subjective difference tones at 169,185 , and 374 Hz are clearly audible.
AJP 37(7),730	combination tones and the ear	3C55.31	Explanation of how the nonlinear ear creates difference tones and common examples of the phenomena. Two demonstrations: sweep with a second oscillator to find the difference tone, add 200, 300 and 400 Hz to hear 100 Hz .
PIRA 1000	beats vs. difference tones	3C55.35	

Demonstratio	Bibliography	July 2015	
AJP 49(7),632	difference tones and beats	3 C 55.35	Two pure tones produce beats or difference tones. Theory and a demonstration that trains our ears to hear and distinguish the two.
AJP 3292), xiii	beats on scope, difference tones	3C55.35	The usual two oscillators, amplifier, and scope. For difference tones, set one oscillator above the audible range and the difference tone is the only thing the student can hear.
Mei, 19-5.4	beats on scope, difference tones	3C55.35	Two audio oscillators drive two speakers. A microphone pickup displays the sum on an oscilloscope. ALSO - difference tone.
PIRA 1000	chords	3 C 55.40	
F\&A, Sj-5	chords	3C55.40	Using the three string sonometer to study the structure of chords by varying the bridge location of strings tuned in unison.
F\&A, Sk-2	circular glockenspiel	3C55.41	Mallets can be put in any of twelve holes on a spool to play major, minor, augmented, and diminished cords on a circular glockenspiel.
AJP 49(6),579	consonant musical interals	3C55.42	Consonant and dissonant intervals are explained by a relation between the time required to perceive a definite pitch and the period of a complex tone.
PIRA 1000	consonance and dissonance	3C55.45	
F\&A, Sj-4	harmonious notes	3C55.45	Using the sonometer to demonstrate the harmonic content of different interval combinations.
PIRA 500	musical scale	3C55.50	
AJP 55(3),223	numerical investigation of scales	3C55.51	An investigation of why the 12 note scale is the best equal tempered scale.
AJP 42(7),543	quanitiative investigation of scales	3C55.51	A quantitative measurement of how well any tuning succeeds in providing just intonation for any specific piece of music.
AJP 35(5),441	scales and algebraic groups	3C55.51	On transposing.
AJP 56(4),329	lucky equal temperaments	3C55.52	An analysis of how good the fits of $12,19,31$, and 53 steps per octave are in equally tempered scales.
PIRA 1000	tuning forks on resonance boxes	3C55.55	
AJP 47(6),564	piano tuning	3 C 55.55	On making use of instrumentation to help with piano tuning.
AJP 47(5),475	piano tuning	3C55.55	A pianist discusses the finer points of piano tuning.
AJP 46(8),792	piano tuning	3C55.55	On "stretching" the equally tempered scale.
F\&A, Sf-1	tuning forks with resonators	3C55.55	A set of tuning forks mounted on resonance boxes make the musical scale.
Hil, S-4d. 4	tuning fork resonance boxes	3C55.55	A set of four different tuning forks on resonant boxes.
Sprott, 3.7	tuning forks	3C55.55	Using resonance boxes with tuning forks.
Disc 11-08	tuning forks on resonant boxes	3C55.55	Two tuning forks, two boxes. Show the box needs to be matched to the fork.
F\&A, Sk-1	Johnson intonation trainer	3C55.60	A small organ that is switched between fixed and variable tuning to demonstrate even tempered and just intonation.
Sut, S-123	tone quality	3C55.65	A series of organ pipes tuned carefully to give the harmonics of a fundamental can be used to show the effect of suppressing various harmonics.
PIRA 1000	tone quality	3C55.70	
UMN, 3C55.70	microphone and oscilloscope	3C55.70	Show the output of a microphone on an oscilloscope.
D\&R, W-390	microphone and oscilloscope	3C55.70	Show the output of a microphone on the oscilloscope. Observe patterns of voices, speech, tuning forks, and musical instruments.
Sprott, 3.7	microphone and oscilloscope	3C55.70	Use a microphone with an oscilloscope to display waveforms.
Sut, S-79	sound wave on oscilloscope	3C55.71	Show a sound wave on the oscilloscope while listening to it.
Sut, S-125	tone quality	3C55.72	Using a microphone and oscilloscope, demonstrate that a tuning fork does not produce a pure sine wave but a fork on a resonance box does.
AJP 43(8),736	tone quality of a Boehm flute	3 C 55.73	Harmonic analysis of rich and dull tones from the Boehm flute.
PIRA 1000	keyboard and oscilloscope	3C55.74	
AJP 44(6),593	forms of sounds	3 C 55.75	A variant of the circuit produces roulette figures, etc.
AJP 43(3),282	voice display - corridor demo	3C55.75	A circuit to advance the horizontal 45 degrees and retard the vertical 45 degrees to give a circular trace when a falsetto " $\mathrm{O}-\mathrm{o}-\mathrm{O}$ " is sung.
PIRA 1000	formants	3C55.80	
UMN, 3C55.80	formants	3 C 55.80	Sing formants into a HP analog spectrum analyzer.
Disc 10-16	vocal formants	3C55.80	Use an computer based real time spectrum analyzer to display vocal formants.
AJP, 59 (6), 564	vocal formants	3C55.80	A simple demonstration experiment that illustrates the separate functions of the vocal cords and the vocal tract.
Sut, S-124	tone quality	3C55.82	Using a phonelescope or oscilloscope, sing the different vowels at the same pitch and the same vowels at different pitches.
PIRA 1000	filtered music and speech	3C55.85	
UMN, 3C55.85	filtered music and speech	3 C 55.85	
AJP 50(11),1050	octave-band filters	3C55.85	Use an octave-band filter (from an audio store) to demonstrate filtered music and speech.

Demonstration	Bibliography
AJP 59(1),94	Book/CD review - piano acoustics
Hil, S-7b	musical sound records
D\&R, W-095	Science of Sound records or tapes
F\&A, Si-7	churchbell guitar
INSTRUMENTS	

3C55.90
Review of a book "Acoustics of the Piano" that comes with a CD that includes examples used in the lectures.
3C55.90 The Science of Sound - Bell Labs, Energy and Motion - Zaret and Singer, Experimental Songs - Dorothy Collins, Space Songs - Tom Glazer \& Dottie Evans, Physics Songs - State University of Iowa.
Produced by Bell Labs. Many audio demonstrations and examples.

3C55.99
3D00.00
3D20.00
3D20.10
3D20.10
3D20.10
The standard two wire sonometer.
A long spruce box with three strings, tuning machines, and adjustable bridges.
3D20.10 A general discussion of sonometers and the various demonstrations possible.
3D20.10 Commercial 3 wire sonometer.
3D20.11 A vertical sonometer allows tension to be applied by simply hanging weights.

3D20.15 Pluck a string at different distances from the end or pluck while touching at various nodes.
3D20.20

3D20.20 Use voltages generated by magnets placed across steel strings attached to an oscilloscope to view string motion.
3D20.20 Display voltages generated by magnets placed across vibrating steel wires on an oscilloscope.
3D20.20 An electromagnetic pickup is used to display the waveform of the sonometer string on an oscilloscope.
3D20.21
3D20.21 A model that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy.
3D20.21 Analyzes the intonation of instruments with frets taking into account the effects of deformation of the strings and inharmonicity due to other string characteristics.
3D20.21 Show the output of an electric guitar on an oscilloscope.
3D20.30 An overhead projector is modified for strobe projection and the string is bowed with a motorized "O" ring.
3D20.30 Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving mirror.
3D20.30 The motion of a string is shown by placing any portion in a lantern projector limited by a slit. The difference in bowing, plucking, and striking can be demonstrated.
3D20.31 An optical detection system for showing the position of a vibrating string.
3D20.36 A classroom device that simulates the coupled motion of piano strings and theory of the device.
3D20.45 Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.
3D20.50
3D20.52 Mount strings vertically on a rotating table to give the sound of strings excited by the wind.
3D20.52 A sort of aeolian stethoscope.
3D20.60 The pitch of a rubber-band changes only slightly with great increase in length (tension).
3D22.00
3D22.10
3D22.10
3D22.20
3D22.20 A wooden cigar box serves as sounding box for a one string violin.
3D22.20 A one string violin made with a cigar box body.
3D22.20 Run a string through a coffee can, stretch taut and pluck or bow.

3D30.00
3D30.10 Draw a glass tube out of a water bath while holding a tuning fork over one end.

UMN, 3D30.10	vertical resonance tube
AJP 36(1),ix	vertical resonance tube modification
F\&A, Se-1	vertical resonance tube
Sut, S-80	vertical resonance tube
D\&R, W-255	vertical resonance tube
Sut, S-112	vertical resonance tube
Mei, 19-4.9	vertical resonance tube
Sut, S-113	open tube resonance
Ehrlich 1, p. 131	open tube resonance
AJP 69(3), 311	open tube resonance
PIRA 1000	resonance tube with piston
AJP 77 (8), 678	resonance tube analysis
Disc 11-01	resonance tube with piston
PIRA 1000	horizontal resonance tube
UMN, 3D30.16	horizontal resonance tube
Sut, S-129	organ pipe velocity nodes
AJP 56(8),702	modes of a bottle
AJP 77 (10), 882	modes of cylindrical containers
Sut, S-66	low frequency generator
PIRA 500	open and closed tubes 256/512
Disc 11-04	resonance tube 256/512
Sut, S-114	conical pipes
PIRA 500	bloogles - kroogah tubes
AJP 42(4),278	Hummer tube
F\&A, Se-7	freq tube dash pot
F\&A, Se-6	freq tube
D\&R, W-230	freq tube
Sprott, 3.7	freq tube - corrugaphone
Ehrlich 1, p. 132	freq tube
PIRA 1000	Helmholtz resonators
F\&A, Se-3	Helmholtz resonators
Mei, 19-4.5	Helmholtz resonators
Hil, S-4d. 1	acoustic resonator
AJP 72(8), 1035	Helmholtz resonators
Sprott, 3.7	Helmholtz resonators
Disc 11-09	Helmholtz resonators
F\&A, Sd-3	tuning a resonance box
Sut, S-81	Fizeau resonance box
F\&A, Se-2	ploop tubes
Sut, S-111	ploop tubes

3D30.10 The length of a glass tube is varied by pulling it out of a water reservoir. A tuning fork is used as a frequency source.
3D30.10 Design of a clamp to hold the tuning fork and resonance tube, and a bracket for the water reservoir.
3D30.10 A glass tube is drawn out of a water bath while holding a tuning fork over one end.
3D30.10 Use a tuning fork to excite the air column in a vertical tube as it is pulled out of a water bath.
3D30.10 Draw a piece of electrical conduit out of a water bath while holding a tuning fork over one end.
3D30.11 Blow across the mouth of bottles or a adjustable air column.
3D30.12 A vertical tube is mounted over a siren disk.
3D30.14 A length of open tube adjusted by a paper extension and excited by a tuning fork.
3D30.14 A variable length tube excited by a beeper.
3D30.14 Measure Q of an open ended tube being driven by a speaker set some distance away.
3D30.15
3D30.15 Using holographic interferometry to study standing sounds waves in a resonance tube driven by a small loudspeaker at one end.
3D30.15 Mount a microphone on a piston that slides in a glass tube and close the other end of the tube with a speaker.
3D30.16
3D30.16 A plunger on a rod is used to change the effective length of a horizontal glass tube as a tuning fork supplies the exciting frequency.
3D30.16 Lower a ring with a membrane and sand into a pipe with a clear side to observe velocity nodes and antinodes.
3D30.17 A thorough discussion of modes of various bottles working up to a 3-D model.
3D30.17 Use a small speaker, a microphone, and a CD container as a ready made acoustical resonant cavity. The angular behavior of resonant modes can be observed in addition to its frequency on an oscilloscope.
3D30.19 A special tip for an air jet that produces many frequencies of low intensity useful for exciting enclosed air columns.
3D30.20
3D30.20 A tube is cut to length to resonate at 256 Hz when closed and 512 Hz when open.
3D30.21 Corrections for the effective length of open and closed circular pipes are given. A conical pipe discussion with several interesting demonstrations is listed.
3D30.35
3D30.35 The complete explanation on singing corrugated pipes.
3D30.35 A freq tube is attached to coffee can moved up and down in a pail of water.

3D30.35 Open tubes of corrugated plastic are whirled around.
3D30.35 Open tubes of corrugated plastic of different lengths are whirled around.
3D30.35 Swing a corrugated plastic tube in a circle and observe the wave forms on an oscilloscope.
3D30.35 An open tube of corrugated plastic is blown like a whistle or whirled around.
3D30.40
3D30.40 A set of spherical resonators made of spun brass.
3D30.40 A small vane is rotated when placed near the small opening of a resonating Helmholtz cavity.
3D30.40 This picture appears to be of a Helmholtz resonator.
3D30.40 Some Helmholtz resonators are measured for the quality factor Q and the results are compared to the computed theoretical values.
3D30.40 Various objects used as Helmholtz resonators.
3D30.40 Two resonators are matched to two tuning forks.
3D30.41 The hole size of a resonance box is adjusted to maximize resonance with a tuning fork.
3D30.43 A toothed wheel is used to produce a high pitched sound and an adjustable resonance box with a sensitive flame detector is used to determine speed of sound.
3D30.45 Stoppers are removed from a set of tubes of varying length.
3D30.45 Pull stoppers out of test tubes filled with water to different depths.

Demonstration	Bibliography
PIRA 500	Ruben's tube
UMN, 3D30.50	Ruben's tube
F\&A, Sa-16	Ruben's tube
Mei, 19-3.5	Ruben's tube
Sut, S-130	Ruben's tube
Hil, S-2h	Ruben's tube
D\&R, W-225	Ruben's tube
Sprott, 3.6	Ruben's tube
Bil\&Mai, p 212	Ruben's tube
AJP 54(4),297	Rubens tube comment
AJP 51(9),848	Rubens tube flame structure
AJP 53(11),1110	Ruben's tube nodes
AJP 54(12),1146	Ruben's tube nodes
PIRA 200	Kundt's tube
PIRA 1000 - Old	Kundt's tube
F\&A, Sa-17	Kundt's tube
Sut, S-82	Kundt's tube
Disc 11-03	Kundt's tube
AJP 30(7),512	horn driven Kundt tube
Hil, S-3f	Kundt's tube
Sut, S-127	Kundt's tube
Mei, 19-3.1 TPT 3(1),30	Kundt's tube on the overhead evacuate Kundt's tube
F\&A, Sa-18	hot wire Kundt's tube
Mei, 19-3.4	horizontal resonance tube - wire
Sut, S-128	hot wire pipe
Mei, 19-3.2	Kundt's tube - impedance measurement
AJP 39(7),811	pressure distribution in a cavity
PIRA 200	hoot tubes
UMN, 3D30.70	hoot tubes
F\&A, Se-5	hoot tubes
Sut, S-62	hoot tubes
Sut, S-61	hoot tubes
D\&R, W-210	hoot tubes
Sprott, 3.7	hoot tubes
Disc 11-07	singing pipes
Hil, S-4c	hoot tube
D\&R, W-210	hoot tubes
Sut, S-64	hoot tubes
AJP 34(4), 360 PIRA 1000 UMN, 3D30.74	Rijke Tube - electrical heating variable hoot tubes variable hoot tube

3D30.50
3D30.50 The standard Reuben's tube.
3D30.50 A gas filled tube with flames from a row of holes along the top and a speaker at one end.
3D30.50 Directions for building a Ruben's tube. Picture, Diagrams.
3D30.50 Drill a line of holes along a downspout and drive one end with a loudspeaker and introduce gas in the other. Flames indicate nodes and antinodes.

3D30.50 A horn driver is used as a sound source.
3D30.50 Directions for building and use of a Ruben's tube with driving speaker.
3D30.50 A pipe several meters long, with evenly spaced holes along the top, filled with natural gas and connected to a loud speaker.
3D30.50 Directions for building and use of a Ruben's tube with driving speaker. Use an electric keyboard to drive the speaker.
3D30.55 A comment on AJP 53,1110 (1985).
3D30.55 An examination of the structure of the flames in the normal mode (flame maxima at pressure nodes).
3D30.55 The pressure is measured at each flame hole and the results are that the flames are larger at the pressure antinodes.
3D30.55 A comment on a note that the tube can be operated with flame maxima at either pressure node or pressure antinode.
3D30.60
3D30.60
3D30.60 Sawdust in a tube makes piles when driven by rubbing a rod attached to a disc.
3D30.60 Standard Kundt's tube: glass tube with cork dust, stroke a rod to excite air in tube.
3D30.60 Stroke a rod to excite cork dust in a tube.
3D30.61 Investigation of striations in an electrically driven Kundt tube.
3D30.61 The cork dust in Kundt's tube is excited by a horn driver.
3D30.62 A variation of Kundt's tube with an organ pipe made with one side of rubber or cellophane and sprinkled with sand while laid on its side.
3D30.63 A Kundt's tube is modified for use on the overhead projector.
3D30.64 Show the effect of pressure variation on the speed of sound by partially evacuating the Kundt's tube.
3D30.65 Cooling of a glowing wire down the center of a tube indicates standing waves.
3D30.65 A nichrome wire stretched down the middle of a glass tube and heated electrically will glow to show standing waves.
3D30.65 Blow a whistle at one end of a tube with a hot wire running down the axis to show areas of low and high luminosity.
3D30.66 Use the oscilloscope to show variation of impedance in the driving coil with changes in tube length.
3D30.69 Liquid deformation on the bottom of an acoustic cavity shows the timedependent pressure distribution in a standing sound wave.
3D30.70 A bunsen burner heats a screen in the bottom of a large open vertical tube.
3D30.70 Large glass tubes sound when a wire mesh at one end is heated with a Bunsen burner.
3D30.70 A Bunsen burner heats a screen in the bottom of a large open tube.
3D30.70 Singing tubes excited by hot gauze.
3D30.70 Hints for making a singing tube work with only flame excitation.
3D30.70 Singing tubes excited by hot gauze. Turn the tube horizontally to "pour out" the sound.
3D30.70 A tube lowered over a Bunsen burner or a tube with an internal screen that is heated.
3D30.70 Two metal tubes and a glass one.
3D30.71 Insert a fisher burner in a tube.
3D30.71 Lower one end of a large pipe onto a Fisher burner until it resonates.
3D30.72 The gauze in a hoot tube is held at the bottom of the tube and the flame is lit above it.
3D30.73 Construction of electrically heated Rijke tubes, tuning a T shaped tube.

3D30.74
3D30.74

Demonstration	Bibliography
Sut, S-63	Knipp tubes
AJP 50(5),398	hot chocolate effect
AJP 59(4),296 AJP 58(11),1033	hot chocolate effect - comment hot chocolate effect
PIRA 1000 Sut, S-126	Air Column Instruments organ pipes with holes organ pipes with holes
Mei, 19-3.3	tin flute
Disc 11-02	resonance tubes (three lengths)
Sut, S-65	shrieker
TPT 28(7), 459	clarinet - saxaphone
PIRA 1000	slide whistle
UMN, 3D32.15	slide whistle
F\&A, Se-10	variable pitch whistle
$\begin{aligned} & \text { D\&R, W-220, W- } \\ & 360 \end{aligned}$	whistles
Disc 11-06	slide whistle
Sut, S-59	bird call
Ehrlich 1, p. 132	soda straw oboe
TPT 23(9), 566	soda straw oboe
PIRA 1000	organ pipes
Hil, S-7c. 1	organ pipe
Sut, S-57	pipes and whistles
PIRA 1000	open and closed end pipes
UMN, 3D30.25	organ pipes
F\&A, Se-9	organ pipe
Hil, S-4d. 3	open and closed tubes
D\&R, W-190	open and closed end pipes
D\&R, W-215	organ pipes
Disc 11-05	open and closed end pipes
TPT 13(9), 557	harmonica
F\&A, Se-11	"C" bazooka
AJP 53(12),1130	hose in the bell
PIRA 1000	demonstration trumpet
AJP 53(5),504	demonstration trumpet
PIRA Local	baritone - Euphonium
PIRA Local	tuba - Sousaphone
PIRA Local	trombone
PIRA 1000	PVC instruments
D\&R, W-415	PVC instruments - pan pipes
TPT 28(7),459	PVC instruments, etc.
	Resonance in Plates, Bars, Solids
PIRA 1000	xylophone
UMN, 3D40.10	xylophone
AJP 69(7), 743	xylophone
F\&A, Sf-5	glockenspiel
Hil, S-7d. 2	xylophone
D\&R, W-130	xylophone

July 2015 Oscillations and Waves

3D30.75 length of glass tube in the closed end of a larger tube. Picture. Ref.
F.R.Watson, "Sound"p. 214.

3D30.77 Tap on a tall cylinder full of water and then repeat with hot water so there are lots of bubbles. The pitch descends three octaves and rises as the bubbles float up.
3D30.77 A few explanations from a physical chemist.
3D30.77 Tap on the bottom of an empty glass, a full glass (higher pitch), and a glass full of tiny bubbles (pitch raises as glass clears). Methods of generating bubbles with beer and hot water. More.
3D32.00
3D32.10
3D32.10
Show open and closed pipes of various lengths and one with holes bored in the side to give the diatonic scale.
3D32.10 Open and close holes on a tin flute to find pressure nodes and antinodes.
3D32.10 Blow air out of a flat nozzle across a set of three different length tubes.
3D32.13 Insert a 1/2" dia. tube 12" long into a bottle of water and blow across.
3D32.14 How to make a PVC clarinet from a clarinet mouthpiece and PVC pipe. Also some discussion on various scales.
3D32.15
3D32.15 Use a high quality sliding whistle made for band.
3D32.15 A whistle with a sliding piston.
3D32.15 A collection of whistles including a train whistle and police whistles

3D32.15 The variable length organ pipe.
3D32.16 Directions for making a bird call. Diagram.
3D32.18 Snip pieces off the end of a straw to produce a double reed. Adjust the frequency by cutting the straw to different lengths.
3D32.18 How to make a soda straw oboe.
3D32.20
3D32.20
3D32.20
3D32.25
3D32.25
3D32.25
Some very nice adjustable open and closed resonance tubes.
3D32.25 Excite the fundamental of an open or closed pipe. Open pipe is one octave higher.
3D32.25 A collection of open, closed, and variable length organ pipes.
3D32.25 Three organ pipes, open and closed.
3D32.30 The harmonica as an audio frequency generator.
3D32.35 A 1.314 m brass tube sounds the note " C " when blown with the lips.
3D32.36 With a garden hose in the bell of a trombone (flush with the end), the tones are: 3:5:7:9:11 and without the hose: 2:3:4:5:6.
3D32.40
3D32.40 Interchangeable mouthpiece, leadpipe, cylindrical section, and bell allow one to show the function of the various parts of the brass instruments.
3D32.41 Functions of a large brass instrument and it's parts are explored.
3D32.42 Functions of a large brass instrument and it's parts are explored.
3D32.43 Explore the unique functions of the trombone slide.
3D32.45
3D32.45
3D32.45
Pan Pipe made from $1 / 2$ inch plastic water pipe.
Very good instructions on making various instruments out of PVC. Also using a computer with a synthesizer to study scales.
3D40.00

3D40.10
3D40.10
3D40.10
3D40 10
A small xylophone can be played to demonstrate the musical scale.
3D40.10 A small xylophone.
3D40.10 A 2 m long, 1.3 cm diameter aluminum rod is struck in the center to produce transverse standing waves. Use this to discuss location of supports under xylophone pipes.
3D40.10 Homemade xylophone made from aluminum conduit.

Demonstration	Bibliography
Disc 10-07	xylophone bars
PIRA 1000	rectangular bar oscillations
Disc 10-05	rectangular bar oscillations
PIRA 1000	high frequency metal bars
Disc 10-06	high frequency metal bars
PIRA 1000	musical sticks
UMN, 3D40.15	musical sticks
F\&A, Sf-6	musical sticks
Sut, S-119	musical sticks
Hil, S-7d. 1	musical sticks
D\&R, W-145	musical sticks
D\&R, W-146	musical rods - Xylopipes
Bil\&Mai, p 216	musical rods - Xylopipes
PIRA 1000	musical nails
TPT 25(2), 98	musical strips - musical ruler
D\&R, M-900	musical strips - musical ruler
TPT 43(5), 282	musical strips - musical ruler
Bil\&Mai, p 216	musical strips - musical ruler
TPT 39(5), 310	thumb piano
PIRA 200	singing rod
UMN, 3D40.20	singing rod
D\&R, W-135, W205	singing rod
Sprott, 3.7	singing rod
Bil\&Mai, p 219	singing rod
Ehrlich 1, p. 137	singing rod
Disc 10-08	singing rods
Mei, 19-3.6	singing rod
Sut, S-136	bow the vertical rod
AJP 38(9),1152	regenerative feedback in rod
AJP 41(5),734	speed of sound in a rod
AJP 42(12),1117	speed of sound in a metal wire
Mei, 19-2.2	velocity of sound in a rod
Mei, 18-1.1	singing rod
Mei, 18-1.2	singing rod
PIRA 200	Chladni plate

July 2015
3D40.10 Use a microphone and oscilloscope to display the waveforms of various notes on a xylophone.
3D40.11
3D40.11 Strike a three foot rectangular bar on different faces and on the end. Listen to the different frequencies.
3D40.12
3D40.12 Hold a metal rod at the midpoint and strike at the end. Two rods an octave apart are shown.
3D40.15
3D40.15 A set of wood sticks play a major scale when dropped on the lecture table.

3D40.15 A set of wood sticks is cut so they sound the musical scale when dropped.
3D40.15 Directions for making musical sticks.
3D40.15 A set of sticks give a complete scale when dropped.
3D40.15 Sticks of different lengths in a xylophone configuration.
3D40.15 A set of copper pipes, aluminum pipes, or steel electrical conduit, cut to specific lengths will produce notes of the musical scale when rolled off a table onto a hard floor.
3D40.15 A set of copper pipes cut to specific lengths will produced notes of the musical scale when dropped onto a hard floor.
3D40.16
3D40.16 Hold or clamp one end of a meter stick to a table and vibrate the other end. A graph of the frequency vs. the length of the meter stick can be obtained.

3D40.18 Clamp one end of a hacksaw blade to a table and set the other end to vibrating. An audible sound is produced with an increase in frequency with a reduction of the vibrating length.
3D40.18 Drive the hacksaw blade with an electromagnetic coil.
3D40.18 Hold one end of a wooden meter stick against a table top and set the other end that is extending over the edge of the table to vibrating. Reduce the vibrating length to increase the frequency.
3D40.19 Description and analysis of a thumb piano also known as a mbira or kalimba. Also pictures and analysis of Marloye's harp.
3D40.20 Hold a long aluminum rod at the midpoint and stroke with rosined fingers.
3D40.20 A long aluminum rod will sing when held at the center and stroked with a piece of rosin coated leather.
3D40.20 Hold a long aluminum rod at the midpoint and stroke with rosined fingers. If rod is of correct diameter and length, coupled oscillations between longitudinal and transverse waves can occur.
3D40.20 Stroke or hit the end of a rod to produce loud longitudinal sound modes. Observe the wave forms on an oscilloscope.
3D40.20 Hold a long aluminum rod at the midpoint and stroke with rosined fingers. Press the end of the rod to a Styrofoam cup to amplify the sound.
3D40.20 Put some no-slip spray or gel on your fingers. Stroke an aluminum rod to excite longitudinal standing waves.
3D40.20 Hold a long aluminum rod at the midpoint and stroke with rosined fingers.
3D40.21 Stroke a $1 / 2^{\prime \prime} \times 72^{\prime \prime}$ aluminum rod while holding at nodes to produce different harmonics.
3D40.23 A long thin rod attached to a short thick rod clamped vertically is bowed and plucked while held at various positions.
3D40.24 A detector at one end, speaker at the other, and an amplifier in between provides a regenerative feedback system for exciting a rod in the fundamental frequency.
3D40.24 Stroke a loud rod to get a squeal, tune an oscillator and speaker to get rid of beats, and calculate the velocity.
3D40.24 Wire is stretched tightly and stroked with a wet sponge.
3D40.24 A rod clamped in the middle is excited by a coil at one end tuned until a Lissajous pattern is formed on an oscilloscope with the signal from a microphone placed at the other end.
3D40.24 A rod is excited electromagnetically at one end and the motion is detected in the same manner at the other end for quantitative studies.
3D40.27 Find Young's modulus by finding the sag in a rod and then compare the frequency of the fundamental mode with theory.
3D40.30 Strike or bow a horizontal metal plate covered with sand while touching the edge at various nodal points.

UMN, 3D40.30	Chladni plate
F\&A, Sb-3	Chladni plates
Mei, 19-4.2	Chladni plates
Sut, S-137	Chladni plate
Hil, S-7e	Chladni plates
D\&R, W-165	Chladni plates
Disc 09-30	Chladni plates
AJP, 50 (3), 271	Chladni plates
F\&A, Sb-1	Chladni plates
Sut, S-138	Chladni plates
AJP 59(7),665	Chladni plates on the overhead projector
Mei, 19-4.1	Chladni plates
PIRA 1000	thick Chladni plate
UMN, 3D40.33	thick Chladni plate
AJP 73(3), 283	Chladni plates
AJP 72(10), 1345	Chladni plates
AJP 72(2), 220	Chladni plates - Gong - Cymbals
AJP 50(3),271	Chladni plates - Gong - Cymbals
PIRA 1000	flaming table
UMN, 3D40.35	flaming table
AJP 55(8),733	2-D flame table
F\&A, Sb-2	flaming birthday cake
AJP 56(10),913	2D flame table analysis
PIRA 500	drum head
AJP 51(5),474	Chladni figures - tympani head
AJP 35(11),1029	standing waves on a drum
Mei, 19-4.12	standing waves in a drum
Disc 09-29	drumhead
AJP 36(8),669	vibrations in a circular membrane
PIRA 1000	bubble membrane modes
UMN, 3D40.45	bubble membrane modes
AJP 33(11),xvii	soap film membrane modes
AJP 59(4),376	bubble membrane modes
D\&R, W-170	soap film membrane modes
D\&R, W-175	bubble membrane modes
PIRA 1000	musical goblet
F\&A, Se-8	musical goblets
Hil, S-7d. 3	glass tumbler
AJP 73(11), 1045	musical goblet variation
D\&R, W-155	musical goblet
D\&R, W-160	musical goblet variation
Ehrlich 1, p. 135	musical goblet
Mei, 18-5.6	standing waves in a bowl

July 2015
3D40.30 A brass plate clamped horizontally in the center is bowed while the edges are touched to provide user selected nodes. Banding sand shows patterns of oscillations.
3D40.30 Bow the Chladni plate while damping at node locations with a finger.
3D40.30 Excite the Chladni plates with a cello bow. Picture.
3D40.30 A horizontal metal plate covered with sand is struck or bowed while touching the edge at various nodal points.
3D40.30 Bow circular and square Chladni plates.
3D40.30 A horizontal metal plate covered with sand is bowed while touching the edge at various nodal points. Fluorescent sand and black lights make it more dramatic.
3D40.30 A plate is driven by magnetostriction in the 10 to 30 Khz range.
3D40.30 On Chladni's law for vibrating plates.
3D40.31 Sprinkled sand shows standing waves on a circular metal plate driven at the center by an oscillator.
3D40.31 Drive a Chladni plate from the center.
3D40.32 Directions for making a loudspeaker driven Chladni plate for the overhead projector.
3D40.32 Chladni plates are driven from above by a loudspeaker. Pictures.
3D40.33
3D40.33 A circular disc of $1 / 2^{\prime \prime}$ aluminum exhibits a single pattern.
3D40.34 Additional comments on AJP 72(10), 1345.
3D40.34 Grains of salt and salt dust are used at the same time. The grains collect at the nodal lines while the dust collects at the antinodes.
3D40.34 Something about nondegenerate normal-mode doublets in vibrating flat circular plates.
3D40.34 After some interesting historical and general comments, nonflat plates (cymbals, gongs, etc.) are examined.
3D40.35
3D40.35 Same as AJP 55(8),733.
3D40.35 Two-dimensional rectangular and circular flame tables, extensions of the onedimensional Rubens tube, are shown in some lower order modes
3D40.35 Flames from a two dimensional array driven by a speaker show many resonant modes.
3D40.36 An analysis of the two dimensional flame table.
3D40.40
3D40.40 Drive a timpani head with a loudspeaker.
3D40.40 A speaker drives a circular rubber membrane under tension while illuminated with a strobe.
3D40.40 A circular rubber membrane with a pattern is illuminated with a strobe and driven from below by a 12 " loudspeaker. Pictures.
3D40.40 A speaker drives a drumhead.
3D40.41 The eigenfrequencies of (21) agree closely with the theoretical values. Air damping is removed by using a wire mesh driven magnetically.
3D40.45
3D40.45 Use a large right angle PVC fitting.
3D40.45 Light from a slide projector is reflected off a soap film with a black cloth and speaker behind.
3D40.45 A simple technique to drive bubble membranes of various shapes with a speaker.
3D40.45 Drive bubble membrane with a speaker on an acrylic tube. Focus reflected light from a slide projector with a large lens.
3D40.45 Large bubble membranes in large circular and rectangular frames are oscillated by hand.
3D40.50
3D40.50 Rub the edge of a goblet with a wet finger.
3D40.50 Rub a finger dipped in vinegar around the top of a crystal goblet.
3D40.50 A model to compute the frequency shift of the singing wineglass when water is added.
3D40.50 Rub the edge of a goblet with a wet finger.
3D40.50 Excite a goblet by rubbing a wet finger around the edge as you vary the water level in the goblet.
3D40.50 Rub the rim of a wine glass with a moist finger.
3D40.51 A 15 I flask is cut in half to form a bowl which is bowed to produce standing waves. Suspended ping pong balls indicate nodes and loops.

Demonstration	Bibliography	July 2015	
Sut, S-139	bowing the bowl	3D40.51	Suspend four pith balls so they touch the edge of a bowl and bow between two of the balls.
TPT 30(7), 341	spouting bowl	3D40.51	Three demonstrations of ancient chinese bronzeware. The transparent bronze mirror or magic mirror, water spouting basin, and the faith bell.
AJP 53(11),1070	"whispering" waves in a wineglass	3D40.52	A thorough discussion of surface waves in vessels, including ethylene glycol in a trifle dish.
AJP 51(8),688	wineglass acoustics	3D40.52	A study of wineglass acoustics.
TPT 28(9),582	wine glass waves, etc.	3D40.53	Seven questions about wine glass waves are answered. Pictures of a glass harmonica and a Chinese "water spouting basin".
PIRA 200	shattering goblet	3D40.55	
PIRA 500 - Old	shattering goblet	3D40.55	
AJP 47(9),828	shattering goblet or beaker	3D40.55	Laboratory beakers are shattered in a chamber with a small piece of folded paper over the rim serving as a resonance detector.
TPT 28(6),418	shattering goblet	3D40.55	Break a lead crystal goblet with amplified sound.
Sprott, 3.9	shattering goblet or beaker	3D40.55	A glass beaker exposed to a sufficiently intense sound wave at its natural resonant frequency will shatter.
Disc 09-06	glass breaking with sound	3D40.55	Large amplitude sound at the resonant frequency is directed at a beaker.
AJP 58(1),82	wind chimes	3D40.60	Directions for making wind chimes. Some discussion of the perception of complex tones.
PIRA 1000	bull roarer	3D40.65	
Sut, S-143	aeolian "bull roarer"	3D40.65	The Australian "bull-roarer" produces a loud noise due to eddies in the air.
AJP 53(6),579	spherical oscillations movie	3D40.90	A description by the author of a computer generated movie of spherical oscillations.
	Tuning Forks	3D46.00	
Hil, S-2g	tuning fork sets	3D46.15	Various sets of tuning forks.
PIRA 1000	tuning fork	3D46.16	
Sprott, 3.7	oscilloscope waveforms - tuning forks	3D46.16	An oscilloscope displays the waveforms of various tuning forks.
Disc 10-03	tuning fork	3D46.16	Use a microphone and oscilloscope to display the waveforms of 256,512 , and 1024 Hz tuning forks.
Sut, S-110	tuning forks	3D46.20	Strike two tuning forks. Hold one against the table and the other in the air. When the first is no longer audible, hold the second on the table.
Sut, S-55	tuning forks	3D46.21	Compare losses of tuning forks of steel and alloy, on and off a resonator box.
PIRA 1000	adjustable tuning fork	3D46.22	
Disc 10-04	adjustable tuning fork	3D46.22	Adjust masses on each tine of a large fork and show the waveform on an oscilloscope. Mistuned forks damp quickly.
Mei, 19-9.3	modulation of sound waves	3D46.25	Two tuning forks of slightly different frequencies mounted on resonant boxes couple when the amplitude is varied by an oscillating barrier between them.
F\&A, Sh-4	low frequency tuning fork	3D46.30	Tuning fork motion can be studied with a large fork.
D\&R, W-265	low frequency tuning fork	3D46.30	Tuning fork vibrations may be studied with a strobe and a long fork.
Bil\&Mai, p 216	low frequency tuning fork	3D46.30	Tuning fork vibrations may be studied with a large fork and a bowl of water or a strobe.
Sut, S-51	project a tuning fork	3D46.31	Stroboscopically shadow project a vibrating tuning fork on a screen.
F\&A, Sf-2	vowel tuning forks	3D46.40	A set of tuning forks made to give sounds that sound like the vowels.
F\&A, Sc-3	quadrupole nature of a tuning fork	3D46.45	Hold a tuning fork close to the ear and rotate it.
AJP 68(12), 1139	quadrupole nature of a tuning fork	3D46.45	The sound of a tuning fork rotated close to the ear, and then at arms length, is shown to be that of a linear quadrupole.
AJP 28(8),ix	frequency standard tuning forks	3D46.90	Driven precision tuning forks of 400 and 100 Hz are used as secondary frequency standards.
AJP 28(5),505	Electronically driven tuning fork	3D46.90	A tube circuit for driving a tuning fork.
Sut, S-56	electrically driven fork	3D46.90	A vacuum tube circuit for driving tuning forks.
	Electronic Instruments	3D50.00	
PIRA 500	keyboards	3D50.10	
Sprott, 3.7	electronic keyboard	3D50.10	Display the output of an electronic keyboard on an oscilloscope.
	SOUND	3E00.00	
	REPRODUCTION Audio Systems	3E10.00	
PIRA 1000	audio cart - complete audio system	3E10.10	
	Loudspeakers	3E20.00	

AJP, 50 (4), 348 loudspeaker - resonant frequency

PIRA 1000	crossover network for speakers
PIRA Local	crossover network for speakers

TPT, 9, (1), p. 47 crossover network

D\&R, W-405

	Microphones
PIRA Local	Amplifiers distortion in an audio amplifier
Sprott, 3.7	distortion in an audio amplifier
PIRA Local	Recorders harmonic disortion of tape recorders
PIRA 1000	Digital Systems CD with holes CD with holes
PIRA Local	MP3 compression

3E20.10 A simple speaker constructed of a coil wrapped on a dowel rod that is connected to a tape player. Hold the coil next to a magnet. The sound can be made audible by placing the end of the dowel rod on a Styrofoam cup.

3E20.15 A loudspeaker has been cut in two so that the motion of the cone can be easily observed at low frequencies.
3E20.15 its useful low-frequency limit.
3E20.20
3E20.20 White noise is played through a speaker that has low, mid-range, and high frequency speaker elements that are controlled by a crossover. Using a microphone connected to an oscilloscope, you can easily show that the high frequencies are coming through the tweeter, and low frequencies are coming through the woofer.
3E20.25 A crossover is connected to a signal generator. As the frequency is adjusted, the speaker is switched between the tweeter and woofer positions in the circuit demonstrating how the crossover works.
3E20.30 A kit that is basically a low-mid-high crossover with the output of each range connected to a different colored light. In this case, low frequencies to a red light, mid-range frequendies to a green light, and high frequencies to a blue light.

3E30.00
3E40.00
3E40.10
Raising the input signal of an audio amplifier past its linear range creates distortion in the ouput signal. The distortion and additional harmonics can be easily seen on an oscilloscope.
3E40.10 Show effect of distortion due to signal amplification using a transistor radio and oscilloscope.
3E60.00

A CD has small increasing size holes drilled in it. The CD will play over the small holes with no skipping as the disk is coded to override localized damage to the disc.
3E80.50 Play and compare various MP3 compressions of a short musical CD excerpt. Do a spectral analysis of the sound to see how the spectrum is being limited as the bit-rate is reduced.

PIRA 500
Sut, H-2
Mei, 25-1
AJP 29(6),368
PIRA 1000
F\&A, Ha-1
PIRA 1000
AJP 59(1),90

Sut, H-96
Sut, H-6
Sut, H-
Mei, 25-2.5
Mei, 25-2.3
AJP 30(4),300
TPT 1(5),226
Mei, 26-3.5
PIRA 1000
AJP 38(4),425
D\&R, H-018
Disc 24-17
Sut, H-8

ut, H-1	temperature ranges
	Liquid Expansion
PIRA 500	Torchelli tube
UMN, 4A20.10	Torricelli tube
F\&A, Ha-9	expansion up a tube by heating
Disc 14-13	thermal expansion of water
Sut, H-32	Torricelli tube
Mei, 25-2.1	Torricelli tube
Hil, H-2a. 7	water thermometer
F\&A, Ha-12	expansion of fluids
Sut, H-27	test tube set
PIRA 1000	maximum density of water
Sut, H-28	maximum density of water
Sut, H-29	maximum density of water
Disc 14-14	negative expansion coefficient of water
F\&A, Ha-13	water at 4 C

various thermometers various thermometers commercial apparatus demonstration thermometer mercury thermometer mercury thermometer Galileo's thermometer Galileo's thermometer
low temperature thermometers
thermocouple
thermocouples
supersensitive thermometer
temperature sensitive paint thermosensitive pigment
thermochromic cards
Thermicon card
cholesteric liquid crystals
cholesteric liquid crystals
liquid crystal sheets
liquid crystal sheets
pyrometry
temperature ranges

THERMAL PROPERTIES

OF MATTER

Thermometry

4A10.90
4A20.00
4A20.10
4A20.10
Immerse a Torchelli tube filled with red water in a boiling water bath. The fluid will drop before rising.
4A20.10 A flask with a long slender neck is filled with colored water and immersed in a hot water bath.
4A20.10 Fill a round bottomed flask with water, stick a slender tube in the neck, and heat with a burner.
4A20.11 A small bulb with a capillary full of mercury is immersed in a bath of hot water. The meniscus falls, then rises.
4A20.12 A thermometer inserted in hot water shows a drop in temperature as the glass expands before the liquid warms.
4A20.13 A bulb with a small bore tube.
4A20.20 A manometer is surrounded on one side with ice water and on the other by steam.
4A20.25 A number of test tubes filled with various liquids are immersed in a hot water bath. Expansion is magnified by small bore tubes.
4A20.30
4A20.30 A flask with a narrow stem shows volume changes and a thermocouple shows temperature changes when water is allowed to warm from 0 C .
4A20.30 Refinements to H -28. Use a 100 ml quartz flask and 1 mm bore capillary tube for a meniscus drop of 5 to 6 mm .
4A20.30 Immerse a water thermometer in an ice bath
4A20.35 Water at the bottom of a cylinder remains at 4 C when surrounded by ice at the middle.

Demonstration Bibliography

Sut, H-31	maxium density of water
Sut, H-30	maximum density of water
TPT 2(7),338	coefficient of expansion of oil Solid Expansion
PIRA 200	bimetal strip
UMN, 4A30.10	bimetal strip
F\&A, Ha-5	bimetal strip
Mei, 25-2.2	bimetallic strip
Sut, H-21	bimetal strip
Hil, H-2a. 5	bimetallic strip
D\&R, H-110	bimetalic strip
Disc 14-08	bimetallic strip
PIRA 1000	thermostat model
F\&A, Ha-6	thermostat
Sut, H-22	bimetallic strip thermostat
D\&R, H-044	bimetallic strip thermostat
Disc 14-09	thermostat model
AJP 55(10),954	turn signal oscillator
PIRA 1000	wire coil thermostat - Zigmund Peacock, University of Utah
PIRA 200	balls and ring
UMN, 4A30.20	balls and ring
F\&A, Ha-7	ball and ring
Sut, H-15	ball and ring
Hil, H-2a. 4	ball and ring
D\&R, H-114	ball and ring
Disc 14-11	thermal expansion
Sut, H-16	shrink fit
PIRA 500	break the bolt
UMN, 4A30.30	break the bolt
F\&A, Ha-10	forces caused by change of length
Sut, H-17	break the bolt
Disc 14-10	pin breaker
Sut, H-18	break the bolt
PIRA 1000	hopping discs
F\&A, Ha-11	hopping discs
D\&R, H-122	hopping discs
Ehrlich 1, p. 114	hopping discs
Sut, H-13	bending glass by expansion
Sut, H-24	Trevelyan rocker
PIRA 1000	expansion of quartz and glass
UMN, 4A30.50	expansion of quartz and glass
F\&A, Hd-8	expansion of quartz
Sut, H-25	expansion of quartz and glass
F\&A, Ha-8	expansion of a tube
Sut, H-12	expansion tube

4A20.35 The familiar Hope apparatus. A tall cylinder of water with a collar of salt/ice around the middle will freeze at the top and remain at 4 C at the bottom

4A20.35

4A20.40
4A30.00
4A30.10
4A30.10
4A30.10
4A30.10
4A30.10

4A30.10
4A30.10
4A30.10
4A30.11
4A30.11
4A30.11
4A30.11
4A30.11 A bimetallic strip bends away from an electrical contact when heated turning off a light.
4A30.12 Two types of turn signal oscillators that use bimetal strips are discussed.
4A30.15 Two thermostat coils made from flat spring steel with pointer rods added to the outer end. One flat, and one stretched into the shape of a cone. Both work the same. Shows that most thermostats are just coils of spring steel and not bimetal strip.
4A30.20 A ring with a set of two balls, one over and one under size. Heat the ring and slip over both
4A30.20
4A30.21
4A30.21 A ball passes through a snugly fitting ring when both are at the same temperature.
4A30.21 Just a picture.
4A30.21 The ball will pass through a ring only after the ring has been heated.
4A30.22 A brass plate with a hole is heated until it fits over a ball.
4A30.23 Heat a brass ring and slip it onto a slightly tapered steel bar and pass around the class.
4A30.30
4A30.30
Heat a iron bar, then tighten it in a yoke so it breaks a cast iron bar when the bar cools.
A heavy iron bar heated and placed in a yoke breaks a cast iron bolt as it cools.
4A30.30 A heated bar is tightened in a yoke against a cast iron peg which breaks as the bar cools.
4A30.30 Heat a rod to break a 1/8" diameter pin by expansion.
4A30.31 A drill rod clamped between a inner steel rod and an outer brass tube breaks when the brass tube is heated. Diagram.
4A30.40
4A30.40
4A30.40
4A30.40
4A30.45
Warm bimetallic disks will jump in the air when cooled
One edge of a strip of plate glass is heated with a Bunsen burner causing the glass to bend toward the cooler side.
4A30.46 A brass or copper rocker heated and placed on a lead support will rock due to expansion of the lead. Diagram.
4A30.50
4A30.50
4A30.50
Quartz and glass tubes are both heated with a torch and plunged into water.

4A30.50 Heat a piece of quartz tube and quench it in water. Try the same thing with Pyrex and soft glass.
4A30.55 Steam is passed through an aluminum tube and a dial indicator shows the change in length.
4A30.55 One end of a tube rests on a needle attached to a pointer that moves as the tube is heated.

Demonstration Bibliography

D\&R, H-040	expansion rod
Bil\&Mai, p 228	expansion rod
PIRA 500	sagging wire
UMN, 4A30.60	sagging wire
Sut, H-9	sagging wire
Hil, $\mathrm{H}-2 \mathrm{~b}$	linear expansion of a wire
Disc 14-07	thermal expansion of wire
Sut, H-10	expanding wire
Sut, H-14	bridge expansion
Sut, H-23	gridiron pendulum
PIRA 1000	heat rubber bands
UMN, 4A30.80	heat rubber bands
AJP 31(5),397	heat rubber bands
F\&A, Hm-4	thermal properties of rubber
Sut, H-19	heat rubber
Sut, H-173	rubber band on lips
D\&R, H-054	heat rubber bands
D\&R, H-340	rubber band on lips
Sut, H-20	heat rubber
	Properties of Materials at Low Temperatures
PIRA 200 - Old	lead bell, solder spring
UMN, 4A40.10	lead bell
F\&A, Hk-9	lead bell
Sut, H-100	lead bell, solder spring
AJP 77 (10), 917 ref.	lead bell faith bell
PIRA 500	solder spring
UMN, 4A40.15	solder spring
Disc 08-09	elasticity of low temperature
PIRA 1000	mercury hammer
F\&A, Hk-8	mercury hammer
Sut, H-101	mercury hammer
PIRA 200	smashing rose and tube
UMN, 4A40.30	smashing rose and tube
F\&A, Hk-7	rubber at low temperature
D\&R, H-078	smashing flower and balls
Sprott, 2.9	smashing flower and balls
TPT 28(8),544	low temp behavior

4A30.55 One end of a rod rests on a needle attached to a pointer with attached mirror. The pointer will move as the rod is heated. Shine a laser at the mirror to observe minute expansion.
4A30.55 One end of a rod rests on a needle attached to a pointer with attached mirror. The pointer will move as the rod is heated. Shine a laser at the mirror to observe the expansion.

4A30.60
4A30.60
4A30.60
Heat a length of nichrome wire electrically and watch it sag. ALSO Recalescence temperature of iron (800 C).
4A30.60 A wire is heated electrically and a pointer indicates change of length. Also recalescence of iron.
4A30.60 A long iron wire with a small weight hanging at the midpoint is heated electrically.
4A30.61 One end of a heated wire is passed over a pulley to a weight. The pulley has a pointer attached.
4A30.65 Either the wire or the roadway can be heated in this model of a suspension bridge.
4A30.69 A gridiron pendulum of constant effective length when heated is made of tubes of brass and zinc.
4A30.80
4A30.80
4A30.80

1) Pass out rubber bands, have the students stretch them while holding against lips, then wait and reverse for cooling. 2) Hang a 1 kg mass from four rubber bands so it touches the table, heat 20 sec with a heat lamp and the mass will lift 1 cm .
4A30.80 Rubber tubing inside a copper shield contracts as it is heated.
4A30.80 Hang a 100 g weight from a rubber band and heat with a radiant heater. Or, enclose a rubber tube in a brass cylinder and heat with a Bunsen burner.

4A30.80 Pass out rubber bands for the students to put on their lips to feel the change in temperature as they stretch and unstretch.
4A30.80 Hang 1 kg from a rubber band and heat. Observe contraction.
4A30.80 Touch a rubber band to upper lip, stretch and unstretch. Temperature will go up when stretched and down when unstretched.
4A30.82 A complex apparatus that oscillates as a rubber band is heated and cooled.

4A40.00

4A40.10 Ring a lead bell after it is frozen in liquid nitrogen, cool a coil of solder to make a spring.
4A40.10 Ring a lead bell at room temperature and after it has been cooled in liquid nitrogen.
4A40.10
4A40.10
4A40.10
4A40.12

4A40.15
4A40.15 Cool a solder spring in liquid nitrogen and hang a mass from it.
4A40.15 Liquid nitrogen and a solder spring, rubber hose, etc.
4A40.20
4A40.20 Mercury is frozen in the shape of a hammer head and used to pound a nail.
4A40.20 Cast a mercury hammer and freeze with liquid nitrogen.
4A40.30 Cool a rose, rubber tube, or handball in a clear dewar of liquid nitrogen and smash it.
4A40.30 Cool a rose in a clear dewar of liquid nitrogen and smash it.
4A40.30 A rubber hose is dipped in liquid nitrogen and smashed.
4A40.30 Cool flowers and cheap rubber balls in liquid nitrogen and smash. Also try bananas and balloons.
4A40.30 Objects placed in liquid nitrogen change their physical properties.
4A40.32 A discussion of a heat of vaporization of liquid nitrogen lab and a listing of the usual demonstrations.
Sut, H-99
TPT 28(5),321

PIRA 1000
PIRA 1000
F\&A, Hk-10
Disc 14-05
Sut, H-114
Sut, H-116

Sut, H-117

Sut, H-121
Sut, H-118

Sut, H-120
Sut, H-119
Sut, H-107
Sut, H-108
AJP 55(6),565

Mei, 28-1
AJP 34(8),692
AJP 43(12), 1105
Mei, 28-2.1
Mei, 28-2.2

Mei, 28-2.3
Mei, 28-2.4
Mei, 28-2.5
Mei, 28-2.6
Mei, 28-2.7

AJP 52(9),856
PIRA 500
UMN, 4B10.10
$\mathrm{F} \& A, \mathrm{Hb}-2 \quad$ heat capacity
Disc 14-17

PIRA 1000
UMN, 4B10.15

Sut, H-35

Sut, H-39 mixing water

F\&A, Hb-1 calorimeter
Sut, H-40 hot lead into water
low temp behavior
cool rubber band
viscous alcohol
viscous alcohol
liquid air fountain
absorption of gases
absorption of gases
burning in liquid oxygen
burning in liquid oxygen
burning in liquid oxygen oxygen
filtering liquid air
density of liquid air

Liquid Helium
low temp apparatus
superconduction in lead
superconduction in lead the persistent current
lambda-point transition
superleak
the fountain effect
rolling creeping film
resistance vs. temperature

HEAT AND THE FIRST

LAW plate
specific heat
water and oil on a hot plate
water and oil
iron and water
cyrogenics day in a high school
viscosity of alcohol at low temp
chemical reaction rates in liquid

Iow temperature lattice models
basic low temperature apparatus

Heat Capacity and Specific Heat 4B10.00
specific heat of liquids problem 4B10.05
water and aluminum on a hot plate 4B10.10
water and aluminum on the hot
4A40.35
4A40.40

4A50.00

4B00.00

4B10.15

4A40.32 Smash a wiener, sheet metal, flower, hollow rubber ball, saw a sponge, alcohol is viscous, a pencil won't mark.
4A40.33 Description of the annual cryogenics day at F. D. Roosevelt High School listing many demonstrations.

4A40.40 Ethyl alcohol becomes very viscous at liquid nitrogen temperatures.
4A40.40 Cool alcohol with liquid nitrogen and pour through a cloth screen.
4A40.50 A fountain is made using evaporating liquid air as a pressure source.
4A40.60 A test tube filled with charcoal is attached to a bent 80 cm tube dipped in a beaker of mercury. When the charcoal is cooled, the mercury rises.
4A40.60 A discharge tube filled with charcoal passes through all the stages to vacuum when cooled in liquid air.
4A40.70 Steel wool is burned after being immersed in liquid oxygen.
4A40.71 Old cigars (and other things) burn well when saturated with liquid oxygen.
4A40.72 While smoking a cigarette the lecturer puts liquid oxygen in the mouth and blows out.
4A40.75 Drop a piece of potassium cooled in liquid oxygen into water.
4A40.80 Crystals of ice and carbon dioxide are retained in a filter.
4A40.85 Pour liquid air into water. As the nitrogen evaporates, the liquid air sinks and oscillates with convection currents.
4A40.90 Arrays of magnetic quadrapoles in square and triangular lattices simulate orientational ordering of diatomec molecule at low temperatures.

4A50.10 The basic apparatus for working with liquid helium is reviewed. Details in appendix, p. 1305.
4A50.11 Pictures of many devices for use in lecture demonstration and laboratory.
4A50.20 A superconducting ammeter allows direct observation of the current.
4A50.20 Lead in liquid helium is superconducting and floats a magnet. Picture.
4A50.30 A niobium coil remains superconducting at 4.2 K for up to 5 amps . Picture, Diagram.
4A50.40 The transition between helium I and II.
4A50.50 Leakage through a fritted disk happens with helium I but not II.
4A50.60 The fountain effect. Pictures.
4A50.70 A film of helium II creeps out of a dish. Picture.
4A50.80 A circuit shown can be used to demonstrate superconductivity in lecture. Diagram.

A note on the inexplicably high specific heat of liquids.

4B10.10 One liter of water in a beaker, water and aluminum of 1 Kg total mass in another beaker, are heated on the same hot plate. Display temperatures of both.
4B10.10 Two beakers, one with 1 Kg water and the other with .5 Kg water and .5 Kg lead are heated at the same rate.
4B10.10 Heat lead, aluminum, and steel to 100 C and then warm cool water. Show temp on LED bar graph.

4B10.15 Heat two beakers on a single hot plate, each contains the same mass of either water or oil.
4B10.16 Iron and a vessel of water with the same mass and area are heated on identical Bunsen burners. Dip your hand in the water and sprinkle it on the iron plate where it will sizzle.
4B10.20 Different masses of hot and cold water are mixed in a large beaker and the final temp is compared to the calculated value.
4B10.26 A calorimeter is used to measure the specific heat of lead.
4B10.26 Known masses of lead and copper are heated and poured into calorimeters with a known mass of water. Specific heats are computed from initial and final temperatures.

4B10.26 Known masses of metal are heated in boiling water and then transferred into calorimeters containing a known mass of water. Specific heats are computed.
4B10.27 Several different metals on the same mass are heated to the same temp and lowered into a line of crushed ice filled funnels. The melted water is collected in graduates.
4B10.28 Heat metals of the same mass and lower them into beakers containing the same amount of water at room temperature.
4B10.30
4B10.30 Five metals of the same mass are heated in boiling water and placed on a thin sheet of paraffin.
4B10.30 Several cylinders of the same metals with the same mass and diameter are heated in paraffin and transferred to a paraffin disc.
4B10.30 Balls of steel, aluminum, and lead with same diameter are heated in boiling water and then dropped onto a thin sheet of wax.
4B10.30 Heat equal mass cylinders of aluminum, steel, and lead and let them melt a path through honeycomb.
4B10.35 Cylinders of the same size of aluminum and lead heat up at the same rate after being cooled in liquid nitrogen.
4B10.40 The jacket areas of two unsilvered unevacuated dewar flasks are connected to a U tube and equal masses of water and mercury at 100 C are poured in. The U tube shows the difference in heat capacities.
4B10.50 A bomb or continuous flow calorimeter is used to show heating value of foods and fuel.
4B10.55 Heat a gas in a flask by discharging a capacitor through a thin constantan wire and measure the momentary increase in pressure on an attached water manometer.
4B10.60

4B10.60 A 10 L flask fitted with a mercury manometer is over pressured and then the valve is quickly opened and shut. The ratio of pressures is related to the specific heats.
4B10.60 A large flask with an attached mercury manometer is overpressured and momentarily opened to the atmosphere.
4B10.61 Recommendation of an alternative statement of the problem and results.

4B10.61 Replace the mercury in the oscillating column method with water provided the confined air is a large volume.
4B10.65 A steel ball in a precision tube oscillates as gas escapes from a slightly overpressured flask.
4B10.65 Gas escapes from a flask through a precision tube with a precision ball oscillator.
4B10.70
4B10.70
An ordinary glass tube is selected with a slight taper wider at the top. A throttle valve controls the inlet pressure and the oscillations of the ball in the tube are timed.
4B10.70 A ball oscillates in the neck of a flask filled with gas. The pressure is measured indirectly as the ball oscillates.
4B10.72 Add additional mass to the oscillating ball and plot period as a function of mass.
4B10.72 Ruchhardt's apparatus is driven by a slow flow of gas and the ball is loaded with additional mass.
4B10.73 A glass syringe replaces the precision ball in a precision tube and an accelerometer mounted on the syringe allows the oscillations to be displayed on an oscilloscope.
4B10.75 Measure the temperature in the flask with the oscillating balls.
4B10.75 Ruchhardt's experiment is used to measure the bulk moduli and ratio of specific heats for eighteen gases with atomicity ranging from 1 to 12.
4B10.75 Ruchhardt's experiment is used to measure the ratio of specific heats for air using computer data acquisition sensors.
4B10.75 Ruchhardt's experiment is used to measure the ratio of specific heats for air using a graphic calculator, interface, and sensors.
4B20.00
4B20.10 Heat one side of a glass tube loop filled with water and insert some ink.
4B20.10 Heat one side of a glass tube loop filled with water and insert some ink.

Demonstration Bibliography

F\&A, Hc-2	convection of liquids
Sut, H-143	heating system model
D\&R, H-160	convection of liquids
Sut, H-144	convection tube
Sut, H-145	heating system
PIRA 500	convection flasks
PIRA 1000	two chimney convection box
UMN, 4B20.20	two chimney convection box
F\&A, Hc-1	two chimney convection box
Sut, H-139	two chimney convection box
Hil, H-3a. 2	two chimney convection box
D\&R, H-160	two chimney convection box
PIRA 1000	convection chimney with vane
UMN, 4B20.25	convection chimney with vane
Sut, H-140	convection chimney
Sprott, 2.13	convection chimney with vane
PIRA 1000	convection chimney with confetti
TPT 26(7), 468	convection of a gas - heat turbine
PIRA 1000	convection currents projected
Sut, H-142	convection projection cell
Ehrlich 2, p. 118	convection currents
Disc 14-27	convection currents
Sut, H-138	convection box
Sut, H-141	projection cell
PIRA 500	burn your hand
UMN, 4B20.45	burn your hand
Sut, H-137	burn your hand
PIRA 1000	Barnard cell
UMN, 4B20.50	Barnard cell
F\&A, Fp-3	Barnard cell
UMN, 4B20.55	Jupiter's red spot
	Conduction
PIRA 500	conduction - dropping balls
UMN, 4B30.10	conduction - dropping balls
F\&A, Hd-1	conduction of heat
D\&R, H-140	conduction - dropping tacks
Hil, H-3a. 1	conduction - dropping balls
PIRA 1000	conduction - melting wax
Disc 14-21	thermal conductivity
Ehrlich 1, p. 120	thermal conductivity of Styrofoam
Ehrlich 1, p. 121	thermal conductivity of uninsulated objects
PIRA 500	melting paraffin - sliding pointer

4B20.10 One side of a square tube filled with water is heated while ink is inserted to show the flow.
4B20.10 Heat water in a loop of glass tubing.
4B20.10 Food coloring or ink is added to a water filled square tube. Heat one side of the tube and observe the flow pattern.
4B20.11 A rectangular glass tube filled with water is heated on one side. Permanganate crystals show flow.
4B20.13 A model of a heating system with an expansion chamber and radiator. Diagram.

4B20.15
4B20.20
4B20.20
4B20.20 A candle burns under one chimney in a double chimney convection box.
4B20.20 A container has two lamp chimneys, a candle is placed under one of them.
4B20.20 Smoke is used to indicate convection in the two chimney box.
4B20.20 A candle burns under one chimney in a double chimney convection box. Smoke paper in the box will enhance viewing.
4B20.25
4B20.25
4B20.25
A candle in a chimney burns as long as there is a metal vane dividing the chimney into two parts.
4B20.25 A candle extinguishes when a glass cylinder is placed over it unless a Tshaped piece of metal is lowered into the cylinder.
4B20.30
4B20.38
How to make a small turbine rotator that will turn when placed above a heat source.
4B20.40
4B20.40
4B20.40
Electrically heat the water at the bottom of a projection cell. Diagram. An immersion heater is placed at the bottom or the top of a cup of water. Temperature rise vs. time is much faster when it is placed at the bottom of the cup.
4B20.40 An electric element heats water in the bottom of a projection cell.
4B20.41 Shadow project convection in a 1 foot square box with hot and cold sinks on the sides.
4B20.42 Introduce hot water at the bottom of cold or cold water at the top of warm in a projection cell.
4B20.45
4B20.45
Shadow project a Bunsen burner flame on a screen and hold your hand in the hot gas
4B20.45 Shadow project convection currents from a Bunsen burner, hot pipe, dry ice, or ice water.
4B20.50
4B20.50
4B20.50

4B20.55
Cels are formed.

4B30.00
4B30.10
4B30.10
Waxed balls drop off various metal rods connected to a heat source as the heat is conducted.
4B30.10 Waxed balls drop at different times from rods attached to a common heat source.
4B30.10 Waxed tacks drop off various metal rods as the center of the apparatus is heated.
4B30.11 The center of a star configuration of five different metal bars is heated to melt wax at the far ends, dropping balls.
4B30.12
4B30.12
4B30.13
Dip rods in wax, then watch as the wax melts off. Time Lapse.
Measure the rate that the temperature of water in a Styrofoam cup decreases to determine the thermal conductivity of Styrofoam.
Study the parameters that determine the rate of temperature decrease of hot uninsulated objects.

Demonstration Bibliography

Sut, H-124	sliding pointers
PIRA 1000	painted rods
F\&A, Hd-2	conduction of heat
Mei, 26-3.3	painted rods
D\&R, H-140	conductometer
PIRA 200	conduction bars
Sut, H-122	conduction bars
Mei, 26-3.8	iron and copper strips
PIRA 1000	four rods - heat conduction
UMN, 4B30.25	four rods - heat conduction
PIRA 1000	copper and stainless tubes
UMN, 4B30.30	copper and stainless tubes
F\&A, Hd-5	poor thermal conductivity of stainless steel
Mei, 26-3.4	stainless rod
Mei, 26-3.2	iron and aluminum rods
PIRA 1000	toilet seats
UMN, 4B30.35	toilet seats
Sut, H-129	wood and metal rod
Sut, H-130	high conductivity of copper
Mei, 26-3.1	matches on hot plates
PIRA 1000	heat propagation in a copper rod
UMN, 4B30.50	heat propagation in a copper rod
Mei, 26-3.7	propagation in a copper rod
Mei, 26-3.10	spreading heatwave
Sut, H-123	dropping ten penny nails
AJP 41(2),281	liquid crystal indicator
Sut, H-125	temperature indicating paper
F\&A, Hd-6	heat transfer
Sut, H-128	anisotropic conduction
Mei, 26-3.9	thermal vs. electrical conduction
AJP 36(2), 120	electrical analog of heat flow
TPT 52(2), 102	electrical analog of heat flow
Sut, H-131	heat conductivity of water
Sut, H-132	heat conductivity of water
TPT, 36(9), 546	demonstrating that air is a bad conductor of heat
Sut, H-133	heat conduction in gases

July 2015
4B30.15 Vertical rods of different metals are soldered onto the bottom of a vessel filled with boiling water. Pointers held by some paraffin slide down as the rods heat. Diagram.
4B30.20
4B30.20 Rods of different material are coated with heat sensitive paint and attached to a common heat source.
4B30.20 Steam is passed through a manifold with heat sensitive paint coated rods of different materials.
4B30.20 Rods of different materials are coated with heat sensitive paint and connected to a heat source.
4B30.21
4B30.21 Relative conductivities of bars of metals in a common copper block are indicated by match head ignition or temperature indicating paint.
4B30.22 Iron and copper strips are coated with "thermal color" and heated at one end.
4B30.25
4B30.25
4B30.30
4B30.30
A contest is held between people holding copper and stainless tubes in twin acetylene torch flames.
4B30.31 Heat a stainless tube with a blow torch until it is white hot and hold close to the hot spot.
4B30.31 Heat one end of a stainless steel rod white hot while holding the other end.

4B30.32
4B30.35
4B30.35
4B30.40 Wrap a paper around a rod made of alternating sections of wood and metal and hold in a flame.
4B30.41 Hold a burning cigarette on a handkerchief placed over a coin.
4B30.42 Matches are placed on plates of two different metals over burners.
4B30.50
4B30.50
4B30.50
Solder a copper-constantan thermocouple into a copper rod and thrust the end into a flame.
4B30.51 An aluminum bar has a series of small mirrors mounted on small bimetallic strips to allow projection of the curve of the temperature in the bar as it is heated. Construction details in appendix, p.1287.
4B30.52 Ten penny nails attached with wax will progressively drop off a bar as a Bunsen burner heats one end. Pennies or lead shot can also be used.
4B30.53 Liquid crystal indicator from Edmund Sci. was bonded to a strip and a plate of metal and the resulting color change compared well with a computer generated model.
4B30.53 A copper bar is placed on temperature indicating paper and one end is heated.
4B30.54 A solid copper rod has holes bored to pass steam and cold water from the same end. Thermometers along the rod measure the heat transfer into the water.
4B30.56 Conductivity is greater along the grain in wood and crystals. Heat the center of a thin board covered with a layer of paraffin and watch the melting pattern.

4B30.58 A rod is fabricated with end sections of copper and a center section of constantan. Temperatures along the rod when heated differentially are compared with voltages along it while a potential is applied.
4B30.59 A circuit that gives the electrical analog of heat conduction.
4B30.59 Several simple resistor circuits may be used to model conductive heat loss from most homes.
4B30.60 Boil water in the top of a test tube while ice is held at the bottom.
4B30.61 The bulb of a hot air thermometer is placed in water and a layer of inflammable liquid is poured on top and burned.
4B30.63 Placed on a flat heat source and with both half-filled with H 2 O , a flat bottom Al can and a soda can are heated together, with the resulting temp change in each can analyzed over time.
4B30.65 Small double walled flasks are filled with ether, the jackets contain different gases. When placed in boiling water, the height of ether flames varies.

AJP 29(8),549	heat conductivity of CO2
Sut, A-61	conduction of heat in a lamp
Mei, 27-5.1	glowing tubes
Mei, 27-5.2	double glow tube
	Radiation
PIRA 200	light the match
UMN, 4B40.10	light the match
TPT 28(1),56	light the match
F\&A, Hf-5	transmission of radiant heat
Sut, H-150	light the match
Sprott, 2.14	light the match
Disc 22-04	heat focusing
Mei, 38-5.9	reflection of radiation
Hil, H-3c	radiation reflector
Mei, 38-5.10	beakers of water at a distance
Sut, H-149	reflection of radiation
PIRA 500	IR focusing
Mei, 38-5.7	light the match
Sut, H-151	focusing IR radiation
Sut, L-113	infrared
Sut, H-152	ice lens
PIRA 1000	Leslie's cube
F\&A, Hf-1	radiation from a black box
Sut, H-156	Leslie cube
Disc 14-25	radiation cube
UMN, 4B40.32	Leslie's cube
Mei, 38-5.8	Leslie's cube
Sut, H-163	radiation and absorption
PIRA 1000	two can radiation
AJP 58(3)244	cooling cans
Disc 14-24	two can radiation
F\&A, Hf-4	radiation from a shiny and black surface
Mei, 38-5.3	stove element
D\&R, H-180	radiation on black and white surfaces
Mei, 38-5.6	hot wire in a tube
PIRA 1000	selective absorption and transmission

July 2015
Thermodynamics
4B30.66 Author tried using dry ice to cool break the bolt. Nothing happened.
4B30.71 A carbon filament lamp is filled with different gases at various pressures and the brightness of the filament observed.
4B30.72 Filaments in Pyrex tubes containing air, flowing hydrogen, and hydrogen at reduced pressure glow with different intensities. Picture.
4B30.73 A single length of Nichrome wire runs through two chambers allowing comparison of thermal conductivity of two gases and variation of pressure.

4B40.00
4B40.10 Light a match at the focus of one parabolic reflector with a heating element at the focus of another reflector.
4B40.10 Two parabolic reflectors are aligned across the table, a heat source at the focus of one reflector and a match at the focus of the other.
4B40.10 Use a homemade nichrome wire coil for the light the match demonstration.
4B40.10 A match at the focus of one parabolic reflector is lit by a heating element placed at the focus of another reflector.
4B40.10 Two parabolic mirrors are used to transmit radiation to light matches, etc.
4B40.10 A match at the focal point of a parabolic reflector is lit by the radiation of a heating element at the focus of another reflector.
4B40.10 Light a match using a heater and concave reflectors. Animation.
4B40.11 A beam from a heated metal ball in the focus of a parabolic mirror reflects off another parabolic or flat mirror to a thermopile.
4B40.11 A heat source at the focal point of one concave reflector directs heat at a radiometer at the focus of a second concave reflector.
4B40.12 A thermopile mounted the at focus of a parabolic mirror detects radiation differences from different colored beakers of water at 20'.
4B40.13 Polished sheet metal is used to reflect radiation onto a thermopile. A plate glass mirror is less effective due to IR absorption.
4B40.20
4B40.20 Focus an arc lamp on a match with and without filters, using CS2 and iodine in a round flask for a lens.
4B40.20 A opaque flask of a solution of iodine in carbon disulfide serves as a lens to focus IR radiation.
4B40.20 lodine dissolved in alcohol gives a filter transmitting in the IR but absorbing in the visible. Ignite a match in the focus of an arc lamp.
4B40.21 Form an ice lens between two watch glasses. Focus the light from an arc lamp on a match head.
4B40.30
4B40.30 Radiation from Leslie's cube is measured with a thermopile.
4B40.30 Relative radiation from various surfaces at the same temperature is shown with a Leslie cube and thermopile.
4B40.30 Fill a Leslie cube with hot water and use a thermopile to detect the radiation.

4B40.32
4B40.32 Rotate the cube to demonstrate Lambert's law, move the thermopile away to demonstrate the inverse square law, measure at several temperatures to demonstrate the fourth power law.
4B40.33 Two Leslie cubes form a differential thermoscope with a third between. Orient faces shiny to black.
4B40.40
4B40.40 Cooling rates of shiny unpainted, black painted, and white painted cans.
4B40.40 Shiny and flat black cans filled with cool water warm up, cool off when filled with boiling water.
4B40.45 A paper held close to a stove element is not scorched where the element is painted white.
4B40.45 A sheet of paper is held near a stove heating element painted half white and half black.
4B40.45 A card painted half black and half white has drops of wax applied. Wax on the black side melts first when heated with a heat lamp. Can also be done with a black and a white ball on some ice. When warmed with a heat lamp the black ball melt into the ice faster.
4B40.48 A platinum wire is heated inside of a quartz tube showing transparent objects radiate less.

4B40.50

4B40.50
4B40.50 Various screens (black bakelite, Corex red-purple, glass, water, quartz, etc.) are placed between a heat source and a thermopile detector.
4B40.50 Clear heat absorbing and opaque heat transmission glass filters are inserted between a heat lamp and a radiometer detector.
4B40.51 A white card with letters in India ink is exposed lettered side to a hot source charring it locally where the letters are.
4B40.52 One side of a polished metal plate has a black letter, the other is covered with thermochrome paint.
4B40.53 Thermal strips glued to plates of wood and aluminum are used to show the thermal conductivity in those materials.
4B40.60
4B40.60 One thermoscope is painted white, the other black, and both are illuminated by a lamp.
4B40.60 A radiant heater is placed midway between two junctions of a demonstration thermocouple and the junctions are covered with black or white caps.

4B40.60 Focus a large light on a blackened match head, the clear glass bulb of a thermoscope, and the bulb covered with black paper.
4B40.60 The rate of heating and cooling for black and silver bodies can be studied by placing a black thermometer probe and a silver themometer probe on an overhead projector. Take them out of boiling water for the cooling observation.
4B40.61 A Leslie cube with opposite faces blackened is placed between two bulbs of a differential thermoscope. Blacken one bulb.
4B40.62 Make a special thermocouple of a sheet of copper with constantan wires attached opposite blackened and whitened areas. Shine a light and expose to a hot water container to show different response at different wavelengths.

4B40.64 A heat lamp directed at two thermometers will cause different temperature rises. One thermometer is in a glass chamber.
4B40.70 Add different amounts of carbon to flour and measure the reflectivity.
4B50.00
4B50.10
4B50.10 Monitor the temperatures of water in four thermos bottles with different combinations of vacuum and silvering.
4B50.10 Temperatures are recorded for cooling of four thermos bottles of different construction.
4B50.10 Measurements and modeling of the temperature change in a thermos full of ice cold water as a function of both time and position in the thermos.
4B50.10 Hot water is placed in the four thermos bottles.
4B50.11 Evacuate a unsilvered dewar, pour in liquid air, let air into the space, see frost form.
4B50.15 Pour liquid air into four thermos bottles to sort out conduction, convection and radiation.
4B50.17 Fight asbestos abatement. Two identical cans of water, one wrapped with asbestos, cool.
4B50.17 Three cans, black, asbestos covered, and shiny, are filled with boiling water and left to cool.
4B50.17 An asbestos paper covered can cools faster than a shiny can.
4B50.20 Burn one paper cup, boil water in another.
4B50.20 Fill a KFC bucket $1 / 8$ full of water, boil the water with a Bunsen burner, and burn away the top part of the bucket with a propane torch.
4B50.20 Boil water in a paper container.
4B50.20 A flame is applied to the bottom of paper and Styrofoam cups filled with water, sand, and copper shot. Also a piece of paper wrapped around a metal cylinder does not burn when a flame is applied.
4B50.20 Burn one paper cup, boil water in another.
4B50.25
4B50.25
4B50.25
4B50.25 A match is brought up to an air or water filled balloons. Only the air balloon will burst.

Thermodynamics

4B50.25 Fill one balloon with air and one with water. Light a candle and hold the flame against each balloon. Only the air balloon will burst.
4B50.25 Pop a balloon with a flame, then heat water in another balloon.
4B50.30
4B50.30 Drop water on a hot plate, liquid nitrogen on the lecture table.
4B50.31 A nugget of silver heated red and plunged into water does not cause immediate boiling.
4B50.32 A drop of water suspended from a glass tube above a hot plate is stable until the plate cools.
4B50.32 Pour liquid air on your hand or roll it about on the top of your tongue.
4B50.32 Liquid nitrogen poured over the hand causes no harm.
4B50.33 Four demonstrations: floating liquid drops on their own vapor, delayed quenching, Boutigny bomb, and stick your finger in boiling oil.
4B50.35
4B50.35 Heat oil in a beaker, cut a potato and cook a french fry, then wet you finger in a beaker of water and stick it in the hot oil.
4B50.35 A wet finger can be dipped into molten lead.
4B50.40
4B50.40
4B50.40 Place a brass ball into liquid air in a clear dewar and observe the initial leidenfrost effect. When the ball is cold, place it in a flame and observe the reverse leidenfrost effect as frost forms on the ball while it is in the flame.

4B50.50 Show commercial insulating materials. Heat a penny red hot on your hand protected by $1 / 2$ " rock wool.
4B50.60
4B50.60 The temperature of a closed bottle in direct sunlight is compared to the ambient temperature.
4B50.61 A chamber with interchangeable windows and provisions to introduce CO2.

4B50.61 Shows how the wrong result can be achieved when using CO2 due to the suppression of convective mixing with the ambient air.
4B50.70 A Bunsen burner will burn on top and bottom of two copper screens a few inches apart.
4B50.70 Show that a Bunsen burner flame will not strike through to the other side of fine copper wire gauze. Direct a stream of gas at a lit Davy safety lamp.

The basic principles of the Pirani vacuum gauge. Heat a platinum wire in a flask until it glows dull red, then evacuate the flask and the wire will glow more brightly at the same voltage.
4B50.90 Fans on either side of a 48 quart styrofoam cooler create a forced air calorimeter used in this example to measure the heat produced by a candle.

4B60.00
4B60.10 Drop a bag of lead shot is dropped several times and measure the temperature rise.
4B60.10 A bag of lead shot is dropped several times and the temperature rise is measured.
4B60.10 Drop lead shot in a bag several times and compare the temperature before and after.
4B60.10 The temperature of a bag of lead shot is taken before and after being dropped repeatedly. A diagram of a projection thermometer is given.
4B60.10 The mechanical equivalent of heat can be determined from the temperature rise of a bag of lead shot that is dropped many times.
4B60.11
4B60.11 One or two Kg of lead shot in a mailing tube are inverted 100 times and the temperature rise is measured.
4B60.11 Invert a mailing tube containing several hundred grams of lead shot several hundred times and measure the temperature rise.
4B60.11 Measure the temperature of lead shot in a long tube. Rotate the tube 100 times allowing the lead shot to fall the full length of the tube each time. Measure and record the final temperature.
4B60.11 Flip a one meter tube containing lead shot ten times. A thermistor embedded in one end measures the temperature.
4B60.12 A nichrome - iron wire thermojunction is inserted into a bottle of mercury which is shaken vigorously.

Demonstration	Bibliography
PIRA 1000	hammer on lead
UMN, 4B60.15	hammer on lead
Mei, 26-4.7	hammer on lead
Sut, H-175	heating lead by smashing
Bil\&Mai, p 226	hammer on wood
D\&R, H-395	hammer on wood
Mei, 26-4.3	drop ball on thermocouples
PIRA 1000	copper barrel crank
UMN, 4B60.20	copper barrel crank
$\mathrm{F} \& \mathrm{~A}, \mathrm{He}-3$	mechanical equivalent of heat
AJP 28(9),793	motorized mechanical equivalent of heat
Sut, H-177	Searle's apparatus
Sut, H-178	mechanical equivalent of heat
Sut, H-172	heating by bending
PIRA 1000	bow and stick
Sut, H-171	bow \& stick
PIRA 500	boy scout fire maker
UMN, 4B60.55	boy scout fire maker
F\&A, He-2	fire maker
Sprott, 2.15	drill and dowel
Disc 15-01	drill and dowel
Sut, H-170	flint and steel
PIRA 1000	cork popper
Sut, H-169	friction cannon
Hil, H-5a. 3	ether friction gun
Disc 15-08	cork popper
Hil, H-5a. 2	steam gun
	Adiabatic Processes
PIRA 500	fire syringe
UMN, 4B70.10	light the cotton
Sut, H-179	light the cotton
Hil, H-5c	fire syringe
Disc 15-05	fire syringe
F\&A, He-5	match lighter
Mei, 27-6.1	light a match head
PIRA 200	expansion cloud chamber
PIRA 500 - Old	expansion cloud chamber
UMN, 4B70.20	expansion cloud chamber
F\&A, H-8	expansion chamber
Sut, H-89	expansion cloud chamber
D\&R, H-360	expansion cloud chamber
Bil\&Mai, p 235	expansion cloud chamber

Thermodynamics

4B60.15
4B60.15 Hammer on a piece of lead that has an embedded thermocouple.
4B60.15 Hammer on a piece of lead to heat it. A simple air thermoscope is shown.
4B60.15 Hit a 250 g lead block with a heavy hammer and show the temperature rise.
4B60.15 Hammer on a piece of wood. Use heat sensitive liquid crystal film to see the increase in temperature where the hammer struck the wood.
4B60.15 Hammer on a piece of wood and show temperature rise in struck area with a liquid crystal sheet.
4B60.16 A steel ball is dropped onto an anvil holding a set of thermocouples embedded in solder beads.
4B60.20
4B60.20 Crank a copper barrel that has copper webbing wrapped around it while under tension and measure the temperature rise of the water inside the barrel.
4B60.20 The temperature of a copper barrel filled with water with a copper braid under tension wrapped around it is measured before and after cranking.
4B60.22 Continuous flow apparatus with counter rotating turbines powered by an electric motor.
4B60.23 Searle's apparatus is used to obtain a numerical value of Joule's equivalent. Picture.
4B60.24 Picture of an elaborate apparatus to measure the mechanical equivalent of heat. Derivation.
4B60.41 Pass around a No. 14 iron wire for the students to bend.
4B60.50
4B60.50
4B60.55
4B60.55
4B60.55

4B60.55
4B60.55
4B60.60
4B60.70
4B60.70
Pour ether, alcohol, or water into a tube, cork, and spin by a motor until the frictional heat causes enough vapor pressure to blow the cork.
4B60.70 Heat ether by a motor driven friction device until a cork blows.
4B60.70 Water is heated in a stoppered tube by a motorized friction device until the cork blows.
4B60.75 Heat a tube until the cork pops off.
4B70.00
4B70.10
4B70.10
Put a small piece of cotton in a glass tube and push down on the piston to light it.
4B70.10 A piece of cotton in a glass tube will ignite when a plunger is used to quickly compress the air.
4B70.10 Three fire syringes are shown.
4B70.10 Compress air in a glass tube to light a tuft of cotton. Slow motion photography.
4B70.11 A match head placed in a cylinder lights when a tight fitting piston is quickly compressed.
4B70.11 Push down hard on a piston in a close fitting tube to light a match head at the bottom.
4B70.20
4B70.20
4B70.20 Pressurize a jug of saturated water vapor with and without smoke particles.
4B70.20 A 1 L flask is fitted with a rubber bulb and an inlet for smoke.
4B70.20 Introduce smoke into a flask attached to a squeeze bulb through a pitchcock.

4B70.20 Pressurize a jug of saturated water vapor with and without smoke particles. Smoke provides nucleation sites giving better fog formation when stopper pops out.
4B70.20 Flush a plastic soft drink bottle with salt water and then pressurize with a Fizzkeeper. Release the pressure suddenly and a cloud will be produced in the bottle.

Demonstration Bibliography	
Sut, H-88	expansion cloud chamber
D\&R, H-230	cloud formation by cooling
PIRA 1000	pop the cork cooling
UMN, 4B70.25	big expansion cloud chamber
Hil, M-22b. 2	cloud chambers
Disc 15-04	adiabatic cooling
AJP 58(11),1112	adiabatic decompression
F\&A, He-6	adiabatic heating and cooling
Sut, H-180	adiabatic compression
Bil\&Mai, p 235	adiabatic compression
Sut, H-181	expansion chamber
Mei, 27-6.2	measuring adiabatic compression
Bil\&Mai, p 233	measuring adiabatic compression
Mei, 27-6.3	adiabatic cycles
Mei, 27-6.4	Joule-Kelvin coefficients
	CHANGE OF STATE PVT Surfaces
PIRA 500	PVT surfaces
UMN, 4C10.10	PVT surfaces
Hil, H-5f	thermodynamic surfaces
D\&R, H-320	PVT surfaces
AJP 30(12),870	thermodynamic surfaces
F\&A, Hg-2	model of P-V-T surface
Sut, H-94	PVT surfaces
	Phase Changes: Liquid-Solid supercooled water
UMN, 4C20.10	supercooled water
Sut, H-71	supercooling water
AJP 39(10),1125	drop freezer
Mei, 26-5.15	supercooling in four substances
PIRA 500	ice bomb in liquid nitrogen
UMN, 4C20.20	ice bomb in liquid nitrogen
F\&A, Hk-5	ice bomb
Sut, H-56	ice bomb
Hil, H-2a. 1	ice bomb
Disc 15-15	ice bomb
AJP 44(9),893	ice bomb - galvanized pipe
Sut, H-55	expansion of freezing bismuth
Hil, M-20a. 5	contraction of paraffin
Ehrlich 2, p. 101	floating ice cubes - iceberg
PIRA 500	regelation

4B70.21 Put some smoke and alcohol in a stoppered flask and shake. When the stopper is released a fog forms.
4B70.23 Place warm water in a clear container. Close with Saran wrap and place ice cubes on top of the wrap. Condensation will collect on the underside of the wrap, and over time a cloud will form in the container.
4B70.25
4B70.25
4B70.25
4B70.25
Pump a one gallon jug with a bicycle pump until the cork pops out.
Pressurize a one gallon jar with a bicycle pump until the cork blows. Measure the temperature with a thermistor and computer.
4B70.26 A laser beam is temporarily scattered when an air filled chamber is pumped down with a vacuum pump.
4B70.30 An air cylinder moves a piston back and forth and a thermocouple measures the temperature.
4B70.31 A thermopile is constructed and put in the bottom of a tube in which air is compressed by a plunger. Instructions.
4B70.31 Place a liquid crystal thermometer into a plastic soft drink bottle. Pressurize the bottle with a Fizzkeeper while observing the temperature. Release the pressure and observe the temperature decrease.
4B70.35 Directions for making a temperature detector to insert into a flask that will be warmed and cooled by compression and expansion.
4B70.36 Temperatures of fixed amounts of gases undergoing adiabatic compression are measured. Diagram, Picture, construction hints.
A large syringe which has a thermocouple inserted near the tip is filled with butane gas. Compress the syringe and see droplets of liquid form near the bottom. Release and observe the droplets disappear. Monitor the temperature during these operations.
4B70.37 A thermocouple connected to a lecture galvanometer shows temperature cycles as air in a test tube is compressed and expanded.
4B70.40 A thermocouple measures the temperature change as N2 cools on expansion and H 2 heats on expansion.
4C00.00
4C10.00
4C10.10
4C10.10
4C10.10
4C10.10
4C10.11
4C10.20
4C10.30
4C20.00
4C20.10
4C20.10 A small test tube of water is cooled in a peltier device and the temperature is followed with a thermocouple.
4C20.11 Water in a small test tube is cooled to - 4 C by placing in a dry ice/alcohol bath. Shake to freeze and the temperature will rise to 0 C .
4C20.12 1971 Apparatus Competition Winner. Drops are placed on a copper plate with a tail in dry ice. A thermometer is placed in the copper plate and a mirror at 45 degrees allows easy observation of the drops.
4C20.15
4C20.20
4C20.20
4C20.20
4C20.20
4C20.20
Just a picture.
4C20.21 Use a galvanized coupling and plugs for a bomb and liquid nitrogen for a fast freeze.
4C20.22 A hummock rises on the surface of bismuth as it freezes in a tube.
4C20.23 Let a beaker of liquid paraffin freeze.
4C20.25 Float ice cubes in a cup of water filled to the very top. The water does not overflow when the ice cubes melt.

Demonstration Bibliography

UMN, 4C20.30	regelation
F\&A, Hk-4	regelation
D\&R, H-304	regelation
Disc 15-16	regelation
TPT 3(7),301	regelation explained completely
TPT 3(4),186	regelation
Sut, H-57	regelation
Sut, H-58	crushed ice squeeze
D\&R, H-304	ice cube squeeze
TPT 28(5),260	pressure and freezing point
PIRA 500	liquefying CO 2
UMN, 4C20.35	liquefying CO 2
Sut, H-59	liquefying CO 2
AJP 47(3),287	CO2 syringe
PIRA 500	freezing liquid nitrogen
UMN, 4C20.40	freezing liquid nitrogen
AJP 35(6),540	freezing liquid nitrogen
Sut, H-109	freezing liquid nitrogen
Sprott, 2.7	freezing liquid nitrogen
AJP 36(9),919	freezing nitrogen modification
PIRA 500	CO2 expansion cooling - fire extinguisher
UMN, 4C20.45	CO2 expansion cooling - fire extinguisher
Disc 15-03	CO2 expansion cooling - fire extinguisher
Sut, H-65	CO2 cylinder
UMN, 4C20.50	heat of fusion of water
Sut, H-54	heat of fusion of ice
Mei, 26-5.2	freezing lead
Sut, H-46	freezing tin
Mei, 26-5.1	heat of fusion of water
PIRA 1000	heat of solution
Mei, 26-5.6	heat of solution
Sut, H-50	heat of solution
Mei, 26-5.3	latent heat heating
PIRA 1000	heat of crystallization
Sut, H-48	heat of crystallization
AJP 76 (6), 547	heat of crystallization

July 2015
Thermodynamics
4C20.30 Cut through a block of ice with a wire loop that has a heavy mass hanging from it.
4C20.30 A copper wire under tension cuts through a block of ice.
4C20.30 Cut through a block of ice with a wire loop that has 4 kg hanging from each end.
4C20.30 A mass hanging from a loop of thin stainless steel wire cuts through a block of ice.
4C20.31 The complexity of regelation is examined by Mark Zemansky.
4C20.31 Explanation of regelation. Copper cuts through faster than iron or thread.
4C20.32 Substances that expand on freezing show a lowering melting point under pressure. Two blocks of ice, held together by hand, will freeze. Also complete directions for the standard demo.
4C20.32 Crushed ice squeezed in a thick walled cylinder forms a solid block.
4C20.32 Ice cubes that are pressed together will become a single frozen block.
4C20.33 A letter disputing TPT 25,523 pointing out the difficulty in obtaining a uniform 0 C temperature in an ice bath.
4C20.35
4C20.35 Press down on a piston on dry ice in a clear tube until at 5 atmospheres liquefication occurs.
4C20.35 A strong bulb with a 1 cm square neck area is filled with dry ice and a 5 kg mass is added. The melting point of CO 2 is about 5 atmospheres. Lift the weight slightly to freeze.
4C20.36 Put some CO2 in a small transparent syringe and squeeze to liquefy. Can be shown on the overhead projector.
4C20.40
4C20.40 Put some liquid nitrogen in a clear dewar and pump until it freezes.
4C20.40 In addition to the standard freezing by evaporation in a clear dewar - pop off the cork when the nitrogen is solid and it will instantly turn to liquid while the temperature remains below its boiling point.
4C20.40 Pumping on liquid air will produce solid nitrogen at -210 C. Air passed slowly over the outside of the flask will condense out liquid air at atmosphere pressure.
4C20.40 Put some liquid nitrogen in a flask and pump until it freezes.
4C20.42 The dewar has a smaller cross section in the lower part to prevent the frozen plug from rising to the pumping port.
4C20.45
4C20.45 Shoot off a CO2 fire extinguisher.

4C20.45 Shoot off a fire extinguisher at a test tube of water, freezing the water.

4C20.46 Liquid CO2 from cylinder is released into a heavy bag, freezing the central stream by evaporative cooling.
4C20.50 Melt ice in a beaker of water and measure the temperature.
4C20.51 Melt some ice in a calorimeter with a known amount of water.
4C20.52 Insert thermocouple into molten lead and plot the temperature on an $x-y$ recorder as it freezes.
4C20.53 Tin is heated to 360 C and temperature readings taken every 30 seconds until the temperature reaches 160 C . Half the time the temperature remains at 230 C .
4C20.54 Place a thermocouple cooled in liquid nitrogen in warm water. Plot temperature as ice forms and then melts.
4C20.55
4C20.55 A manometer shows cooling when hypo or ammonium chloride are added to water, heating when sulfuric acid is used. ALSO - equal weights of water and ammonium nitrate will lead to freezing.
4C20.56 Heat is generated if sulfuric acid is dissolved in water. Cooling results if hypo or ammonium nitrate is dissolved.
4C20.59 Two experiments that use the latent heat from one substance freezing to heat another.
4C20.60
4C20.60 Prepare a supersaturated solution of sodium acetate or sodium sulfate and drop in a crystal to trigger crystallization. A thermocouple will show the change in temperature.
4C20.60 How the flexing of a metal disk can trigger the crystallization of a sodium acetate solution.

Sut, H-49	heat of crystallization
Mei, 26-5.4	heat of crystallization
Sut, H-44	project crystallization
Sut, H-45	crystallization
Mei, 26-5.12	water crystals in soap film
Mei, 26-5.13	crystal growth on the overhead
Mei, 26-5.14	crystal growth on the overhead
Mei, 26-5.17	observing crystallization
AJP 45(4),395	hard sphere model
AJP 46(1),80	Metglas 2826
Sut, H-47	Wood's metal
PIRA 200	Phase Changes: Liquid-Gas boiling by cooling
UMN, 4C30.10	boiling by cooling
F\&A, Hj-4	boiling by cooling
Sut, H-75	boiling by cooling
Hil, H-5d	boiling cold water
D\&R, H-260	boil water at reduced pressure
Sprott, 2.8	boiling by cooling
Disc 15-10	boil water under reduced pressure
PIRA 1000	boiling at reduced pressure
TPT 2(4),178	boiling point depression
F\&A, Hj-3	boiling at reduced pressure
Mei, 27-3.6	boiling by reduced pressure
Sut, H-76	boiling at reduced pressure
Mei, 26-5.16	superheating liquids
AJP, 75 (6), 496	superheated water
Sut, H-83	bumping
PIRA 1000	geyser
F\&A, Hj-5	geyser
Sut, H-79	geyser
Sut, H-80	geyser
Hil, H-5e	geyser
D\&R, H-264	geyser
Sprott, 2.6	geyser
Sut, H-78	steam bomb

4C20.61 A manometer hooked into the jacket of a double walled flask is used to detect the change in temperature of a sodium thiosulfate solution as it crystallizes.
4C20.62 A manometer indicates heating when a flask of supercooled hypo solution crystallizes.
4C20.70 Project while crystallization occurs in a thin film of melted sulfur or saturated solution of ammonium chloride.
4C20.71 Crystallization from a conc. solution of sodium acetate or sodium hyposulfate. See also E-195 (lead tree) and L-122 (polarization).
4C20.72 A ring with a soap film is cooled in a chamber surrounded by dry ice on the overhead projector. Water crystals form.
4C20.73 Various organic compounds are used to show crystal growth between crossed Polaroids on the overhead projector.
4C20.73 Tartaric acid and benzoic acid are melted together and the crystal growth on cooling is observed between crossed Polaroids on the overhead projector.

4C20.74 Directions for building a microprojector useful for showing crystallization phenomena.
4C20.90 A two dimensional hard sphere model of a fluid shows propagating holes or flow if 4% of the spheres are removed.
4C20.98 Metglas 2826 is a metal that has been quenched from liquid to solid without crystallization. The mechanical, electrical, and magnetic properties are demonstrated.
4C20.99 The recipe for Wood's metal (melting point 65.5 C).
4C30.00
4C30.10 Cool a stoppered flask filled with warm water with ice until boiling starts.
4C30.10 Same as Hj-4.
4C30.10 A flask with warm water is cooled with ice until boiling starts.
4C30.10 Boil water vigorously in a flask, stopper and remove from heat, cool with ice or water to show boiling at reduced pressure. A thermometer or thermocouple can be added to show temperature.
4C30.10 Heat water to boiling in a round bottom flask, stopper, invert, pour cold water over to maintain boiling.
4C30.10 Heat boiling water in a round bottom flask, stopper, invert, apply cold towels or ice to the flask.
4C30.10 Holding ice against a sealed flask contain hot water and steam causes the water to boil.
4C30.10 Boil water in a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.
4C30.15
4C30.15 Boil at reduced pressure using an aspirator.
4C30.15 A thermometer measures the boiling point as a vacuum pump is used to reduce the pressure in a flask of water.
4C30.15 Boil water at room temperature by evacuating.
4C30.15 Pump on a flask of warm water with aspirator or vacuum pump until boiling starts.
4C30.20 Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts explosively.
4C30.20 A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.
4C30.21 When an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.
4C30.25
4C30.25 A long tapered tank is used to form a geyser.
$4 C 30.25$ A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.
4 C30.25 A . 5 " brass tube 6 ' long soldered to a 4 " tube $10 " l o n g$ filled with water and heated gives a 3 ft . geyser.
4C30.25 Picture of a geyser demonstrator.
4C30.25 A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.
4C30.25 A long tapered tube is heated from below and erupts periodically.
4C30.27 Heat a corked test tube or make a bomb by sealing off some water in a glass tube and heating it. Flying glass hazard.

Demonstration Bibliography	
PIRA 1000	helium and CO2 balloons in liquid
F\&A, Hk-3	change of volume with change of chate
Disc 15-17	helium and CO2 balloons in liquid Sut, H-102
N2 ice stove PIRA 1000 UMN, 4C30.35	liquid nitrogen in a balloon Sut, H-112
burst a balloon in a balloon	

4C30.30
C30 30
4C30.30
Helium and CO2 balloons are immersed in liquid nitrogen. Cut open the CO2 balloon to show solid carbon dioxide.
4C30.33 Boil away liquid air in a teakettle on a cake of ice.
4C30.35
4C30.35
4C30.35 A small amount of liquid air in a test tube blows up a balloon until it bursts. (800:1 volume ratio).
4C30.35 Pour some liquid nitrogen in a small flask and cap with a balloon.
4C30.36 A mercury piston applies equal pressure to air and sulfur dioxide until the SO2 collapses into liquid at $21 / 2$ atmospheres.
4C30.40 Boil water in a beaker while measuring the temperature.
4C30.50 One end of an L-shaped evacuated tube containing bromine is immersed in a dry ice/alcohol mixture.
4C30.50 The color of bromine gas in one end of a tube is reduced when the other end is cooled.
4C30.60 Pass steam into a calorimeter to determine the heat of condensation.
4C30.80 Liquid oxygen will drip from the outer surface of a thin copper cone filled with liquid nitrogen.
4C30.81 A heat exchanger is used to liquefy oxygen from a high pressure tank. Picture, Construction details in appendix, p. 1297.
4C30.82 A bicycle pump is used to put a test tube immersed in liquid air under pressure. Liquification will continue as long as the tube is operated.
4 C 30.90 liquid nitrogen induced to vaporize cools the air and creates a dense cloud.
4 C 31.00
4C31.10
4C31.10
One end of an evacuated glass tube with bulbs at each end is put in liquid nitrogen, water in the other end will freeze.
4C31.10 One end of a tube is stuck in a cold trap and water in the other end freezes.
4C31.10 Water in one end of an evacuated J tube will freeze when the other is placed in a ice-salt mixture, alcohol-dry ice mixture, or liquid air.
4C31.10 Place a cryophorus in liquid nitrogen.
4C31.11 Water in an evacuated sealed flask with a concave bottom freezes when it is inverted and a dry ice/alcohol mixture is placed in the concavity.
4C31.12 A Lucite assembly for the overhead projector with an evacuated chamber holding water and an area for a dry ice/acetone mixture.
4C31.20
4C31.20 Evacuate a chamber with water on the overheard between crossed Polaroids.
4C31.20 For the overhead projector: make a hole for a small thermometer in the bottom of a small test tube and pump on a small amount of water.
4C31.20 Pump down some distilled water in a chamber on an overhead projector until the water freezes. Crossed Polaroids make the effect more visible.
4C31.20 Evacuate a chamber containing a small amount of water.
4C31.21 Freeze water in a watch glass over a dish of sulfuric acid in a bell jar.
4C31.21 Freeze water in a watch glass over a dish of sulfuric acid in a bell jar. Also observe boiling before water freezes.
4C31.22 Freeze water in a flask by pumping through a sulfuric acid trap. Supercooling up to 10 C is possible.
4C31.22 Water at room temperature boils vigorously and then turns into ice when the pressure is reduced.
4C31.30 Cooling causes vapor to condense, raising the center of gravity until the bird tips, lowering the center of gravity.
4C31.30 The drinking bird has a wet head which evaporates drawing liquid up his neck and tipping him over.
4C31.30 Cooling causes vapor to condense raising the center of gravity until the bird tips.
4C31.30 Dip head of bird in water. Cooling by evaporation causes liquid to draw up into the bird until it tips because of the raised center of gravity.

July 2015
4C31.30 The motion and temperature of the drinking bird are monitored to determine the quantitative history of its motion over time and to determine the thermodynamic and mechanical constraints on its performance.
4C31.30 A drinking bird system that obtains energy from the evaporation of water, but is not a heat engine.
4C31.30 Measurements on the drinking bird system which has the body heated instead of the head being cooled by evaporation
4C31.30 Measurements and modeling of the drinking bird system with the head being cooled by evaporation. The effect of humidity is also shown.
4C31.30 Dip the head of the bird in water. Cooling by evaporation causes liquid to draw up into the bird until it tips because of the raised center of gravity.
4C31.30 Standard drinking bird. Includes animation.
4C31.31 Puncture a CO2 cartridge and the steel bulb will cool enough to form frost but there is not enough gas to produce snow.
4C31.32 Evaporating carbon disulfide (highly inflammable and poisonous) is used to form frost.
4C31.33 Evaporating ether in a watch glass freezes a drop of water between the bottom of the glass and a cork. A method for burning off the ether is shown. Diagram.
4C31.34 Ethyl chloride is used to freeze water in a small dish or cool a thermometer.
4C31.35 An attached manometer shows cooling when several drops of ether are placed in a flask.
4C31.37 A pulse glass will oscillate when mounted in a stirrup so one side and then the other can contact a cool pad.
4C31.37 A pulse glass will oscillate when mounted on a pivot so that one side and then the other can come near a heat lamp.
4C32.00
4C32.10
4C32.10
4C32.10
Use a commercial sling psychrometer to determine relative humidity.
Two thermometers, one with a wet wick, are mounted on a device swung around the head.
4C32.10 Two thermometers, one with a wet wick on the bulb, are rotated.
4C32.11 Identical thermometers are mounted on a panel, one with a wet wick.
4C32.11 Wet and Dry bulb readings.
4C32.11 Wet and dry bulb thermometers are mounted on a frame with a humidity graph.
4C32.15 A dial type hygrometer is pictured.
4C32.16 A hair is connected to a pivot.
4C32.20 Evaporating alcohol cools a shiny surface until dew forms.
4C32.21 Evaporating ether cools a gold band until dew forms.
4C32.22 Reflect a light beam off two bright plates, one cooled by ether.
4C32.23 When the dew point is reached in a test tube of evaporating ether, water drops on the outside complete an electrical circuit, lighting a neon lamp.
4C32.24 Watch the shiny surface of a Frigister (thermoelectric cooler) as small water drops grow and coalesce.
4C32.40
4C32.40 Cigar smoke is introduced into a steam jet.
4C32.41 An extinguished match is held in the steam from a tea kettle.
4C32.50 Place moistened cotton in a bell jar and evacuate until fog forms. After cleaning the air of dust, ions are introduced and a thick fog forms.
4C33.00
4C33.10
4C33.10 Insert water or alcohol in a mercury barometer.
4C33.10 Set up a series of mercury barometers and insert a small amount of volatile liquid in each one.
4C33.10 Place four mercury barometers in a line and introduce different liquids into three to show vapor pressure.
4C33.11 Three flasks containing water, alcohol, and ether are connected by stopcocks to the evacuated side of a mercury manometer.
4C33.11 A small bottle containing $1 / 2 \mathrm{ml}$ of methanol is connected to a water manometer.
4C33.12 A barometer is sealed off with liquid over the mercury.
4C33.13 Barometer tubes are moved up and down in a deep well of mercury. One contains air, the other alcohol vapor. The mercury level remains the same in the tube with alcohol vapor.

Sut, H-82	vapor pressure tube
PIRA 1000	addition of vapor pressures
UMN, 4C33.20	addition of vapor pressures
F\&A, Hj-2	addition of partial pressures
Mei, 27-3.1	soda pop pressure
PIRA 1000 AJP 29(10),xiii	vapor pressure curve for water vapor curve of water
Mei, 27-3.8	vapor pressure curve for water
Mei, 27-3.5	vapor pressure of water vs temperature
Sut, H-74	vapor pressure of water at boiling
TPT 2(4),178	vacuum by freezing
AJP 43(10),925	vapor pressure curve for CCl 4
PIRA 500	pulse glass
Sut, H-72	pulse glass
Hil, H-2a. 2	pulse glass
Sut, H-85	vapor pressure fountain
Mei, 27-3.9	addition of vapor pressure with ether
Mei, 27-3.4	flask inverted over ether
Sut, H-84	retarded evaporation
Mei, 27-3.3	beakers in a bell jar
F\&A, Hj-6	lowering of vapor pressure by dissolved salt
Sut, H-87	vapor pressure of solutions Sublimation
PIRA 500	sublimation of carbon dioxide
UMN, 4C40.10	carbon dioxide
Sut, H-51	carbon dioxide
Disc 15-18	sublimation of CO2
Sut, H-95	carbon dioxide
D\&R, H-220	carbon dioxide - make dry ice
Sut, H-52	carbon dioxide rocker
PIRA 1000	blow up balloon with CO 2
Sut, H-97	blow up a balloon with CO 2
F\&A, Hk-1	change of volume with change of state
Mei, 26-5.8	iodine
Mei, 26-5.7	ammonium chloride
Sut, H-53	camphor

4C33.13 Separate tubes are made up with a liquid sealed over mercury and with an evacuated tube extending out of the mercury to show the vapor pressure.

4C33.20
4C33.20 Add water and then alcohol to a mercury barometer
4C33.21 Measure the pressure change with a manometer when a vial of ether is broken in a flask of air.
4C33.25 Attach a pressure gauge to a soda pop bottle and measure the buildup of pressure.
4C33.30
4C33.30 Boil water in a flask attached to one side of a mercury manometer, remove the heat and seal off the flask from the atmosphere, take readings of the temp and pressure difference as the system cools.
4C33.30 A flask of boiling water is stoppered with a thermometer and mercury manometer. Readings are taken as the water cools.
4C33.31 Add a thermometer and pressure gauge to a pressure cooker the demonstrate the effect of temperature on partial pressure of water.
4C33.32 Insert a mercury filled J tube with water at the closed end into a boiling water bath and the mercury comes to the same level on both sides of the tube.

4C33.33 A table of vapor pressure values for water at standard bath temperatures down to -90 C. Some demo suggestions are included.
4C33.35 Modification of a flexible tube manometer to measure the vapor pressure curve of CCl 4 .
4C33.50
4C33.50 A tube with a small bulb on each end partially filled with a volatile liquid is held by one bulb in the palm forcing the liquid into the other bulb.
4C33.50 Just a picture.
4C33.55 Ether is introduced into a stoppered flask half full of water with a nozzle extending to near the bottom of the flask. The vapor pressure forces the water out the nozzle. Diagram.
4C33.56 An apparatus is constructed of glass tubing to allow one to add ether to entrapped air at atmospheric pressure and measure the increased pressure. Reference: AJP 13(1),50.
4C33.57 When a flask is inverted over ether, bubbles form due to the partial pressure of ether.
4C33.58 Introduce a volatile liquid into two flasks connected to mercury manometers, one evacuated and the other full of air. The final pressure is the same but the time to get there differs.
4C33.60 Beakers of water and brine are placed in a bell jar and left for weeks. The brine gains water.
4C33.61 A manometer separates water and a salt solution in a closed system.

4C33.62 Aqueous solutions of salt or sugar have a higher boiling point than water.
4C40.00
4C40.10
4C40.10 Watch carbon dioxide sublimate.
4C40.10 Evaporation of "dry ice".
4C40.10 Small solid carbon dioxide flakes are generated by cooling a CO2 balloon in liquid nitrogen.
4C40.11 Show chattering due to formation and escape of vapor.
4C40.11 Show the formation of dry ice by the rapid cooling of the gas upon expansion using a carbon dioxide fire extinquisher.
4C40.12 Detect the evaporation of gas by the high pitched rocking motion of one end of an iron rod placed on "dry ice".
4C40.15
4C40.15 Attach a balloon to a test tube with dry ice and when the balloon is inflated immerse the tube in liquid air.
4C40.16 Dry ice blows up a balloon.

4C40.20 Place melted iodine crystals in a partially evacuated tube and heat.
4C40.30 Heat ammonium chloride in a test tube and it evaporates without melting, coating the cool sides of the tube. ALSO- solidify CO2.
4C40.40 Heat camphor in one end of a tube and the vapors will condense on the cooler end. Project.

Thermodynamics

TPT 3(7),322
sublimation of ice and snow

PIRA 1000
UMN, 4C45.10
F\&A, Es-7

TPT 30(1), 42

AJP 72(5), 599

AJP 43(7),650

PIRA 1000
Mei, 26-5.18

AJP 59(3),260

PIRA 500
UMN, 4C50.10

F\&A, Hk-6 critical point of carbon dioxide
Sut, H-90

Disc 15-11

Mei, 27-2.9

AJP 34(1),68 citical state analog

PIRA 1000 critical opalescence
UMN, 4C50.20 critical opalscence
Sut, H-91
PIRA $1000 \quad$ triple point of water cell
AJP 29(8),iii triple point of water cell

UMN, 4D10.10

F\&A, Hh-3
Sut, A-48
Hil, M-22j
Hil, A-1b
AJP 78 (12), 1278 Brownian motion

Disc 16-07
Sut, A-51
AJP 44(2), 188
Mei, 27-8.1

KINETIC THEORY

Brownian Motion
Brownian motion cell
mode

Critical Point

critical point of CO 2
critical point of CO 2
critical point of CO 2
CO2 critical point
critical point of CO 2

Brownian motion smoke cell on

Brownian motion
Brownian motion smoke cell
Brownian motion cell
Brownian motion cell
Brownian motion
brownian motion
Brownian motion - virtual image
Brownian motion
smoke cell

4C40.50 Freeze water in a large dish, then cover portions with rectangles of aluminum foil. After three weeks, the uncovered areas have sublimed about a half inch.

4C45.00
4C45.10
4C45.10
4C45.10 A long iron wire heated to 1000 K will sag as it goes through a phase change.

4C45.15 A nitinol wire returns to a preformed shape when it undergoes a phase transition from the low temperature martensite phase to the high temperature austenite phase.
4C45.15 The ability of nitinol wire to remember its annealed shape is used to model a three dimensional folding structure. Useful when looking at protein folding and DNA of RNA hybridization, geometry, topology, and commutativity.

4C45.20 The salt ammonium nitrate exhibits five phase transitions between 169 C and -16C. Heat the salt on a microscope slide with an electrically conducting coating on one side.
4C45.30
4C45.31 Mercury iodide changes from red to yellow at 126 C . Ammonium nitrate has five solid phases at transformation temperatures of $-16,35,83,125 \mathrm{C}$. Best demonstrated between crossed Polaroids on the overhead projector.

4C45.35 A magnetic model demonstrates phase transitions and excitations in molecular crystals. Construction details and hints included along with theory.

4C50.00
4C50.10
4C50.10 The meniscus in a tube containing liquid CO2 at high pressure disappears when warmed.
4C50.10 Gently heat a glass tube containing liquid CO 2 . The critical point is 73 atmospheres and 31.6 C .
4C50.10 Liquid CO2 in a heavy wall glass tube is heated to show disappearance of the meniscus.
4C50.10 Warm a tube containing liquid CO2. The critical point is 73 atmospheres at 31.6 C.

4C50.11 Tubes filled with liquid CO2 at, above, and below the critical point are prepared to demonstrate behavior of a non-ideal gas. Tube preparation instructions.
4C50.15 Use the critical solution of aniline and cyclohexane as an analog of the critical state.
4C50.20
4C50.20 A sealed chamber containing freon is heated to the critical point.
4C50.30 Directions for making an ethyl chloride apparatus (187.2 C, 52 atmos).
4C50.40
4C50.40 A real triple point of water cell designed for use as a temperature reference.
4D00.00
4D10.00
4D10.10
View a smoke cell under a microscope.
Look through a microscope at a small illuminated cell filled with smoke.

4D10.10 Observe the motion of particles in a smoke cell through a microscope.
4D10.10 Observe the Brownian motion smoke cell through a low powered microscope.
4D10.10 Observe a small smoke cell through a microscope.
4D10.10 View a smoke cell under a microscope.
4D10.10 A look at Robert Brown's original observations and some of his misinterpretations.
4D10.10 A smoke cell is viewed under 100X magnification.
4D10.11 The optical setup for viewing Brownian motion by enlarged virtual image.
4D10.12 Use a laser beam to illuminate a smoke cell under a microscope viewed with TV
4D10.12 Project the Brownian motion smoke cell with TV. Picture.

Demonstration Bibliography	
TPT, 36(6), 342	Brownian motion using a laser pointer
AJP 41(2),278	smoke cell for TV
AJP 40(5),761	Brownian motion - macroscopic cell
PIRA 1000	Brownian motion simulator
UMN, 4D10.20	Brownian motion simulation
Disc 16-08	Brownian motion simulation
Mei, 27-7.6	Brownian motion simulation
AJP 47(9),827	Brownian motion simulation
AJP 31(12),922	Brownian motion of a galvanometer
PIRA 1000	colloidal suspension
Sut, A-49	Brownian motion - colloidal
Mei, 27-8.5	formation of lead carbonate crystals
Sut, A-50	rotary Brownian motion
Mei, 27-8.2	Brownian motion in TiO2 suspension
AJP 32(7),vi	Brownian motion corridor demonstration
Mei, 27-8.4	Brownian motion corridor demonstration
PIRA 1000	Dow spheres suspension
AJP 37(9),853	Brownian motion - light scattering
AJP 71(6), 568	Brownian motion - video microscopy
AJP 55(10),955	Brownian motion on TV
AJP, 75 (2), 111	Brownian motion with microspheres
Mei, 27-8.3	Brownian motion with Dow spheres
	Mean Free Path
PIRA 200	Crookes' radiometer
UMN, 4D20.10	Crookes' radiometer
F\&A, Hh-6	radiometer
D\&R, H-188	radiometer
Sprott, 1.13	Crooke's radiometer
Ehrlich 1, p. 117	radiometer
Disc 14-23	radiometer
AJP 45(5),447	radiometer analysis
Sut, H-164	Crookes' radiometer
AJP 53(11),1105	Crookes' radiometer backwards
AJP 54(9),776	Crookes' radiometer backwards
AJP 54(6),490	Crookes' radiometer backwards
AJP 51(7),584	heating the radiometer

4D10.12 Demonstration of Brownian motion using a microvideo camera connected to the eyepiece of a microscope, and with a laser illuminating the smoke cell.

4D10.13 Modifications to the standard Welch smoke tube for use with television projection.
4D10.15 Ball bearings hit a piece of stressed Plexiglas. Crossed Polaroids render the balls invisible.
4D10.20
4D10.20 Place many small and a few large balls on a vibrating plate on an overhead projector.
4D10.20 A large disc is placed in with small ball bearings in the shaker frame on the overhead projector.
4D10.21 A Brownian motion shaker for the overhead projector. Includes the original references to Brown and Einstein.
4D10.25 The Cenco kinetic theory apparatus is modified by mounting a baffle in the center of the tube to reduce the spinning of the particles, and suspending a 1 cm bead in one half of the chamber.
4D10.28 An optical-lever amplifier for studying the Brownian motion of a galvanometer.
4D10.30
4D10.30 Place a colloidal metal suspension made by sparking electrodes under water on a microscope slide.
4D10.31 Project the formation of flat-sided crystals of lead carbonate in a glass cell on a screen. See Sutton, A-50.
4D10.31 Observe a dilute suspension of flat lead carbonate crystals under low magnification.
4D10.33 A TV camera looks through a microscope at a water suspension of TiO2.

4D10.34 Dow latex spheres in water through a 1900 power projection microscope, mechanical analog with a 2 " puck and 1/4" ball bearings.
4D10.34 A corridor demonstration of Brownian motion of Dow latex spheres using a projection 1900 power microscope.
4D10.40
4D10.40 Pass a laser beam through a cell with a suspension of polystyrene spheres. Hold a card up and show the fluctuations of the scattered light.
4D10.40 Measuring Boltzmann's constant using video microscopy of Brownian motion of polystyrene spheres in water.
4D10.40 Polystyrene microspheres are used in place of the smoke cell, the eyepiece of the microscope is removed and the image is formed on the shielded TV tube.
4D10.40 Using a CCD camera to study the dependence of the Brownian motion of microspheres on their radius, the time, the viscosity of the suspension liquid, or temperature.
4D10.40 Small polystyrene spheres made by Dow are suspended in water for illustrating Brownian motion.
4D20.00
4D20.10 The fake radiometer is evacuated until the mean free path is about the dimension of the system.
4D20.10 The radiometer spins in the wrong direction.
4D20.10 The fake radiometer is evacuated so the mean free path is about the dimension of the system.
4D20.10 A radiometer heated with a lamp or cooled in a freezer.
4D20.10 A difference in kinetic energy of molecules leads to unequal forces and resultant rotation.
4D20.10 The radiometer and sunlight or a bright light source.
4D20.10 The radiometer and a lamp.
4D20.11 An "elementary" model for the radiometer at the sophomore level.
4D20.11 When the pressure of the Crookes' radiometer is about 1 mm it works well. Place it near dry ice and it will run backwards.
4D20.12 Put your radiometer in the refrigerator, also try an interesting liquid N2 demo.
4D20.12 Use liquid N2 or freon to cool the radiometer so it will run backwards.
4D20.12 A letter calling attention to the Woodruff (TPT,6,358) article.
4D20.13 Heat the glass of the radiometer until it is motionless and as it cools it will run backwards.

AJP 72(6), 843

AJP 35(12),1120
PIRA 1000
F\&A, Hh-7
Mei, 27-8.7
PIRA 1000
Mei, 27-8.6
Mei, 10-3.1
AJP 34(12),1143 Boltzmann distribution model
AJP 52(1),54 computer Maxwell-Boltzmann
AJP 58(11),1073
computer many particle systems

Kinetic Motion

TPT 28(7),441
PIRA 500
UMN, 4D30.10
F\&A, Hh-5

Mei, 27-7.7
PIRA 1000
UMN, 4D30.11

Hil, M-22b. 1
Sut, A-42
PIRA 200
PIRA 500 - Old
UMN, 4D30.20
TPT 2(2),81
F\&A, Hh-4

D\&R, H-440
Sprott, 2.15
Ehrlich 1, p. 116
PIRA 1000
Mei, 27-7.8
Sut, A-46

Disc 16-05
PIRA 1000
Disc 16-04

PIRA 1000
Disc 16-13

PIRA 1000
Disc 16-03

Mei, 27-7.3 mechanical shaker

AJP 45(11), 1030 roller randomizer
Mei, 27-7.5 driven steel cage

4D20.14 Put a hot metal object in a smoke filled projection cell and a clear space will appear around the metal object caused by the radiometric repulsion of the smoke particles. Convection will cause the clear space to extend upward.

4D20.14 Construction of a simple acoustic radiometer that DOES rotate by radiation pressure.
4D20.15 Vanes rotate in a tube filled with 20 mTorr helium warmed on one end.
4D20.20
4D20.20 Aluminum evaporated in high vacuum forms a shadow of a Maltese cross on the side of the bell jar.
4D20.20 Evaporating aluminum atoms plate a bell jar except in the shadow of a Maltese Cross.
4D20.30
4D20.30 Steel balls are rolled down a pinboard and the number of collisions is compared with theory
4D20.31 Take pictures of air table pucks and plot velocity distribution and path length.
4D20.40 A set of cusps is formed in a curve with height representing energy levels. The assembly is driven by a shaker.
4D20.45 A FORTRAN program available from the author that shows the evolution of speed distributions.
4D20.46 Computer simulations with a billiard table model and a particle moving in a regular array of hard discs.
4D30.00
4D30.05
4D30.10
4D30.10
4D30.10

4D30.10
4D30.11
4D30.11
Scale up the balls in a piston using a 16 " diameter tube and $1 / 2^{\prime \prime}$ diameter balls.
4D30.12 The details are not clear from this picture of a mechanical gas model.
4D30.13 Drive small steel balls in a small chamber with a tuning fork.
4D30.20
4D30.20
4D30.20 Ball bearings on a vibrating plate on the overhead projector.
4D30.20 A 2-D ball shaker for the overhead projector.
4D30.20 Balls on a vibrating plate are used with the overhead projector for many molecular simulations.
4D30.20 Ball bearings on a vibrating plate on the overhead. Commercial model.
4D30.20 Drive small steel balls in a small chamber with a mechanical oscillator.
4D30.20 BB's bouncing in a hand agitated frame on an overhead projector show temperature and pressure effects on volume.
4D30.21
4D30.21
Jostle two different sized marbles by hand in a large tray to show different velocities.
4D30.21 A large and small version of balls on a horizontal surface agitated by a hand frame.
4D30.21 Use different size balls in the shaker frame on the overhead.
4D30.22
4D30.22
Change the size of the entrained area of the shaker frame on the overhead projector.
4D30.23
4D30.23
Balls are initially constrained to one half of the shaker frame and then the bar is lifted.
4D30.24
4D30.24 A shaker frame on the overhead projector is shown with different shaking rates.
4D30.25 Determine the distribution of velocities produced by an overhead projector shaker. Picture, Diagrams, Construction details in appendix, p. 1294.
4D30.26 Cylindrical rollers in a pentagon configuration produce random motion.
4D30.27 A motor driven steel cage can be used horizontally or vertically to perform several models of kinetic motion. Pictures, Construction details in appendix, p. 1295.

Demonstration Bibliography	
Mei, 27-7.1	hard sphere model
AJP 52(1),68	speaker shaker
AJP 41(4),582	shaking velcro balls
AJP 38(12),1478	air table molecules
Mei, 27-7.2	drop formation shaker
Sut, A-41	kinetic theory models
Sut, A-43	kinetic theory models glass beads PIRA 1000
F\&A, Hh-1	model for kinetic theory of gases
Sut, A-44	kinetic theory models
Hil, M-22i	glass beads
Disc 16-06	mercury kinetic theory
Sutfusion through porcelain	
diffusion through porcelain	

4D30.30 A bouncing plate with balls. The free space ratio is varied giving models of gas through crystal behavior. Pictures, Construction details in appendix, p 1292.

4D30.31 Steel balls in a container on a speaker show both fluid and solid state phenomena.
4D30.32 Attach velcro to spheres and shake. "Bonding" will vary with the vigor of agitation.
4D30.32 Four magnets placed on the Plexiglas discs provide the attraction for many demonstrations of molecular kinetics.
4D30.34 A motorized shaker frame in a magnetic field causes steel balls to act like molecules forming drops.
4D30.37 A fan propels several hundred small steel balls in a container. Also shows Brownian motion.
4D30.38 Compressed air drives ping pong balls in a large container.
4D30.40
4D30.40 An evacuated tube containing mercury and some glass chips is heated over a Bunsen burner.
4D30.40 Mercury heated in a evacuated glass tube causes glass beads to fly about.
4D30.40 Heat an evacuated tube with some mercury and glass chips. An optical projection system is shown.
4D30.40 Glass chips float on a pool of mercury in an evacuated tube. Heat the mercury and the chips dance in the mercury vapor.
4D30.41 Mercury is heated in a large evacuated tube causing pith balls to jump about.
4D30.50 Balls drop from a funnel onto a pan balance.
4D30.51 Pour lead shot onto the apex of a cone attached to a float. Vary the number and velocity of shot.
4D30.55 Apparatus Drawings Project No. 9: Drop 1/2" balls at a rate of $5 / \mathrm{sec} 25$ onto a massive damped balance and compare deflection with static loading and theory.
4D30.60
4D30.60 See Fm-4.
4D30.60 As the tube on one side of a twin burner is heated, the flame becomes smaller.
4D30.60 One leg of a "T" tube is heated resulting in increased viscosity and a smaller flame of illuminating gas.
4D30.60 Heat the gas flowing to one of two identical burners and the flame decreases.
4D30.71 The velocity of a precision ball falling in a precision tube is independent of pressure as the tube is partially evacuated.
4D30.71 See Fm-3.

4D30.72 Oscillations in the quartz fiber radiation pressure apparatus change frequency as it is evacuated.
4D30.75 A viscosity damped oscillator is placed into a bell jar and evacuated to various pressures to show viscosity independent of pressure. Pictures, Construction details in appendix, p. 1290.

4D40.00

4D40.10
4D40.10 Films from drops of stearic or oleic acid are measured.
4D40.12 Place a drop of alcohol at the center of a petri dish containing a thin layer of water.
4D40.13 A ring proportional to drop size forms when dropped on filter paper.
4D40.15 Use a BB's to model a drop spreading on the surface of water, then use oleic acid and do the real thing.
4D40.15 A "BB" model and the Oleic acid monomolecular layer. Pictures.
4D40.20 Measure gold leaf thickness and show the black of a soap film.
4D50.00
4D50.10
4D50.15
Balls of two different colors are initially separated by a Lucite bar on a vibrating table. Picture, Construction details in appendix, p.1295.
4D50.20
4D50.20

Different gases are directed around an unglazed porcelain cup. A "J" tube manometer shows pressure. Diagram.

Demonstration Bibliography	
PIRA 500	hot air thermometer
UMN, 4E10.10	hot air thermometer
PIRA 1000	thermal expansion of air
Sut, H-3	Galileo's thermometer
D\&R, H-018	Galileo's thermometer
Disc 14-12	thermal expansion of air
Mei, 25-2.8	capillary tube thermometer
Sut, H-4	horizontal thermometer
Mei, 25-2.4	gas thermometer
Hil, H-2a. 3	air thermometer
F\&A, Hk-2	change of volume with change of temperature
Mei, 27-2.7	balloon on a flask
Sut, H-34	expansion of gases
Sut, H-33	expansion of gases
PIRA 200	balloons in liquid nitrogen
UMN, 4E10.20	balloon in liquid nitrogen
AJP 78 (12), 1312	balloons in liquid nitrogen
Sprott, 2.9	balloon in liquid nitrogen
Mei, 27-2.8	balloon in liquid nitrogen
AJP 39(7),844	balloons in liquid nitrogen
Sut, H-98	air pressure at low temperature
	Constant Temperature
PIRA 500	square inch syringe
UMN, 4E20.10	square inch syringe
AJP 29(10),706	Boyle's law syringe
F\&A, Hg-1	gas law with hypodermic syringe
Mei, 27-2.1	Boyle's law
PIRA 1000	syringe and pressure gauge
Disc 16-01	pressure vs. volume
PIRA 500	Boyle's law apparatus
UMN, 4E20.20	Boyle's law apparatus
Sut, M-319	Boyle's law apparatus
Mei, 27-2.3	Boyle's law
Mei, 27-2.6	Boyle's law apparatus
Mei, 27-2.4	Boyle's law apparatus
Mei, 27-2.5	Boyle's law apparatus
PIRA 1000	Boyle's law with tap pressure
AJP 44(5),493	Boyle's law with tap pressure
Mei, 27-2.2	Boyle's law

4E10.10
4E10.10 A large round flask is hooked to a manometer.
4E10.11
4E10.11 An inverted flask with a long slender stem is set in water. As the air in the flask cools, the water in the tube rises.
4E10.11 A small diameter glass tube with a blackened bulb on one end is inverted into a beaker of water. Warm bulb to draw some liquid into the tube. Cooling or heating the bulb will raise or lower the liquid level in the tube.
4E10.11 Hold the inverted flask of Galileo's thermometer with the hands to heat the entrained air and force the water in the tube down.
4E10.12 A capillary tube with a bead of mercury is sealed at one end.
4E10.12 An air filled flask fitted with a long slender tube is held horizontally and a small globule of mercury moves in the tube as the air in the flask changes temperature.
4E10.13 A gas thermometer operated at reduced pressure.
4E10.14 Just an unclear picture - might be a balloon on a flask.
4E10.15 A flask with a balloon fitted on the neck is heated with hot water and immersed in dry ice/alcohol.
4E10.15 A balloon on the neck of a large flask changes volume when the flask is placed into hot water or dry ice/alcohol.
4E10.16 Two identical constant pressure gas thermometers are filled with different gases and immersed in a water bath to show the same volume increase.

4E10.16 Two bulbs connected by a "U" tube manometer are filled with different gases and heated the same amount by immersing in a water bath to show pressure increase is the same on both sides.
4E10.20 Pour liquid nitrogen over an air filled balloon until it collapses and then let it warm up again.
4E10.20 Pour liquid nitrogen over an air filled balloon and then let it warm up again.
4E10.20 The radius of a balloon is measured as it is cooled with liquid nitrogen. The volume decreases linearly with time.
4E10.20 A balloon shrinks when placed in liquid nitrogen. Liquid air can be seen inside the collapsed balloon. Try this when the balloon is filled with helium and see the balloon rise to the ceiling when it warms up.
4E10.21 A balloon partially inflated on the end of a glass rod is immersed in liquid nitrogen.
4E10.22 Cool balloons filled with carbon dioxide, argon, helium, pass them around the class.
4E10.30 Immerse the bulb of a small thermoscope in liquid air.
4E20.00
4E20.10
4E20.10 A 50cc syringe has an area of . 923 square inches. When lightly oiled, the volume will decrease to half when 13 lbs . are applied.
4E20.10 A glass syringe is mounted vertically with a weight holder attached to the plunger.
4E20.10 A hypodermic syringe mounted vertically shows PV relations.
4E20.11 Stack weights on a piston and read the volume off a scale. Picture.
4E20.15
4E20.15
4E20.20
4E20.20
A mercury barometer attached with a heavy walled tube to an adjustable glass tube.
4E20.20 A flexible tube of mercury is used to apply pressure to a chamber of air. From Am.Jour.Sci. 32,329,1911.
4E20.21 A large Boyle's law apparatus. Diagram and construction hints.
4E20.22 A curved tube with air trapped in the shorter closed end by mercury is tipped to change the pressure from the mercury column.
4E20.25 A projection Boyle's law apparatus is shown. Includes a projection pressure meter.
4E20.26 A projection Boyle's law apparatus using a mercury plug in a capillary as an indicator.
4E20.30
4E20.30 Eliminate mercury with this tap water pressure apparatus
4E20.31 "Lab-gas" units are a convenient source of low-pressure gas for Boyle's law demonstrations.

Demonstration	Bibliography	July 2015	
PIRA 1000	balloon in a vacuum	4E20.40	
UMN, 4E20.40	balloon in a vacuum	4E20.40	Place a partially filled balloon in a bell jar and evacuate. Also try a fresh marshmallow.
D\&R, F-040	marshmallow, shaving cream in a vacuum	4E20.40	Place a fresh marshmallow or shaving cream in a bell jar and evacuate.
Sprott, 2.3	marshmallow, shaving cream in a vacuum	4E20.40	Baloons, marshmallows, and shaving cream that are placed in a bell jar expand when air is evacuated and contract when it's readmitted. Water and carbonated beverages will appear to boil when put in a vacuum.
AJP 40(9),1342	Boyle's law - air track model	4E20.50	An air track glider represents a one-molecule gas. The frequency of the collisions with the ends increases if the track is made shorter.
	Constant Volume	4E30.00	
PIRA 200	constant volume bulb	4E30.10	Immerse a bulb with an absolute pressure gauge in boiling water, ice water, and liquid nitrogen.
UMN, 4E30.10	constant volume bulb	4E30.10	A bulb with an absolute pressure gauge is immersed in boiling water, ice water, and liquid nitrogen.
F\&A, Ha-4	constant volume thermometer	4E30.10	Immerse a tank bulb with an attached pressure gauge in various temperature water baths.
Mei, 25-2.7	constant volume bulb - He	4E30.10	A Bourdon pressure gauge is attached to a toilet-tank bulb filled with helium and immersed in boiling water, dry ice, and liquid nitrogen.
Disc 16-02	pressure vs. temperature	4E30.10	A constant volume sphere with a pressure gauge is shown at room temperature and immersed in ice water and boiling water baths.
F\&A, Ha-2	gas thermometer	4E30.11	A bulb is connected to a mercury manometer.
Mei, 25-2.6	constant volume bulb	4E30.12	Capillary tubes containing mercury pistons are attached to toilet-tank bulbs filled with different gases.
PIRA 1000	constant volume thermometer	4E30.20	
F\&A, Ha-3	constant volume thermometer	4E30.20	A bulb is connected to a mercury manometer that can be raised or lowered to keep the mercury on the bulb side at the same place.
Sut, H-5	constant volume air thermometer	4E30.21	Looks like the Boyle's law apparatus except the enclosed end has a small flask suitable for immersing in a cold water bath. Adjustments are used to keep the volume constant.
Mei, 16-2.9	light bulb pressure	4E30.30	Heat a light bulb locally and the glass is pushed in, then heat it while on and the glass is pushed out.
Sut, E-54	heat generated by spark	4E30.40	The increased pressure of air in an enclosed container heated by sparking is measured with a manometer.
	ENTROPY \& THE	4F00.00	
	SECOND LAW Entropy	4F10.00	
PIRA 500	time reversal	4F10.10	
UMN, 4F10.10	time reversal	4F10.10	An ink column in glycerine between two concentric rotating cylinders appears to mix and unmix.
AJP 28(4),348	unmixing demonstration	4F10.10	The area between coaxial cylinders is filled with a Newtonian fluid and a suitable tracer. When the inner cylinder is rotated, the tracer appears to be mixed but is distributed in a fine one armed spiral sheet. Reversing the direction of inner cylinder rotation will cause the original tracer pattern to reappear.
F\&A, Hm-2	order and disorder	4F10.10	Ink seems to be mixed in glycerine but can be unmixed.
D\&R, S-270	unmixing demonstration	4F10.10	A dye column in glycerine between to concentric rotating cylinders appears to mix and unmix.
Ehrlich 1, p. 124	time reversal	4F10.10	A line of food coloring in a glycerin filled plastic box will appear to mix or unmix when the box is rotated.
Disc 13-08	un-mixing	4F10.10	Glycerine between two concentric cylinders. Animation.
AJP 54(8),742	capacitor charging entropy change	4F10.11	A simple demonstration-experiment that measures the difference in change of temperature due to charging a capacitor in many steps or one step.
PIRA 1000	balls in a pan	4F10.20	
UMN, 4F10.20	balls in a pan	4F10.20	Three red balls and three yellow balls are mixed in a pan.
AJP 41(11),1284	communication time and entropy	4F10.25	Demonstrate entropy with the time it takes a student to communicate the structure of ordered and disordered playing cards, and a salt crystal model, etc.
Bil\&Mai, p 236	entropy - playing cards	4F10.25	Playing cards and a Maxwell's Demon model are used to enhance discussions of entropy.
PIRA 500	Hilsch tube	4F10.30	
UMN, 4F10.30	Hilsch tube	4F10.30	
F\&A, Hm-3	Hilsch tube	4F10.30	The Hilsch tube is a sort of double vortex that separates hot and cold air.
PIRA 500	dust explosion	4F10.40	

Demonstratio	Bibliography	July 2015	
UMN, 4F10.40	dust explosion	4F10.40	
F\&A, Hm-1	dust explosions	4F10.40	Disperse dust in a can with a squeeze bulb and use a spark to set off the explosion.
Mei, 26-4.5	dust explosion	4F10.40	Blow a teaspoon of lycopodium powder into a covered can that contains a lighted candle inside.
Disc 14-15	dust explosion	4F10.40	Blow lycopodium powder into a can containing a candle.
TPT 46(8), 477	cornstarch / coffee creamer explosion	4F10.42	Powdered coffee creamer or cornstarch is placed in a cup inside a 1 gallon can. A lit candle is also placed inside the can. Blow air into the cup and a cloud of dust rises which is then ignited by the candle.
Mei, 26-4.6	gas explosion	4F10.45	Fill a can that has a hole on top and bottom with illuminating gas and light the top hole. The flame burns low and then the can explodes.
D\&R, H-090	gas explosion	4F10.45	Fill a can that has a hole on top and bottom with Natural gas and light the top hole. The flame burns low and then the can explodes. DO NOT USE PROPANE.
Sprott, 2.20	exploding balloons	4F10.50	Helium and Hydrogen-filled balloons burst when touched by a lighted match.
Sprott, 2.21	exploding soap bubbles	4F10.55	Soap bubbles blown with natural gas or hydrogen are ignited.
	Heat Cycles	4F30.00	
ref.	Hero's engine	4F30.01	see 1Q40.80
ref.	drinking bird	4F30.01	see 4C31.30
PIRA 200	Stirling engine	4F30.10	Show both a working Stirling engine and a cutaway model.
UMN, 4F30.10	Stirling engine	4F30.10	Show both a working Stirling engine and a cutaway model.
F\&A, Hn-4	Stirling hot air engine	4F30.10	A Stirling hot air engine.
Mei, 26-6.1	hot air engine	4F30.10	Pictures and diagram of a hot air engine that can be run as a hot or cold engine or driven both ways.
Disc 15-06	Stirling engine	4F30.10	Shows the standard Stirling engine, includes good animation.
TPT 28(4),252	the Stirling engine explained	4F30.11	An explanation of how the Stirling engine works. Good diagrams. (We had to machine off the top half of one to convince the faculty)
PIRA 500	steam engine	4F30.20	
F\&A, Hn-3	steam engine	4F30.20	A small steam engine runs from a small alcohol lamp.
Hil, H-5b. 3	steam engine	4F30.20	A small steam engine powers a small electric generator.
AJP 41(5),726	room temperature steam engine	4F30.22	Place an inflated balloon on the end of a capped copper tube and immerse the tube in liquid N2. Place a weight on the collapsed balloon and it will rise when the balloon warms up.
F\&A, Hn-2	Liquid nitrogen engine	4F30.25	Convert a small steam engine to run on liquid nitrogen.
Sut, H-113	liquid air steam engine	4F30.25	Run a model steam engine by connecting a test tube of liquid air to the boiler.
Hil, H-5b. 1	model steam engine	4F30.31	Picture of a model steam engine.
F\&A, Hn-1	compressed air engine	4F30.35	The parts of a steam engine that runs on compressed air.
PIRA 1000	refrigerator	4F30.40	
Sut, H-182	engine models	4F30.50	Models of different engines are shown.
Hil, H-5b. 2	model gasoline engine	4F30.52	A picture of a model gasoline engine.
AJP 52(8),721	air/ocean uniform temperature engine	4F30.55	An experimental engine that shows that it is possible to extract heat from a nonhomogeneous uniform temperature reservoir. The humidity must be less than 100% as evaporative cooling is used.
Mei, 26-6.2	ratchet and pawl model	4F30.56	Use of a ratchet and pawl model to discuss the second law. Diagram, Construction details in appendix, p. 1287 .
PIRA 1000	Nitinol engine	4F30.60	
UMN, 4F30.60	Nitinol engine	4F30.60	
AJP 52(12),1144	Nitinol engine	4F30.60	Short thermodynamic discussion of the Nitinol engine.
AJP 54(8),745	Nitinol engine comments	4F30.60	Comments on AJP 52(12),1144 taking issue with several points.
PIRA 1000	rubber band engine	4F30.70	
F\&A, Hm-5	rubber band motor	4F30.70	A wheel with rubber band spokes turns when heated locally with a spotlight.
Mei, 26-4.1	rubber band motor	4F30.70	The spokes of a bicycle wheel are replaced with rubber bands and a heat lamp is focused on one area causing the bands to contract at that point. Pictures.
D\&R, H-340	rubber band engine	4F30.70	An acrylic wheel with rubber band spokes turns when heated locally with a heat lamp.
AJP 43(4),349	rubber band motor thermodynamics	4F30.71	An analysis of the thermodynamics of a simple rubber band heat engine.
AJP 46(11),1107	optimizing the rubber-band engine	4F30.76	An appropriate choice of dimensions maximizes the torque of an Archibald rubber-band heat engine. Plenty of analysis.
AJP 57(4),379	Buchner diagram extensions	4F30.90	Comments extending the Buchner diagram to irreversible systems.
AJP 54(9),850	Bucher diagrams	4F30.91	A new diagram of the Carnot cycle to replace the pipeline diagram.
AJP 34(10),979	Carnot cycle diagrams	4F30.95	A set of thirty different Carnot cycle diagrams.
TPT 21(7), 463	Carnot cycle diagrams	4F30.95	A dynamical model of a Carnot cycle.

Thermodynamics

AJP 70(1), $42 \quad$ Carnot cycle AJP 76 (1), 21 Carnot cycle

AJP 43(1), 22 Carnot engine
AJP 70(11), 1143 Carnot Engine

4F30.96 Sadi Carnot on Carnot's theorem
4F30.96 A look at Sadi Carnot's contribution to the second law of thermodynamics. Discusses the first 12 pages of Carnot's own publication "Reflections on the Motive Power of Heat and the Machines Fitted to Develop that Power".
4F30.97 The efficiency of a Carnot engine at maximum power output.
4F30.97 The efficiency of nonideal Carnot engines with friction and heat losses.

ref.	piezoelectricity
PIRA 200	rods, fur, and silk
UMN, 5A10.10	rods, fur, silk
F\&A, Ea-1	electrostatic charges
D\&R, E-015	electrostatic rods
Bil\&Mai, p 240	electrostatic charges
Disc 16-21	electrostatic rods
Sut, E-18	separating charge
Sut, E-16	charge the student
PIRA 1000	triboelectric series
TPT 28(9),612	triboelectric series, halos
Sut, E-17	triboelectric series
D\&R, E-010	triboelectric series
Sprott, 4.3	triboelectric series
Sut, E-24	identifying charges
AJP 35(6),535	electrification by rubbing
AJP 29(12),857	discharges in gases
PIRA 500	electrophorus
UMN, 5A10.20	electrophorus
F\&A, Ea-19	electrophorus
Hil, E-1b	electrophorus, etc
D\&R, E-140	electrophorus
Sprott, 4.3	electrophorus
Disc 17-03	electrophorus
Mei, 29-1.12	electrophorus, etc.
Sut, E-10	electrophorus
TPT 2(1),32	electrophorus, etc
AJP 28(8),724	cylindrical electrophorous
AJP 30(1),69	electrophorus - neon wand
PIRA 1000	electret
Sut, E-12	electret
PIRA 1000	equal and opposite charges
Mei, 29-1.14	equal and opposite charge

5A00.00
5A10.00
5A10.01
5A10.10 PVC rod and felt, acrylic rod and cellophane, with the Braun electroscope as a charge indicator
5A10.10 PVC rod and felt, acrylic rod and cellophane, Braun electroscope, electrophorus.
5A10.10 Rods, fur, etc.
5A10.10 Common materials to use as rods and charging sheets.
5A10.10 An acrylic rod, hair, wool cloth and balloons are used to produce like and opposite charges.
5A10.10 Rub acrylic and rubber rods with wool and place on a pivot. Graphic overlays show charges.
5A10.11 Several common ways to separate charges. Scuff a rug and then discharge through a neon bulb.
5A10.12 Strike a student sitting on an insulated stool on the back with a fur. If the student holds a key, sparks may be drawn without discomfort.
5A10.15
5A10.15 A triboelectric series including modern polymers is listed to help in finding a way to charge yourself so you can levitate a thin metalized plastic hoop as a halo.
5A10.15 A list of items sorted according to polarity of charge produced by rubbing.
5A10.15 Two series. One of common materials, one of not-so-common materials.
5A10.15 A list of items sorted according to polarity of charge produced by rubbing.
5A10.16 Use an electroscope charged with known sign to test other charged objects.
5A10.17 Some electrification by rubbing results that are not easily explained by the close contact theory.
5A10.19 Rub various tubes with plastic foil to see spectacular discharges produced by the static electricity.
5A10.20
5A10.20 Use a metal plate on a handle to transfer charge from a large charged surface.
5A10.20 Obtain charge by induction from an electrophorus.
5A10.20 An electrophorus is pictured along with a conducting sphere, an ellipsoidal conductor, a hollow cylinder, and a dissectible condenser.
5A10.20 An aluminum disk is used to transfer charge from a charged phonograph record.
5A10.20 A static electric charge on a large insulator surface can repeatedly induce a charge in a conducting plate.
5A10.20 Repeat charging a metal plate many times. Animation sequence shows movement of charges.
5A10.21 Describes using Lucite or polystyrene as the electrophorus sole and a cylindrical electrophorus with a built in neon lamp. Diagram. ALSO - newer rod and fur material, a shielding demo.
5A10.21 Directions for making an electrophorus from sealing wax. Use a neon discharge tube to show a flash by holding one end on the electrophorus and then touching the other end
5A10.22 Four demos: one illustrating the action of an electrophorus, another showing the reaction of a charged balloon to a paddle charged positive, negative, or neutral, and more.
5A10.23 A copper tube on a handle fits over a 1" polystyrene cylinder mounted vertically. Some discussion about how electricity is transferred on rubbing that contradicts standard approaches.
5A10.24 A neon wand flashes as polystyrene/metal electrophorus is opened and closed.
5A10.30
5A10.30 Directions for making an electret. Used the same as an electrophorus except it is permanently charged. References.
5A10.35
5A10.35 Two electroscopes are charged equal and opposite, then the charge is transferred from one to the other. If tape is pulled off an electroscope plate, charge will result and the tape will also charge a second electroscope with the opposite charge. Picture.

Demonstratio	Bibliography		$y 2015$ Electricity and Magnetism
Bil\&Mai, p 243	equal and opposite charges - tape	5A10.35	Take a 10 cm long piece of tape and rub it against the surface of a table. Peal if off and hold it next to an electroscope to determine its relative charge. Repeat the demonstration with other tape-surface combinations.
Sut, E-14	equality of charges	5A10.36	Rub a rubber rod against a similar rod covered with wool in a Faraday ice pail. The electroscope shows no charge unless either of the rods is removed. Or, rub them together outside the pail and insert them separately and together.
AJP, 75 (9), 861	equality of charge - charge conservation	5A10.36	A quantitative demonstration of charge conservation intended for lecture room audiences that addresses some pedagogical difficulties.
PIRA 1000	electrostatic rod and cloth	5A10.37	
Disc 16-22	electrostatic rod and cloth	5A10.37	Rub a rod with a cloth, place on a pivot, show attraction between rod and cloth.
PIRA 1000	mercury-glass charging wand	5A10.40	
AJP 42(5),424	shake mercury in a bottle	5A10.40	Put some mercury in a plastic bottle with a conducting rod sticking through a stopper. Shake the mercury and invert to charge the rod for a positive charge, invert a second time for negative.
Sut, E-21	mercury-glass charging wand	5A10.40	A glass tube containing some mercury is covered with tin foil on one end. Either positive or negative charge may be produced.
Sut, E-20	mercury tube	5A10.43	Directions for making a mercury tube that emits light when shaken. Optionally neon is introduced to produce more light.
PIRA 1000	cyrogenic pyroelectricity	5A10.50	
TPT 28(7),482	cyrogenic pyroelectricity	5A10.50	The polarization of some pyroelectric crystals increases dramatically at low temperatures.
PIRA 1000	heating and cooling tourmaline	5A10.55	
Sut, E-189	heating and cooling tourmaline	5A10.55	Heat a long thin crystal of tourmaline over a flame and when it cools opposite charges develop on the ends large enough to deflect an electroscope.
Sut, E-190	cooling and heating tourmaline	5A10.55	A long thin crystal of tourmaline that has been immersed in liquid air will form opposite charges on the ends upon warming.
Sut, E-22	charge by freezing sulfur	5A10.56	Allow molten sulfur to solidify on a glass rod, check with an electroscope.
Sut, E-19	stretched rubber band	5A10.76	A stretched rubber band becomes charged positively. Any amount of charge can be removed by sliding along the band.
AJP 52(1),86	electrostatics in a hot box	5A10.90	Perform electrostatics demonstrations in a heated box to decrease the relative humidity.
	Coulomb's Law	5A20.00	
PIRA 200	rods and pivot	5A20.10	With one charged rod on a pivot, use another of the same or opposite charge to show attraction or repulsion.
UMN, 5A20.10	rods and pivot	5A20.10	With one charged rod on a pivot, use another of the same or opposite charge to show attraction or repulsion.
Sut, E-1	rods and pivot	5A20.10	Show attraction or repulsion with rods on a pivot or hung by a thread.
PIRA 200 - Old	pith balls	5A20.20	Suspend two small pith balls and show either attraction or repulsion.
UMN, 5A20.20	Coulomb's law with pith balls	5A20.20	
AJP 46(11),1131	Coulomb's law with pith balls	5A20.20	Charge two pith balls with an electrostatic generator, project on the wall and measure, discharge one ball, and remeasure the separation. Accuracy is typically 2%.
F\&A, Ea-5	pith balls	5A20.20	Suspend two small pith balls from a common support.
Sut, E-7	pith balls	5A20.20	Charge pith balls.
Ehrlich 2, p. 146	Coulomb's law with pith balls	5A20.20	Test the inverse square distance dependence of the electrostatic force using a pair of pith balls as the point charges.
Mei, 29-1.20	Coulomb's law on the overhead	5A20.21	Demonstrate Coulomb's law on the overhead with two ping-pong balls.
Mei, 29-1.4	pith balls on overhead	5A20.21	Suspend two pith balls coated with Aquadag in a clear framework on the overhead projector.
TPT 28(9),607	hollow aluminum foil balls	5A20.22	Hollow aluminum foil balls are charged with a Van de Graaff generator.
Mei, 29-1.8	hollow aluminum balls	5A20.22	Wrap aluminum foil around a marble or ping-pong ball and then remove the ball to make a replacement for a light pith ball.
Sut, E-2	pith balls \& variations	5A20.22	Metal painted ping pong balls, gas filled balloons, pith balls are used as charge indicators.
D\&R, E-040	pith ball variations	5A20.22	Coat ping pong balls with aluminum paint and hang on monofilament fishing line.
Bil\&Mai, p 240	pith ball variations	5A20.22	8 inch balloons are hung on 1 meter threads and used as pith balls.
Mei, 29-1.21	repelling balls	5A20.23	A small charged pith ball is repelled from a large charged sphere.
Sut, E-56	electric potential	5A20.23	Bring a charged pith ball close to a like charged conductor and note the repulsive force.
PIRA 1000	ping pong ball electroscope	5A20.25	
AJP 35(7),iii	ping pong balls	5A20.25	Paint a ping pong ball with silver printer circuit paint.

Demonstration Bibliography

F\&A, Ea-6	ping pong pith balls
Mei, 29-1.2	ping-pong ball electroscope ping-pong ball electroscope
Mei, 29-1.3	electrostatic ping-pong deflection
Disc 16-23	
AJP 30(12),926	ping pong ball electroscope
AJP 31(9),xi	image charge
TPT 1(5),225	counterweighted balls
Mei, 29-1.11	counterweighted balls beer can pith balls PIRA 1000
UMN, 5A20.28	beer can pith balls
PIRA 1000	mylar balloon electroscope AJP 31(2),135
balloon electroscope	
TPT 28(2),103	balloons on Van de Graaff Mei, 29-1.9
Van de Graaff repulsion	
Bil\&Mai, p 240	mylar balloon electroscope

PIRA 200 soft drink can electroscope
PIRA 1000-Old soft drink can electroscope
TPT 28(9),620
AJP 40(12),1870
PIRA 500
F\&A, Ea-2
Sut, E-3
AJP 36(8),752
AJP 46(2),190
PIRA 1000
F\&A, Ea-4
Mei, 29-3.3

5A20.25 Two silver coated ping pong balls are suspended from separate supports.
5A20.25 Repulsion of two charged ping-pong balls hung from nylon cord.
5A20.25 Hang an electroscope made from aluminized ping-pong balls from aluminum welding rod. Picture.
5A20.25 Attraction and repulsion between charged conductive ping pong balls.
5A20.26 Details of an electroscope made with ping pong balls on the ends of hanging rods.
5A20.27 A large metalized styrofoam ball is mounted on a rod with a counterweight and air bearing at the midpoint. Bring a second ball and then a highly charged metal plate near.
5A20.27 Polystyrene spheres (3" dia.) are mounted on counterweighted Lucite rods.
5A20.27 Pith balls are replaced by balls pivoting on counterweighted rods.
5A20.28
5A20.28 Aluminum beer cans are used instead of pith balls to show repulsion of like charges.
5A20.30
5A20.30 Balloon electroscopes, helium filled or normal, can be painted with aluminum and charged with a Van de Graaff.
5A20.30 Tape mylar balloons on conducting strings to a Van de Graaff generator.
5A20.30 An aluminized balloon is hung from a rod attached to the Van de Graaff electrode to demonstrate repulsion of like charges.
5A20.30 An aluminized balloon is hung from the ceiling and used with acrylic rods and balloons to demonstrate like and opposite charges.
5A20.32
5A20.35 The PSSC soda straw balance is adapted to make a simple Coulomb's law balance.
5A20.40 Two squares of aluminum foil are suspended from wires across a glass rod.
5A20.40 A simple electroscope made from copper wire, aluminum foil, and drinking straws.
5A20.41 A 15" length of $11 / 2^{\prime \prime}$ mylar tape is suspended along a brass strip.
5A20.50 An optical lever and damper make this apparatus useful to demonstrate Coulomb's law. Diagram, Construction details in appendix, p. 1311.
5A22.00
5A22.10
5A22.10 A well balanced needle measures voltages to a few KV.
5A22.10 Build this Braun electroscope with a 2' vane. Picture, Diagram.
5A22.10 Show the Leybold Braun electroscope with some other electrostatics apparatus.
5A22.12 The Braun electrostatic voltmeter and Zeleny oscillating-leaf electroscope are described and pictured.
5A22.22 Four types of electroscopes are pictured.
5A22.24 A 30 cm piece of tape is hung over a wooden dowel in the shape of an upside down "V". The tape will develop a charge when pulled off the roll. Use a negatively charged PVC rod and a positively charged acrylic rod to determine the charge that is on the tape.
5A22.25
5A22.25
5A22.25 The tab of the soft drink can supports the electroscope leaves in this simple version.
5A22.26 Modify a leaf electroscope so it discriminates polarity of charge.
5A22.30
5A22.30 A gold leaf electroscope is projected with a point source.
5A22.30 Lantern and shadow projecting a gold leaf electroscope, make your own electroscope.
5A22.41 Circuit diagram for a vibrating reed electrometer. Ten demonstrations using the device are listed.
5A22.45 An insulated indicating wire is charged by corona and rises until it touches a ground, then the cycle repeats.
5A22.50
5A22.50 A rotating vane electrostatic voltmeter.
5A22.51 Measure voltage with a rotor and vane electrostatic voltmeter. Picture, Construction details in appendix, p. 1320 .

Sut, E-71
AJP 33(4),340
PIRA 1000
Hil, E-1d
Hil, E-1e
PIRA 1000
F\&A, Ed-5
AJP 43(11), 942
Mei, 29-1.7

AJP 28(7),679

Hil, E-1k

PIRA 500
UMN, 5A30.10

Sut, E-5

PIRA 1000
Disc 16-25

PIRA 200

Hil, E-1g
Disc 17-01

Sut, E-9
F\&A, Ea-16
PIRA 1000

UMN, 5A40.15
F\&A, Ea-11
Bil\&Mai, p 240

TPT 3(1),29

TPT 3(4),185

Sut, E-23

D\&R, E-135

Sut, E-8

PIRA 200
UMN, 5A40.20
F\&A, Ea-15
D\&R, E-085
Ehrlich 1, p. 149
Mei, 29-1.15
condensing electroscope
electrometer with concentric capacitors
electrometer
Pasco equipment
Pasco projection meter
electric field mill
electric field mill
simple field mill
electroscope on a diode tube
triode electroscope relay
negative charge detector
Conductors and Insulators
wire versus string
wire versus string
wire versus string
acrylic and aluminum bars conductors and insulators

Induced Charge
charging by induction
charging by induction
electrostatic induction
induced charge
methods of electrostatic induction
electroscope charging by induction 5A40.15
electroscope charging by induction 5A40.15 Use conductors on the top of two electroscopes that can be brought into contact to demonstrate charging by induction.
5A40.15 Large metal bars on two electroscopes are apart when charging by induction.
5A40.15 An aluminized balloon is hung from the ceiling and used with acrylic rods and balloons to demonstrate charging by induction.
Touch the plate of an electroscope while holding a charged rod nearby. Next month may contain answers to impertinent questions raised by high school students.
charging electroscope by induction 5A40.16
Answer to the question of an earlier Physics Teacher. Diagrams show how an electroscope is charged when touched while a charged rod is brought near.
charging electroscope by induction 5A40.16
charging electroscope by induction 5A40.16
electrostatic charging by induction 5A40.17
can attracted to charged rod charge propelled cylinder can attracted to charged rod can attracted to charged rod
can attracted to charged rod charged ball attracted to ground

5A22.60 Charges too small to be detected by an electroscope can be detected with the addition of a variable capacitor. Directions and a drawing.
5A22.65 Concentric capacitors are mounted on an electrometer with the outer grounded. Insert samples in the inner to measure charge.
5A22.70
5A22.70 A Pasco electrometer along with the whole kit of Pasco accessories.
5A22.71 A remote projection meter for the Pasco electrometer.
5A22.80
5A22.80 Contains short explanation of an instrument used to measure the electric field.
5A22.81 A circuit used in a simple field mill.
5A22.90 An aluminum foil electroscope attached to the plate of a rectifier diode tube is discharged when the power is turned on.
5A22.91 An antenna is hooked to a grid of a triode tube that controls a relay turning on a light bulb. Charged rods brought close to the antenna turn the light on or off.
5A22.95 The neon light goes out in a triode circuit when negative charge is brought close to a wire connected to the grid.

0
5A30.10
5A30.10
Connect two electroscopes together with wire or string and charge one electroscope.
5A30.10 Connect a wire or silk thread to an electroscope and show the difference in conductivity. ALSO - some on capacitance.
5A30.15
5A30.15 Aluminum and acrylic rods are mounted on a Braun electroscope. Bring a charged rod close to each rod.
5A40.00
5A40.10 Charging by induction using two balls on stands with an electroscope for a charge indicator.
5A40.10 Charging by induction using two balls on stands.
5A40.10 Use two metal spheres, a charged rod, and an electroscope. Animation shows charges.
5A40.12 Use electroscopes and proof planes to show charging by induction.
5A40.13 Various forms of conductors are separated in an electric field.

Charge an electroscope by touching while holding a charged rod near.

Charge an electroscope by induction. Show that the response is different than that of an electroscope charged by conduction.
Pith balls touching both ends of a conductor are charged when a charged rod is brought toward one end. Use another test charge to show the polarity at each end.
5A40.20 A hoop of light aluminum is attracted to a charged rod.
5A40.20
5A40.20 A hoop of light aluminum is attracted to a charged rod.
5A40.20 A metal soda can is attracted to a charged rod. Seamless aluminum cans work best.
5A40.20 An aluminum soda can rolls toward a charged object.
5A40.23 A metalized ball is attracted to a grounded aluminum sheet when a charge is applied to the ball.

Demonstration Bibliography

Sut, E-11	suspended electrophorus disc
AJP 44(6),606	blow soap bubbles at Van de Graaff
PIRA 1000	paper sticks on board
Sut, E-15	paper sticks on the board
Hil, E-5b	rub paper
Sut, E-6	familiarity breeds contempt
PIRA 500	2" $\times 4$ "
UMN, 5A40.30	2" $\times 4$
F\&A, Ea-17	conductivity of a "two by four"
D\&R, E-085	$2{ }^{\prime \prime} \times 4$
Bil\&Mai, p 245	2" $\times 4$ "
Disc 17-06	wooden needle
PIRA 500	metal rod attraction
Disc 17-02	metal rod attraction
F\&A, Ec-5	forces between electrodes
PIRA 500	deflection of a stream of water
UMN, 5A40.40	deflection of a stream of water
F\&A, Ea-12	deflection of a water stream
D\&R, E-090	deflection of a water stream
Sut, E-41	deflection of water stream
F\&A, Ea-13	Raleigh fountain
TPT, 37(4), 208	coalescence of raindrops in an electrostatic field
PIRA 1000	electrostatic generator principle
UMN, 5A40.60	electrostatic generator principle
AJP 37(2), 225	electrostatic generator principle
AJP 37(10),1067	electrostatic generator principle
PIRA 500	Kelvin water dropper
UMN, 5A40.70	Kelvin water dropper
AJP, 68(12), 1084	Kelvin water dropper
F\&A, Ea-14	Kelvin water dropper
Mei, 29-1.24	Kelvin water dropper
Mei, 29-1.23	Kelvin water dropper
Sut, E-25	Kelvin water dropper
Disc 17-05	Kelvin water dropper
AJP 41(2),196	Kelvin water dropper - ac
Mei, 29-1.22	almost Kelvin water dropper
Sut, E-26	Electrostatic Machines electrostatic generators
PIRA 200 - Old	Wimshurst machine
F\&A, Ea-22	Wimshurst machine
Sprott, 4.1	Wimshurst machine
Disc 17-04	induction generator
Hil, E-1i	Wimshurst machine
AJP 42(4),289	ac Wimshurst

5A40.23 Raise an electrophorus disc off the plate with a helical spring, touch the disc to remove induced charge, and show the spring lengthens.
5A40.24 Blow neutral soap bubbles at a Van de Graaff generator for intriguing induction effects. Try double bubbles.
5A40.25
5A40.25 Hold a piece of paper on a slate blackboard and rub it with fur.
5A40.25 Rub paper with cat fur while holding it on the board.
5A40.26 Cork filings are first attracted to a charged rod by induced charge, then repelled as they become charged by conduction.
5A40.30
5A40.30 Induced charge is used to move a 2×4 balanced on a watch glass.
5 A40.30 Rotate a 2×4 by bringing a charged rod close.
5A40.30 Induced charge is used to move a 2×4 balanced on a watch glass
5A40.30 A charged balloon is used to move a 2×4 balanced on a watch glass.
5A40.30 The "needle" is a six foot 2×4.
5A40.35
5A40.3
Place a metal rod on a pivot and show attraction to both positive and negative charged rods.
5A40.36 A ball on a flexible rod is attracted to an electrostatic generator by the induced charge.
5A40.40
5A40.40 A charged rod deflects a stream of water.
5A40.40 A charged rod is held near a stream water flowing from a nozzle.
5A40.40 A charged rod is held near a fine stream of water flowing from a faucet.
5A40.42 At different ranges the water stream 1) the jet is smooth from nozzle to sink, 2) is attracted to the rod, 3) breaks up into small drops.

5A40.43 A charged rod held near a stream of water directed upward breaks it into drops.
5A40.44 Holding a charged rod near a fine spray of water causes an enlargement of the drop sizes.
5A40.60
5A40.60 Same as AJP 37(10),1067.
5A40.60 Manipulate two metal cans and move a metal ball back and forth to show how charging by induction and charge transfers build up charge.
Two cans and two balls and cross your hands.
5A40.70
5A40.70
5A40.70 Optimizing the Kelvin water dropper by using a conducting rod on the axis of the charged ring. A simple experiment that gives reliable measurements.

5A40.70 Sparks are produced by water falling through two rings connected by an "x" arrangement to opposite receivers.
5A40.70 A simple Kelvin water dropper made with shower heads enclosed in cans. Diagram.
5A40.70 Explanation of and directions for building a Kelvin water dropper. Picture, construction details in appendix, p. 1311.
5A40.70 A diagram and some construction details are given for the Kelvin water dropper. A "dry water dropper" using steel balls is mentioned.
5A40.70 A Kelvin water dropper discharges a small neon lamp. Animation sequence shows principles of operation.
5A40.72 The Kelvin water dropper is extended to multiphase, multifrequency operation by considering N streams and N cans. A five can version is shown.

5A40.73 Water drops through a paraffin coated funnel into a brass cup. The funnel and cup are connected to a electroscope.
5A50.00
5A50.05 General discussion of electrostatic machines.
5A50.10 Crank a Wimshurst generator.
5A50.10 An explanation of how the Wimshurst charges by induction.
5A50.10 A wimshurst electrostatic generator producing high voltages at moderate currents is used to show principles of electrostatics.
5A50.10 Shows Wimshurst machine. Animation sequence shows principles of operation.
5A50.11 Picture of a small Wimshurst machine.
5A50.12 The Wimshurst design is extended to produce three phase ac at 18 kV and 2 Hz .

Demonstration Bibliography	
PIRA 1000	Toepler-Holtz machine
Hil, E-1j	Toepler-Holtz machine
AJP 51(5),472	two-inductor electrostatic generator
TPT 3(5),227	fur and record generator
PIRA 500	dirod electrostatic machine
Mei, 29-1.25	dirod electrostatic machine
D\&R, E-180	dirod electrostatic machine
PIRA 200	Van de Graaff generator
AJP 35(11),1082	Van de Graaff
Sut, E-27	electrostatic generating machines
D\&R, E-160	Van de Graaff generator
Sprott, 4.2	Van de Graaff generator
Bil\&Mai, p 246	Van de Graaff generator
PIRA 1000	Van de Graaff principles
AJP 43(12),1108	Van de Graaff theory
TPT 28(5),281	electrostatic generator
F\&A, Ec-1	electrostatic generator
Disc 17-07	Van de Graaff generator
AJP 30(5),333	Van de Graaff vs. Simon
AJP 32(5),xiii	improvements to toy Van de Graaff
Mei, 29-1.26	improvements on the toy Van de Graaf
PIRA LOCAL	Fun Fly Stick
PIRA 1000	Franklin's electrostatic machines
AJP 39(10),1139	Franklin's electrostatic motors
F\&A, Eb-5	electrostatic motor
Mei, 29-1.27	electrostatic motor
Sut, E-117	electrostatic motor
AJP 45(2),218AJP 39(7),776	elecrostatic motor
	atmospheric electric field motor
	POTENTIAL Electric Field
PIRA 200	hair on end
UMN, 5B10.10	hair on end
Sut, E-46	hair on end
Sprott, 4.2	hair on end
Bil\&Mai, p 246	hair on end
F\&A, Ec-4	pithball plate and flying balls
PIRA 500	Van de Graaff streamers
UMN, 5B10.15	Van de Graaff streamers
F\&A, Ec-3	Van de Graaff streamers
Disc 17-08 AJP 42(2),166	Van de Graaff with streamers recoiling tentacles

5A50.15
5A50.15 A large antique Holtz machine used to generate high voltages for old X-ray machines. Will produce a 10 spark.
5A50.16 A Wimshurst type generator simplified with only one disk for pedagogical purposes. The references for this article are found in AJP 51(9),861.
5A50.17 A series of pictures illustrate construction of a simple electrostatic generator built using a hand drill, LP record, and fur.
5A50.20
5A50.20 A rotating electrostatic machine made with a disk and rods. Picture, Diagrams, Construction details in appendix, p. 1312.
5A50.20 Discussion on the use of the "Dirod" machine
5A50.30 Show sparks from a Van de Graaff generator to a nearby grounded ball.
5A50.30 Design of a good size Van de Graaff.
5A50.30 Directions for building a Van de Graaff generator. Reference.
5A50.30 Belts from common materials and their maintenance.
5A50.30 A Van de Graaff generator is used for a variety of electrostatics demonstrations.
5A50.30 Show sparks from a Van de Graaff generator to a nearby grounded wand.
5A50.31
5A50.31 A note on the theory of the Van de Graaff.
5A50.31 A very practical article covering theory, maintenance, and belt fabrication.
5A50.31 An explanation of the Van de Graaff generator.
5A50.31 Shows a Van de Graaff with paper streamers, then a long animated sequence on the principles of operation.
5A50.32 Theories of Van de Graaff and Simon (AJP 22,318 (1954)) are compared and experiments yield results in accordance with the Simon theory.
5A50.34 Double the length of the spark with two modifications.
5A50.34 Two improvements to the toy Van de Graaff generator.
5A50.35 A toy that is really a small battery operated Van de Graaff generator.
5A50.50
5A50.50
5A50.51 A polyethylene bottle spins as a Wimshurst is connected to brushes alongside the bottle.
5A50.52 A motor operated by electrostatic charges drawn from an electrostatic generator. Picture.
5A50.52 Use a large static machine to drive a smaller one as a motor.
5A50.53 An electrostatic motor with a vane type rotor.
5A50.55 Report on the construction of an electret type and corona type motor for operation from the Earth's electric field.
5B00.00
5B10.00
5B10.10 While standing on an insulated stool, charge yourself up with a Van de Graaff generator.
5B10.10 While standing on an insulated stool, charge yourself up with a Van de Graaff generator.
5B10.10 Stand on an insulated stool and hold on to a terminal of a static machine. Disconnect the condensers.
5B10.10 An individual standing on an insulating stand puts a hand on a Van de Graaff making their hair stand on end.
5B10.10 While standing on an insulated stool, charge yourself up with a Van de Graaff generator.
5B10.13 Place a plate with pith ball hanging on strings on an electrostatic generator. Also place a cup filled with styrofoam balls on an electrostatic generator.

5B10.15
5B10.15 Attach ribbon streamers to the top of a Van de Graaff generator.
5B10.15 A small stand with thin paper strips is placed on an electrostatic generator.
5B10.15 Show Van de Graaff with paper streamers, then hair on end.
5B10.16 Place the electrostatic plume made out of nylon rope near the other terminal of the Wimshurst machine.

5B10.21 Melt rosin in a metal ladle and attach to a static machine. When the machine is cranked and the rosin slowly poured out, jets of rosin follow the electric field.
5B10.22 Clip the can to ground and a metal object to be painted to the Van de Graaff generator. Point out that the paint goes around to the back too, and it is thickest on the edges.
5B10.23 Fill an unevacuated bell jar with MgO smoke and they will form three dimensional chain-like agglomerates between electrodes.
5B10.23 Throw a triangle of aluminum foil into the field of a Van der Graaff and it comes to equilibrium mid-air. Give it a half-twist, and it will orbit in a horizontal circle below the sphere.
5B10.24 A charged ball on a dry ice puck is launched toward a Van de Graaff generator. The motion is recorded with strobe photography.
5B10.25 Confetti (puffed wheat, styrofoam peanuts) flies off the ball of an electrostatic generator.
5B10.25
5B10.25
Confetti flies off the ball of an electrostatic generator.
5B10.25 Puffed rice or a stack of aluminum plates on a Van de Graaff will fly off when charged.
5B10.25 Confetti (puffed rice) flies off the ball of an electrostatic generator. Place a stack of inverted pie plates on the ball of the generator and watch them fly off one at a time.
5B10.26
5B10.26 A bunch of hanging nylon strings are charged by stroking with cellophane causing repulsion.
5B10.26 Charge a mop of insulating strings.
5B10.26 Fray the end of a nylon clothesline and charge with an electrostatic machine to show repulsion.
5B10.26 Use the piezoelectric pistol to discharge the electrified strings.
5B10.30
5B10.30 A ball bounces between charged metal chimes.
5B10.30 A small metal ball hangs on a thread between two bells attached to an electrostatic machine.
5B10.30 Franklin's Bells are used to demonstrate and measure charge transport in the laboratory.
5B10.31 Aluminum powder bounces between two horizontal plates 1 cm apart attached to a static machine. Metalized pith balls bounce between an electrode at the top of a bell jar and the plate.
5B10.32 Toss a small foil near the charged sphere (see AJP 32(1),xiv-5B10.33) and then bring a grounded ball close to show the chime effect.
5B10.33 A fluffy cotton ball travels back and forth between an electrostatic generator and a lighted cigar.
5B10.35
5B10.35 Bounce a conducting ball hanging between two plates charged with a Wimshurst.
5B10.35 Suspend a metal hemisphere, bell, or ball between two parallel plates that are connected to an electrostatic generator.
5B10.35 Insert a metalized ping-pong ball between two highly charged metal plates.
5B10.35 Conductive ping pong balls bounce between horizontal plates charged with a Wimshurst.
5B10.40
5B10.40
5B10.40 "Fur" in mineral oil aligns along field lines from charged electrodes.
5B10.40 Fine black fiber clippings in castor oil are used to show electric field between electrodes.
5B10.40 Charged electrodes are placed in a tank of mineral oil containing velveteen and the pattern is projected on the overhead.
5B10.40 Bits of material suspended in oil align with an applied electric field. Several pole arrangements are shown.
5B10.40 "Velveteen's" or grass seed in oil will align with the field between electrodes.
5B10.40 Show electric field lines between two electrodes using a high voltage power supply and grass seed.

Demonstration	Bibliography
Disc 17-10	electric field
Mei, 29-2.2	repelled air bubbles
Sut, E-44	epsom salt on plate
AJP 39(3),350	ice filament growth
TPT 31(4), 218	electrorheological liquids
Sut, E-45	mapping force with "electric doublet
Mei, 29-3.1	plotting equipotential lines
AJP 30(1),71	finger on the electrophorus
Sut, E-52	extent of electric field
AJP 31(2), xii	mapping field potential, voltage
Sut, E-57	mapping potential field
AJP 41(12),1314	liquid crystal mapping
AJP 42(12),1075	liquid crystal mapping
Mei, 29-2.3	double brass plate measurement
F\&A, Ec-7	electric field indicator
AJP 30(1),19	electric fields of currents
AJP 38(6),720	electric fields of currents
Mei, 29-2.4	water drop model of charged particle
ref.	other surfaces
PIRA 1000	rubber sheet field model
AJP 28(7),644	rubber sheet model for fields
Sut, E-58	model of field potential
Mei, 29-5.1	stretched membrane field model Gauss' Law
PIRA 200	Faraday's ice pail
Sut, E-28	Faraday's ice pail
Disc 17-15	Faraday ice pail
AJP 35(3),227	big Faraday ice pail
Hil, E-1h	Faraday ice pail
PIRA 1000	Faraday's ice pail on electroscope
UMN, 5B20.15	Faraday's ice pail on electroscope

July 2015
Electricity and Magnetism
5B10.40 A pan on the overhead projector contains particles in a liquid that align with the electric field.
5B10.41 A stream of air bubbles in an oil bath are repelled in the region of an inhomogeneous field.
5B10.42 Sprinkle Epson salt on a glass plate with two aluminum electrodes. Tap to align the crystals.
5B10.43 An ice filament pattern shows the electrical field configuration. Place a PZT transducer on a block of dry ice.
5B10.45 A liquid whose viscosity is affected by electric fields. In this case a mixture of corn starch in vegetable oil. Let this run out of the bottom of a funnel. Bring a charged rod close to the bottom of the funnel and the flow stops.

5B10.50 Two pith balls charged oppositely and hanging from a rod are used to map out the field in the region of charged conductors.
5B10.51 A method for plotting equipotential lines from electrodes in a pan on water.
5B10.52 Charge an electrophorus, then trace a circle on it with your finger and probe the resulting field with a pith ball on a long thread.
5B10.53 Hold an electroscope several feet away from a static machine and observe the electroscope leaves rise and fall as sparking occurs.
5B10.54 A wire held in the flame of a candle and attached to a grounded electroscope is held near a Van de Graaff generator. Mount two candles on an insulator and attach the second to the case of the electroscope to measure voltage.

5B10.54 A small alcohol lamp attached to an electrostatic voltmeter can be used to map potential fields.
5B10.55 An electrode configuration is painted onto a conducting paper with temperature sensitive encapsulated liquid crystals. Joule heating causes color changes.
5B10.55 An alternate method (to AJP 41(12),1314) of preparing liquid crystal displays of electric fields.
5B10.57 The field around a large sphere is measured by separating two brass plates and measuring the charges with a ballistic galvanometer.
5B10.58 A point on the end of a 500 Mohm resistor connects to a neon bulb in parallel with a small capacitor.
5B10.60 Current carrying conductors are made of transparent conducting ink on glass plates. Sprinkle on grass seeds to demonstrate the electric lines of force inside and outside the conducting elements.
5B10.61 Draw a circuit on glass or mylar with a soft lead scoring pencil. Dust the glass with small fibers while the current is flowing.
5B10.62 A water drop model demonstrates the motion of a stream of charged particles in an electric field.
5B10.70 see 8C20.20,1L20.10
5B10.70
5B10.70 Roll balls over a 6'x4' frame with a stretched rubber surface, distorting it with dowels to represent charges.
5B10.70 A sheet of rubber is pushed up and down with dowels to represent positive and negative charges.
5B10.71 A rubber sheet stretched over a large quilting hoop models electric fields.
5B20.00
5B20.10 With a proof plane and electroscope, show charge is on the outside of a hollow conductor.
5B20.10 With a proof plane and electroscope, show charge is on the outside of a hollow conductor. ALSO, "Faraday's bag".
5B20.10 Charge a bucket with a Wimshurst and try to transfer charge from the inside and outside of the bucket to an electroscope. Show charge is only on the outside of a hollow conductor.
5B20.11 A 55 gal. drum Faraday ice pail and other stuff.
5B20.12 A Faraday ice pail made of two concentric wire mesh cylinders connected to a Braun electroscope.
5B20.15
5B20.15

A charged metal pail sits on an electroscope. Use a proof plane to try to transfers charge from the inside or outside of the pail to another electroscope. Only the outside of the pail will show that it has charge.

Demonstratio	Bibliography		uly 2015 Electricity and Magnetism
D\&R, E-115	Faraday's ice pail on electroscope	5B20.15	A charged metal pail sits on a Braun electroscope. A proof plane is used to show that charge is only removed from the outside of the pail.
F\&A, Ea-7	Faraday's ice pail on electroscope	5B20.15	A charged copper beaker placed on an electroscope is touched on the outside or inside with a proof plane.
Sut, E-13	Faraday's ice pail - induction	5B20.17	A charged ball is moved in and out of the Faraday ice pail and the electroscope deflection noted, then touched to the inside of the pail.
F\&A, Ea-21	butterfly net experiment	5B20.20	Turn a charged butterfly net inside out and the charge is still on the outside.
PIRA 500	electroscope in a cage	5B20.30	
F\&A, Ea-20	shielded electroscope	5B20.30	A charged rod is brought close to a gold leaf electroscope in a wire mesh cage.
Sut, E-31	electroscope in a cage	5B20.30	Enclose an electroscope in a cage of heavy wire screening.
Sprott, 4.7	Faraday cage	5B20.30	Illustrates the fact that a closed conducting surface is at an equipotential and that one cannot detect an electric field within the cage.
Disc 17-14	Faraday cage	5B20.30	Bring a charged rod near a Braun electroscope, then cover the electroscope with a wire mesh cage and repeat.
PIRA 1000	electroscope in a cage/Wimshurst	5B20.31	
UMN, 5B20.31	electroscope in a cage on Wimshurst	5B20.31	A screen cage shields an electroscope from a charged rod.
Sut, E-30	pith balls in a cage	5B20.33	Metal coated pith balls are suspended inside and outside of a metal screen cylinder attached to a electrostatic machine.
PIRA 200	radio in a cage	5B20.35	Place a wire mesh cage over a radio.
UMN, 5B20.35	radio in a cage	5B20.35	
Bil\&Mai, p 248	radio in a cage - cell phone	5B20.35	Tune a radio to a station with a clear signal. Place the radio inside a pouch made from aluminum window screen and the radio stops receiving signals. Next place a cell phone in the pouch and give it a call. Then wrap the phone in aluminum foil.
Ehrlich 1, p. 174	radio in a cage	5B20.35	A wire mesh will eliminate reception of a radio just as effectively as opaque aluminum foil demonstrating that radio waves must have a wavelength longer than that of visible light waves.
Disc 21-17	radio in Faraday cage	5B20.35	Place a wire mesh cage over a radio.
Mei, 29-1.29	VTVM in a cage	5B20.36	Mount the inputs to a VTVM in a Faraday cage. Show charge transfer from plastic strips.
	Electrostatic Potential	5B30.00	
PIRA 500	surface charge density - balls	5B30.10	
UMN, 5B30.10	surface charge density - balls	5B30.10	Separate several pairs of balls of different diameters attached to a Wimshurst by the same distance.
F\&A, Ea-23	surface charge density	5B30.10	Sets of balls of different radius but the same separation are simultaneously attached to a Wimshurst.
Bil\&Mai, p 252	surface charge density - balloons	5B30.10	Inflate a balloon but do not tie if off. Use wool cloth to charge the balloon and then observe how puffed rice jumps to the balloon when brought near. Release the air in the balloon and observe how the rice jumps to the balloon with greater fury.
PIRA 1000	charged ovoid	5B30.20	
UMN, 5B30.20	charged ovoid	5B30.20	Proof planes of the same area take charge off the round or pointed end of a zeppelin shape.
F\&A, Ea-18	surface charge density	5B30.20	Proof planes of the same area take charge from the flat or pointed end of a charged zeppelin shaped conductor.
Sut, E-29	charged Zeppelin	5B30.20	Use a proof plane and electroscope to compare charge densities at different points on a egg shaped conductor.
Bil\&Mai, p 250	charged Zeppelin	5B30.20	A Zeppelin shaped Styrofoam ball has pieces of tinsel attached. Charge with a Van de Graaff generator and observe the strands of tinsel at the point position themselves closer to each other than the strands at the rounded end.
Sut, E-60	charge distribution on spheres	5B30.22	Read this one. Determine the charge distribution as spheres are brought close to a charged sphere.
Mei, 29-2.8	surface charge density with cans	5B30.24	Transfer charge from the edge of a can on a source to the inside of a second can.
Sut, E-61	charge on spheres	5B30.25	Spheres of different diameters are brought to the same potential and inserted into a Faraday ice pail to show different charges.
Sut, E-49	spark gaps	5B30.26	Connect an electrostatic voltmeter to the terminals of a static machine and observe the voltage while varying the spark gap.
Mei, 29-3.2	measure the second derivative of potential	5B30.27	A two point probe measures potential, and a five point probe measures the second derivative of potential. Diagram.

Demonstratio	Bibliography		uly 2015 Electricity and Magnetism
Sut, E-59	potential during discharge	5B30.28	An electroscope is connected to the ball of the electric chime to observe the decrease on potential as the ringing diminishes.
TPT, 37(1), 10	"crying" electrostatics	5B30.29	Construct an electrophorous apparatus with a foam board, aluminum pie plate, Styrofoam cup, neon bulb, amplifier and speakers to produce electrophorus "crying" sound.
PIRA 200 - Old	lightning rod	5B30.30	Insert a sphere and point of the same height between horizontal metal plates charged by a Wimshurst.
UMN, 5B30.30	lightning rod	5B30.30	Insert a sphere and point of the same height between horizontal metal plates charged by a Wimshurst.
F\&A, Eb-7	lightning rod	5B30.30	Sparks jumping from a plane to a sphere will stop when a point is inserted.
Disc 17-11	lightning rod	5B30.30	Sparks discharge from a large ball suspended over a model house with a small ball in the chimney until a point is raised above the small ball.
PIRA 200	point and ball with Van de Graaff	5B30.35	
PIRA 500 - Old	point and ball with Van de Graaff	5B30.35	
UMN, 5B30.35	point and ball with Van de Graaf	5B30.35	Hold a ball close to a Van de Graaff generator and then bring a point close.
Disc 17-09	Van de Graaff and wand	5B30.35	With paper streamers as a field indicator, bring a ball and point close to the Van de Graaff.
PIRA 500	electric wind	5B30.40	
UMN, 5B30.40	electric wind	5B30.40	A point attached to a Wimshurst blows a candle flame.
F\&A, Eb-3	electric wind	5B30.40	A candle between pointed and plane electrodes attached to a Wimshurst will blow the flame.
Sut, E-37	electric wind	5B30.40	A candle flame held near a point connected to the positive side of an electrostatic generator will repel the flame as if there is a breeze of ions.
D\&R, E-185	electric wind	5B30.40	A point and plate or two parallel plates will blow a candle flame when connected to an electrostatic generator.
Bil\&Mai, p 246	electric wind	5B30.40	A candle flame held near the dome of a Van de Graaff generator will be deflected away from the dome.
Disc 17-13	point and candle	5B30.40	Attach a sharp point to one terminal of a Toepler-Holtz generator and point it at a candle flame.
AJP 30(5),366	history of the electric wind	5B30.41	Covers discovery and early investigations, the dust controversy, and recent studies and applications.
Sut, A-6	corona discharge in air	5B30.42	The corona discharge from a point towards a candle flame and a pinwheel spinning.
F\&A, Eb-6	cooling with electric wind	5B30.43	The electric wind from needle points cools a glowing nichrome wire heater.
Sut, E-36	corona current	5B30.44	A $1 / 2$ Meg resistor in series with a galvanometer measure the current in a corona discharge from an electrostatic machine.
F\&A, Eb-2	corona discharge	5B30.45	A charged aluminum rod with a needle at one end will charge a nearby sphere with like charge if the needle is pointed to the sphere and with opposite charge if the needle is pointed away.
Sut, E-32	escape of charge from a point	5B30.45	When charge is induced on an electrode with a point, the induced charge will escape and the charge on the induced electrode will be the same as on the inducing electrode.
Sut, E-35	charge by pointing	5B30.45	Charge a conductor by proximity to a point attached to a static machine.
Mei, 29-1.10	discharging from a point	5B30.46	Three balloons filled with illuminating gas are suspended from a point and charged. The blunt end of a brass rod has little effect but the pointed end discharges the balloons when pointed at them.
Sut, E-33	darning needle discharge	5B30.46	The blunt end of a darning needle is placed on the charged conductor of an electroscope and the electroscope is discharged.
Sut, E-34	collapse the field	5B30.47	The point of a grounded needle is brought near a charged tinsel tassel and the tassel collapses.
F\&A, Eb-13	electrical discharge from water drop	5B30.48	A drop of water placed on the positive electrode of a Wimshurst will form a corona but spit droplets when placed on the negative electrode.
AJP 32(9),713	point cathode effect	5B30.49	A point is biased to 1200 V in a Wilson cloud chamber.
PIRA 500	pinwheel	5B30.50	
UMN, 5B30.50	pinwheel	5B30.50	A pinwheel spins when attached to a Wimshurst generator.
F\&A, Eb-10	electrostatic pinwheel	5B30.50	A conducting pinwheel spins when connected to a Wimshurst.
Sut, E-38	pinwheel	5B30.50	A pinwheel rotates when connected to either terminal of a static machine.
D\&R, E-185	pinwheel - ionic drive	5B30.50	A pinwheel connected to an electrostatic generator shows the principle of an ionic drive.
Disc 17-12	pinwheel	5B30.50	Place a pinwheel on a Van de Graaff generator.
F\&A, Eb-11	electrostatic solar system	5B30.51	A double pinwheel rotates when connected to a Wimshurst.
PIRA 500	Cottrell precipitator	5B30.60	
UMN, 5B30.60	Cottrell precipitator	5B30.60	

Demonstration	Bibliography
F\&A, Eb-12	electrostatic precipitator
Mei, 30-4.5	Cottrell precipitator
Sut, A-5	smoke precipitation
D\&R, E-190	smoke precipitator
Disc 17-16	smoke precipitation
Sut, E-53	energy in the discharge
Sut, E-55	gas explosion by spark
Sprott, 2.23	gas explosion by spark
Sut, E-48	the human discharge chain
$\begin{aligned} & \text { AJP, 65(6), 553- } \\ & 555 \end{aligned}$	the human discharge chain
Sut, E-47	discharge through body
	CAPACITANCE Capacitors
PIRA 500	sample capacitors
UMN, 5C10.10	sample capacitors
Hil, E-4a	capacitors
Bil\&Mai, p 249	simple capacitor - Leyden jars
Bil\&Mai, p 260	sample capacitors
Bil\&Mai, p 254	capacitor model
Sut, E-62	simple spherical capacitor
PIRA 200	parallel plate capacitor
UMN, 5C10.20	parallel plate capacitor
F\&A, Ed-1	field and voltage
Sut, E-69	parallel plate capacitor
Hil, E-4d AJP 70(5), 502	capacitance and voltage parallel plate capacitor
Bil\&Mai, p 258	parallel plate capacitor
Disc 18-19	parallel plate capacitor
PIRA 1000	battery and separable capacitor
Disc 18-22	battery and separable capacitor
PIRA 1000	dependence of capacitance on area
Sut, E-73	dependence of capacitance on area
Sut, E-74	dependence of area on capacitance
Sut, E-75	dependence of capacitance on area

5B30.60 Clear smoke in a chimney with points that are connected to a Wimshurst.
5B30.60 Clear a smoke filled tube by a discharge from wire points.
5B30.60 Demonstrate smoke particles precipitating in a strong electric field in an artificial chimney.
5B30.60 A large plastic soft drink bottle filled with smoke. Precipitation occurs when the electrodes are connected to an electrostatic generator.
5B30.60 Attach a Wimshurst to terminals at each end of a glass tube filled with smoke.
5B30.90 Light some alcohol or a Bunsen burner with the spark from a static machine.
5B30.91 A spark plug hooked to a static machine is used to explode a mixture of hydrogen and oxygen in a closed container.
5B30.91 A small amount of ethanol placed in a plastic bottle with nails in the sidewall is made to explode and blow a cork a considerable distance. A Tesla coil provides the spark.
5B30.95 All students hold hands with one student holding one knob of a static machine and the other holding a metal rod near the other knob.
5B30.95 A discussion of the "kids holding hands and discharging a Van de Graaff generator" demonstration. Taken from the point of view of each person being an element in a R/C circuit.
5B30.96 A student standing on the floor touches other students standing on insulated stands holding on to the two knobs of a static machine.
5C00.00
5C10.00
5C10.10
5C10.10 Show many capacitor examples.
5C10.10 Several types of capacitors are shown.
5C10.10 Charge a Leyden jar with a PVC rod. Use an electroscope to show that charge is stored, and can be added to the Leyden jar.
5C10.10 Gather several types of capacitors. Dissect one capacitor and pull out the rolled capacitor plates and carefully unroll to show the capacitor is composed of 4 layers.
5C10.12 A model capacitor is constructed using plastic cups, a balloon, and Tygon tubing.
5C10.15 Charge a 8" sphere several times with an electrophorus, then repeat with a insulated conductor near, then repeat with a grounded conductor near. The number of sparks required to reach a potential varies.
5C10.20 Change the spacing of a charged parallel plate capacitor while it is attached to an electroscope.
5C10.20 Change the spacing of a charged parallel plate capacitor while attached to an electroscope.
5C10.20 Vary the spacing of a charged parallel plate capacitor while the voltage is measured with an electroscope.
5C10.20 Charge a simple capacitor of two parallel movable plates and the divergence of electroscope leaves varies as the plates are moved.
5C10.20 Separate charged plates while an electroscope is attached.
5C10.20 Determination of the electric field ouside a parallel plate capacitor and comparison to the magnetic field outside a long solenoid.
5C10.20 A parallel plate capacitor is constructed from wooden dowels and pie plates. Use a homemade capacitance meter to explore the capacitance / distance relationship.
5C10.20 Charge parallel plates with a rod, watch the electroscope as the distance between the plates is changed. Animation sequence.
5C10.21
5C10.21 Charge a parallel plate capacitor to 300 V , then move the plates apart until an electroscope deflects.
5C10.30

5C10.30 As a chain is lifted out of a hollow charged conductor on an electroscope, the deflection decreases. When let back down, it increases again.

5C10.31 A long rectangular sheet of charged tin foil is rolled up while attached to an electroscope.
5C10.32 Hook up a charged radio tuning condenser to an electroscope.

July 2015
5C10.33 Vary the length of an aluminum painted Chinese lantern to show the change of capacitance.
5C10.35
5C10.35 Charge a large rotary capacitor with a rod and watch an electroscope as the overlap is changed.
5C10.40 Vary a potentiometer so that a constant current is maintained while charging a capacitor from a 90 volt battery. Measure the time.
5C10.50 A charged ball moving between the plates of a parallel plate capacitor will induce a current in the external circuit.
5 C 20.00
5C20.10 Insert and remove a dielectric from a charged parallel plate capacitor while it is attached to an electroscope.
5C20.10 Insert and remove a dielectric from a charged parallel plate capacitor while attached to an electroscope.
5C20.10 The voltage is measured with an electroscope as dielectrics are inserted between parallel plates of a charged capacitor.
5C20.10 Various dielectrics are inserted between two charged metal plates to show the difference in deflection on an electroscope.
5C20.10 Charge a parallel plate capacitor with a rod, insert dielectrics and observe the electroscope. Animation.
5C20.11 Six demonstrations with a parallel plate capacitor and dielectrics.
5C20.11 Using a parallel plate capacitor to determine the dielectric constant of different materials.
5C20.12 The bottom of a parallel plate capacitor is mounted on an electroscope, charge the top plate, touch the bottom, lift off the top.
5C20.13 An automated device to charge a capacitor and separate the plates. Reference: AJP 22(3),146.
5C20.14 Bring a charged rod close to an electroscope and interpose various materials between the two.
5C20.17
5C20.17 Helium is blown into a charged parallel plate capacitor.
5C20.20
5C20.20 A counterbalanced acrylic dielectric is pulled down between parallel plates when they are charged with a small Wimshurst generator.
5C20.21 A microscope slide is pulled into the gap between parallel plates of a capacitor.
5C20.22 A elongated paraffin ellipsoid in a parallel plate capacitor turns when the field is turned on, kerosene climbs between parallel plates.
5C20.25
5C20.25 A brass plate fitted with an insulating handle can lift a lithographic stone plate when 300 V dc is applied.
5C20.26 The top plate of a parallel plate capacitor is mounted on a triple beam balance so the force can be measured with and without dielectrics as the voltage is varied. Pictures, Construction details in appendix, p. 1322.
5C20.27 The permittivity of free space is measured using a Mettler balance to determine the force between the plates of a parallel plate capacitor.
5C20.30 A capacitor is charged, disassembled, passed around, assembled, and discharged with a spark.
5C20.30 Same as Ed-3.
5C20.30 A capacitor is charged, disassembled, passed around, assembled, and discharged with a spark.
5C20.30 The inner and outer conductors of a charged Leyden jar are removed and brought into contact, then reassembled and discharged in the usual manner.

5C20.30 Charge a capacitor and show the discharge, then charge again and take it apart. Handle it, try to discharge it, reassemble it, and discharge it.
5C20.35
5C20.35
5C20.35 The two coatings of a Leyden jar can be grounded successively without much loss of charge. When the two coatings are connected, there is a discharge.
5C20.40 Place a small parallel plate capacitor in series with a phonograph pickup. Insert different dielectrics. High dielectrics have low impedance.
5C20.50 Blow on a glass plate that has been polarized with the image of a coin.

PIRA 1000
Sut, E-67

Sut, E-68 series and parallel condensers

PIRA 1000
Sut, E-66
PIRA 1000
AJP 42(3),246

AJP 32(12),916
AJP 33(6),512
AJP 33(6),512
Mei, 33-4.1

PIRA 1000
F\&A, Eb-8
D\&R, E-210
Disc 18-18
Disc 18-26

PIRA 1000
PIRA 200

UMN, 5C30.20
Disc 18-23

AJP 37(5),566
ref.
PIRA 200
UMN, 5C30.30
PIRA 1000
F\&A, Ed-8
AJP 72(5), 662
AJP 68(7), 670

AJP 70(4), 415

Mei, 29-4.10
Bil\&Mai, p 263
Mei, 29-4.11
F\&A, Ed-7
Sut, E-262
Ehrlich 2, p. 149
Lichtenberg figures
displacement current
displacement current
displacement current
displacement current comment
displacement current comment comment
displacement current
Energy Stored in a Capacitor
Leyden jar and Wimshurst
Leyden jar
Leyden jar
Leyden jars on Toepler-Holtz
grounded Leyden jar
exploding capacitor
short a capacitor
short a capacitor
exploding capacitor
capacitor and calorimeter
light the bulb light a bulb with a capacitor light the bulb
lifting weight with a capacitor energy stored in a capacitor energy stored in a capacitor energy stored in a capacitor
energy stored in a capacitor
lifting a weight with a capacitor lift a weight with a capacitor
discharge a capacitor thru wattmeter charge on a capacitor capacitors and ballistic galvanometer
series/parallel Leyden jars
addition of potentials
series/parallel capacitors

July 2015
Electricity and Magnetism
5C20.51 A pattern is traced on a dielectric from the two polarities of a charged Leyden jar. Litharge and flowers of sulfur sprinkled on adhere to the areas traced out with the different polarities.
5C20.60
5C20.60 A toroidal coil is either placed around a wire leading to a large pair of capacitor plates to demonstrate Ampere's law or inserted between the capacitor plates to demonstrate displacement current.
5C20.61 Measure the displacement current in a barium titanate capacitor.
5C20.61 The experiment in AJP 32,916,(1964) has nothing to do with displacement current in Maxwell's sense.
5C20.61 More semantics.
5C20.61 Measure the displacement current in a barium titanate capacitor. Diagrams, Derivation.
5C30.00
5C30.10
5C30.10 Sparks from a Wimshurst are no longer but are much more intense when a Leyden jar is connected.
5C30.10 Sparks from an electrostatic generator are intensified when a Leyden jar or aluminum plates are connected in parallel with spark gap.
5C30.10 The Toepler-Holtz produces weak sparks without the Leyden jars and strong less frequent sparks with the jars connected.
5C30.15 Charge a capacitor with a Wimshurst, ground each side separately, spark to show the charge is still there.
5C30.20
5C30.20 Charge a large electrolytic (5000 mfd) capacitor to 120 V and short with a screwdriver.
5C30.20 A 5600 microF capacitor is charged to 120 V and shorted.
5C30.20 Four 1000 microF capacitors are charged to 400 V storing about 320 Joules. Short them with a metal bar.
5C30.25 Discharge a capacitor into a resistor in an aluminum block with an embedded thermistor to measure the temperature increase.
5C30.30 see 5F30.10
5C30.30 Charge a large electroylitic capacitor and connect it to a lamp.
5C30.30 A 5600 microF capacitor is charged to 120 V and discharged through a light bulb.
5C30.35
5C30.35 A capacitor is discharged through a small motor lifting a weight.
5C30.35 Further study and results for the two-capacitor problem.
5C30.35 A discussion of the puzzle of the missing energy in a capacitor that is charged from a power supply, battery, or another capacitor, with neither resistance or inductance in the circuit.
5C30.35 The puzzle of the missing energy in a capacitor that is charged from another capacitor. In a zero-resistance circuit it can be shown that radiation accounts for the energy loss.
5C30.35 A DC motor, powered by a charged capacitor, lifts a weight.
5C30.35 A Genecon generator, powered by a charged capacitor, lifts a 100 g mass.
5C30.36 A high impedance low rpm dc motor (wattmeter) is used to discharge a capacitor.
5C30.37 A capacitor is discharged through a ballistic galvanometer.
5C30.37 Charge different capacitors to different voltages and discharge through a ballistic galvanometer.
5C30.38 A small hand crank generator charges a 1 farad capacitor. When you stop charging the capacitor the handle of the generator will continue to turn in the same direction when you release the crank until the capacitor is discharged.

5C30.40
5C30.40 Charge Leyden jars in parallel and discharge, charge in parallel again and connect in series before discharging. Compare length and intensity of the sparks.
5C30.41 Charge four Leyden jars in parallel and discharge singly and with three together. Next charge three in series with one in parallel and discharge singly and three in series. Compare length and intensity of sparks.

5C30.42 Charge a single capacitor, two series capacitors, and two parallel capacitors to the same potential and discharge through a ballistic galvanometer.

5C30.50
5C30.50
Intentionally low voltage models of the Marx generator and the CockroftWalton circuit allow the waveforms to be shown as a demonstration without high voltage probes or danger.
5C30.50 Switching capacitors from parallel to series to generate high voltages.
5C30.50 Switching of charged capacitors from parallel to series.
5C30.60
5C30.60 Charge and discharge a Leyden jar, Wait a few seconds and discharge it again.
5C30.61 After discharging a Leyden jar, light a neon tube up to 100 times. Also - show the polarity of charge on the dielectric with a triode.
5D00.00
5D10.00
5D10.10
5D10.10
5D10.11 Rebuild an old resistance box with larger numbers.
5D10.15 Resistors whose resistance per unit length varies along the resistor. Commonly found on batteries as the "test strip" for checking the battery's voltage and in some computer applications.
5D10.15 Tapered resistors made with a \# 1 pencil.
5D10.15 More about the liquid crystal tester that comes on batteries or with battery packs.
5D10.15 Temperature profile of the Duracell test strip.
5D10.15 Does a test strip measure voltage or current?
5D10.20
5D10.20 Connect one meter lengths of various wires in series and measure the voltage across each.
5D10.20 Measure voltages on a commercial board with seven one meter lengths of various wires in series so all carry the same current.
5D10.20 Place 6V across a set of wires of different lengths and/or diameters and measure the currents.
5D10.22 Measure the current and potential across a small arc as the series resistance is varied.
5D10.30 Measure your own resistance by holding the probes of a multimeter.
5D10.40
5D10.40
5D10.40 Balls are rolled down an incline with pegs.
5D10.40 A ball is rolled down a board with randomly spaced nails.
5D10.40 Small balls are rolled down a board with nails scattered in an almost random pattern. Diagram.
5D10.40 Ball bearings are rolled down an inclined bed of nail to simulate current flow in a wire.
5D10.40 Two soda bottles are connected together one inside the other to model EMF and resistance.
5D10.40 Ball bearings are simultaneously rolled down two ramps, one with pegs and one without.

5D10.50
5D10.60 Voltage is increase slowly through a resistor until it bursts into flames to illustrate the relationship between voltage, current, and resistance in simple DC circuits.
5D20.00
5D20.10 A lamp glows brighter when a series resistance coil is immersed in liquid nitrogen.
5D20.10 A lamp glows brighter when a series resistance coil is immersed in liquid air.
5D20.10 A copper coil in series with a battery and lamp is immersed in liquid nitrogen.

5D20.11 A "C" battery, 3 V flashlight bulb, and a copper wire coil make a hand held temp coefficient of resistivity apparatus.
5D20.12 The resistor plunged into liquid nitrogen is part of a voltage controlled oscillator that drives a speaker.

Sut, E-164	cooling
AJP 48(11),940	superconducting wire
PIRA 1000	flame and liquid nitrogen
UMN, 5D20.15	flame and liquid nitrogen
F\&A, Eg-4	temperature dependence of resistance
$\begin{aligned} & \text { D\&R, E-280, H- } \\ & 010 \end{aligned}$	temperature dependence of resistance
Sut, E-166	temperature coefficent of resistance
PIRA 200 - Old	iron wire in flame
Mei, 30-1.4	iron wire in a flame
Sut, E-165	putting the light out by heat
Disc 17-20	heated wire
Sut, E-163	flame
Ehrlich 1, p. 167	Eddy current tube
PIRA 500	carbon and tungsten light bulbs
F\&A, Eg-5	positive and negative resistance coefficients
Disc 18-09	carbon and tungsten lamps
UMN, 5D20.31	resistance of light bulbs
$\begin{aligned} & \text { D\&R, E-450, E- } \\ & 470 \end{aligned}$	resistance of light bulbs
AJP 53(6),546	temperature of incandescent lamps
Sut, E-169	resistance thermometer
PIRA 1000	thermistors
Mei, 40-1.4	thermistors
Disc 16-17	thermistor
PIRA 200	conduction in glass at high temperature
PIRA 500 - Old	conduction in glass at high temperature
UMN, 5D20.60	conduction in glass
AJP 58(1),90	conduction in glass at high temperature
Mei, 30-1.3	conduction in glass at high temperature
Sut, E-168	conduction in glass
Sut, E-167	negative temperature coefficient resistance
PIRA 500	Conduction in Solutions conduction through electrolytes
F\&A, Ef-1	conductivity of solutions
Sut, E-193	conduction through electrolytes
Sut, E-192	conduction through electrolytes
D\&R, E-260	conductivity of solutions
Disc 18-13	conductivity of solutions
PIRA 1000	salt water string

5D20.12 Current is increased in a long U of iron wire until it glows, then half is inserted into a beaker of water.
5D20.14 Cool a coil of NbTi wire in a series circuit with a 12 volt car battery and lamp first in liquid nitrogen, then helium. The voltage across the coil is monitored and the lamp brightness is observed.
5D20.15
5D20.15 Resistance coils are heated and cooled with a test light bulb in series.
5D20.15 Two sets of bulbs in series with coils, one put in liquid nitrogen and the other in a flame.
5D20.15 A filament from a 200 W bulb with glass envelope removed is connected to a digital meter. Heat it with a heat lamp.
5D20.16 Two coils of different material but the same resistance are placed in a Wheatstone bridge and either is heated or cooled.
5D20.20 Heat a coil of iron wire in series with a battery and a lamp and the lamp will dim.
5D20.20 A coil of forty turns of iron wire is heated in a flame while connected in series with a light bulb circuit.
5D20.20 A coil of iron wire wound on a porcelain core in series with a lamp and battery is heated until the lamp goes out.
5D20.20 Heat a coil of iron wire in series with a battery and a lamp.
5D20.21 A coil of nickel wire connected to a battery and galvanometer is heated in a flame.
5D20.25 A disc magnet is dropped through tubes of copper or aluminum. Drop a nonmagnetic disc through for comparison.
5D20.30
5D20.30 Measure current and resistance at various voltages for a carbon and tungsten bulb
5D20.30 Plot current vs. voltage for carbon and tungsten lamps.
5D20.31 The V/I curves for tungsten and carbon filament lamps are shown on a dual trace storage oscilloscope.
5D20.31 The V/I curves for a variety of bulbs are plotted to show resistance is inversely proportional to power.
5D20.32 Two silicon solar cells with interference filters measure the light at different wavelengths for use in determining the temperature of the filament.

5D20.40 Attach No. 14 copper leads to a platinum coil and use with a Wheatstone bridge.
5D20.50
5D20.50 Use a good kit of commercial thermistors and display the differential negative resistance of a fast thermistor on a transistor curve tracer.
5D20.50 Show the resistance of a thermistor placed in an ice water bath.
5D20.60

5D20.60
5D20.60
5D20.60 A simple version of glass conduction using binder clips and window glass.
5D20.60 Heat a capillary tube in a Bunsen burner until it is hot enough to sustain a current that maintains a bright glow.
5D20.60 Heat a glass tube with a flame until it is hot enough to sustain conduction. Vary the current by changing the ballast resistance.
5D20.61 enough to sustain electrical heating.
5D30.00
5D30.10
5D30.10
5D30.10
Dip two metal electrodes in series with a light bulb in various solutions. Immerse two copper plates in series with a lamp in distilled water, add barium hydroxide, then sulfuric acid.
5D30.10 Put two copper plates in series with a lamp in distilled water and salt or acid is added.
5D30.10 A pigtail socket connected to an AC line cord testing the conductivity of salt water, sugar water, tap water, and distilled water.
5D30.10 Two electrodes in series with a 110 V lamp are dipped into distilled water, salt water, a sugar solution, a vinegar solution, and tap water.

Demonstrati	Bibliography
AJP 32(9),713	electrolytic conduction on chamio
PIRA 1000	migration of ions
F\&A, Ef-3	speed of ions
Mei, 30-3.2	migration of ions
Sut, E-206	ionic speed
Sut, E-207	ionic speed
Sut, E-208	ionic speed
PIRA 1000	pickle glow
Disc 18-15	pickle frying
	Conduction in Gases
PIRA 200	Jacob's ladder
UMN, 5D40.10	Jacob's ladder
F\&A, Em-3	Jacob's ladder
Sut, A-7	Jacob's ladder
Hil, E-11b	climbing spark
Sprott, 4.5	Jacob's ladder
Disc 25-08	Jacob's ladder
PIRA 1000	conduction of gaseous ions
Sut, E-50	conduction of gaseous ions
D\&R, S-130	conduction of gaseous ions from flame
F\&A, Eb-4	discharge with flame
Mei, 30-4.6	blowing ions by a charged plate
Mei, 30-4.7	discharge by ions in a tube
Sut, A-4	recombination of ions
Sut, E-51	separating ions from flame
PIRA 1000	ionization by radioactivity
Sut, A-112	ionization by radioactivity
D\&R, S-130	ionization by radioactivity
Sut, A-1	ionization in air
Sut, A-2	saturation
Sut, A-3	ion mobilities
Mei, 30-4.3	conduction in air by ions
Mei, 30-4.8	Cerberus smoke detector
PIRA 1000	conduction from a hot wire
Mei, 30-4.4	conduction from hot wire
ref.	thermionic effect
Sut, A-77	thermionic effect in air
PIRA 1000	thermionic emisson
Disc 25-03	thermionic emission
PIRA 1000	neon bulb
Disc 18-08	neon bulb resistivity

AJP 32(9), 713

PIRA 1000
F\&A, Ef-3
Mei, 30-3.2
Sut

Sut, E-208
PIRA 1000

PIRA 200
UMN, 5D40.10
F\&A, Em-3
Sut, A-7
Hil, E-11b
Sprott, 4.5

Disc 25-08
PIRA 1000
Sut, E-50

F\&A, Eb-4
Mei, 30-4.6
Mei, 30-4.7
Sut, A-4

PIRA 1000
Sen, 12
D\&R, S-130

Sut, A-2

5D30.20
5D30.20 Show KMnO4 migrating with current towards the positive electrode in KNO3.
5D30.20 Permanganate ions migrate in an electric field.
5D30.21 Dip two platinum electrodes into an ammoniated copper sulfate solution containing some phenophthalein.
5D30.22 Blue moves from the anode of in a potassium chloride gel when 120 volts is applied.
5D30.23 Measuring the speed of hydrogen and hydroxyl ions in a potassium chloride gel.
5D30.30
5D30.30 Apply high voltage across a pickle and it lights at one end.
5D40.00
5D40.10 A arc rises between rabbit ear electrodes attached to a high voltage transformer.
5D40.10 A arc rises between rabbit ear electrodes attached to a high voltage transformer.
5D40.10 A spark forms across "rabbit ears" on a 15 KV transformer.
5D40.10 Jacob's ladder and other spark demonstrations. Diagram.
5D40.10 A 15 KV transformer is hooked to rabbit ears.
5D40.10 A rising electrical discharge occurs with a high voltage AC power supply connected to a pair of conducting bars close together at the bottom and farther apart at the top.
5D40.10 Apply high voltage AC to rabbit ears.
5D40.20
5D40.20 A nearby flame will discharge an electroscope.
5D40.20 A nearby flame will discharge an electroscope.
5D40.21 A flame connected to a high voltage source is inserted between charged parallel plates.
5D40.25 Compressed air blows ions from a flame through the area between charged parallel plates onto a mesh hooked to an electrometer.
5D40.25 Electrodes at the bottom, middle, and top of a tube are connected to an electrometer while a Bunsen flame is burned at the bottom.
5D40.27 Ions from a flame are drawn past a series of charged plates attached to a Zeleny electroscope.
5D40.28 Shadow project a flame between two charged metal plates to observe separation of gas into two streams of oppositely charged ions.
5D40.30
5D40.30 Discharge an electroscope with a radioactive source.
5D40.30 Discharge an electroscope with a weak radioactive source.
5D40.32 Various sources of ionization are brought near parallel wires attached to a 100 V battery and a Zeleny electroscope.
5D40.33 The voltage across a plate close to a wire mesh is increased with a radioactive source nearby and the current is observed with a Zeleny electroscope.
5D40.34 A second mesh is inserted into the apparatus of A-2 and an alternating potential increased until the electroscope oscillates.
5D40.35 An electrometer measures the current between parallel plates as a flame is burned between them or an alpha source is held nearby.
5D40.36 Combustion products decrease conductivity in a chamber with an alpha source.
5D40.40
5D40.40 A constantan wire held near a charged electroscope causes discharge when it is heated red hot.
5D40.41 see 5M20.15
5D40.41 A Zeleny electroscope indicates electron emission from a wire when it is heated.
5D40.42
5D40.42 A commercial tube. Apply 90 V forward and reverse and monitor the current.
5D40.50
5D40.50 A neon lamp lights at about 80 V and shuts off at about 60 V .

Demonstration Bibliography	
PIRA 1000	x-ray ionization ionization by X-rays Sut, A-103 Disc 24-20 Sut, A-104 A-ray ionization ionization by X-rays electrohydrodynamics
	 CURRENT
Electrolysis	

5D40.80
5D40.80 Discharge an electroscope with X-rays.
5D40.80 Discharge an electroscope with X-rays.
5D40.81 An X-ray beam is passed through a simple ionization chamber.
5D40.99 read this again - practical examples are ink jet printing and electrically driven convection.
5E00.00

5E20.00
5E20.10
5E20.10
DC passed through slightly acidic water evolves hydrogen and oxygen at the electrodes.
5E20.10 The volume of gas from electrolysis is measured.
5E20.10 The Hoffman apparatus for electrolysis of water.
5E20.10 The standard commercial electrolysis apparatus.
5E20.11 Place Tygon tubing over the wire coming out the bottom to protect it from the acid.
5E20.12 A projection electrolytic cell for showing the evolution of gas.
5E20.15 Make soap bubbles with the gases from electrolysis of water and blow them to droplets.
5E20.21 Phenophthalein is used as an indicator in electrolysis demonstrations.
5E20.22 Use purple cabbage as an indicator for electrolysis demonstrations.
5E20.22 Use purple cabbage as an indicator to show electrolysis of sodium sulfate.
5E20.25 Sodium is plated on the inside of a lamp inserted into molten sodium nitrate.
5E20.28 Measure the current while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday.
5E20.29 A method of determining the mass of a sodium atom by electrolysis.
5E20.30 Electrodes of aluminum and lead in a saturated solution of sodium bicarbonate form a rectifier.
5E20.40 Put ferrous iron in hot water with nitric acid and heat.
5E20.60 Melt an iron rod cathode in a strong sodium sulfite solution.
5E30.00
5E30.10
5E30.10
Polished iron is plated in a copper sulfate solution.
5E30.20
5E30.20
5E30.20
5E30.24 Current is passed between lead electrodes in a saturated solution of lead acetate causing fern like clusters to form on the cathode.
5E30.26 Current is passed between electrodes of copper and tin in a acid solution of stannic chloride. With copper as the cathode, tin crystallizes as long needles.

5E30.28
Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.
5E30.40
5E30.40
Silver is plated in a silver nitrate bath onto a platinum cup.
5E30.40 A silver coulombmeter shows a 1 g change in anode weight when 1 amp is passed for 1000 sec .
5E40.00
5E40.01 The distinction between EMF and electrostatic potential difference is discussed.
5E40.05 The history, concepts, and persistent misconceptions on the contact potentials between metals.
5E40.07 Two soda bottles connected by aquarium tubing are used to model the highpotential and low-potential terminals of a battery.
5E40.10
5E40.10

5E40.10
Two stands each hold several strips of different metals which can be paired and dipped into a dilute acid bath.

Demonstratio	Bibliography		ly 2015 Electricity and Magnetism
AJP 76 (3), 218	battery effect - battery discharge model	5E40.10	A simple model that yields behavior similar to what is observed by a single discharging voltaic cell.
Disc 18-14	battery effect	5E40.10	Combinations of copper, lead, zinc, and iron are dipped into a dilute sulfuric acid solution.
Sut, E-72	contact potential difference	5E40.15	The contact potential difference between copper and zinc can be demonstrated using a condensing electroscope.
PIRA 1000	voltaic cell	5E40.20	
Sut, E-198	voltaic cell	5E40.20	A voltaic cell is made with copper and zinc electrodes in a sulfuric acid solution.
D\&R, E-360	human battery	5E40.20	A copper sheet electrode and an aluminum sheet electrode are connected to a voltmeter. Place a hand on each electrode and observe the voltage (you are the electrolyte).
Sut, E-119	voltaic cells	5E40.20	Short a few voltaic cells in series through a loop of iron or nichrome wire.
Ehrlich 1, p. 147	human battery	5E40.20	A copper sheet electrode and a zinc sheet electrode are connected to a voltmeter. Place a hand on each electrode and observe the voltage (you are the electrolyte).
AJP 77 (10), 889	voltaic cell - voltaic pile	5E40.20	Picture and description of a 19th century voltaic pile that has survived intact.
Sut, E-199	cardboard model voltaic cell circuit	5E40.21	A cardboard model illustrates potential difference and electromotive force in a voltaic cell circuit.
PIRA 200	lemon battery/voltaic cell	5E40.25	
PIRA 500 - Old	lemon battery/voltaic cell	5E40.25	
UMN, 5E40.25	lemon battery/voltaic cell	5E40.25	Stick copper and galvanized steel electrodes into a lemon and attach a voltmeter.
TPT 28(5),329	lemon screamer,lasagna cell	5E40.25	A little tutorial on electrochemistry for those using the lemon screamer and other interesting cells.
Mei, 30-3.5	lemon battery	5E40.25	Zinc and copper strips are hooked to a galvanometer and stuck into fruits and vegetables.
$\begin{aligned} & \text { D\&R, E-320, E- } \\ & 360 \end{aligned}$	lemon battery	5E40.25	Copper and galvanized iron electrodes in a lemon are connected to a digital meter.
Ehrlich 1, p. 146	lemon battery	5E40.25	A lemon with zinc and copper electrodes inserted will run a low voltage piezo buzzer.
Sut, E-200	voltaic cell polarization	5E40.26	Heat the copper cathode in a Bunsen burner flame to oxidize the surface.
F\&A, Ee-3	Crowsfoot or gravity cell	5E40.40	A zinc-zinc sulfate/copper-copper sulfate battery.
Sut, E-115	adding dry cells	5E40.50	Charge an electroscope with a number of 45 VB batteries in series.
Sut, E-116	dry cell terminals	5E40.51	Hook up several dry cells in series to a condensing electroscope, remove the capacitance and test polarity with charged rods.
PIRA 500	lead acid simple battery	5E40.60	
UMN, 5E40.60	lead acid simple battery	5E40.60	A simple lead acid battery with two electrodes is charged for a short time and discharged through a bell.
F\&A, Ee-4	storage battery	5E40.60	Two lead plates in a sulfuric acid solution are charged and then discharged through a doorbell.
Sut, E-204	storage cells	5E40.60	The elementary lead storage cell is charged and discharged on the lecture table.
Sut, E-120	simple battery	5E40.60	Charge two lead plates in 30% sulfuric acid and discharge through a flashlight bulb.
Sut, E-205	storage cells	5E40.61	Melt nails with a storage battery.
AJP 30(6),470	lead-salt cell	5E40.62	Instead of acid, use a saturated salt solution of sodium bicarbonate and magnesium sulfate.
TPT 46(9),544	aluminum-air battery	5E40.62	How to make a battery using aluminum and copper electrodes with salt water as the electrolyte.
PIRA 500	internal resistance of batteries	5E40.70	
UMN, 5E40.70	internal resistance of batteries	5E40.70	
PIRA 1000	weak and good battery	5E40.75	
Disc 18-03	internal resistance of batteries	5E40.75	Measure similar no load voltage on identical looking batteries and then apply a load to each and show the difference in voltage between a good and weak battery.
	Thermoelectricity	5E50.00	
PIRA 200	thermocouple	5E50.10	Two iron-copper junctions, one in ice and the other in a flame, are connected to a galvanometer.
UMN, 5E50.10	thermocouple	5E50.10	Attach a voltmeter to the iron wires of two copper-iron junctions while they are differentially heated.
F\&A, Et-1	thermocouple	5E50.10	Two iron-copper junctions, one in ice and the other in a flame, are connected to a galvanometer.
D\&R, H-014	thermocouple	5E50.10	Heat a junction of two dissimilar metal that are connected to a digital voltmeter. A collection of such junctions will make a thermopile.

Demonstratio	Bibliography		ly 2015 Electricity and Magnetism
Disc 16-20	thermocouple	5E50.10	Place a twisted wire thermocouple in a flame and observe the current on a lecture table galvanometer.
Hil, H-1a	thermocouples	5E50.11	Heating two metals causes a deflection on a galvanometer.
AJP 29(4),273	thermoelectric generator	5E50.12	Review of a commercial thermoelectric generator made from 150 constantan/nickel-molybdenum thermocouples in series.
Sut, E-179	Seebeck effect	5E50.15	The thermoelectric effect of copper-iron junctions.
Sut, E-181	Seebeck and Peltier effects	5E50.17	Send current through a copper-iron-copper circuit for several seconds and immediately disconnect and switch to a galvanometer.
Mei, 30-5.3	copper-iron junctions ring	5E50.18	Sixty copper-iron junctions in series are arrayed in a ring heated simultaneously with a Bunsen burner producing 90 mA .
Sut, E-183	thermoelectric compass	5E50.19	Bars of copper and iron are joined to form a case for a compass needle. The needle will indicate the direction of the current as one or the other junction is heated.
Hil, E-6a. 1	thermocouple coil magnet	5E50.19	Heat a thermocouple loop and the current produces a magnetic field that can be detected by a compass needle.
Sut, E-184	thermoelectric effect in a wire	5E50.20	Show that a piece of soft iron wire connected to a galvanometer has little thermoelectric effect until the wire is kinked.
Sut, E-185	Thompson effect	5E50.25	A flame moved along a long wire will "push ahead" current.
PIRA 500	thermoelectric magnet	5E50.30	
UMN, 5E50.30	thermoelectric magnet	5E50.30	Heat one side of a heavy copper loop closed by an unknown metal to generate thermoelectricity for an electromagnet.
F\&A, Et-3	thermoelectric magnet	5E50.30	A ring of copper shorted by iron forms a thermocouple that powers an electromagnet when one end is in water and the other is heated in a flame.
Sut, E-182	thermoelectric magnet	5E50.30	One end of a heavy copper bar bent into a loop and closed with a coppernickel alloy is heated, the other cooled. An electromagnet made with a soft iron shell can support 200 lbs . Picture.
Hil, $\mathrm{H}-1 \mathrm{~b}$	thermocouple magnet	5E50.30	A Bunsen burner heats one side of a thermocouple magnet supporting over 10 Kg .
D\&R, E-340, H- 374	thermoelectric magnet	5E50.30	Enough current to run an electromagnet is produced by heating one side of a thermoelectric junction.
Disc 16-18	thermoelectric magnet	5E50.30	Heat and cool opposite sides of a large thermocouple. Suspend a large weight from an electromagnet powered by the thermocouple current.
F\&A, Et-4	3M Aztec lamp	5E50.36	A thermocouple is built into a kerosene lamp.
PIRA 1000	Peltier effect	5E50.60	
F\&A, Et-2	thermoelectric cooler	5E50.60	A Peltier device is used to cool a drop of water.
D\&R, H-374	Peltier effect	5E50.60	A discussion of the Peltier effect.
Disc 16-19	thermoelectric heat pump	5E50.60	Mount aluminum blocks with digital thermometers on either side of a Peltier device. Run the current both ways.
Sut, E-180	Peltier effect	5E50.61	Directions for making an antimony-bismuth junction and an apparatus to show heating and cooling.
Mei, 30-5.1	Peltier effect	5E50.62	Directions for building a Peltier effect device.
Mei, 30-5.2	pyroelectric crystals	5E50.90	Demonstrate the temperature effect on the polarization of pyroelectric crystals. Picture.
Mei, 30-6.6	domains of electric polarization	5E50.93	Tiny BaTiO3 crystals are heated on a microscope slide until the domains disappear.
	Piezoelectricity	5E60.00	
Mei, 30-6.4	piezoelectric model	5E60.05	A ball and spring model of the piezoelectric effect.
PIRA 500	quartz crystal scraped	5E60.10	
Mei, 30-6.3	Rochelle salt demos	5E60.12	Ferroelectricity, hysteresis, Curie-point, and the direct piezoelectric effect are demonstrated with a Rochelle salt. Diagrams, Construction and Preparation details in appendix, p.1322.
Sut, E-186	piezoelectric effect - Rochelle salt	5E60.13	A Rochelle salt is hooked to a neon lamp or electrostatic voltmeter.
Mei, 30-6.8	piezoelectric sheets	5E60.15	Make sheets of polycrystalline Rochelle salt that show piezoelectric effects.
AJP 29(7),iv	PZT sources	5E60.16	Two sources for ceramic lead-zirconate-titnante (PZT), 1961.
PIRA 500	piezoelectric sparker	5E60.20	
Disc 16-26	piezoelectric sparker	5E60.20	Attach the commercial piezoelectric sparker to a Braun electroscope.
AJP 45(2),218	piezoelectric gas lighter modified	5E60.21	Mount a sphere on the end of a piezoelectric gas lighter.
PIRA 1000	piezoelectric gun	5E60.25	
UMN, 5E60.25	piezoelectric gun	5E60.25	A piezoelectric gun is used to discharge a set of charged nylon strings.
F\&A, Ea-9	piezoelectric pistol	5E60.25	One end of a piezoelectric crystal is attached to a needle point in the pistol.
PIRA 1000	stress vs. voltage	5E60.30	

5E60.30 Measure the voltage of a Seignette salt crystal under various stresses produced by a mass on a lever arm.
5E60.40
5E60.40 Excite a Seignette salt crystal with an audio voltage and couple it to a sounding board.
5E60.41 Connect an audio oscillator to a large Rochelle salt crystal and the sound can be distinctly heard.
5E60.42 Apply an audio oscillator to a Rochelle salt and amplify with a wood sounding board.
5E60.45 A HYK capacitor (containing BaTiO3) resonates mechanically at a number of frequencies in the audio range.
5E60.47 Four Rochelle salt crystals are mounted at the center of a long square cross section steel bar and driven by a circuit. Circuit diagrams.
5E60.60 A circuit for showing hysteresis in ferroelectric crystals on the oscilloscope.
5F00.00
5F10.00
5F10.05
Two demonstrations: first, an electroscope is used to probe the charge density along a large resistance attached to a 5 KV supply, and second, an example where current is flowing through a resistance with no change in potential.
5F10.10 Measure current and voltage in a simple circuit. Change the voltage or resistance.
5F10.10 An ammeter, voltmeter, rheostat, and battery pack are connected to demonstrate Ohm's law.
5F10.10 A battery, rheostat, and meters in a circuit.
5F10.10 Measure current and voltage in a simple circuit.
5F10.10 Measure current and voltage of a simple resistor circuit.
5F10.10 Place 2, 4, and 6 V across a resistor and measure the current, then graph.

5F10.12 A water analogy illustrates voltage drops across a dc circuit.
5F10.15
5F10.15 A water analog of Ohm's law.
5F10.15 Clip wires from the terminals of flashlight lamps at various points along a stretched wire carrying 2-5 amps.
5F10.20
5F10.20
Lecture galvanometers configured as a voltmeter and ammeter measure current and voltage on several samples of wire of the same length. A slide clip can be used to vary length.
5F10.20 Measure the voltage at six points on a long resistance wire.
5F10.25
5F10.25
A 3 m long wood bar is attached at one end to one terminal of a static machine. The other end can be grounded or insulated. Attach several electroscopes along the bar to show flow of charge and potential drop.
5F10.26 Two ends of a dry stick are attached to a static machine. Measure with an electrostatic voltmeter and microammeter.
5F15.00
5F15.10
5F15.10
5F15.10
Measure the voltage and current to a heating coil in a calorimeter.

5F15.10 Voltage, current to a heater and temperature rise in water are measured.
5F15.10 Determine the power delivered by temperature change in water and compare to that computed from voltage, current, and time.
5F15.10 Submerge an immersion heater in a Styrofoam cup of water. Measure the voltage, current, time, and temperature rise of the water.
5F15.11 Water is heated electrically as it flows through a tube.
5F15.12 The ends of a piece of wood sealed in a glass tube are attached to a static machine. The half watt dissipated heats the air and an attached manometer measures the volume change.
5F15.15 Measure the power consumed by an assortment of household appliances.
5F15.15 A circuit breaker in a power strip is used to measure the power consumed by an assortment of household appliances. A voltmeter and an amp meter are also used.
5F15.16 Large currents are passed through No. 18 nichrome wire and the volts and amps are measured.

Demonstration Bibliography	
AJP 77 (6), 516	heating with current
Sut, E-174	
heating wires in series	

5F15.16 Current, voltage, and resistance measurements on long lengths of conducting wire show a nonlinear component. The nonlinear behavior can be modeled using principles of heat transfer with a thermal reservoir.
5F15.17 Several lengths of different wires of the same length are soldered together in series and a piece of paper is hung from each by soft wax. As current is passed through the wire, the paper falls off at different times.

5F15.20
5F15.20
5F15.20
5F15.20
5F15.20
5F15.30
5F15.31
5F15.32

5F15.32

5F15.33
5F15.34
5F15.35
5F15.35
5F15.40
5F15.40

5F15.45
5F15.45

5F20.00
5F20.10
5F20.10
5F20.10
5F20.10

5F20.10

5F20.13
5F20.15
5F20.15
5F20.15
5F20.16
5F20.20
5F20.20
5F20.20

5F20.20
5F20.25
5F20.25
5F20.30
5F20.30

5F20.30
5F20.30

5F20.31

5F20.32
5F20.33
5F20.40
5F20.40
5F20.40

Hook nails to 110 V and place them on and then in a hot dog. Insert aluminum nails in a hot dog and cook with 110 volts. Apply 110 V through a hot dog and cook it.

With fuse wires of different diameters connected in parallel, which will burn out first?
Short a low voltage high current transformer with zinc coated iron wire.

A thin wire or strip of aluminum foil vaporizes when a large capacitor discharges through it.
Fuse wire is used with a miniature house circuit.
Fuse wire of different sizes are connected across a heavy copper buss.
A fuse wire will eventually fail when the load on the circuit is increased.
A fuse wire will eventually fail when the load on the circuit is increased.

Two resistance wires substituting for house wiring glow when they power a load of lamps and heaters.

Copper and nichrome wires in series show different amounts of heating due to current. A paper rider on the nichrome wire burns.

Measure the voltages around a three resistor and battery circuit. Same as Eo-2.
Measure the voltages around a three resistor and battery circuit. Glowing resistors (light bulbs) are used to visually compare voltages of series and parallel circuits.
Measure the voltages across three resistors and a battery in a series circuit.
A simple series circuit of a battery and two resistors.
Same as Eo-4.
An ammeter can be inserted into any branch of a circuit to show currents in and out of a node.
Measure the currents entering and leaving a node.

Same as Eo-7.
Measure the current from one battery, a second in another position, and the combination in a circuit.
Shows a standard superposition circuit.

Shows a standard reciprocity circuit.

A slide wire potentiometer is used with a battery and demonstration galvanometer.
A slide wire potentiometer with a standard cell.
A homemade slide wire potentiometer is used with a battery. A light bulb is used as the visual indicator of voltage.
Contrast the slide wire rheostat when used as a rheostat or potential divider.

Use a ten foot length of nichrome wire as a slide wire potentiometer.
A rheostat and six volt battery demonstrate a potential divider.
The slide wire Wheatstone bridge.
Two nichrome wires are stretched across the lecture bench and sliding clips connected to a galvanometer are used to find equal potential points.

Demonstration Bibliography

Sut, E-157	Wheatstone bridge - human galvanometer
Hil, E-3b	Wheatstone bridge
PIRA 1000	light bulb Wheatstone bridge
UMN, 5F20.45	lightbulb Wheatstone bridge
F\&A, Eh-2	light bulb Wheatstone bridge
Mei, 30-2.3	light bulb Wheatstone bridge
Sut, E-155	Wheatstone bridge
Disc 17-25	Wheatstone bridge
PIRA 200	series and parallel light bulbs
UMN, 5F20.50	series and parallel light bulbs
F\&A, Eh-1	series and parallel light bulbs
Sut, E-177	parallel and series light bulbs
Hil, E-3a. 1	series-parallel circuits
D\&R, E-430	series and parallel light bulbs
Bil\&Mai, p 273	series and parallel light bulbs
Bil\&Mai, p 276	series and parallel light bulbs
Ehrlich 1, p. 149	series and parallel light bulbs
Disc 17-24	series/parallel light bulbs
PIRA 1000	light bulb board - 12 V
UMN, 5F20.51	light bulb board - 12 V
PIRA 1000	series and parallel resistors
Disc 17-23	series/parallel resistors
Sut, E-175	wire combinations
Ehrlich 2, p. 147	wire combinations - 3-4-5 triangle
PIRA 1000	equivalent resistance
F\&A, Eo-5	equivalent series resistance
TPT 2(3),131	parallel resistance - integral value
F\&A, Eo-6	equivalent parallel resistance
Mei, 30-2.4	Thevenin's equivalent resistance
AJP 46(7),762	equivalent circuit flasher
AJP 32(12),967	large circuit boards
Hil, E-2b	general circuits board
Hil, E-3d	three-way switch
Hil, E-3e	one boat, river, six people
Mei, 30-2.5	equivalent resistance analog computer
PIRA 200	capacitor and light bulb
UMN, 5F30.10	capacitor and light bulb
F\&A, En-11	long RC time constant
Ehrlich 1, p. 150	capacitor and light bulb

5F20.41 Stretch a loop of clothesline previously soaked in salt solution in a parallelogram and hook the ends to a 110 V line. Touch two points of the same potential without shock.
5F20.42 A demonstration Wheatstone bridge with a built in meter and several plug in resistors.
5F20.45
5F20.45 A Wheatstone bridge configuration with lightbulbs for resistors.
5F20.45 Four light bulbs in a Wheatstone bridge arrangement with light bulb indicator.

5F20.45 A light bulb Wheatstone bridge using 110 ac.
5F20.45 Four 60 W lamps in a diamond bridge with a 10 W lamp as the indicator. An additional 6 V lamp can be switched in when the circuit is balanced.
5F20.45 Three 110 V lamps and a rheostat make up the diamond of a Wheatstone bridge and a small lamp serves as an indicator.
5F20.50 A light bulb board with switches allows configuration of several combinations of series and parallel lamps.
5F20.50
5F20.50 A light bulb board with switches allows configuration of several combinations

5F20.50 Three similar wattage lamps in series, three in parallel.
5F20.50 A series-parallel circuit with three bulbs and six switches can be connected 14 ways.
5F20.50 Series-parallel circuits with three light bulbs.
5F20.50 A light bulb board with switches allows configuration of several combinations.

5F20.50 Two 3-wire outlets are wired to allow configurations of several combinations of series and parallel light bulbs.
5F20.50 Three similar wattage light bulbs connected to a 6 volt lantern battery. Bulbs in series, parallel, or a combination of both can be shown.
5F20.50 Three 110 V lamps are wired in series and three are wired in parallel.
5F20.51
5F20.51 A board with 12 V bulbs and a car battery allow combinations of up to three series or three parallel loads.
5F20.55
5F20.55 Measure the current flowing through a wire resistor with 6 V applied and then series and parallel combinations.
5F20.56 A wire circuit is arranged so a segment of n length can have 1 or n wires in parallel. Drawing.
5F20.56 A 3-4-5 triangle made from nichrome wire is used to show series and parallel resistance combinations.
5F20.60
5F20.60 A series of resistors in a circuit are replaced by a single resistor.
5F20.61 A formula for obtaining integral values of resistors in parallel to obtain an integral equivalent resistance.
5F20.61 Parallel resistors are replaced by a single resistor in a circuit.
5F20.63 A Wheatstone bridge resistance circuit is used to reduce resistor combinations to an equivalent resistance.
5F20.64 A neon flasher circuit shows the combination rules for series and parallel combinations of resistance and capacitance by timing light flashes.
5F20.71 A modular circuit board made for 500 student auditoriums.
5F20.72 A circuit board laid out so meters can be plugged in and readings taken for demonstrations of series-parallel circuits and Kirchhoff's laws.
5F20.75 A large circuit board demonstrates a three way switch.
5F20.79 An electrical circuit for solving the problem of getting across the river.
5F20.95 Using the equivalent resistance of a circuit as an analog computer for finding the focal length of an optical problem.
5F30.00
5F30.10 A large electrolytic capacitor, a light bulb, and a 120 V dc supply in series show a long time constant.
5F30.10 A 5600 microF capacitor is charged and discharged through 7.5 and 40 W light bulbs.
5F30.10 A 5600 microF capacitor, a light bulb, and a 120 V dc supply in series show a long time constant where the bulb dims as the capacitor charges.
5F30.10 A one farad capacitor is charged with a 6 volt lantern battery. Discharge the capacitor through miniature light bulbs.

Demonstration	Bibliography		y 2015 Electricity and Magnetism
Mei, 29-4.2	light the bulb	5F30.11	Charge a capacitor with DC and discharge through a light bulb, try the same thing with AC.
Bil\&Mai, p 265	light the bulb	5F30.11	A capacitor is charged and discharged through a light bulb. Use a 9 volt battery.
F\&A, Ed-6	discharge a capacitor	5F30.12	Discharge a capacitor through a resistor. Read the voltage with a meter.
PIRA 1000	RC time constant on galvanometer	5F30.15	
Sut, E-259	RC time constant on galvanometer	5F30.15	A series RC circuit with a galvanometer. Diagram.
Ehrlich 1, p. 151	RC time constant on voltmeter	5F30.15	Discharge a capacitor through a voltmeter to measure the time constant and observe exponential time dependence.
AJP 41(5),745	RC voltage follower	5F30.16	Use a voltage follower to isolate the circuit from the display.
PIRA 500	RC time constant on scope	5F30.20	
UMN, 5F30.20	RC time constant on scope	5F30.20	A circuit with a slow time constant (.1-10 sec.) is charged and discharged and the current and voltage are displayed on a dual trace storage scope.
D\&R, E-405	RC time constant on scope	5F30.20	A square wave charges and discharges a capacitor and the charging time is observed on the oscilloscope.
Disc 18-28	RC charging curve	5F30.20	Show charging and discharging an RC circuit with a battery on an oscilloscope.
F\&A, En-10	RC time constant	5F30.21	Show the time constant from an RC circuit on an oscilloscope.
F\&A, Eo-12	RC time constant	5F30.21	A plug in circuit board for showing RC time constants on the oscilloscope.
F\&A, En-8	time constant of an capacitive circuit	5F30.22	The time constant of a RC circuit driven by the calibration signal is shown on an oscilloscope.
Mei, 30-2.2	finding R from time constant	5F30.28	A circuit to measure high resistances by using an RC charging time.
PIRA 1000	series and parallel capacitors	5F30.50	
Sut, E-261	series and parallel capacitors	5F30.50	Two 2 microF capacitors in series or parallel with a 40 W lamp.
Bil\&Mai, p 261	series and parallel capacitors	5F30.50	6 capacitors are connected to a test board in parallel and series arrangements. Use a capacitance meter to explore the relationships.
PIRA 1000	neon relaxation oscillator	5F30.60	
Mei, 29-4.3	blinking neon bulb	5F30.60	A neon bulb in parallel with a capacitor will light periodically as the capacitor charges and discharges.
Mei, 33-1.2	RC relaxation oscillator	5F30.60	An RC relaxation oscillator has a neon lamp across the capacitor providing a visible discharge.
Sut, E-263	RC flasher circuit	5F30.60	A neon lamp in parallel with the capacitor in a series RC circuit.
Hil, E-4f	flashing neon light	5F30.60	A battery powered neon light oscillator.
Hil, E-4e	neon relaxation oscillator	5F30.60	A circuit for a neon relaxation oscillation oscillator. Reference: AJP 13(12),415.
D\&R, E-240	neon relaxation oscillator	5F30.60	A simple neon relaxation oscillator with circuit diagram.
D\&R, E-400	relaxation oscillator	5F30.60	A relaxation oscillator with an oscilloscope connected across the capacitor to monitor charging time. Many neon or argon bulbs will work.
Disc 18-29	relaxation oscillator	5F30.60	An RC neon light relaxation oscillator.
Mei, 33-1.3	relaxation siren oscillator	5F30.61	A double RC relaxation oscillator with slow and fast periods gives a siren waveform.
AJP 40(5),763	backward and forward waves	5F30.68	RC circuits are used to get a wave in neon bulbs that goes from the sink to the source.
Hil, E-4g	capacitance operated relay	5F30.71	References but no information on the circuit. Bring your hand close to a aluminum plate and the relay triggers.
Hil, A-10a	fun circuit	5F30.80	One box has switches that control two lights in another box but only one wire connects the two boxes.
	Instruments	5F40.00	
PIRA 1000	sensitivity and resistivity of a galvanometer	5F40.10	
AJP 29(6),373	sensitivity and resistance of a galvanometer	5F40.10	A circuit for the determination of galvanometric constants.
F\&A, Ej-5	sensitivity and resistance of galvanometer	5F40.10	Use external resistors to measure the resistance and sensitivity of a galvanometer.
Sut, E-154	voltmeter and electroscope	5F40.15	Connect series resistance to a galvanometer to make a voltmeter with low sensitivity and measure several dry batteries in series with both the voltmeter and an electroscope.
PIRA 1000	galvanometer as ammeter and voltmeter	5F40.20	
F\&A, Ej-6	converting a galvanometer to a voltmeter	5F40.20	Knowing the resistance and sensitivity of a galvanometer, add a series resistance and check with a voltage.
Disc 17-26	galvanometer as voltmeter and ammeter	5F40.20	A galvanometer is used with shunt and series resistors.

Demonstration Bibliography	
PIRA 1000	loading by voltmeter
Disc 18-04	loading by a voltmeter
F\&A, Ej-7	converting a galvanometer to a ammeter
F\&A, Ej-3	hot wire ammeter
Sut, H-11	hot wire ammeter
F\&A, Ej-4	iron vane meter
Hil, E-2d	multimeters
	MAGNETIC MATERIALS Magnets
PIRA 500	magnet assortment
UMN, 5G10.10	magnet assortment
Ehrlich 2, p. 151	magnets
AJP 55(1),10	letters on magnets
Hil, E-6c	various magnets
Hil, E-6d	strong magnets
PIRA 1000	lodestone
UMN, 5G10.15	lodestone
AJP 77 (8), 729	lodestone
Bil\&Mai, p 288	lodestone
PIRA 1000	lodestone suspended
F\&A, Er-5	lodestone
Sut, E-84	permanent magnets
Sut, E-77	lodestone
Disc 19-02	lodestone
PIRA 200	break a magnet
PIRA 500 - Old	break a magnet
UMN, 5G10.20	break a magnet
F\&A, Er-12	forming new magnetic poles
Sut, E-93	break a magnet
Disc 19-05	broken magnet
PIRA 1000	Which is a magnet?
F\&A, Es-9	magnet and non-magnet
Sut, E-85	Which is a magnet?
Sut, E-79	two south pole magnet
Mei, 32-3.5	no pole magnet
PIRA 1000	lowest energy configuration of magnets
AJP 33(4),346	magnetic interactions
Disc 19-06	lowest energy configuration
TPT 41(3), 158	Gauss Accelerator - Gauss Rifle
TPT 42(1), 24	Gauss Accelerator - Gauss Rifle
Bil\&Mai, p 108	Gauss accelerator - Gauss rifle
TPT 3(5),226	cast magnetic field

5F40.21
5F40.21 Measure the voltage across a high resistance circuit with high and low impedance voltmeters.
5F40.25
A crude hot wire galvanometer.
5F40.30 Diagram of a hot wire ammeter. (E-171).
5F40.35 Repulsion from induced magnetism in two soft iron bars in a solenoid forms the basis of a heavy current ammeter.
5F40.50 A couple multimeters are pictured.
5G00.00
5G10.00
5G10.10
5G10.10
5G10.10 Place disc magnets the same pole down on the overhead projector. Watch the motion of one of the magnets as you push another magnet close to it.

5G10.13 Remarkably, the letters on the magnet, are two of the three that can be read from either end or in a mirror.
5G10.14 Various magnets are pictured.
5G10.14 Various strong magnets are shown.
5G10.15
5G10.15 Show that the lodestone attracts small nails.
5G10.15 An article with a picture describing lodestone and some of its history.
5G10.15 Hang a piece of lodestone from the ceiling with a piece of string or thread. Notice that it will always come to rest pointing in the same direction.
5G10.16
5G10.16 Magnetite is suspended in a magnetic field.
5G10.16 Pick up nails with a cobalt steel magnet. Also - levitation, elastic collisions.
5G10.16 Two pieces of magnetite in paper stirrups come to rest on the magnetic meridian. Poles are identified and repulsion and attraction are demonstrated.

5G10.16 A large lodestone is suspended in a cradle with the south pole painted white. A bar magnet is used to show attraction and repulsion.
5G10.20
5G10.20
5G10.20
5G10.20
5G10.20
5G10.20
5G10.30
5G10.30
5G10.30 With two similar bars of iron, one magnetized, use the end of one to lift the middle of the other.
5G10.35 How to induce four poles in a knitting needle, the same poles at each end.
5G10.36 Make a circularly polarized magnet in a steel ring and then break it in half.
5G10.50
5G10.50 Magnets float in water with the north pole up constrained by a ring magnet. Place up to 22 magnets in the tub and show equilibrium configurations.

5G10.50 Magnets held vertically in corks are placed in a dish of water. When a coil around the dish is energized, the magnets move to the lowest energy configuration.
5G10.55 A Gauss rifle made from 4 square neodymium magnets and $5 / 16$ inch ball bearings. The energy analysis shows the change in potential energy of the rifle as a function of the accumulated displacement of the ball bearings.

5G10.55 A Gauss accelerator made from spherical magnets and ball bearings. Measurements of both the change in potential energy and the change in kinetic energy are presented.
5G10.55 A Gauss rifle made from 3 square neodymium magnets and 1 inch ball bearings. Add two more stages of magnets and balls to observe an increased effect.
5G10.90 Iron filings are cast in gelatin.

Demonstration	Bibliography		uly 2015 Electricity and Magnetism
F\&A, Er-13	magnetic monopole	5G10.90	Iron filings cast in acrylic over one pole of a magnet.
Sut, E-81	isolated pole	5G10.90	An "isolated pole" is demonstrated by passing a long magnetized knitting needle through a cork and floating it on water.
	Magnet Domains \&	5G20.00	
	Magnetization		
PIRA 500	Barkhausen effect	5G20.10	
UMN, 5G20.10	Barkhausen effect	5G20.10	Amplify the signal from a small coil as it is flipped in a magnetic field with copper, soft iron, and steel cores.
F\&A, Es-1	Barkhausen effect	5G20.10	Magnetic domains in the core of a small coil can be heard flipping as a magnet is moved by using and an audio amplifier.
Mei, 32-3.10	Barkhausen effect	5G20.10	Insert various cores into a coil connected to an audio amplifier and spin a magnet around it.
Mei, 32-3.11	Barkhausen effect	5G20.10	Stretch a iron-nickel alloy wire through a coil and bring a magnet close to demonstrate sudden simultaneous magnetization.
Sut, E-94	Barkhausen effect	5G20.10	Soft iron and hard steel cores are placed in a small coil attached to an audio amplifier and the assembly is inserted into a magnetic field.
AJP 73 (4), 367	Barkhausen effect	5G20.10	A Barkhausen demonstration where the noise is converted to a voltage that is monitored with a data acquisition system.
Hil, E-10d	Barkhausen effect	5G20.10	A soft iron core inserted in a small coil connected to the input of an audio amplifier.
Disc 19-19	Barkhausen effect	5G20.10	Pulses from moving a magnet near a coil wrapped around a soft iron core are amplified.
AJP 39(7),832	spin-flop transition model	5G20.15	A mechanical model of the spin-flip transition in antiferromagnets.
PIRA 500	ferro-optical garnet	5G20.20	
UMN, 5G20.20	ferro-optical garnet	5G20.20	View a commercial ferro-optical garnet between crossed Polaroids with a color TV on a microscope as the field in the coil is changed.
Mei, 32-3.8	ferromagnetic garnet	5G20.21	Examine a crystal of M3Fe2(FeO4)3 in a polarizing microscope. Diagrams, Reference: AJP,27(3),201.
Mei, 32-3.9	Weiss domains	5G20.22	Examine a Gadolinium-Iron-Garnet crystal in a polarizing microscope as the magnetic field and temperature are changed. Picture, Reference: AJP,27(3),201.
AJP 29(11),789	optical ferromagnetic domains	5G20.23	Examine thin polished crystals under a low powered microscope in polarized light. Add a small coil to change the field.
Mei, 32-3.2	iron filing domains	5G20.27	A tube of compressed iron filings is magnetized and then the iron filings are agitated.
PIRA 200	magnetic domain model	5G20.30	An array of small compass needles shows domain structures.
F\&A, Es-2	magnetic domains	5G20.30	An array of small compass needles shows domain structures.
Disc 19-16	magnetic domain model	5G20.30	A set of compass needles on pins.
UMN, 5G20.31	compass arrays	5G20.31	
Mei, 32-3.7	compass array	5G20.31	An array of compass needles made of spring steel strip stock shows domains under different magnetic field conditions.
Sut, E-91	compass array	5G20.31	A set of magnetic needles on pivots orients randomly until a magnet is brought close. Barkhausen model - A compass array above an electromagnet will show that the needles align discontinuously as the field is increased.
AJP 54(12),1130	Heisenberg anitferromagnet model	5G20.36	A simple mechanical model demonstrates phase transitions in a Heisenberg antiferromagnet.
PIRA 1000	induced magnetic poles	5G20.45	
Sut, E-82	induced magnetic poles	5G20.45	A chain of nails is supported by a magnet, each becoming a magnet by induction.
Sut, E-88	magnetic induction	5G20.46	A soft iron bar held colinear with a permanent magnet will become magnetized by induction. Use a compass needle to show the far pole of the bar is the same as the near pole of the magnet.
PIRA 500	pound iron bar	5G20.50	
UMN, 5G20.50	pound iron bar	5G20.50	
F\&A, Er-8	magnetization in the Earth's field	5G20.50	Hammer the end of a soft iron bar in the Earth's magnetic field.
Mei, 32-3.4	pound iron bar	5G20.50	Pound a soft iron bar held in the Earth's field, a permalloy bar does not need to be pounded.
Sut, E-80	hammer an iron bar	5G20.50	Hammer a soft iron bar held parallel to the field of the Earth. A bar of permalloy is magnetized by simply holding it in the Earth's field.
Sut, E-112	magnetic induction in Earth's field	5G20.50	Hammer the end of a soft iron rod held parallel to the Earth's field. Hold a permalloy rod parallel while picking up pieces of permalloy ribbon, then turn perpendicular.
D\&R, B-370	hammer an iron bar	5G20.50	Hammer the end of a soft iron reinforcing rod in the Earth's magnetic field.
PIRA 500	permalloy bar	5G20.55	
UMN, 5G20.55	permalloy bar	5G20.55	

Demonstration	Bibliography		uly 2015 Electricity and Magnetism
F\&A, Er-9	permalloy bar	5G20.55	Iron filings stick to a permalloy bar held parallel to the Earth's magnetic field but fall off when it is held perpendicular.
Disc 19-21	permalloy in Earth's field	5G20.55	A small strip of iron sticks to a permalloy rod when it is held in the direction of the Earth's field.
Hil, E-6a. 2	permalloy rod	5G20.56	Hold a permalloy rod near a compass needle.
PIRA 1000	magnetization by current	5G20.60	
Sut, E-127	magnetization and demagnetization	5G20.60	Place an iron core in a solenoid. Magnetize with direct current and demagnetize by reducing alternating current to zero.
Sut, E-83	magnetization by current	5G20.60	Place a piece of steel in a solenoid connected to a direct current source.
Disc 19-17	magnetizing iron	5G20.60	Place an iron bar in a solenoid and pulse a large current.
PIRA 1000	magnetization by contact	5G20.61	
Disc 19-15	magnitizing iron by contact	5G20.61	Stroke a nail on a permanent magnet and it will pick up iron filings.
PIRA 1000	demagnitization by hammering	5G20.62	
Sut, E-78	magnetization and demagnetization	5G20.62	Stroke a steel needle with a permanent magnet to magnetize and pass it through an AC solenoid to demagnetize.
Disc 19-18	demagnitizing iron by hammering	5G20.62	Magnetize an iron bar in a solenoid, then pound it to demagnetize.
PIRA 500	electromagnet - lift a person	5G20.70	
F\&A, Es-5	electromagnet	5G20.70	A simple electromagnet.
Disc 19-12	electromagnet with 1.5 V battery	5G20.70	A magnet powered by a 1.5 V battery lifts a large weight.
PIRA 1000	electromagnet	5G20.71	
UMN, 5G20.71	electromagnet	5G20.71	
Sut, E-126	electromagnet	5G20.71	An electromagnet with 25 turns of wire and one dry cell can lift over 200 lbs .
PIRA 1000	large electromagnet	5G20.72	
F\&A, Es-11	magnet holding with small battery	5G20.72	An electromagnet energized with a small battery holds several Kg .
AJP 29(2),86	large electromagnet	5G20.72	Apparatus Drawings Project No. 13: A simple low cost electromagnet with $4 " x 4$ " pole faces, field of 1 weber $/ \mathrm{m} 2$ with a .5 cm gap.
Disc 19-11	large electromagnet	5G20.72	This magnet is made with 3000 turns and carries 25 amps .
PIRA 1000	magnetically suspended globe	5G20.73	
Sprott, 5.5	magnetically suspended globe	5G20.73	Alternating current in a pair of magnet coils produces a magnetic field of a shape and strength that can levitate an aluminum ball.
AJP 44(5),478	magnetically suspended globe	5G20.73	A hollow iron globe is suspended from a solenoid with an iron core using a feedback system based on the height of the ball.
AJP 34(7),623	magnetic circuit	5G20.74	An iron loop with a coil on one side, a flux meter on the other, and a removable section for substituting various materials.
Mei, 32-3.16	measuring magnetic flux	5G20.74	Measure magnetic flux with and without a iron path. Not a good description.
PIRA 1000	retentivity	5G20.75	
UMN, 5G20.75	retentivity	5G20.75	
Sut, E-96	retentivity	5G20.75	Two soft iron cores form a split toroid with a few turns of wire around one half. When the coil is energized the iron is strongly magnetized. When the current is off, the two pieces are still difficult to separate but once apart no longer attract.
Sut, E-95	retentivity	5G20.75	A soft iron bar will cling to a " U " shaped electromagnet when the current is turned off but no longer attract after it is pulled away.
Mei, 32-3.26	different cores	5G20.76	An electromagnet is made with replaceable yoke to show the effect of different materials on lifting strength.
	Paramagnetism and	5G30.00	
PIRA 200	Diamagnetism paramagnetism and diamagnetism	5G30.10	
PIRA 500 - Old	paramagnetism and diamagnetism	5G30.10	
UMN, 5G30.10	paramagnetism and diamagnetism	5G30.10	Paramagnetic and diamagnetic crystals are inserted between the poles of a large electromagnet.
Mei, 32-2.1	paramagnetism and diamagnetism	5G30.11	Small samples of bismuth, aluminum, glass, etc between the poles of a strong electromagnet with an inhomogeneous magnetic field. Picture.
Mei, 32-3.12	paramagnetic and ferromagnetic	5G30.13	A small sphere of Pyrothit suspended near one pole of a horseshoe magnet will show paramagnetic and ferromagnetic behavior in different orientations.
PIRA 1000	pull the sample	5G30.15	
UMN, 5G30.15	John Davis setup	5G30.15	
Disc 19-22	paramagnetism and diamagnetism	5G30.15	Samples of bismuth and copper sulfate are suspended by threads. A large horseshoe magnet attracts the copper sulfate and repels the bismuth.
AJP 28(7),678	dollar bill attraction	5G30.16	A dollar bill is attracted by a magnet.

AJP 28(7),678
AJP 30(6),453

Sut, E-102
TPT, 36(9), 553

PIRA 1000
Sut, H-111
F\&A, Es-3
F\&A, Es-4
Hil, E-10b
Mei, 32-2.2
TPT 40(7), 440

TPT 41(2), 75
TPT 41(2), 122
AJP 69(6), 702

AJP 70(2), 188
TPT 35(8), 463

PIRA 500
UMN, 5G40.10
F\&A, Es-10
Disc 20-28
Sut, E-101
Mei, 32-3.17
AJP 55(10),933
AJP 34(10),960
AJP 58(8),794
AJP 39(8),964
Sut, E-100

Hil, E-10C simple hysteresis
Mei, 32-3.13 hysteresis plot

Mei, 32-3.25 plotting hysteresis
Mei, 32-3.15
Mei, 32-3.14

PIRA 1000
Disc 20-29 in a level
magnetic properties of matter
paramagnetism
paramagnetism
paramagnetism of bismuth
para and dia in para and dia solutio
diamagnetic grapes
diamagnetic water
diamagnetic graphite
diamagnetic graphite
diamagnetic bismuth

Hysteresis

hysteresis loop on scope
hysteresis loop on scope
hysteresis loop
hysteresis curve
hysteresis loop on scope
hysteresis on the scope
hysteresis without induction
hysteresis loop
hysteresis on $x-y$
magnetization and hysteresis
hysteresis in a motor
hysteresis loop with old TV
hysteresis waste heat
hysteresis waste heat
paramagnetism and diamagnetism
pole faces for big electromagnet
5G30.17 around on a sheet of paper.
Apparatus Drawings Project No. 29: Large electromagnet accessories, one of four. Plans for pole faces to go on the electromagnet from No. 13 for use in para and diamagnetism demonstrations.
paramagnetism and diamagnetism 5G30.18
inexpensive demonstration of the
paramagnetism of liquid oxygen
paramagnetism of liquid oxygen
diamagnetic levitation of graphite
improved hysteresis loop on scope

Specifications are given for building an electromagnet suitable for the demonstration. Paramagnetic and diamagnetic substances are listed.
5G30.19 Qualitative discussion of magnetic properties presents a simple, general-purpose way to demonstrate the magnetic nature of many types of matter.
5G30.20
5G30.20 Liquid oxygen sticks to the pole pieces of a strong electromagnet until it evaporates.
5G30.21 A test tube of liquid oxygen swings into the gap of an electromagnet.
5G30.25 Copper sulfate and bismuth crystals are suspended in a magnetic field.
5G30.25 A bismuth crystal is suspended between the poles of an electromagnet.
5G30.30 A paramagnetic body is suspended in a paramagnetic solution. Repeat same with diamagnetic.
5G30.35 Observe the diamagnetic or paramagnetic properties of common items such as grapes, rosin, salt, aluminum foil, etc., using a a neodymium magnet and a sensitive pivot.
5G30.40 Cover a neodymium magnet with about 1 mm of water in a petri dish. The diamagnetism of water can be easily observed.
5G30.45 A diamagnetic levitator using 4 or 9 - one half inch square neodymium magnets and a thin square of pyrolite graphite.
5G30.50 Discussion and analysis of commercial and homemade diamagnetic levitators. The levitators all have the basic design of levitating a small neodymium magnet between two slabs of graphite.
5G30.50 More comments on AJP 69(6), 702.
5G30.55 Place a bismuth sample on an electronic balance. The balance will show a positive "mass" when a neodymium magnet is brought near the top.
5G40.00
5G40.10
5G40.10 Show the hysteresis loops for laminated steel and ferrite cores as saturation is reached.
5G40.10 The hysteresis loop of a core is displayed on an oscilloscope.
5G40.10 The Leybold setup shown on a scope.
5G40.11 The hysteresis loop for the iron core of a transformer is shown on a oscilloscope. Diagram and circuit hints.
5G40.12 A circuit for showing the hysteresis curve of a transformer on an oscilloscope. Also modifications for using various cores and coils.
5G40.13 A circuit, Hall probe, and storage oscilloscope allow plotting the hysteresis loop point by point or automatically.
5G40.14 Two coils are mounted on a rotating disk in the air gap of an electromagnet. As the field is varied, the hysteresis loop is plotted.
5G40.15 This circuit makes it possible to display hysteresis loops of inductors with only one winding.
5G40.16 An op amp circuit for plotting the hysteresis curve slowly on an x - y recorder.
5G40.20 A small mirror on a compass needle is used to detect the magnetic field as the current to a solenoid containing an iron bar is increased and decreased stepwise.
5G40.21 Parallel iron bars suspended in a coil show hysteresis when slowly magnetized and demagnetized.
5G40.25 A ballistic galvanometer search coil gives readings of the magnetization and residual magnetization of a sample as it is magnetized in opposite directions and a plot is generated.
5G40.27 A core with a removable link and built in flux meter are used to plot a hysteresis curve.
5G40.31 The IV curve from a generator is proportional to the normally obtained B H curve.
5G40.41 The hysteresis loop of a sample placed in one deflection coil is traced on an old TV tube.
5G40.50
5G40.50 Water is boiled by magnetic hysteresis waste heat.

5G45.00

5G45.10
5G45.10 Drive a nickel rod by a coil at one end at a frequency that corresponds to a natural harmonic of sound waves.
5G45.20 One end of a ferromagnetic rod in a coil touches one plate of a Newton's rings apparatus.
5G45.30
5G45.30 An optical lever arrangement shows magnetostriction of nickel wire.
5G45.31 Nickel constricts and cobalt steel lengthens when magnetized. Place sample rods in a solenoid and show the effect by optical lever.
5G45.35 The inverse magnetostrictive effect in nickel wire.
5G45.40 The magnetostrictive resonance is measured with and without an external field.
5G45.60 The magnetoresistance of a Bi-spiral in a magnetic field. Picture.
5G45.70
5G45.70 Measure the magnetoresistance of a bismuth spiral placed in a large electromagnet.
5G45.80 A corbino disk (InSb) in one arm of a Wheatstone bridge is placed in a large electromagnet.
5G50.00
5G50.10
5G50.10
5G50.10 Iron under magnetic attraction is heated until it falls away. Upon cooling it is again attracted.
5G50.10 A counterweighted iron wire is attracted to a magnet until heated red with a flame.
5G50.11 A long soft iron wire held up by a magnet falls off when the wire is heated past the Curie point.
5G50.11 A length of soft iron wire heated with 110 V DC through a rheostat shows loss of magnetic properties when it passes through recalescence.

5G50.12 A pendulum bob with iron wire tips is attracted to a magnet where it is heated until it loses its magnetism and falls away. The cycle repeats. Picture, Diagram.
5G50.13 Observing the hysteresis loop of Monel 400 as its temperature is increased through its Curie point.
5G50.13 Monel metals have curie points between 25 C and 100 C depending on the alloy.
5G50.14 A nickel wire falls away from a magnet when heated.
5G50.15
5G50.15 A rod of nickel is attracted to a magnet when cool but swings away when heated. Many hints and diagram.
5G50.15 Canadian quarters or dimes hanging in series from a magnet are heated until they fall away.
5G50.15 A Canadian nickel is attracted to a magnet until it is heated with a torch.
5G50.16 Pictures of a 3-D HMT hysteresis surface for nickel.
5G50.20
5G50.20 Local heating of permalloy tape or nickel rings in a magnetic field will cause rotation. AJP 5(1),40.
5G50.20 The rim of a wheel of Monel tape is placed in the gap of a magnet and heat is applied to one side to make the wheel turn.
5G50.20 A thin strip of magnetic alloy around the rim of a well balanced wheel is placed in the gap of a magnet with a light focused on a point just above the magnet. Heating changes the magnetic properties and the wheel rotates.

5G50.20 A rim of nickel on a wheel is heated just above the point where the rim passes through the gap of a magnet.
5G50.22 A gadolinium strip forming the rim of a Plexiglas wheel is heated and cooled on opposite sides of a magnetic field, and a weight is lifted by the resulting rotation.
5G50.23 A soft iron disk heated on an edge turns very slowly when a magnet is oriented correctly.
5G50.24 Use the Curie point engine as a simple demonstration of the Carnot principle.

Demonstration Bibliography	
Disc 19-23	dysprosium in liquid nitrogen
Mei, 32-3.19	phase change and susceptibility
Mei, 32-3.18	hysteresis breakdown at Curie temperature
Mei, 32-5.1	adiabatic demagnetization
PIRA 200	Meissner effect
UMN, 5G50.50	Meissner effect
Sprott, 5.6	superconductors
AJP 76 (2), 106	superconductivity
Ehrlich 1, p. 153	superconductivity
Disc 16-14	superconductors
TPT 28(4),205	levitating magnet
AJP 72(2), 243	levitating magnet
AJP 56(7),617	Meissner effect
AJP 56(11),1039	Meissner effect with a cork and salt
AJP 39(1),113	Meissner effect with liquid He
TPT 28(6),395	floating magnet demonstration
AJP 59(1),16	detailed explanation of levitation
AJP 57(10),955	Meissner oscillator
	FORCES Magnetic Fields
PIRA 500	magnetic paper clip arrow
F\&A, Er-6	compass
Sut, E-76	compass needles \& magnet
D\&R, B-115	homemade compass
Mei, 32-3.1	magnetoscope
D\&R, B-010	paper clip detector
PIRA 500	dip needle
F\&A, Er-7	dip needle
Sut, E-111	dip needle
Hil, E-6b	dip needle
D\&R, B-115	dip needle
Disc 19-03	dip needle
PIRA 200	Oersted's effect
UMN, 5H10.20	Oersted's effect
F\&A, Ei-8	Oersted's effect
Hil, E-7b	Oersted's effect
D\&R, B-105	Oersted's effect

July 2015
5G50.25 A piece of dysprosium is attracted to a magnet when cooled to liquid nitrogen temperatures but drops away when it warms up.
5G50.30 Heat the long iron wire and watch the sag. A ferrite ring and coil connected to a galvanometer show change in ferromagnetic susceptibility.

5G50.35 Elaborate apparatus to show hysteresis loop and breakdown at Curie temperature. Picture, Diagrams, Materials list in appendix, p. 1333.
5G50.40 The temperature of a piece of gadolinium is measured with a thermocouple while it is between the poles of an electromagnet.
5G50.50 Cool a superconductor and a magnet floats over it due to magnetic repulsion.
5G50.50
5G50.50 High- temperature superconductors used with permanent magnets illustrate the Meissner effect.
5G50.50 This Resource Letter provides a guide to the literature on superconductivity.
5G50.50 Levitate a small magnet above a superconducting disc that is cooled to liquid nitrogen temperature.
5G50.50 Place a small powerful magnet over a disc of superconducting material cooled to liquid nitrogen temperature.
5G50.51 A long article on levitation over superconductors showing several variations.
5G50.51 Investigates why a cylindrical permanent magnet rotates when levitated above a superconductor.
5G50.52 Repulsion of the magnet and superconductor hanging from threads. Also, levitation of the magnet over the superconductor.
5G50.53 A magnet/cork in a vial filled with salt water so the float just sinks is placed over the superconductor.
5G50.55 Technique for levitating a magnet over liquid He .
5G50.55 A room temperature magnet is suspended 2 cm above a liquid helium cooled ($51 / \mathrm{hr}$) lead plate in a supercooled container. Students can play with the magnet and feel the force. Discussion of what the Meissner effect really is.

5G50.56 Theoretical article - a discussion of levitation and other effects using Maxwell's work on eddy currents in thin conducting sheets instead of the London equation.
5G50.58 A pivoting needle with magnets on the ends oscillates between two superconducting discs.
5H00.00
5H10.00
5H10.10
5H10.11 A compass is used to find poles.
5H10.11 A large compass needle or dip needle is used as an indicator of magnetic field.
5H10.11 Magnetize a knitting needle, drive through a cork, and float on water.
5H10.12 A magnetoscope is constructed by hanging needles from the edge of a small brass disc.
5H10.12 A magnetoscope is constructed from hanging paper clips.
5H10.15
5H10.15 A dip needle is used to show the inclination of the Earth's magnetic field.
5H10.15 Use a dip needle to find the local direction of the Earth's field.
5H10.15 A very large dip needle is shown next to the standard catalog size. Check it out.
5H10.15 Dip needle is used to indicate the direction of Earth's field relative to horizontal.
5H10.15 Turn a compass on its side. Animation.
5H10.20 Explore the field around a long wire with a compass needle.
5H10.20 Demonstrate Oersted's effect with a compass needle and a long wire carrying a heavy current.
5H10.20 A compass needle is used to explore the field around a long wire.
5H10.20 A compass deflects above and below a current carrying wire. ALSO- jumping wire.
5H10.20 A compass needle is used to explore the field around a current carrying wire.

Disc 19-08	Oersted's needle
Mei, 31-1.18	Oersted's effect on the overhead projector
Hil, E-7c	Oersted's effect on the overhead projector
Sut, E-122	Oersted's effect
Sut, E-191	magnetic field of current through electrolyte
Mei, 31-1.19	field independent of conductor type
Sut, E-121	Oersted's effect
Mei, 31-1.25	carrying large currents
PIRA 200	magnet and iron filings
UMN, 5H10.30	magnet and iron filings on the overhead projector
F\&A, Er-4	field of a magnet
Sut, E-89	iron filings on the overhead projector
D\&R, B-110	magnet and iron filings on the overhead projector
Disc 19-04	magnetic fields around bar magnets
AJP 36(11),1015	particles in oil
AJP 38(6),777	iron filings in glycerine
Sut, E-90	iron filings in glycerin
Bil\&Mai, p 290	iron filings in oil
AJP 41(4),566	iron bars \& 83 ton magnet
AJP 42(3),259	comment
AJP 42(3),259	reply to comment
TPT 3(7),320	iron filings on glass plate stack
PIRA 1000	area of contact
Sut, E-97	area of contact
Sut, E-98	area of contact
Sut, E-99	area of contact
PIRA 1000	gap and field strength
Mei, 32-3.23	gap and field strength
TPT 28(2), 124	field strength and gaussmeter
TPT 40(5), 288	field strength and gaussmeter
TPT 40(5), 308	magnetic fields with an IC chip
AJP 54(1), 89	magnetic fields with an IC chip
PIRA 1000	shunting magnetic flux
Sut, E-108	shunting magnetic flux
PIRA 1000	magnetic shielding
Disc 19-20	magnetic shielding
Sut, E-107	magnetic screening
Mei, 32-3.6	magnetic shielding

July 2015
Electricity and Magnetism
5H10.20 Hold a current carrying wire over a bar magnet on a pivot and the magnet moves perpendicular to the wire.
5H10.22 Four compass needles are arrayed around a vertical wire running through Plexiglas for use on the overhead projector.
5H10.22 Adapting the Oersted effect to the overhead projector.

5H10.23 A current of 50 amps is passed through a heavy vertical wire and the field is investigated using a compass needle.
5H10.23 A compass needle detects the magnetic field from 2 amps flowing in an electrolyte.
5H10.25 A magnetic field produced current in copper, electrolyte, and a gas discharge tube is detected by a large compass needle.
5H10.25 A heavy current from a storage cell is passed through a long wire and a compass needle is used to investigate the nearby field. Electrolyte or plasma may be substituted for the wire.
5H10.26 Use flat braided brass cable instead of copper wire to carry large currents.
5H10.30 Sprinkle iron filings on a glass sheet placed on top of a bar magnet.
5H10.30
5H10.30 Iron filings are sprinkled on a sheet of Plexiglas over a magnet.
5H10.30 Sprinkle iron filings on a magnet between two glass plates.
5H10.30 Iron filings are sprinkled on an acrylic tray over a magnet.

5H10.30 Sprinkle iron filings on a glass sheet covering a bar magnet.

5H10.31 A suspension of carbonyl nickel powder in silicon oil is used as an indicator of magnetic field.
5H10.31 A sandwich of iron filings in glycerine between two glass plates.
5H10.31 Soft iron bars extend the poles of a permanent magnet into a projection cell with iron filings in a equal mixture of glycerin and alcohol.
5H10.31 Fill a small soda bottle with mineral oil and add some iron filings. Insert a test tube into the neck of the bottle and secure. Slide a cow magnet into the test tube and observe the three dimensional magnetic field lines.
5H10.32 Students gather around a large electromagnet while holding iron bars.
5 H 10.32 On the health hazards of magnetic fields.
5H10.32 Reply to the comment on the health hazards of magnetic fields - Field gradient is 1000 times weaker than exposure that has been studied.
5H10.33 Make a 3-D view of magnetic fields by sprinkling iron filings on a series of stacked glass plates.
5H10.50
5 H 10.50 One end of a magnet 1 cm in diameter is truncated to .5 cm . The small end lifts a much larger piece of iron than the large one.
5H10.51 An electromagnet supports less weight when the face of the ring is against the pole than when the curved edge is. Diagram.
5H10.52 A soft iron truncated cone will support less weight when the large end is in contact with the face of an electromagnet.
5H10.55
5H10.55
5H10.55
Vary the gap of a magnet and measure the field with a gaussmeter.
A mechanical device for measuring the magnet field of small permanent magnets.
5H10.55 The magnetic field along the axis of a long finite solenoid measured with a gaussmeter.
5H10.57 Measuring the fields of disk magnets with a homemade IC chip probe.
5 H 10.57 Measuring magnetic fields with an IC chip probe in the introductory lab.
5H10.60
5H10.60
Pick up a steel ball with a bar magnet, then slide a soft iron bar along the magnet toward the ball until it drops off.
5H10.61
5H10.61 Slide sheets of copper, aluminum, and iron between an electromagnet and an acrylic sheet separating nails from the magnet.
5H10.62 Displace a hanging soft iron bar by attraction to a magnet, then interpose a sheet of iron.
5H10.63 A test magnet is used to show the shielding properties of a soft iron tube with various magnetic field generators.

Demonstration Bibliography	
PIRA 1000	magnetic screening
Sut, E-106	magnetic screening
Sut, E-105	magnetic screening
Mei, 29-4.7	Compass in a changing magnetic field
Mei, 31-1.22	sensitive magnetometer
	Fields and Currents
PIRA 200	iron filings around a wire
UMN, 5H15.10	field of wire and iron filings
F\&A, Ei-9	magnetic field around a wire
Mei, 31-1.17	iron filings around a wire
D\&R, B-110	iron filings around a wire
Bil\&Mai, p 301	magnetic field around a wire
Ehrlich 1, p. 157	magnetic field around a wire
Ehrlich 1, p. 159	magnetic field around a wire
Disc 19-09	magnetic fields around currents
Sut, E-130	uniform and circular fields
PIRA 1000	right hand rule
Disc 19-07	right hand rule
PIRA 1000	Biot-Savart law animation
Disc 19-14	Biot-Savart law
PIRA 1000	parallel wires and iron filings
UMN, 5H15.20	parallel wires and iron filings
PIRA 1000	anti-parallel wires and iron filings
UMN, 5H15.25	anti-parallel wires and iron filings
PIRA 200	solenoid and iron filings
UMN, 5H15.40	solenoid and iron filings
F\&A, Ei-10	field of a solenoid
Mei, 31-1.20	solenoid and iron filings
TPT 28(4),244	iron filings in a ziploc bag
Sut, E-129	iron filings in glycerin
Mei, 31-1.21	length of a solenoid
Sut, E-92	small coils in a solenoid
AJP 56(5),478	demountable Helmholtz coils
Hil, E-9d	Helmholtz coils
Hil, E-9c	long solenoid
PIRA 200 - Old	field of a toroid
UMN, 5H15.50	torroid and iron filings
F\&A, Ei-11	field of a toroid
Mei, 32-1.1	iron filings on the overhead
Sut, E-123	iron filings on the overhead
Mei, 32-3.3	filings in castor oil
AJP 28(2),147	quantitative field of a coil

5H10.65
5H10.65 Hold a magnet above a nail attached to the table by a string, then interpose a sheet of iron.
5H10.65 Two horizontal sheets of glass separated by an air space intervene between an electromagnet and collection of nails being held up. Insert a sheet of iron into the space and the nails drop.
5H10.75 Meiners places this demonstration in the Capacitors and Dielectrics section. (????) A compass is placed in the gap of an electromagnet and the field is reversed at various rates.
5 H 10.80 Building and operating a sensitive magnetometer.
5H15.00
5H15.10
Iron filings are sprinkled around a vertical wire running through the center of a Plexiglas sheet.
5H15.10
5H15.10 Iron filings show the field of a wire passing through a sheet of Plexiglas.
5H15.10 Iron filings are sprinkled around a vertical wire running through Plexiglas.
5H15.10 Iron filings are sprinkled around a current carrying wire, single loop, and solenoid.
5H15.10 Iron filings are sprinkled around a current carrying solenoid.
5H15.10 Iron filings are used to map the magnetic field of a straight wire passing through a piece of Plexiglas.
5H15.10 Iron filings are used to map the magnetic field of a current carrying solenoid.
5H15.10 Iron filings around a current carrying wire, loop, coil, and solenoid.
5H15.12 Use iron filings to show the resultant of a vertical wire passing through a uniform field.
5H15.13
5H15.13
Move a compass around a vertical wire with a current, reverse the current. Animation of the right hand.
5H15.15
5H15.15 Animation.
5H15.20
5H15.20
5H15.25
5H15.25
5H15.40 A solenoid is wound through a piece of Plexiglas for use with iron filings on the overhead projector.
5H15.40
5H15.40 Iron filings show the field of a solenoid wound through a sheet of Plexiglas.
5H15.40 A solenoid is wound through a piece of Plexiglas for use with iron filings on the overhead projector.
5H15.41 Seal an iron filing/glycerol mixture in a ziploc bag.
5H15.41 A glass cylinder filled with iron filings in a solution of glycerin and alcohol is inserted into a solenoid.
5H15.43 A large solenoid is constructed to make it easy to change the spacing of turns and therefore the length. A magnetometer or coil is used to show field strength, Picture, Diagrams.
5H15.45 A no iron magnetism model. An array of small coils is mounted inside a large solenoid. Small springs keep the small coils aligned randomly when no current is applied.
5H15.46 On making large square demountable Helmholtz coils.
5H15.46 Generation of a large uniform magnetic field by Helmholtz coils.
5 H 15.47 The long solenoid used in the e/m experiment is shown.
5H15.50 Iron filings show the field of a toroid which is wound through a sheet of Plexiglas.
5H15.50 Same as Ei-11.
5H15.50 Iron filings show the field of a toroid wound through a sheet of Plexiglas.
5H15.60 Iron filings in a viscous liquid permit field configurations to be shown. More.

5H15.60 Iron filings are sprinkled on glass plates that have a single wire, parallel wires, and a solenoid passing through holes.
5H15.61 Small iron filings are sprinkled onto a thin layer of castor oil and a magnetic field is applied.
5H15.65 Apparatus Drawings Project No. 2: A search coil is mounted on a movable arm with provision for reading angle and distance.

PIRA 200	Forces on Magnets magnets on a pivot
UMN, 5H20.10	magnets on a pivot
F\&A, Er-2	interaction between bar magnets magnetic attraction/repulsion
Disc 19-01	snap the lines of force
PIRA 1000	snap the lines of force
UMN, 5H20.15	levitation magnets
PIRA 500	
UMN, 5H20.20	levitation magnets
F\&A, Er-11	levitation of magnetic discs
D\&R, B-060	levitation by repulsion F\&A, Er-10
magnetic suspension	
AJP, 65(4), 286-	spin stabilized magnet levitation. 292
PIRA 1000 Levitron toy.	
centrally levitating magnets	
PIRA 1000	linearly levitating magnets inverse square law
PIRA 1000	
UMN, 5H20.30	inverse square law
AJP 41(12),1332	inverse square law - magnetism
AJP 31(1),60	inverse square law - magnetism

Sut, E-86
Ehrlich 2, p. 150

Sut, E-87

PIRA 1000
UMN, 5H20.35
AJP 51(11),1023

PIRA 1000
AJP 74(6), 510

Mei, 32-1.2
PIRA 1000
Mei, 32-1.3

PIRA 1000
UMN, 5H25.10
F\&A, Er-1
F\&A, Ei-7
Sut, E-124

D\&R, B025, B-
030, \& B-230
Disc 19-10
magnet in a coil
solenoid bar magnet

5H20.00
5H20.10 One magnet is placed on a pivot, the other is used to attract or repel the first.

5H20.10 A magnet is placed in a cradle. A second magnet is used to attract and repel the first.
5H20.10 Bar magnets on pivots.
5 H 20.10 One magnet is placed on a pivot, the other is used to attract or repel the first.

5H20.15
5H20.15
5H20.20
5H20.20 Two ring magnets are placed on an upright test tube with like poles facing.
5H20.20 Two disc magnets are suspended with like poles facing on an inverted test tube.
5H20.20 Ring magnets on a vertical rod will form an oscillating system.
5H20.21 Two notched bar magnets are held with like poles facing.
5H20.22 A treatise on the toy that consists of a spinning magnet that levitates itself above a large circular magnet.
5H20.23
5H20.24
5H20.30
5H20.30 Same as AJP 31(1),60.
5H20.30 A balance to measure the repulsion of two bar magnets. See AJP 31(1),60.
5H20.30 A balance is made out of a meter stick with a magnet on one end facing the pole of another similar magnet. Adjust the distance between the magnets and slide the counterbalance along the meter stick until equilibrium is reached.
5H20.30 Use a bar magnet brought near a second bar magnet counterweighted and on a knife edge to roughly verify the inverse square law.
5H20.31 A transparent compass and a small disc magnet on the overhead are used to verify the inverse cube relationship of the magnetic field on distance.

5H20.33 Hang two magnets horizontally and parallel. Use the inverse square law to compute the pole strength from the length of the suspension, the saturation, and mass of the magnets.
5H20.35
5H20.35
5H20.35
Three simple variations of magnets levitating in a glass tube are used to show a force varying with the inverse of the distance squared.
5H20.40
5H20.40 The paper extends previous work on the inverse fourth law dipole-dipole force by using the more powerful rare earth magnets.
Equipment shows the force between two dipoles varies as the inverse fourth power of the separation. Pictures.
5H20.50
5H20.50
Apparatus to show the force between a magnet and a piece of soft iron varies with the inverse seventh of the separation. Diagram, Picture.
5H25.00
5H25.10
5H25.10
5H25.10 A solenoid on a pivot and a magnet on a pivot interact.
A bar magnet is mounted in a large flat coil.
5H25.10 A compass needle is placed in the center of a large coil oriented in the plane of the Earth field's magnetic meridian. The current in the coil is proportional to the tangent of the angle through which the needle is deflected.

5H25.10 A large compass, magnet, or solenoid shows the field inside a set of Helmholtz coils.
5H25.10 A suspended solenoid reacts with a bar magnet only when the current is on.

Demonstration Bibliography

F\&A, Er-3	period of a bar magnet
PIRA 1000	jumping magnet
UMN, 5H25.20	jumping magnet
PIRA 1000	force on a solenoid core
Sut, E-128	force on solenoid core
Sut, E-137	unipolar motor
TPT, 36(8), 474	a different twist on the Lorentz force and Faraday's law
Mei, 31-1.30	floating magnetic balls
AJP 43(1),111	Ampere's ants
PIRA 200	Force on Moving Charges cathode ray tube
UMN, 5H30.10	cathode ray tube
F\&A, Ep-11	e / m for electrons
D\&R, B-015	cathode ray tube
Sprott, 5.1	cathode ray tube
Ehrlich 1, p. 160	field of a magnet
Ehrlich 1, p. 161	cathode ray tube
Sut, A-72	measurement of e/m
Sut, A-73	measurement of e/m
Sut, A-74	measurement of e/m
Mei, 31-1.11	another tube
PIRA 1000	bending an electron beam
UMN, 5H30.15	bending an electron beam
F\&A, Ep-8	bending of an electron beam
Sut, A-71	deflection of cathode rays
D\&R, B-015	bending an electron beam
Disc 20-03	deflected electron beam
AJP 51(6),572	induced charges and the Crookes tube
AJP 29(10),708	CRT and Earth's field
AJP 38(9),1133	analog computer simulation
PIRA 200 - Old	e / m tube
UMN, 5H30.20	e/m tube
F\&A, Ei-18	forces on an electron beam
AJP 77 (12), 1102	forces on an electron beam
Sut, A-20	magnetic deflection of cathode rays
Sut, A-19	"Aurora Borealis"
AJP 29(1),26	Classen's e/m
PIRA 1000	magnetic mirror
AJP 31(5),397	magnetic mirror

5H25.15 A magnet oscillates in a coil proportional to the square of the current in the coil.
5H25.20
5H25.20 Place a bar magnet in a vertical transformer and apply DC with a tap switch.
5H25.25
5 H 25.25 When a solenoid is energized a iron core is violently drawn into the coil.
5H25.60 Two magnetized knitting needles mounted as the legs of an " H " suspended by a string rotate when a current flows upward through a rod.

5H25.65 An analysis of the interplay between rotating magnets and currents is illuminated using a homopolar magnet structure.
5H25.70 Thousands of small magnetic balls floating freely on the surface of water form hills and hollows when excited by an AC magnetic field. Pictures.
5H25.75 A fun hall display: hide a pushbutton controlled magnetic stirrer under a dish of iron filings.
5H30.00
5H30.10 Deflect the beam in an open CRT with a magnet.
5 H 30.10 A magnet or battery connected to the plates is used to deflect the beam of an open CRT.
5H30.10 Deflect the beam in an open CRT with a magnet.
5 H 30.10 Deflect the beam on the tube face of an old CRT with a magnet.
5H30.10 A permanent magnet brought near a cathode ray tube causes a displacement or distortion of the pattern on the fluorescent screen.
5H10.30 Place a transparent plastic dish on top of a magnet. Sprinkle iron filings in the dish to show the magnetic field of the magnet.
5H30.10 The beam of a cathode ray tube is deflected when a magnet is brought near.
5H30.11 Use the Earth's field to deflect the beam in an oscilloscope.
5H30.12 Deflect the beam of an oscilloscope with large solenoids.
5 H 30.13 Deflect the beam of an oscilloscope by current in wires parallel to the axis of the tube.
5H30.14 A Hg tube producing a visible beam is deflected by external magnetic field. Pictures.
5H30.15
5H30.15
5H30.15
An electron beam hitting a fluorescent screen in a tube is bent by a magnet.
5H30.15 A thin beam along a fluorescent screen is bent by a magnet or charged rod.
5H30.15 An electron beam hitting a fluorescent screen in a tube is bent by a magnet.
5H30.15 A thin electron beam made visible by a fluorescent screen is bent when a magnet is brought near.
5H30.16 A discussion of unwanted deflections of the beam in the Crookes' tube due to induced charge.
5H30.17 A CRT is mounted so it can be oriented in any direction and rotated about its axis. Find the position that results in no deflection from the Earth's field, turn 90 degrees.
5H30.19 The motion of a charged particle in a magnetic field is investigated with an analog computer. Circuit diagram for the computer is given.
5H30.20 Show the beam of the small e/m tube in Helmholtz coils on TV. A hand held magnet gives a corkscrew.
5H30.20 The beam of the small e/m tube in Helmholtz coils is shown on TV. A hand held magnet gives a corkscrew.
5H30.21 A beam of free electrons is bent in a circle by large Helmholtz coils.
5H30.21 Two methods for measuring the charge to mass ratio e/m of the electron using thermionic emissions as that exploited in vacuum tube technology.
5H30.22 A beam from a lime-spot cathode in a large bulb is made circular by Helmholtz coils.
5H30.22 A magnet is brought near a 12 L bulb with a lime-spot cathode.
5H30.24 Apparatus Drawings Project No. 11: for the advanced undergraduate laboratory.
5H30.25
5H30.25 The effect is better with the Leybold tube.

Demonstration	Bibliography
AJP 31(6),459	Van Allen belt
Disc 20-04	fine beam tube
AJP 30(12),867	magnetic mirror effect
AJP 35(10),968	e/m modificaton
AJP 35(2),157	e/m modification - Welch
PIRA 1000	rotating plasma
F\&A, Ei-17	rotating plasma
Sut, E-151	pinching mercury
Mei, 31-1.8	bending arc
PIRA 1000	electromagnetic pump
F\&A, Ei-14	electromagnetic pump
Mei, 31-1.9	electromagnet pump
Mei, 31-1.10	electromagnetic pump
Hil, E-7g. 2	magnetic pump
AJP 38(3),389	MHD pump
PIRA 1000	ion motor
Mei, 31-1.13	ion motor
Sut, E-194	rotation of an electrolyte in a magnetic field
AJP, 75 (4), 361	rotation of an electrolyte magnetic field
Disc 20-06	ion motor
F\&A, Ei-13	force on a conducting fluid
PIRA 200	Force on Current in Wires parallel wires
UMN, 5H40.10	parallel wires
F\&A, Ei-1	force between parallel wires
Sut, E-148	parallel wires
Hil, E-9b	parallel conductors
Bil\&Mai, p 295	parallel wires
AJP 31(1),59	parallel wires, etc
Mei, 31-1.26	parallel wires
AJP 45(1),106	parallel wires ammeter
F\&A, Ei-4	force between parallel wires
PIRA 200	interacting coils
Sut, E-149	parallel wires and loops
Ehrlich 1, p. 156	interacting coils
PIRA 500	pinch effect simulation
UMN, 5H40.20	pinch effect simulation
AJP 32(11),xxiv	pinch effect simulation
Mei, 31-1.27	pinch effect

July 2015
5H30.25 Use the tube and magnets to demonstrate trapping of charged particles by the Earth's magnetic field.
5H30.25 A fine beam tube between Helmholtz coils.
5H30.26 Bring a bar magnet near the Cenco e/m tube causing charges to spiral into a converging magnetic field.
5H30.29 Use a half wave rectifier for filament heating.
5H30.29 Use ac instead of dc to heat the filament.
5H30.30
5H30.30 A plasma tube powered by an induction coil is placed over an electromagnet.
5H30.40 A thread of mercury in a glass tube is pinched in two by the interaction of the current and the conductor
5H30.41 A dc arc bends and may break as a bar magnet is brought close and closer.

5H30.50
5H30.50 Mercury is pumped in a tube built so current flows at right angles to the applied magnetic field.
5H30.50 Current flowing in mercury while in a magnet field causes the mercury to move through a channel. Also shows a paddlewheel version.
5H30.50 A closed circuit version of the electromagnetic mercury pump.
5H30.51 Copper sulfate solution flows in a circle when placed between the poles of a magnet with a current from the center to edge.
5H30.52 Three versions of MHD pumps: the one for lecture demonstration consists of a loop of Pyrex tubing with NaK as the fluid.
5H30.55
5H30.55 An ion motor for the overhead projector with cork dust in a copper sulfate solution.
5H30.55 Cork dust floating on a solution of zinc chloride in a circular container rotates when current is passed through the solution in the presence of a magnetic field.
5H30.55 Description of the magnetohydrodynamic flow of an electrically conducting fluid between two stationary coaxial cylindrical electrodes. A neodymium iron - boron magnet is used.
5H30.55 Cork dust shows the motion of copper sulfate an ion motor. Animation.
5 H 30.56 Salt solution rotates when placed in a circular dish over a magnet with electrodes at the center and edge.
5H40.00
5H40.10
5H40.10 Long vertical parallel wires attract or repel depending on the current direction.
5H40.10 Current can be passed parallel or antiparallel in long hanging wires.
5H40.10 Two heavy vertical wires 1 cm apart pass $15-20 \mathrm{amps}$ in the same or opposite directions.
5H40.10 Vertical parallel wires pass 15 amps .
5H40.10 Long vertical parallel wires attract or repel depending on the current direction.
5H40.11 Rectangular loops of solid wire hang on pivots from two stands. Used together, demonstrate parallel wires, or one stand alone can be used for wire in a magnetic field or induced emf.
5H40.12 Parallel wires with one being a loop free to turn in pools of mercury.
5H40.13 Modification of the Project Physics exp. 36 gives an accuracy of 3%.
5 H 40.14 Radial wires (like clock hands) spring apart when current is passed.
5H40.15 Two hanging loops attract or repel depending on current direction.
5H40.15 A narrow loop formed by hanging a flexible wire opens when current is passed. Two loops in proximity attract or repel depending on current direction.
5H40.15 Two coils are free to move on a cylinder made from a transparency sheet. The coils repel when connected to a battery.
5H40.20
5H40.20 Same as AJP 32(11),xxiv.
5H40.20 Six no. 18 wires are connected loosely between two terminals. Pass 20 amps and the bundle is attracted.
5 H 40.20 Six vertical parallel wires are loosely hung in a circular arrangement.

Demonstration	bliography		$l y 2015$ Electricity and Magnetism
Disc 19-13	pinch wires	5H40.20	Six wires in parallel attract when current passes through each in the same direction. Then sets of three wires each have current flowing in opposite directions.
Mei, 31-1.28	pinch effect	5H40.21	A high voltage capacitor is discharged through a cylinder of aluminum foil strips.
PIRA 1000	filament and magnet with AC/DC	5H40.23	
Sut, E-139	vibrating lamp filament	5H40.23	A tube lamp with a straight filament on AC will vibrate when placed between the poles of a magnet.
Hil, E-7d	vibrating lamp filament	5H40.23	A magnet is brought near carbon filament lamps, one powered by AC, the other by DC. The images are projected.
D\&R, B-020	vibrating lamp filament	5H40.23	A lamp filament on AC will vibrate when a magnet is brought near.
Ehrlich 1, p. 161	vibrating lamp filament	5 H 40.23	The flexible filament of a light bulb will vibrate when a magnet is brought near if the bulb is powered by AC.
Disc 20-07	AC/DC magnetic contrast	5H40.23	A magnet is brought near a carbon lamp filament powered by DC, then AC.
Sut, E-140	AC driven sonometer	5H40.24	A sonometer tuned to resonate at a harmonic of 60 Hz is driven by passing AC through the wire while between the poles of a magnet.
PIRA 1000	dancing spiral	5H40.25	
F\&A, Ei-2	dancing spiral	5H40.25	Current is passed through a limp copper spring dangling in a pool of mercury causing it to dance.
Sut, E-150	dancing spring	5H40.25	A helix of fine wire hanging vertically into a pool of mercury contracts and breaks contact repeatedly.
D\&R, B-120	dancing Slinky	5H40.25	Pass a current through a small Slinky on the overhead and watch contraction.
PIRA 200	jumping wire	5H40.30	A wire is placed in a horseshoe magnet and connected to a battery. The wire jumps out of the magnet.
F\&A, Ei-12	magnetic force on a wire	5H40.30	A wire is placed in a horseshoe magnet and connected to a battery.
Bil\&Mai, p 292	jumping wire	5H40.30	A wire is place between the poles of a horseshoe magnet and connected to a battery. The wire will either jump into or out of the magnet depending on current direction in the wire.
F\&A, Ei-20	jumping wire	5H40.31	A large heavy wire clip rests in pools of mercury between the poles of a strong magnet.
Sut, E-132	aluminum bar in a magnet	5H40.32	An aluminum bar in a magnet has its ends in mercury. Short the mercury pools to a storage battery and the aluminum bar hits the ceiling.
Sut, E-141	electomagnetic circuit breaker	5H40.33	A wire hangs into a pool of mercury and between the poles of a "U" shaped magnet. As current is passed through the wire, it deflects out of the mercury and breaks the circuit.
Sut, E-131	lead foil in magnet	5H40.34	A strip of lead foil is supported vertically between the poles of a "U" magnet so it is free to move a few cm when a few dry cells are connected through a reversing switch.
PIRA 1000	jumping wire coil	5H40.35	
UMN, 5H40.35	jumping wire	5H40.35	A coil of wire wound around one pole of a horseshoe magnet jumps off when energized.
D\&R, B-020	jumping wire	5H40.35	Connect a battery to a wire hanging in a strong magnetic field.
Disc 20-01	jumping wire coil	5H40.35	Run twenty amps through a wire in a horseshoe magnet.
PIRA 1000	long wire in field	5H40.36	
UMN, 5H40.36	long wire in field	5H40.36	
UMN, 5H40.37PIRA LOCAL	take apart speaker	5H40.37	Take apart an old speaker saving the magnet assembly and the coil/cone assembly. Place the coil cone assembly over or into the magnet assembly. The coil/cone will jump out of the magnet when energized with a battery.
TPT 45(5), 274	Lorentz force - jumping wire with a twist	5H40.38	The Lorentz force on a current carrying wire situated in a magnetic field. Demonstrates a slow varying alternating current by means of an optical lever.
PIRA 500	current balance	5H40.40	
Sut, E-138	current balance	5H40.40	An open rectangle of aluminum wire is balanced between the poles of a "U" magnet until current is passed through the part perpendicular to the field.
Mei, 31-1.2	triangle on a scale in a magnet	5H40.42	A triangular loop of wire is hung from a spring scale in the mouth of a electromagnet and the current in the loop is varied.
AJP 53(12),1213	improved current balance	5H40.43	Improvements on the Sargent-Welch current balance increasing the range to 20 A.
AJP 45(6),590	modified current balance	5H40.43	Add molten Wood's metal contacts to the Sargent Welch current balance.
F\&A, Ei-5	current balance	5H40.43	The Welch current balance.
TPT 2(3),128	current balance	5H40.44	Design of a current balance with a rectangular coil on knife edges and stationary windings with parallel conductors.

Sut, E-152	Maxwell's rule
AJP 31(1), xiii	CERN floating wire pulley
PIRA 500	Barlow's wheel
F\&A, Ei-15	Barlow's wheel
Mei, 31-1.5	Barlow's wheel
Sut, E-136	Barlow's wheel
Hil, E-7g. 1	Barlow's wheel
Disc 20-05	Barlow's wheel
Mei, 31-1.6	Barlow's wheel
AJP 29(9),635	homopolar motor
AJP 70(10), 1052	homopolar motor
AJP 38(11),1273	conducting spiral
Sut, E-133	electromagnetic swing
Sut, E-134	magnetic grapevine
Sut, E-142	electromagnetic conical pendulum
PIRA 1000	Ampere's motor
Sut, E-143	Ampere's frame
Disc 20-02	Ampere's frame
Mei, 31-1.3	Ampere's motor
Mei, 31-1.4	Ampere's motor
Sut, E-135	Ampere's motor
Bil\&Mai, p 297	Ampere's motor
PIRA 200 PIRA 500 - Old UMN, 5H50.10	Torques on Coils model galvanometer model galvanometer model galvanometer
F\&A, Ej-2	galvanometer with permanent magnet
F\&A, Ej-1	elements of a galvanometer
Sut, E-145	d'Arsonval galvanometer
Bil\&Mai, p 299	model galvanometer
Disc 20-08	D'Arsonval meter
PIRA 1000	force on a current loop
UMN, 5H50.20	force on a current loop
Hil, E-7a	Joseph Henry
PIRA 1000	short and long coils in a field
UMN, 5H50.25	short and long coils in a field
UMN, 5H50.30	interacting coils
F\&A, Ei-6	interaction of flat coils

5H40.46 Demonstrates an electric circuit that can change shape to include the maximum possible magnetic flux. A heavy wire connects two metal boats floating in mercury troughs with electrodes at one end.
5H40.48 Shows a pulley for the "floating wire" technique of simulating a beam of particles in magnetic fields. The method can be adapted to measure the radius of curvature of a wire in a magnetic field.
5H40.50
5H40.50 A copper disk with current flowing from the center to a pool of mercury at the edge rotates when placed between the poles of a horseshoe magnet.
5 H 40.50 A potential is applied from the axle of a wheel to a pool of mercury at the rim while the wheel is between the poles of a magnet.
5 H 40.50 Current passes from the bearings of a copper wheel mounted vertically to a pool of mercury at the base. A "U" shaped magnet is mounted so the current is perpendicular to the magnetic field.
5H40.50 A picture of the standard vertical disc in a pool of mercury.
5 H 40.50 Current flows radially in a disc mounted between the poles of a magnet.
5H40.52 The copper disk in Barlow's wheel is replaced by a cylindrical Alnico magnet with the field parallel to its axis.
5H40.53 Variation of Barlow's wheel. An Alnico disk, magnetized in the direction of the axis, rotates around the axis when a current is made to flow from the axis to the rim.
5H40.53 An argument for the relativeistic viewpoint for a homopolar motor.
5H40.55 A conducting spiral is constructed as a simplified unipolar machine.
5H40.60 Switch the current direction in a wire loop swing mounted above one pole of a vertical bar magnet to build up a pendulum motion.
5H40.61 A very flexible wire suspended alongside a vertical bar magnet will wrap itself around the magnet when there is a current in the wire.
5H40.62 A vertical wire is suspended loosely from above a vertical solenoid into a circular trough of mercury. As current is passed through the wire, it rotates in the trough.
5H40.70
5 H 40.70 A coil on a reversing switch is placed between the poles of strong magnets.

5H40.70 A magnet is brought near and rotates a large current carrying loop.
5H40.71 A copper rod rolls along two electrified rails over ring magnets sandwiched between steel plates.
5H40.71 A wheel on electrified rails over a large vertical field produced by electromagnets rolls back and forth depending on the current direction. Picture.
5H40.71 As the current is reversed in a rod rolling horizontally on a track between the poles of a strong magnet, the direction of motion reverses.
5H40.71 An aluminum pipe rolls along two electrified rails that have flat ceramic magnets glued between them. The magnets must all have the same poles facing up.
5H50.00
5H50.10
5H50.10
5H50.10 A crude galvanometer with a large coil and magnet demonstrates the essentials.
5H50.10 An open galvanometer with a permanent magnet.
5H50.10 A large working model of a galvanometer.
5H50.10 A large model d'Arsonval galvanometer is constructed from a coil and a large "U" shaped magnet.
5H50.10 A crude galvanometer with a large coil and magnets demonstrates the essentials.
5H50.10 A large open galvanometer.
5H50.20
5H50.20
5H50.20 A rectangular loop of wire aligns perpendicular to a magnetic field. Reference: TPT 3(1),13.
5H50.25
5H50.25
5H50.30
5H50.30 A small free turning coil is mounted in a larger coil.

Demonstration Bibliography

Mei, 31-1.29	interacting coils
UMN, 5H50.30-	interacting rotating coils
PIRA LOCAL	
Mei, 31-2.11	coil in coils
D\&R, B-035	torques on plane coils
F\&A, Ei-3	interacting solenoids
PIRA 1000	dipole loop around a long wire
Sut, E-125	solenoid in a magnetic field
Sut, E-144	floating coil
PIRA 1000	spinning coil over a magnet
UMN, 5H50.45	spinning coil over a magnet
	INDUCTANCE
	Self Inductance
PIRA 500	inductor assortment
Hil, E-12a	inductor assortment
PIRA 500	back EMF - light bulb
UMN, 5 J10.20	back EMF
Mei, 31-3.6	back EMF
Sut, E-252	self inductance
Sut, E-254	back EMF
Sut, E-253	neon back EMF
Hil, E-12d	neon self induction
Sut, E-255	inductance and the wheatstone bridge
AJP 58(3),278	simulating ideal self-induction
PIRA 1000	back EMF - spark
Hil, E-12b	back EMF spark
Disc 21-01	back EMF spark
Sut, E-256	electromagnetic inertia
	LR Circuits
PIRA 200	RL time constant on scope
UMN, 5J20.10	RL time constant on scope
F\&A, Eo-11	RL time constant
F\&A, En-6	RL time constant
D\&R, B-315, B-	RL time constant
320	
F\&A, En-7	time constant of an inductive circuit
PIRA 200	lamps in series or parallel with an inductor
F\&A, En-5	current in an inductive circuit
Mei, 31-3.5	lamps in series and parallel with an electromagnet
Hil, E-12c	series lamps with an electromagnet
D\&R, B-310	current in an inductive circuit
Disc 21-03	lamps in parallel with a solenoid
Mei, 31-3.1	lights in series and parallel

July 2015
5H50.30 Two horizontal coaxial coils, the inner stationary and the outer larger coil suspended freely, interact when currents are passed through in like or opposite directions.
5H50.30 A tap switch energizes both coils at the same time. The coils are initially wired so that the current flows in the same direction in each coil.
5H50.31 A solenoid attached to a battery is mounted in a large open Helmholtz coils assembly. ALSO - three other demos with the Helmholtz coils. Pictures.
5H50.31 Flat and solenoid coils are suspended in the field of Helmholtz coils
5H50.32 Two heavy copper horizontal solenoids pivot in mercury cups about a vertical axis.
5H50.35
5H50.40 Suspend a solenoid and show the effects of a bar magnet on it.
5H50.41 A vertical coil energized by a flashlight cell floats in a large pan. Use a bar magnet to move the coil.
5H50.45
5H50.45
$5 \mathrm{J00.00}$
5 J 10.00
5 J 10.10
5J10.10 Sample inductors are shown.
5J10.20
5J10.20 A 20 Henry inductor energized by a 12 V battery lights a $120 \mathrm{~V} 71 / 2 \mathrm{~W}$ lamp when the circuit is opened.
5J10.20 When current is cut off in the primary, a meter in parallel shows an induction current in the primary.
5J10.20 Open the switch of a large electromagnet with a lamp in parallel.
5 J 10.21 A 4.5 V battery lights a neon bulb when the current to an inductor is disrupted.
5J10.22 The coils of a electromagnet are connected in parallel with a neon bulb.
5J10.23 A neon lamp across an inductor will glow on one side during charging and will flash on the other when the current is interrupted.
5J10.25 The galvanometer in a Wheatstone bridge is connected after an inductor has reach steady state or at the same time the current is started in the inductor.

5J10.26 A nulling circuit compensates for the steady state current in a coil.
5 J 10.30
5J10.30 A one inch spark is produced when the switch of a large electromagnet is opened.
5J10.30 Disconnect a 6 V battery from a 2000 turn coil to get a spark, enhance with an iron core.
5J10.32 A spark will jump across an almost closed loop of wire rather than go around when attached to a Leyden jar.
5320.00

5J20.10 Show the RL time constant on a scope.
5J20.10 The current and voltage of a slow time constant RL circuit are displayed on a dual trace storage oscilloscope.
5J20.10 A plug in circuit board with a make before break switch for showing slow RL time constants on the oscilloscope.
5J20.10 The RL time constant is shown on a scope.
5J20.10 Show RL time constant with a projection meter or oscilloscope.
5J20.11 Compare the time constant of an inductor using different cores on an oscilloscope.
5J20.20 Hook light bulbs in series with a large electromagnet.

5J20.20 Light bulbs across and in series with a large electromagnet show the current in an inductive circuit.
5J20.20 Two lamps are used to indicate voltage across and current through a large electromagnet.
5J20.20 Light bulbs are hooked up in series with a large electromagnet.

5J20.20 Light bulbs across and in series with a large inductor show the current in an inductive circuit. Also flash due to back EMF when switch is opened.
5J20.20 Apply 110 V to a large solenoid with incandescent and neon lamps in parallel. The neon lamp flashes on the opposite side on discharge.
5J20.21 A circuit with a 5 H inductor has neon lamps in series and in parallel.

Demonstration Bibliography	
Mei, 33-5.1	inductor characteristics
Sut, E-257	RL time constant
	RLC Circuits - DC
PIRA 500	RLC ringing
UMN, 5J30.10	RLC ringing
F\&A, Eo-14	characteristic times in a parallel
F\&A, En-9	ringing circuit
F\&A, Eo-13	characteristic times in a series RLC
Hil, A-8c	RLC ringing
Disc 21-05	damped RLC oscillation
Mei, 33-1.1	RLC ringing
Sut, E-267	RLC ringing
Sut, E-266	RLC ringing
Sut, A-10	singing arc
	ELECTROMAGNETIC
	INDUCTION
	Induced Currents and Forces
UMN, 5K10.10	sliding rail
F\&A, Eq-1	sliding rail inductor
F\&A, Eq-2	mu metal shield
F\&A, Eq-3	mu metal shield and insulator
Sut, E-218	motional EMF
PIRA 500	wire, magnet, and galvanometer
Sut, E-215	moving wire with magnet
Disc 20-11	wire and magnet
PIRA 1000	tape head model
Mei, 31-1.1	swinging bar in a magnet
AJP 49(1),90	coil pendulum in a magnet
AJP 28(8),745	measuring magnetic induction
PIRA 200	induction coil with magnet, galvanometer
UMN, 5K10.20	induction coil with magnet, galvanometer
AJP 48(8),686	big coil
AJP 72(3), 376	induction coil, magnet, PC interface
AJP 70(4), 424	induction coil, magnet, PC interface
AJP 70(6), 595	induction coil, magnet, PC interface
F\&A, Ek-3	galvanometer, coil and magnet
F\&A, Ek-3	direction of induced currents
Sut, E-216	induction coil and magnet

5J20.25 A bulb in parallel with a coil does not burn when powered by dc, but does when coupled to a high frequency source.
5J20.30 Substitute an inductor and a resistor of the same R in a circuit that lights a neon bulb.
5330.00

5 J 30.10
5J30.10 The voltages across the L and C of a slow RLC circuit are displayed on a dual trace storage oscilloscope while the circuit is energized and de-energized.
5J30.10 Slow parallel RLC ringing on an oscilloscope.
5J30.10 Ringing from an RLC circuit is shown on an oscilloscope.
5J30.10 Slow series RLC ringing on an oscilloscope.
5J30.10 A circuit for showing LC ringing on a oscilloscope.
5J30.11 Discharge a capacitor through a series RLC circuit. Vary the capacitance and resistance.
5J30.15 A motor driven commutator switches a circuit from charging to discharging so RLC ringing decay can be observed on an oscilloscope. Picture, Diagram, Construction details in appendix, p. 1334.
5J30.20 A DC circuit with RC charging and RLC discharging.
5J30.21 A circuit to charge a capacitor either with or without an inductance in series.

5J30.30 A ordinary carbon arc is shunted by a series LC circuit.
5K00.00

5K10.00
5K10.10
5K10.10 Slide a brass bar riding on two brass rails out of the mouth of a horseshoe magnet and display the current on a galvanometer.
5K10.10 Slide a bar on rails attached to a galvanometer through the mouth of a horseshoe magnet.
5K10.11 The sliding rail with a mu-metal shield gives the same result.
5K10.12 The sliding rail with an insulated mu metal shield still gives the same result.
5K10.13 Directions on making an apparatus for demonstrating motional EMF. Reference: Am. Phys. Teacher, 3,57,1935.
5K10.15
5K10.15 A straight wire connected to a galvanometer is moved rapidly through the poles of a strong magnet.
5K10.15 Move a wire connected to a galvanometer in and out of a horseshoe magnet.
5K10.16
5K10.17 A bar connected to a galvanometer is swung in and out of a permanent magnet. ALSO - two other demonstrations.
5K10.18 A 1 second pendulum with a coil for a bob swings with small amplitude within a uniform magnetic field. All sorts of variations demonstrating forced, free, and damped oscillations are mentioned.
5K10.19 A rectangular coil in a magnetron magnet is rotated on one side and the other is suspended from a balance. Change the current in the coil and measure the force with the balance.
5K10.20 A magnet is moved in and out of a coil of wire attached to a galvanometer.
5K10.20 A magnet is moved in and out of a coil of wire attached to a galvanometer.
5K10.20 Make the coil large enough for the instructor to walk, run, etc. through.
5K10.20 A magnet oscillating through a coil attached to a PC interface. Use this to investigate Lenz's law and the conservation of energy.
5K10.20 A magnet oscillating through a coil attached to a PC interface. Induction or damping can be accurately plotted.
5K10.20 The observed voltage is compared to that predicted by simple calculations when treating the magnet as an ideal dipole and the coil as having infinitesimally thin windings.
5K10.20 Move a magnet through a coil connected to a galvanometer.
$5 K 10.20$ Use each end of a magnet with a coil and galvanometer.
5K10.20 Move a bar magnet in and out of a coil connected to a galvanometer. Turn the coil with a fixed magnet.

Demonstration Bibliography

Hil, E-8a	induction coil, magnet, galvanometer
D\&R, B-205	galvanometer, coil, and magnet
Bil\&Mai, p 304	coil, magnet, and compass
Ehrlich 1, p. 165	galvanometer, coil and magnet
PIRA 1000	10/20/40 coils with magnet
Disc 20-12	10/20/40 coils with magnet
Mei, 31-2.1	string and copper induction coils
D\&R, B-207	coil, magnet, and voltmeter
AJP 28(1),81	multiple induction coils
Sut, E-217	number of turns and induced EMF
PIRA 500	coil and lamp, magnet
UMN, 5K10.25	coil and lamp, magnet
Ehrlich 2, p. 149	coil and LED, magnet
Disc 20-17	inductive coil with lamp
TPT, 36(6), 370	improved flashbulb demonstration of Faraday's law
Sut, E-224	induction effects of hitting the bar
PIRA 200	induction with coils and battery
UMN, 5K10.30	induction with coils and battery
F\&A, Ek-4	galvanometer, coils and battery
Mei, 31-2.2	induction coils and battery
$\begin{aligned} & \text { D\&R, B-220, B- } \\ & 350 \end{aligned}$	induction with coils and battery
Disc 20-20	two coils
Sut, E-219	induction coils and battery
Sut, E-220	induction coils and battery
Mei, 31-2.3	induction coils and battery
AJP 49(6),603	discovering induction
Mei, 31-2.4	ramp induction coils
Mei, 31-3.7	changing the air gap
Mei, 32-3.24	current from changing air gap
PIRA 1000	induction coils with core
F\&A, Ek-7	iron core in mutual inductance
Sut, E-221	insert core
Mei, 31-3.2	two coils on a toroid
Mei, 31-3.3	large mutual inductance
PIRA 1000	current coupled pendula

July 2015
Electricity and Magnetism
5K10.20 A many turn coil attached to a projection galvanometer is flipped over or a magnet is thrust through.
5K10.20 Move a magnet through a coil or coil through a magnet while coil is connected to a galvanometer
5K10.20 Move a magnet through a coil while the leads of the coil are wrapped 4 times around a compass.
5K10.20 Move a magnet through a coil that is connected to a galvanometer.
5K10.21
5K10.21
Coils of 10, 20, and 40 turns are attached to a galvanometer.
5K10.22 A magnet is passed in and out of a copper coil hooked to a millivoltmeter and string loop hooked to an electrometer.
5K10.22 A plastic tube has an 80 turn coil wrapped on it. Hook this to a voltmeter, place the magnets in the tube, and shake. Observe the meter readings.
5K10.23 Wind coils 1:2:4:4:4 with the 2nd and 4th in the opposite sense, all in series. Use with a single pole, then use two poles of a horseshoe magnet in two adjacent coils.
5K10.24 Combine coils of 5 cm diameter with 1,2,5,10,15 turns in various ways to show induced EMF proportional to number of turns.
5K10.25
5K10.25
5K10.25 Move a magnet into and out of a coil connected to two different color LED's which are installed with opposite polarities. An upgraded version of this would use a single bi-colored LED.
5K10.25 Swing a coil attached to a lamp through the gap of a horseshoe magnet.
5K10.25 A coil, which is connected to a flashbulb, is inserted between the poles of a large permantent magnet and rapidly pulled out. Current induced by the rapid change in the flux of the magnetic field through the coil fires the flashbulb.
5K10.26 Put a 600 turn coil connected to a galvanometer around a soft iron bar and hit the bar while oriented parallel and perpendicular to the Earth's field.

5K10.30 Attach one coil to a galvanometer, another to a battery and tap switch. Use a core to increase coupling.
5K10.30 Two coils face each other, one attached to a galvanometer, the other to a battery and tap switch. Coupling can be increased with various cores.
5K10.30 Two coils are in proximity, one attached to a galvanometer, the other to a switch and battery
5K10.30 Change the position of the secondary as the current is interrupted in the primary.
5K10.30 Primary and secondary coils, one attached to a galvanometer, the other to a battery and switch. Try various core sizes to increase coupling.
5K10.30 Changing the current in one coil causes a current in the other.
5K10.31 Two coils are wound on an iron ring, one connected to a galvanometer, the other to a battery and switch.
5K10.32 Two coils, one connected to a galvanometer, the other to a battery through a rheostat to allow continuous variation of current.
5K10.33 The voltage to a long three layered solenoid is interrupted with various layers active and various sensor loops inside.
5K10.36 Repeat the original Faraday experiment and no one realizes the galvanometer twitch is meaningful.
5K10.37 A galvanometer detects a steady current from one Helmholtz coil as a second coil is excited with a voltage ramp.
5K10.38 Change the air gap between two coils and show the induced voltage.
5K10.39 Change the size of the air gap in an electromagnet and observe a transient change in the current energizing the coil.
5K10.40
5K10.40 The effect of an iron core is demonstrated as a battery is connected to the primary.
5K10.41 While one coil has a continuous current, insert and remove cores of iron, copper, and brass.
5K10.42 Two coils wound on opposite sides of a toroidal core show inductive coupling when current is switched in one coil.
5K10.45 Change the current steadily in a large transformer and watch the voltage in the secondary.

Demonstration	Bibliography
Disc 20-16	current coupled pendula
F\&A, Ek-5	time integral of induced EMF
TPT, 36(7), 416	modulated coil
Bil\&Mai, p 311	modulated coil
AJP 43(6),555	induction on the air track
AJP 53(1),89	HO car in a magnetic tunnel
PIRA 500	Earth inductor
F\&A, Ek-6	Earth inductor
Disc 20-13	Earth coil
Sut, E-222	Earth inductor
AJP 29(5),329	rotating coil magnetometer
AJP 44(9),893	Earth inductor integrating amp
AJP 57(5),475	Earth inductor with VFC
AJP 52(3),279	Earth inductor on oscilloscope
AJP 55(4),379	Earth inductor integrator
AJP 29(5),333	rotating coil magnetometer
Sut, E-223	Earth inductor compass
PIRA 1000	jumping rope
UMN, 5K10.65	jumping rope
TPT 37(6), 383	Earth inductor jump rope
D\&R, B-210, B405	Earth inductor jump rope
Bil\&Mai, p 306	Earth inductor jump rope
PIRA 1000	What does a voltmeter measure?
UMN, 5K10.70	What does a voltmeter measure?
AJP 50(12),1089	what do voltmeters measure?
AJP 49(6),603	paradox
AJP 51(12),1067	what does a voltmeter measure letter
AJP 37(2),221	Faraday's Law teaser
AJP 38(3),376	Faraday's Law teaser - addendum
AJP 45(3),309	induced current liquid crystal
AJP 41(1),120	Faraday's homopolar generator
Mei, 31-2.12	homopolar generator
AJP 56(9),858	radial homopolar generator
AJP 43(4),368	Rogowski coil
AJP 45(11),1128	magnetic wheel
Mei, 31-1.24	Rogowski coil

July 2015
Electricity and Magnetism
5K10.48 Interconnected coils are hung as pendula in the gaps of two horseshoe magnets. Start one swinging and the other swings.
5K10.50 The induced current from a coil is displayed on a storage oscilloscope while the current is changed at various rates in a second coil.
5K10.51 A small coil with core is modulated with the output from a radio after it is placed near the head of a tape player.
5K10.51 A 14 turn coil is connected to the headphone output of a radio, tape player, or CD player. Another identical coil connected to a mini amplifier with speaker can pick up the transmission. Use an iron core to enhance the effect.
5K10.52 A loop of wire on an air glider passes through a magnet. Show on a scope.
5K10.55 The induced EMF is observed on an oscilloscope as a brass wheeled train car passes along a track through a large magnet.
5K10.60
5K10.60 The deflection of a ballistic galvanometer from a flip coil is compared to a standard flux.
5K10.60 Flip the standard Earth coil attached to a galvanometer.
5K10.61 Several variations. A large ($1.5 \mathrm{~m} \times 6 \mathrm{~m}$) single wire loop, collapse a flexible loop on many turns, a long flexible wire swung like a jump rope are attached to a galvanometer with the damping turn removed. ALSO the commercial loop to a ballistic galvanometer.
5K10.62 Orient a motor driven coil in various ways in the Earth's field while the output is displayed on an oscilloscope.
5K10.62 Replace the ballistic galvanometer with an integrating amp (circuit given).
5K10.62 A voltage-to-frequency converter replaces the ballistic galvanometer in the Earth inductor demonstration.
5K10.62 Subsititute an oscilloscope for the galvanometer and look at the induced voltage versus time.
5K10.62 Replace the galvanometer with an integrator and voltmeter.
5K10.63 Display the signal from a motor driven coil on an oscilloscope.
5K10.63 A motor driven coil of several hundred turns gives a different galvanometer deflection depending on the orientation.
5K10.65
5K10.65
5K10.65 Play "jump rope" with a long wire attached to an oscilloscope or galvanometer.
5K10.65 Play "jump rope" with a long wire attached to an oscilloscope or galvanometer.
5K10.65 Play "jump rope" with a 50 foot extension cord attached to a galvanometer. The cord must have an East-West alignment.
5K10.70
5K10.70 Same as AJP 50(12),1089.
5K10.70 Two identical voltmeters connected at the same points in a circuit around a long solenoid give different readings.
5K10.71 Feynman - "When you figure it out, you will have discovered an important principle of electromagnetism".
5K10.71 Add a third voltmeter that can be moved for continuously varying readings.

5K10.71 Measure the voltage between two points at the end of an electromagnet through different paths.
5K10.71 Clears up ambiguities in AJP 37(2),221.
5K10.78 Liquid crystals placed over laminated copper conductors show heating of various configurations
5K10.80 Turn a large aluminum wheel by hand with the edge of the wheel and a pickoff brush between the poles of a magnet. Show the induced current on a galvanometer.
5K10.80 A homopolar generator shows the relation between electric and magnetic fields. Not the most obvious demonstration.
5K10.81 A variation on the axial field homopolar motor (Barlow's wheel).
5K10.85 A direct demonstration of Ampere's circuital law using a flexible toroidal coil.

5K10.85 Induced current from a unipolar machine using a magnetic wheel.
5K10.85 A flexible coil hooked to a ballistic galvanometer is used to give a direct measurement of the magnetic potential between two points.

Demonstration Bibliography	
Mei, 31-1.23	Ampere's law
Mei, 31-1.7	rocking plates
	Eddy Currents
PIRA 200	Eddy currents in a pendulum
UMN, 5K20.10	pendulum in a big electromagnet
AJP 30(6),453	Eddy current pendulum
F\&A, El-3	Eddy currents in a pendulum
TPT 25(4), 223	Eddy current pendulum
Ehrlich 1, p. 166	Eddy current pendulum
Disc 20-24	Eddy current pendulum
Sut, E-227	magnetic brake
Hil, E-8d. 2	Eddy current pendulum
D\&R, B-285	magnetic brake
PIRA 1000	Eddy damped pendulum
UMN, 5K20.15	Eddy damped pendulum
F\&A, El-2	Eddy damped pendulum
PIRA 1000	falling aluminum sheet
UMN, 5K20.20	falling aluminum sheet
F\&A, El-4	falling aluminum sheet
AJP 35(7),iv	Eddy current brake
ref.	plates and magnets, the Osheroff demo.
Sprott, 5.2	plates and magnets, the Osheroff demo.
TPT 38(1), 48	
	plates and magnets
TPT 35(4), 212	plates and magnets
TPT 37(5), 268	plates and magnets
TPT 43(4), 248	plates and magnets
Bil\&Mai, p 310	plates and magnets
PIRA 200	magnets in Eddy tubes
UMN, 5K20.25	magnets and Eddy tubes
D\&R, B-280	Eddy current tubes
AJP 74(9), 815	Eddy current tubes
AJP 73(1), 37	Eddy current tubes
AJP, 75 (8), 728	Eddy current tube analysis
Disc 20-26	Eddy current tubes
PIRA 200	Faraday repulsion coil
PIRA 1000 - Old	Faraday repulsion coil

5K10.85 Use the Rogowski coil to examine the magnetic field produced by current in a single wire, or two wires of parallel and opposing current. Picture, theory.

5K10.99 Demonstrates some difficult concepts of flux linkages using sheets of metal instead of wires.
5K20.00
5K20.10 A copper sheet and comb, ring and broken ring, are swung through a large electromagnet.
5K20.10 Pendula of solid and comb-like copper plates, solid and slit copper rings, are swung through a large electromagnet.
5K20.10 Apparatus Drawings Project No. 29: Large electromagnet accessories, one of four. Plans for a large eddy current pendulum to go on the large electromagnet from No. 13.
5K20.10 A copper sheet and comb, ring and broken ring, are swung through a large electromagnet.
5K20.10 Pendulums of solid copper, sliced copper, aluminum, and Lucite swing through the poles of a large permanent horn magnet.
5K20.10 A bar magnet is tied to a string and swung as a pendulum over a sheet of copper.
5K20.10 Copper, wood, etc. bobs are swung in a large permanent magnet.
5K20.11 A heavy copper disk swings as a pendulum between the poles of an electromagnet.
5K20.11 A pendulum with a copper plate bob is swung through a big electromagnet.
5K20.11 Solid and slotted copper or aluminum sheets are swung through the poles of a permanent or electromagnet.
5K20.15
5K20.15 A magnet pendulum bob is swung over copper, aluminum, and stainless plate.
5K20.15 A bar magnet suspended as a pendulum is damped as it swings over a copper plate.
5K20.20
5K20.20 An aluminum sheet is dropped through the poles of a large horseshoe magnet.
5K20.20 A strip of aluminum sheet is allowed to fall between the poles of a large Alnico magnet.
5K20.22 Fasten a large aluminum disk to a $1 / 4 \mathrm{hp}$ motor and then bring a magnetron magnet to the edge of the disk to slow the motor down.
5K20.24 A demo direct from a presentation by Nobel Prize recipient Doug Osheroff. Drop a large diameter neodymium magnet on a copper plate. Then cool the plate with liquid nitrogen and see what happens.
5K20.24 A neodymium magnet dropped onto a copper plate cooled in liquid nitrogen bounces upward.
5K20.24 Demonstrating Lenz's law with aluminum and wooden plates on an incline with strong cylindrical magnets.
5K20.24 Lenz's law with money and a neodymium magnet. Use aluminum, copper, nickel, silver, and zinc coins.
5K20.24 Float an aluminum can in water. Turn and brake it with a neodymium magnet on a string.
5K20.24 Cylindrical neodymium magnets rolling down an aluminum incline.
5K20.24 Cylindrical neodymium magnets and coins are rolled down an aluminum incline at the same time.
5K20.25 Drop a magnet and a dummy in glass and aluminum tubes, then switch. The magnet in aluminum falls slowly.
5K20.25
5K20.25 Drop a powerful magnet through copper and aluminum tubes.
5K20.25 A calculation is presented that quantitatively accounts for the terminal velocity of a magnet falling through a copper or aluminum tube.
5K20.25 Dimensional analysis is used to analyze the demonstation of the magnet falling through the copper tube.
5K20.25 Revisits a time of fall analysis of a magnet through a conducting tube taking into account the effect of thickness of the tube.
$5 K 20.25$ Drop a magnet and a dummy in glass and aluminum tubes, then switch.
5K20.26
5K20.26
5K20.26 Pull a light bifilar suspended aluminum ring with a magnet.

Demonstration Bibliography

D\&R, B-280	Faraday repulsion coil
Ehrlich 1, p. 165	Faraday repulsion coil
Disc 20-19	Faraday repulsion coil
PIRA 200 - Old	jumping ring
UMN, 5K20.30	jumping ring
F\&A, Em-12	jumping ring
Sut, E-236	jumping ring
D\&R, B-260, B-	jumping ring on an Elihu
270	Thompson apparatus
D\&R, B-265	jumping ring on an Elihu
Sprott, 5.3	Thompson apparatus jumping ring
AJP 69(8), 911	jumping ring analysis
Disc 20-18	Thompson's flying ring
AJP 39(3),285	jumping ring analysis
AJP 54(9),808	jumping ring analysis
AJP 68(3), 238	jumping ring analysis
Mei, 31-2.9	jumping ring analysis
F\&A, El-5	frying egg
Sut, E-237	boil water on the vertical transformer
D\&R, B-260	boiling water on a transformer
PIRA 500	Eddy current levitator
UMN, 5K20.40	Eddy current levitator
F\&A, El-1	Eddy current levitation
D\&R, B-290	Eddy current levitator
AJP 31(12),925	electromagnetic levitator
Mei, 31-2.22	large levitator
PIRA 1000	Arago's disk
AJP 28(8),748	Arago's disk
Sut, E-226	Arago's disk
Hil, E-8d. 1	rotating magnet
D\&R, B-287	rotating an aluminum plate with a magnet
Disc 20-25	Arago's disk
AJP 47(5),470	rotating vertical disc
PIRA 1000	rotating ball
F\&A, Em-13	rotating ball
Mei, 31-2.18	spinning ball on a dish
D\&R, B-275	shaded pole induction motor
AJP 45(11),1020	magnetic stirrer demonstrations

Mei, 31-2.19 Eddy current motor

July 2015
Electricity and Magnetism
5K20.26 A magnet is inserted and withdrawn from a solid and split ring on a bifilar suspension. It is possible to "pump" the solid ring.
5K20.26 Move the pole of a bar magnet in and out of a coil of wire on a bifilar suspension.
5K20.26 Thrust the pole of a magnet in and out of a copper ring on a bifilar suspension.
5K20.30 A solid aluminum ring on the vertical transformer jumps while a split ring does not.
5K20.30 Aluminum rings, one slit, the other solid, are placed around the core of a coil and the the coil is energized.
5K20.30 An aluminum ring jumps off the iron core of a vertical inductor.
5K20.30 Solid and split aluminum rings on the vertical transformer.
5K20.30 Solid, split, and multiple rings on an Elihu Thompson coil.

5K20.30 Multiple rings of various cross sections on an Elihu Thompson coil.

5K20.30 A coil of wire around an iron core is energized to propel a ring of aluminum up to the ceiling.
5K20.30 A jumping ring apparatus powered by a capacitor bank is needed for a Lenz's law analysis.
5K20.30 A copper ring levitates, an aluminum ring flies off, a slit ring does nothing, and a cooled ring flies higher.
5K20.31 An analysis of the role of phase differences in the levitating ring demonstration.
5K20.31 An analysis of the role of phase differences in the levitating ring demonstration.
5K20.31 Measurements of the phase delay of the current and force on a floating ring were performed for phase angles from 12 degrees to 88 degrees.
5K20.31 Be careful how you analyze the jumping ring. References.
5K20.35 A copper sheet fitting over the core of a large solenoid gets hot enough to fry an egg.
5K20.36 Boil water in a ring shaped trough on the vertical transformer.

5K20.36 Steam from a water filled ring on an Elihu Thompson coil.
5K20.40
5K20.40
5K20.40 A strong ceramic magnet is levitated over a spinning aluminum disc.
5K20.40 A magnet is levitated over a spinning aluminum disk.
5K20.41 Plans for an electromagnetic levitator that lifts a 18 " dia. 1/16" thick aluminum pan. Weighs 100 lbs , requires only 400 W at 110 V .
5K20.41 Directions for building a large levitator. Diagrams, Construction details in appendix, p. 1332.
5K20.42
5K20.42 Support the horseshoe magnet by a light stranded string and "wind up" the string to get a high spin rate.
5K20.42 A magnet suspended above a rotating horizontal copper disk will rotate.
5K20.42 A magnet needle over a rotating copper disk.
5K20.42 Place an aluminum plate in a pie pan and float in water. Rotate a strong magnet over the plate and the plate will start to spin. Try different magnets and different aluminum plate thicknesses.
5K20.42 A bar magnet suspended above a spinning aluminum disc will start to rotate.
5K20.43 A magnet hung by a quadrafilar rolling suspension near a spinning aluminum disk shows both repulsive and retarding forces.
5K20.50
5K20.50 A hollow aluminum ball rotates in a watch glass atop a shaded pole transformer.
5K20.50 A half disc of sheet aluminum placed on an AC excited coil produces a rotating magnetic field that causes a ball to spin.
5K20.50 A hollow copper sphere rotates in a beaker atop a shaded pole transformer.
5K20.51 Several eddy current demos including a paradox: place a steel ball on a stirrer and start it up, the ball rolls in one direction, but backwards when placed in while the stirrer is on.
5K20.52 A metal 35 mm film canister spins when mounted to one side of the pole of an electromagnet.

Demonstration Bibliography

Mei, 31-2.8	rotating aluminum disc
Mei, 31-2.6	spinning aluminum discs
Mei, 31-2.7	rotating aluminum disc
AJP 46(7),729	one-piece Faraday generator
AJP 40(2),330	magnetic curl meter
Sut, E-225 F\&A, El-6 Mei, 31-2.5	Eddy currents in Barlow's wheel money sorter rotating cores in magnet
PIRA 1000	electromagnetic can breaker
Sprott, 5.4	electromagnetic can breaker - can crusher
Disc 20-27	electromagnetic can breaker
PIRA 500	wind a transformer
PIRA 1000	salt water string
F\&A, Em-10	single turn transformer
PIRA 200	dissectible transformer/light bulb
PIRA 500 - Old	dissectible transformer/light bulb
F\&A, Em-5	dissectible transformer
Disc 20-23	transformers
Sut, E-240	toy transformer
Sut, E-246	telephone and radio transformers
AJP 54(6),528	magnetic losses in transformers
Hil, E-11c	transformers
D\&R, B-435	transformers
PIRA 1000	vertical transformer
UMN, 5K30.30	vertical transformer
Sut, E-235	vertical transformer
Hil, E-11d Ehrlich 1, p. 164	Thompson vertical transformer vertical transformer
Disc 20-22	vertical primary and secondary coils
Sut, E-238	autotransformer
PIRA 1000	light underwater
UMN, 5K30.35	light underwater
F\&A, Em-7	light under water
D\&R, B-425	light underwater
PIRA 1000	weld a nail
UMN, 5K30.40	weld a nail

July 2015
5K20.55 An aluminum disc rotates when held asymmetrically over a vertical solenoid powered by line AC unless shielded by an aluminum plate.
5K20.56 Two overlapping rotating aluminum discs in parallel planes on the same rigid support rotate in different directions when inserted into a magnetic field. Needs a Diagram.
5K20.57 A thin aluminum disc hung vertically between the poles of a vertically mounted horseshoe magnet rotates when the magnet is rotated.
5K20.58 Instead of a conducting disk rotating in an axial magnetic field, the disk is replaced by a cylindrical permanent magnet that supplies its own magnetic field.
5K20.59 Faraday's "electromagnetic rotation apparatus" shows a magnet in a conducting fluid rotating continuously when suspended in a region of distributed current density. This device measures the torque on such a magnet.
5K20.60 Attach the Barlow's wheel to a galvanometer and turn by hand.
5K20.62 Silver and ersatz quarters are dropped through a large magnet.
5K20.63 A copper loop, solid iron cylinder, and laminated iron cylinder, are each rotated while suspended in a magnetic field.
5K20.65
5K20.65
A large capacitor discharged into a low impedance coil of a few turns produces a magnetic field strong enough to crush or break an aluminum soft drink can.
5K20.65 A large pulse of induced current in a soda can blows it apart.
5K30.00
5K30.10
5K30.13
5K30.14

5K30.20
5K30.20
5K30.20
5K30.20
5K30.21
Various cores are interchangeable with the Leybold transformer. Many variations with the Leybold transformer.
Place a 110 V lamp in parallel with the input and a 6 V lamp on the output of a step down transformer. Then place an auto taillight lamp in series with the input and a 10 amp fuse wire across the output and increase the voltage with an autotransformer until the fuse melts.
5K30.22 Using commercial transformers in demonstrations.
5K30.24 Additional cores are placed in the Leybold transformer to demonstrate the magnetic potential drop.
5K30.25 High voltage, low voltage, and demonstration transformers are shown.
5K30.25 Voltage and current of primary and secondary coils shown with light bulbs in series and as secondary load.
5K30.30
5K30.30 Secondary loops attached to light bulbs are placed over the core of a vertical transformer.
5K30.30 Directions for making a vertical transformer using 110 VAC in the primary. Includes directions for step up and step down secondaries.
5K30.30 A vertical transformer is shown with a lot of accessories.
5K30.30 A secondary coil attached to a light bulb is placed over the core of a vertical transformer.
5K30.30 The vertical transformer is used with two coils, one with many turns powers a 110 V lamp, and the other with fewer turns powers a flashlight lamp.

5K30.34 A variation of the vertical transformer with 400 turns tapped every 50 turns and connected to 110 V AC at 200 turns. Explore with a light bulb. See L-99.

5K30.35
5K30.35 The secondary coil and light bulb are placed in a beaker of water and held over the core of a vertical transformer.
5K30.35 A waxed coil and light bulb are placed in a beaker of water over a vertical primary.
5K30.35 A secondary coil and light bulb are placed in a beaker of water and held over the core of an Elihu Thompson coil.
5K30.40
5K30.40 Two nails attached to the secondary of a large low voltage transformer are welded together upon contact.

Demonstration Bibliography

F\&A, Em-4	large current transformer
Sut, E-239	dissectible transformer - welding
D\&R, B-445	weld a nail
AJP 36(1), x	simple spotwelder
ref.	Jacob's ladder
F\&A, Em-11	induced EMF
Sut, E-234	exploratory coil
Mei, 31-3.4	mutual inductance on a scope
Sut, E-243	magnetic shunt
PIRA 1000	reaction of a secondary on primary
F\&A, Em-2	primary current change with secondary load
Sut, E-241	reaction of secondary on primary
Sut, E-242	reaction of secondary on primary
F\&A, Em-9	shocker
F\&A, Em-6	phony health belt
Mei, 33-3.2	resonant Leyden jar detector
Hil, A-8a	Leyden jar and loop
	Motors and Generators
PIRA 1000	DC motor
UMN, 5K40.10	DC motor
F\&A, Ei-19	DC motor
Sut, E-147	DC motor
Sut, E-146	DC motor
D\&R, B-075	DC motor
Bil\&Mai, p 308	DC motor
Ehrlich 1, p. 162	DC motor
Disc 20-09	DC motor
F\&A, Eq-5	DC motor and lamp
F\&A, Eq-6	DC series and parallel motors
PIRA 1000	Faraday motor
AJP 31(1),42	Faraday motor
Hil, E-7e	Faraday motor
Disc 20-14	Faraday disc
Hil, E-8c	simple motor
Sut, E-232	simple speed control for DC motor
PIRA 500	$D C$ \& $A C$ generators on a galvanometer
UMN, 5K40.20	DC \& AC generators on a galvanometer
Sut, E-228	motor waveform
PIRA 500	DC \& AC generators on a scope

July 2015
K30.40 Nails connected to the secondary of a large current transformer are welded together
5K30.40 Two "L" shaped laminated iron cores with interchangeable coils are used to step down 110 V AC to melt an iron wire.
5K30.40 Nails connected to the secondary of a step-down transformer (6.3 volts at 10.6 amps) are welded together on contact.

5K30.43 Modify a heavy duty soldering iron to function as a small spotwelder.
5K30.50 see 5D40.10
5K30.51 An oscilloscope is connected to a wire in a gap of a transformer.
5K30.52 Explore an alternating magnetic field with an exploratory coil of many turns of No. 30 wire connected to a 6 V lamp.
5K30.53 The relationship between the current in one coil and the voltage in another is shown as a Lissajous figure on an oscilloscope. Diagram.
5K30.54 An "E" core has two windings: 110V primary on one outer, and secondary with a lamp on the middle. Bridge a yoke over the windings and the lamp lights but when put over all three it doesn't.

5K30.60 A light bulb in series with the primary brightens as the load on the secondary increases.
5K30.60 Connect a 100 W lamp in series with the primary and increase the load on the secondary to light the lamp.
5K30.61 Vary the load on the secondary and the coupling between the primary while observing the current in the primary.
5K30.81 A vibrator switches the current in a primary and the victim holds onto the leads of the secondary while the coupling is increased.
5K30.84 A weird antique health belt.
5K30.90 One Leyden jar with a loop of wire is driven with a induction coil, another similar arrangement is used as a detector.
5K30.90 When a spark jumps from a loop of wire to a Leyden jar, a small spark will jump in a similar device close by.
5K40.00
5K40.10
5K40.10 A coil is mounted between two magnetron magnets.
5K40.10 A large open coil is mounted between the poles of magnetron magnets to make a DC motor.
5K40.10 A circular loop of heavy wire between two solenoids with iron cores.
5K40.10 A coil in a "U" shaped magnet with a simple commutator.
5K40.10 Simple motor construction using a D battery and single magnet.
5K40.10 A simple motor construction using D batteries and a single neodymium magnet.
5K40.10 A simple motor constructed from a "D" cell battery, disc magnet, paper clips, and some varnish coated copper wire.
5K40.10 A large model DC motor.
5K40.12 A DC motor has a light bulb in series with the armature to indicate current flow as the motor starts, comes up to speed, and is under load.
5K40.13 A DC motor on a board allowing armature and field to be connected in series or parallel.
5K40.15
5K40.15 Apparatus Drawings Project No.33: A rod magnet sticks up through a pool on mercury and a parallel conducting copper wire is free to move in a circle around the magnet.
5K40.15 A model of the first electric motor developed by Faraday.
5K40.15 Spin a copper disc between the poles of a horseshoe magnet with brushes at the center and edge of the disc connected to a galvanometer.
5K40.18 A two coil, two magnet assembly illustrates simple generator principles.
5K40.19 A circuit to change speed and direction of a small DC motor.

5K40.20

5K40.20 A coil mounted between two magnetron magnets is equipped with both commutator and slip rings.
5K40.21 The armature of a generator is rotated 10 degrees at a time to a ballistic galvanometer and the result of 36 observations are plotted.

UMN, 5K40.25	DC \& AC generators on a scope
AJP 49(7),701	AC and DC dynamo demonstration
Mei, 31-2.15	model generator
Mei, 31-2.10	light the bulb with a coil
Mei, 31-2.14	generator on the overhead
Bil\&Mai, p 313	AC motor
PIRA 200	motor/generator
UMN, 5K40.40	motor/generator
F\&A, Eq-4	motor generator
Mei, 31-2.13	motor/generator
Sut, E-229	AC and DC generators
D\&R, B-405	$A C$ and DC generators
Disc 20-15	AC/DC generator
PIRA 1000	coupled motor/generator
Mei, 31-2.16	coupled motor/generators
Ehrlich 1, p. 169	coupled motor/generator
Mei, 31-2.17	simple induction motor
AJP 33(12),1082	induction motor model
Sut, E-233	synchronous motor
Mei, 31-2.20	synchronous and induction motor
Sut, E-250	three phase
Sut, E-248	three phase
Sut, E-249	three phase
Mei, 31-2.21	modified Rowland ring
Sut, E-251	two phase rotator
Sut, E-230	counter EMF in a motor
D\&R, B-295	back EMF in a motor
Sut, E-231	counter EMF in a motor
Mei, 30-2.10	back EMF in a motor
Sut, E-247	speed of AC motors under load
Mei, 31-1.12	motor debunking
PIRA 200 - Old	hand crank generator
UMN, 1M50.30	hand crank generator
UMN, 5K40.80	hand crank generator
F\&A, Mv-4	hand crank generator
F\&A, Eq-7	hand crank generator
Hil, E-8b	telephone generator
D\&R, B-250	hand crank generator

5K40.25 The waveforms from the DC/AC generator are displayed on an oscilloscope.
5K40.26 Abstract from the 1981 apparatus competition.
5K40.27 A generator built with a small motor spun rotor in a large open solenoid shows operation of an AC generator.
5K40.28 A coil connected to a light bulb is mounted on a disk rotating between the poles of an electromagnet. Picture.
5K40.29 A hand crank generator designed for use on the overhead projector.
$5 K 40.35$ A simple AC motor constructed from the simple DC motor in 5K40.10. Completely remove the epoxy coating from the arms of the coil and drive the motor with a square wave generator.
5K40.40 A large AC/DC motor/generator has both slip and split rings.
5K40.40
5K40.40 An armature with both slip rings and a commutator allows operation of a coil between two magnets as either a AC or DC motor or generator.
5K40.40 A coil mounted between the poles of an electromagnet is rotated by hand as a generator or powered by a battery as a motor.
5K40.40 Directions for making a large demonstration motor/generator. Picture.
5K40.40 Homemade and commercial AC and DC generators with split ring.
5K40.40 A large AC/DC generator with slip and split rings.
5K40.45
5K40.45 Two small permanent magnet DC motors are coupled so when one is driven mechanically, the other will spin. Picture.
5K40.45 Two small DC motors are connected together. Turning one motor by hand will drive the other motor connected to it. Motors as generators and vice versa.
5K40.50 Bring a coffee can on an axle near two coils mounted at 90 degrees carrying AC with a capacitor in one line.
5K40.53 Suspend a closed copper loop by a thread in the gap of a rotating magnetron magnet and it will remain aligned with the rotating field.
5K40.55 Run an AC dynamo as a synchronous motor by supplying $A C$ to the armature coils.
5K40.56 Three pairs of coils in a circle produce a rotating magnetic field for use with a permanent magnet or aluminum rotor. Picture, Construction details in appendix, p. 1329.
5K40.60 Directions for winding three coils of a three phase rotator.
5K40.60 Directions for making a three phase winding and things to spin in it.
5K40.61 Remove the rotor from a three phase induction motor and place a steel ball inside.
5K40.64 An aluminum ring spins in the center of a three phase horizontal toroid. Picture.
5K40.65 How to make a two phase rotator get two phase from either three phase or two phase. Diagram.
5K40.70 A lamp in series with a motor does not glow unless a load is placed on the motor slowing it down.
5K40.70 Voltmeter and ammeter connected to a motor show the effect of back EMF on current drawn under different load conditions.
5K40.71 Suddenly switch the armature of a shunt wound DC motor to a voltmeter while it is running.
5K40.72 The circuit that shows the effect of back EMF on current drawn by a motor under various load conditions and after it is turned off. Diagram.
5K40.73 Slip speed and phase shift are shown stroboscopically as the load is increased on induction and synchronous motors.
5K40.75 A copper conductor in an iron tube in a magnetic field shows forces in most motors are not caused by magnetic fields set up in the conductors.
5K40.80 Use a hand cranked generator to light an ordinary light bulb.
5K40.80 Light a bulb with a hand crank generator.
5K40.80 A hand crank generator made with a 120 V DC generator is used with light bulbs.
5K40.80 A hand cranked generator is used to light an ordinary light bulb.
5K40.80 Students light a bulb with a hand crank generator.
5K40.80 An AC generator from an early telephone lights a 110 V lamp. Also, a single loop model and another generator.
5K40.80 A Genecon generator is used to charge a capacitor, light an incandescent bulb, bi-color LED to show polarity reversal, and show motor operation.

Demonstration Bibliography	
Ehrlich 1, p. 170	hand crank generator
Disc 03-16	hand crank generator
Hil, E-7f	AC and DC generator
PIRA 1000	bicycle generator
UMN, 5K40.83	bicycle generator
PIRA 1000	generator slowed by load
Disc 03-17	generator driven by falling weight
AJP 41(2),203	MHD power generator
	AC CIRCUITS Impedance
PIRA 500	inductive choke
UMN, 5L10.10	inductive choke
F\&A, En-3	variable inductance
Sut, E-258	inductive reactance
Disc 21-02	inductor with lamp on AC
PIRA 1000	capacitive impedance
F\&A, En-4	capacitive impedance
PIRA 1000	capacitive reactance
Mei, 30-2.9	capacitive reactance
Sut, E-260	capacitive reactance
Mei, 33-5.2	skin effect
AJP 44(10),978	skin effect
AJP 53(11),1089	phasemeter
Mei, 33-2.2	$\mathrm{I}-\mathrm{V}$ curves on a scope
TPT 28(3),160	octopus
F\&A, Eo-9	impedance bridge
TPT 20(3), 187	RLC Circuits - AC demonstration AC circuit board
PIRA 500	RLC - phase differences
UMN, 5L20.10	RLC - phase differences
F\&A, En-13	parallel resonance
F\&A, En-2	phase shift in an RLC circuit
F\&A, En-12	RLC series circuit
AJP 47(4),337	series RLC phase shift on scope
Mei, 33-2.3	RLC phase relationships
D\&R, B-415	RLC phase relationships
AJP 39(10),1133	RLC waveforms display
AJP 43(11),1011	RLC phase relationships
AJP 29(8),546	phase shift in a fluorescent circuit

Electricity and Magnetism

5K40.80 Crank a hand powered generator to light a bulb.
5K40.80 A hand cranked generator slows down in five seconds from internal friction or in one second while lighting a lamp.
5K40.82 A small open hand crank generator.
5K40.83
5K40.83
5K40.85
5K40.85
A weight on a string wrapped around the shaft of a generator falls more slowly when there is an electrical load on the generator.
5K40.99 Discharge a toy rocket motor between the poles of a magnet and attach copper electrodes placed in the gas jet to a voltmeter.
5L00.00
5L10.00
5L10.10
5L10.10 Move a core in and out of a coil in series with a light bulb.
5L10.10 An inductor with a movable iron core is connected in series with a light bulb.
5L10.10 Pull a core in and out of a solenoid in series with a 200 W lamp, then a 10 W lamp. Try with DC.
5L10.10 Place a large coil in series with a light bulb, then insert an iron core in the coil and the light bulb dims.
5L10.20
5L10.20
5L10.30
5L10.30 A circuit to vary R through the value of the capacitive reactance, among other things.
5L10.35 Measure the voltage and phase across each element in a circuit with a 25 W lamp in series with a capacitor.
5L10.40 Conductors of different dimensions are connected to lamp indicators in a high frequency circuit.
5L10.41 Stack metal plates between the primary and secondary of a transformer, a bundle of wire is opened up to gain access to any wire for a current measurement.
5L10.50 Some phasemeter circuits are given suitable for showing current-voltage relationships for reactive elements.
5L10.51 A circuit to generate I-V curves of various electrical components. Diagram, Appendix: p. 1337.
5L10.55 A simple circuit used by technicians to probe the relationship of current and voltage in a circuit.
5L10.55 Complex impedances are plugged into a Wheatstone bridge board.
5L20.00
5L20.01 A simple demonstration board with L, R, C, elements and bold schematics that are easily visible in the classroom.
5L20.10
5L20.10 Applied voltage, R, L, and C are displayed on a four channel scope while L is changed and the circuit passes through resonance.
5L20.10 Transformers permit viewing voltages in all elements of a parallel RLC circuit.
5L20.10 The voltages across elements of a RLC circuit are shown as the inductor is varied through resonance.
5L20.10 Isolation transformers permit viewing applied, R, L, and C simultaneously on an oscilloscope as the inductor is varied through resonance.
5L20.11 Simultaneous display of four traces of the RLC circuit on a single channel scope using a multiplexer. Circuit diagrams are given.
5L20.11 A circuit allows phase relationships between R and L or C of the Cenco 80375 choke coil and resonance apparatus to be displayed on an oscilloscope.
5L20.11 Voltage and current phase relationships of various components shown on an oscilloscope.
5L20.12 The Leybold double wire loop oscillograph is modified to project laser beams showing the current and voltage relationships of a RLC (circuit given) circuit.

5L20.13 Show the input and output of an RLC circuit on a dual trace oscilloscope.
5L20.14 Among other things, demonstrate the phase shift in a fluorescent lamp circuit.

Demonstration	Bibliography
AJP 40(4),628	LC op amp interface
Sut, E-269	RLC - phase differences
AJP 45(1),97	RLC vectors on CRO
AJP 40(10),1529	seconds period RLC
PIRA 1000	driven RLC circuit
Disc 21-04	driven RLC circuit
PIRA 200	RLC - resonance
PIRA 500 - Old	RLC - resonance
UMN, 5L20.20	RLC - resonance
F\&A, En-1	series RLC circuit
Hil, E-13b	series RLC resonance
Hil, E-13c	series RLC resonance
D\&R, B-415	RLC - resonance
F\&A, Eo-15	parallel AC resonance
Hil, E-13d	parallel resonance
Sut, E-265	RLC - resonance
TPT,37(3), 179	qualitative demonstrations of parallel/series resonance
Sut, A-26	resonance at 60 Hertz
Hil, E-13e	LC parallel resonance
AJP 36(9),915	resonance curves on scope
Mei, 33-3.6	RLC resonance plot on scope
Mei, 33-3.5	coupled RLC circuits
AJP 36(1), x	air coupled circuit
Sut, E-268	high voltage RLC ringing
Mei, 33-3.4	HF RLC resonance
	Filters and Rectifiers
PIRA 500	bridge rectifier
UMN, 5L30.10	bridge rectifier
F\&A, Eo-10	bridge rectifier
F\&A, Eo-8	wheatstone bridge
Disc 18-11	rectifier circuit
Mei, 33-2.4	bridge rectifier
Sut, A-80	diode rectifier
Sut, A-79	thermionic rectifier
Sut, A-25	very low frequency rectification

5L20.14 OP amps placed across the inductor and capacitor have high impedance and do not perturb the system.
5L20.15 A neon lamp detector shining on a disk rotated by a synchronous motor shows phase differences in a series RLC circuit driven by 110 V AC.
5L20.16 Pulses are generated from an RLC circuit to modulate the Z axis of a CRO. The dots shift as the applied frequency is changed.
5L20.17 Directions for building an underdamped RLC circuit with a period from .5 to 5 seconds. Forced oscillation with a electromechanical generator.
5L20.18
5L20.18 The voltage and current across the capacitor, inductor, resistor, and supply are shown in succession on an oscilloscope.
5L20.20
5L20.20
5L20.20 A large lamp lights in a 60 Hz 120 V RLC circuit when the L is changed and resonance is achieved.
5L20.20 The light bulb in a RLC circuit glows when the inductor core is moved through resonance.
5L20.20 A 110 VAC lamp, capacitor, and variable inductor form a series circuit.
5L20.20 Short out the capacitor in a RLC circuit with a light bulb resistance.
5L20.20 RLC resonance shown on an oscilloscope
5L20.21 A capacitor and variable inductor tuned to resonate in parallel at 60 Hz have series light bulb current indicators.
5L20.21 A RLC series resonant circuit with a variable inductor and light bulb indicators.
5L20.22 A variable inductor and capacitor in series with a lamp driven by 110 VAC. Short inductor or capacitor, vary both.
5L20.23 A set-up for a qualitative investigation of both RLC series and parallel resonance is described.
5L20.24 The product of inductance in henrys and capacitance in microfarads should be 7.
5L20.26 An LC circuit is driven by coupling a second coil driven by an audio oscillator. Reference: AJP 36(1), x.
5L20.30 A crude but effective spectrum analyzer circuit for generating and displaying frequency response curves on an oscilloscope
5L20.31 An $x-y$ plot of the resonance curve is generated by mechanically driving a pot controlling the x axis of the scope by a chain to the tuning knob of the signal generator. Diagram, Picture.
5L20.40 Two identical RLC circuits and a driving coil are coupled with a common core. The two are shown to resonate at the same frequency, then when both are operated simultaneously, there are two different frequencies at which resonance occurs. Diagram, Picture.
5L20.41 Two coils are air coupled, one is driven by an audio oscillator and various capacitors are placed across the other coil while the output is monitored on an oscilloscope.
5L20.50 The secondary of a high voltage transformer is shunted across a spark gap, Leyden jars, and an inductor made of several turns of heavy copper all in series.
5L20.51 A 30 MHz 500 W generator is coupled to a loop, light bulb, parallel plate RLC circuit and the capacitance changed to find resonance. Picture.
5L30.00
5L30.10
5L30.10 Plug in diodes on a Wheatstone bridge circuit board are used to demonstrate unrectified, half wave, and full wave rectification. Show on an oscilloscope.

5L30.10 Half and full wave rectification with a plug in Wheatstone bridge board.
5L30.10 A Wheatstone bridge board with plug in elements.
5L30.10 Diodes in a Wheatstone bridge configuration followed by two low pass filters.

5L30.11 A circuit allows switching between unrectified, half, and full wave rectified configurations. A magnet bob pendulum and pickup coil provide a slow AC signal.
5L30.12 Use neon lamps to indicate rectification with a diode rectifier tube.
5L30.14 Kenotron type thermionic rectifier using a switch to change polarity of DC voltage.
5L30.16 Rectification can be demonstrated with a rotary potential divider and a vacuum tube in one of the standard circuits. Other stuff too.

Demonstration Bibliography	
PIRA 500	blinky whirligig
UMN, 5L30.20	blinky whirligig
TPT 22(9),554	blinky whirlygig
F\&A, Mb-9	blinky whirligig
Mei, 7-2.4	blinky whirligig
$\begin{aligned} & \text { D\&R, B-410, M- } \\ & 198 \end{aligned}$	blinky whirligig
Bil\&Mai, p 284	blinky whirligig
Ehrlich 1, p. 153	blinky whirligig
AJP 43(1),112	glow lamp swinger
Hil, E-13a	whirling glow lamp
Mei, 30-1.2	AC and DC with starch and iodine
TPT 19(8), 551	AC and RMS voltages
Mei, 33-2.5	LC low pass filter
Mei, 33-3.3	current in an LC circuit
AJP 31(2),134	Fourier zeros LC circuit
Mei, 33-3.1	mechanical analog of an LC filter
Mei, 33-2.6	RL and RC filters
AJP 39(3),337	resonant cavity properties
TPT 3(5),199	many circuits
	TUBES Semiconductors
PIRA 200 - Old	Hall voltage
UMN, 5M10.10	Hall effect
F\&A, Ei-16	Hall voltage
Mei, 40-1.16	Hall effect
Disc 20-10	Hall effect
AJP 29(1),29	Hall effect magnet
Mei, 40-1.13	Lorentz force on conduction electron
AJP 52(9),807	an electron in a periodic potential
Mei, 40-1.2	model of a semiconductor
Mei, 40-1.3	hot point probe
Mei, 40-1.5	color centers

blinky whirligig

UMN, 5 L 30.20
F\&A, Mb-9
Mei, 7-2.4

D\&R, B-410, M-

Bil\&Mai, p 284
Ehrlich 1, p. 153

AJP 43(1),112

Hil, E-13a
Mei, 30-1.2

TPT 19(8), 551

Mei, 33-2.5

Mei, 33-3.3

AJP 31(2),134

Mei, 33-3.1

Mei, 33-2.6

AJP 39(3),337

PIRA 200 - Old
UMN, 5M10.10

F\&A, Ei-16

Mei, 40-1.16

Mei, 40-1.5
color centers

5L30.20
5L30.20 A small flashing light on the end of a string is whirled around.
5L30.20 An improvement on TPT,22(7),448, "AC made visible".
5L30.20 Blinking neon bulb on a cord is swung around in uniform circular motion.
5L30.20 Swing a light bulb around and take a picture of it with a fan strobed Polaroid

5L30.20 Neon, argon, and bi-color LED's on the end of a whirling AC or DC cord.

5L30.20 Neon and bi-color LED's on the end of a whirling AC or DC cord.
5L30.20 Alternating current from a wall outlet is shown when you twirl a neon lamp on the end of a line cord.
5L30.21 Swing a GE A9A or Chicago Miniature Ne-23 neon glow lamp in a 3 foot radius circle. Use as a persistence of vision demo by holding it still.
5L30.21 A two watt neon glow lamp is mounted on a hand rotator.
5L30.25 Drawing an electrode across a starch/iodine solution gives a solid line with DC and a dashed line with AC.
5L30.25 Measure across a 120 volt lamp simultaneously with a digital voltmeter and an oscilloscope. The digital voltmeter will read 120 RMS volts while the oscilloscope will show about 170 volts peak to peak. Or compare the DC ignition voltage for a neon lamp to the AC RMS voltage.
5L30.30 Ammeters measure the current before and after a LC filter while an audio amplifier detects AC before and after as the frequency is varied.
5L30.31 Lamps are in series in each branch of an LC circuit to show current distribution as inductance is changed.
5L30.34 No energy is deposited in a resonant high Q circuit at $\mathrm{f}=\mathrm{n} / \mathrm{pulse}$ width. Circuit given.
5L30.35 A string and pulley arrangement provides an analog of a parallel LC filter. Reference: AJP 14(5),318.
5L30.36 A RLC parallel configuration with each component individually switched is used to show the effect of each component on audio frequencies. RL is an example of a low pass filter and the RC is an example of a high pass filter while the RR configuration shows no filtering and only attenuation.
5L30.50 Identical ultrasonic transducers are bonded to opposite parallel faces of a solid medium. One is pulsed with a rf voltage at the transducer resonant frequency and the other is the receiver. The frequency is adjusted to a FabryPerot resonance.
5L30.70 Nine simple circuits using diodes and transistors covering from rectifiers to a linear sweep generator.
5M00.00

5M10.00
5M10.10 Measure the transverse potential of a large rectangle of biased N -doped germanium in a magnetic field.
5M10.10 The transverse potential of a large rectangle of biased N -doped germanium is measured when inserted into a magnetic field.
5M10.10 Current is passed through a N doped germanium crystal while in a strong magnetic field and the voltage at the sides is monitored.
5M10.10 Measure a voltage difference in a germanium sample perpendicular to the current flow when placed in a magnetic field. Picture Diagram, Construction details in appendix, p. 1367.
5M10.10 A Hall effect probe in a magnet, animation.
5M10.11 Apparatus Drawings Project No. 12: A small electromagnet for use with an indium-antimonide device.
5M10.12 A voltage is induced on a moving metal in a magnetic field.
5M10.15 The interaction of an electron with a crystal periodic potential is demonstrated with an air track glider mounted magnet moving past a magnet array.
5M10.19 A model made of pegboard and balls that shows a hole moving along a preselected path.
5M10.20 A hot point probe consisting of a soldering iron and a microammeter tests for the two types of conductivity.
5M10.30 Electrons or holes are injected into a large transparent alkali halide crystal in an oven resulting in the formation of color centers. Pictures, Diagrams, References: AJP 25,5,306.

Demonstration Bibliography	
Mei, 40-1.6	color centers
Mei, 40-1.7	Shockley-Haynes experiment
AJP 41(7),878	Josephson weak link model
PIRA 1000	diode diode
Tisc 18-10 52(2), 94	LED - Light Emitting Diodes
Mei, 40-1.12	PN junction AJP 29(5),287
transistor curve tracer	

July 2015
Electricity and Magnetism
5M10.32 Injection of electrons into a transparent potassium chloride crystal at high temperatures results in the formation of color centers. Pictures
5M10.34 A difficult but worthwhile demonstration illustrates diffusion and drift phenomena.
5M10.40 A rigid pendulum and aluminum disc are mounted on a shaft driven by a weight hanging on a thread wrapped around the shaft and damped by eddy currents.
5M10.50
5M10.50 Positive and negative voltages are applied to a lamp in series with a diode.
5M10.55 An article describing how LED's are now used in almost every unit of a general physics course and not just for electronics applications.
5M10.60 Demonstrate a PN junction with a battery.
5M10.61 Circuits for constructing instruments to display transistor curves on an oscilloscope.
5M10.61 A digital oscilloscope that can write to a USB device, combined with open source software is used to analyze transistor curves.
5M10.62 A model with ball bearings representing electrons and holes in Plexiglas representing states.
5M10.70 View a waveform on an oscilloscope through a cardboard with slots cut out.
5M10.71
5M10.71
5M10.90
5M10.90 A transistor circuit board shows simple amplification.
5M10.92 Show transistors and integrated circuits including slides of integrated circuit blow ups.
5M10.95 Measurments and demonstrations with operational amplifiers.
5M10.95 Elementary functions involving operational amplifiers.
5M10.95 A circuit for integration with an operational amplifier.
5M10.95 A simple Fermi-Dirac integrating circuit with an op amp to monitor the output voltage.
5M20.00
5M20.10
5M20.10 Various discharge phenomena are described from atmospheric to high vacuum.
5M20.10 The pressure is reduced on a large tube while high voltage DC is applied to the electrodes.
5M20.10 Pump down a long discharge tube to show Crookes' dark space, negative glow, Faraday dark space, striations, etc.
5M20.10 A partially evacuated glass tube filled with various gases at low pressure and connected to a high-voltage electrical source.
5M20.10 The pressure is reduced in a long tube while high voltage from an induction coil is applied to the electrodes.
5M20.12 Show the minimum voltage for a neon glow tube to discharge.
5M20.15 Use a tube to show the thermionic effect in a vacuum.
5M20.20
5M20.20 Gas discharge tubes for spectra, fluorescence of minerals, line tubes, paddle wheel, etc. are mentioned.
5M20.20 Special tubes that demonstrate five properties of cathode rays.
5M20.20 A set of special gaseous discharge lamps with different gases, different glowing surfaces, or fluorescent liquids.
5M20.20 Gas discharge tubes to demonstrate fluorescence are mentioned.
5M20.25 A tube with a replaceable lime spot (or barium, strontium, and calcium oxides) hot cathode gives a brilliant beam. Diagram.
5M20.28 Three types of focusing of the beam: residual gas, electrostatic, and magnetic.
5M20.30 A circuit for demonstrating the mercury-vapor rectifier tube.
5M20.31 The Tungar rectifier bulb and the phanotron mercury-vapor rectifier illustrate the role of cathode emission in discharge.
5M20.32 The Welch demonstration power supply board is used to explain the theory of the diode tube.
5M20.35 The function of the grid in a discharge tube is shown with a thyratron.
5M20.36 A circuit for demonstrating the thyratron tube.
5M20.40 A circuit for obtaining the characteristic curves of a triode.

Demonstration Bibliography	
Sut, A-82	"fresh air three electrode tube"
Sut, A-83	three electrode tube model
Sut, A-84	three element tube - electrostatic
Hil, A-9b	the triode
AJP 29(9),640	triode demonstrator unit
Mei, 33-2.1	soap bubble model of tubes
	ELECTROMAGNETIC
	RADIATION Transmission Lines and
	Antennas
PIRA 1000	model transmission line
UMN, 5N10.10	model transmission line - lamps
F\&A, Eh-4	transmission of power
Sut, E-162	model transmission line - lamps
Hil, E-2c	voltage drop
AJP 55(1),22	drift velocity
PIRA 1000	high voltage line model
Sut, E-244	H.T. transmission
Hil, E-3g	power loss in transmission line
PIRA 1000 Mei, 33-6.1	model transmission line - phases
	model transmission line - phases
AJP 53(6),563	wave propagation
AJP 48(5),417	wave propagation in aluminum
Mei, 33-6.3	dispersion in non-inductive cable
AJP 47(5),429	dispersion circuit
AJP 37(8),783	dispersion of an EM pulse
PIRA 500 UMN, 5N10.30 AJP 72(5), 671	reflections in a coax
	reflections in a coax
	propagation in a coax
AJP 29(2),123	propagation in a coax
AJP 29(2),ix Mei, 33-6.2	reflections in a coax
	propagation velocity in coax
PIRA 500	Lecher wires
UMN, 5N10.50	Lecher wires
F\&A, Ep-13	Lecher wires
Sut, A-37	Lecher wires
Disc 21-13	Lecher wires
Hil, S-2e. 3	Lecher bars
PIRA 1000	microwave standing waves
Mei, 33-7.7	microwave standing waves

5M20.41 Elements of a three electrode tube are placed in a bell jar.
5M20.42 Steel balls represent electrons in a mechanical model of a triode. Picture.
5M20.43 A circuit for controlling the plate current of a three or four element tube.
5M20.44 A circuit for demonstration the principles of a triode tube. Reference: AJP 23(9),384.
5M20.46 Apparatus review of the Modern and Classical Instruments triode demonstrator board. (1961)
5M20.50 Soap bubbles moving through plates connected to a Van de Graaff generator simulate behavior of electron tubes. Picture.
5N00.00

5N10.00
5N10.10
5N10.10
5N10.10 Five 200 W bulbs connected in series along resistance wire.
5N10.10 Six lamps are connected across two thin wires strung along the lecture bench.
5N10.10 Voltages are measured successively across four 300 W bulbs.
5N10.13 Move a Hall specimen perpendicular to the magnetic field in the opposite direction to the drift motion of carriers with exactly the drift velocity compensates for the Hall voltage.
5N10.15
5N10.15 A model transmission line with a lamp for a load that shows a loss unless transformers are used to boost voltage up and back.
5N10.16 A circuit demonstrates that the efficiency of power transmission increases with increased voltage. Variac, light bulb bank, meters, line resistance. Reference: AJP 21(2),110.
5N10.20
5N10.20 A model transmission line is made of a series of sixty series inductors and shunt capacitors. An oscilloscope is used to show delay times and phase relationships.
5N10.21 A demonstration of wave propagation in a toroidal transmission line with periodic variation of the wave phase velocity around the line.
5N10.22 Show amplitude decay and change in phase for waves propagating through an aluminum wedge or large sheet.
5N10.25 A model cable made of 150 series resistors and parallel capacitors shows delay and dispersion with meters at each end.
5N10.26 A set of T filters with the input and output impedances matched are used to show dispersion of a short pulse.
5N10.27 A microwave demonstration where as a sine wave burst is generated and the dispersion is observed in a slotted line waveguide with a sampling scope.

5N10.30
5N10.30
5N10.30 Measuring the speed of radio waves along a homemade coaxial transmission line.
5N10.30 A circuit using a wetted-contact mercury relay gives a pulse with a very fast rise time.
5N10.30 Reflections in a coax using the Tektronix 545A delayed trigger.
5N10.30 Using a square wave generator and oscilloscope, propagation time in 1', 20', and 40' of coax are compared. Diagrams
5N10.50
5 N 10.50 A 80 MHz generator is coupled to a long transmission line and standing waves are demonstrated with neon and filament lamp probes.
5N10.50 Standing waves are set up on parallel wires from an 80 MHz generator.
5N10.50 Standing electromagnetic waves are coupled from an UHF oscillator to parallel wires.
5N10.50 Standing waves are generated on parallel wires by a radio transmitter. An incandescent bulb placed across the wires indicates voltage maxima.
5N10.52 Two six foot iron rods are used in a Lecher system with a fluorescent lamp detector.
5N10.55
5N10.55
Measure the wavelength of a microwave transmitter by using a movable mirror to set up standing waves.

Demonstration	Bibliography		Uly 2015 Electricity and Magnetism
$\begin{aligned} & \text { D\&R, W-140, O- } \\ & 030 \end{aligned}$	microwave standing waves	5N10.55	Measure the wavelength of a microwave transmitter by using a movable reflector about 1 m from the transmitter to set up standing waves.
Disc 21-15	microwave standing waves	5N10.55	Standing waves are set up between a microwave transmitter and a metal sheet. The receiver is moved between the two and the signal strength is displayed on an LED bar graph.
TPT 28(7), 474	microwave oven standing waves	5N10.57	Standing waves in a microwave oven are measured using cobalt chloride paper.
TPT 32(4), 199	microwave oven standing waves	5N10.57	Standing waves in a microwave oven by heating Cream of Wheat.
AJP, 78 (5), 492	microwave oven standing waves	5N10.57	Three dimensional standing waves formed on cobalt chloride paper are examined.
PIRA 500	radiation from a dipole	5N10.60	
UMN, 5N10.60	radiation from a dipole	5N10.60	
F\&A, Ep-12	radiation from a dipole	5N10.60	A flashlight bulb on a dipole detects radiation from an 80 Mhz generator.
D\&R, O-030	radiation from a dipole	5N10.60	The Cenco microwave transmitter is used to show approximate plane waves emitted by a dipole antenna
AJP 69(3), 288	radiation from a dipole	5N10.60	Discussion on how to teach about radiation from a dipole antenna.
AJP 70(8), 829	radiation from a dipole	5N10.60	The method of AJP 69(3), 288 is extended to treat the reception and scattering of electromagnetic plane waves by simple wire antennas.
AJP 70(10), 1056	radiation from a dipole	5N10.60	Corrections to AJP 70(8), 829.
AJP 76 (11), 1048	radiation from a dipole	5N10.60	Derives analytical expressions in terms of elementary functions for the electromagnetic fields of linear antennas of finite length.
Disc 21-11	radio waves	5N10.60	Show radiation with a 100 MHz dipole transmitter and hand held dipole receiver with a flashlight bulb detector.
Sut, A-38	radiation and polarization	5N10.61	Polarization of radiation from a dipole antenna is checked with a hand-held dipole antenna with lamp indicator.
AJP 52(12),1150	dipole radiation computer simulation	5N10.63	R.H Good report on his Apple II dipole radiation simulation. Excellent and free.
Sut, A-39	directional antenna	5N10.65	A directional antenna for use with a UHF oscillator.
Ehrlich 1, p. 175	directional antenna	5N10.65	A radio tuned to an AM radio station is pointed in different directions to show the transverse nature of radio waves.
AJP 55(7),662	waveguide normal modes	5N10.70	Morie pattern type demonstration of normal modes in a waveguide.
PIRA 200	EM vectors	5N10.80	
Mei, 6-4.2	EM vectors	5N10.80	A dynamic model for demonstrating electric and magnetic vectors in an electromagnetic field. Picture, Diagrams.
D\&R, O-O25	EM wave models	5N10.80	Ping Pong paddles or semi fixed wave models are used to show the relation of E and B in a plane $E M$ wave.
	Tesla Coil	5N20.00	
PIRA 200	induction coil	5N20.10	The small handheld induction coil.
F\&A, Em-8	induction coil	5N20.10	The small handheld induction coil.
Disc 20-21	induction coil	5N20.10	A large induction coil, explained with the aid of animation.
Hil, E-11a	induction coil	5N20.12	A small Cenco induction coil.
Sut, E-245	induction coil	5N20.13	All sorts of stuff on induction coils - producing high voltage from a DC source.
AJP, 65(8), 744	A high potential Tesla coil impulse generator for lecture demonstrations and science exhibitions	5N20.14	An excellent "how to" guide for building a large Tesla coil. The article contains information on the design of various parts and the mathematics to analyze your work/design.
F\&A, Em-1	spark coil	5N20.15	A discussion of the construction of a large spark coil and the effects of reversing polarity.
PIRA 200 - Old	hand held Tesla and lamp	5N20.25	Light a fluorescent lamp by touching with a hand held tesla coil.
UMN, 5N20.25	hand held tesla and lamp	5N20.25	
PIRA 1000	Tesla coil	5N20.40	
UMN, 5N20.40	Tesla coil	5N20.40	
F\&A, Ep-2	Tesla coil	5N20.40	Description of a 500 KHz tesla coil.
Sprott, 4.6	Tesla coil	5N20.40	A Tesla coil is used to demonstrates phenomena associated with very high voltages and currents.
Sut, A-35	continuous wave Tesla coil	5N20.41	A tesla coil is coupled to an oscillator coil from A-32 or A-36.
Sut, A-31	Tesla coil	5N20.42	Directions for building a Tesla coil and many demonstrations possible with it are described.
Mei, 33-3.8	Tesla coil	5N20.43	Directions for building a Tesla coil (Oudin coil when one end is grounded) that will give a thirty inch spark.
Hil, E-11e	Tesla coil	5N20.44	Pictures of two Tesla coils. References: Popular Science, Jan 1946, pp 191194; Popular Science, June 1964, pp 169-73.
PIRA 500	glowing fluorescent lamp	5N20.50	
UMN, 5N20.50	glowing fluorescent lamp	5N20.50	

Demonstration Bibliography

F\&A, Ep-5
D\&R, E-195

Sprott, 4.6
Disc 21-06
Sut, A-15
PIRA 500
UMN, 5N20.60
F\&A, Ep-4
F\&A, Ep-6

F\&A, Ep-3

PIRA 200 - Old
PIRA 200
UMN, 5N30.10
Sut, L-101

Sut, L-106

Sut, L-42
D\&R, O-270

Sprott, 6.1

AJP, 75 (1), 35
Sut, L-112
TPT 38(9), 559

TPT 19(7), 483

TPT 19(9), 618
Bil\&Mai, p 316
F\&A, Ok-1

PIRA 500
UMN, 5N30.30
AJP 51(10), 925
Disc 21-14

F\&A, Ol-1

Mei, 33-7.1
Mei, 33-7.3

Disc 21-16
PIRA 1000

AJP 73(10), 986

PIRA 1000

UMN, 5N30.50
PIRA 1000
PIRA LOCAL

Bil\&Mai, p 317 device

IR camera and soldering iron hearing infrared
solar cell and remote control
fluorescent light in radiation field
glowing fluorescent lamp
glowing fluorescent lamp
Tesla coil
electrodeless discharge
skin effect
skin effect
high frequency currents
betatron action
space charge from high frequency corona
Tesla coil and pinwheel
Electromagnetic Spectrum
project the spectrum
projected spectrum with prism
project the spectrum with prisms
project the continuous spectrum
white light with prism
white light with prism
project the spectrum with prisms
white light with prism
mapping the spectrum
infrared spectrum
ultraviolet spectrum
ultraviolet spectrum
ultraviolet spectrum
ultraviolet spectrum
microwave transmitter \& receiver microwave transmitter \& receiver microwave homebrew - 13 cm microwave unit
microwave wavelength by phase differential
microwave resonance
water attenuation of microwaves
microwave absorption
microwave absorption 5N30.35
IR camera and projected spectrum 5N30.45
5N20.60
5N20.60
5N20.60

5N30.00
5N30.10

5N30.30

5N20.50 A fluorescent light bulb is held in the Tesla coil radiation field.
5 N 20.50 A 25 W or 40 W fluorescent tube is held in the radiation field of a Tesla coil.

5N20.50 A fluorescent light bulb is held in the radiation field of a Tesla coil.
5N20.50 Light a fluorescent tube at a distance, show the skin effect.
5N20.55 Hold a bulb of a gas at low pressure near a Tesla coil.

The skin effect carries enough current to light a bulb held in the hands.
5N20.70 An inductive coil replacing the high voltage transformer in the Tesla coil will give a visible beam in a partially evacuated glass bulb.
Discharge a negatively charged electroscope with air blown from a Tesla coil corona.
5N20.80 Place a pinwheel on the secondary of a tesla coil. See 5B30.50.

5N30.10 The optical path for projecting a spectrum using glass or liquid filled prisms.

5N30.10 A carbon arc or concentrated filament lamp is used as a source with prism optics.
5N30.10 Project a slit of light through a prism or hollow prism filled with carbon disulfide.
5N30.10 Project a slit of light from a slide projector through a glass prism or a hollow prism filled with ethyl cinnamate or carbon disulfide.
5N30.10 A rainbow produced by passing a collimated beam of white light through a glass prism illustrates that white light is made of many colors.
5N30.10 A short article with picture detailing a hollow prism into which liquids with different refractive indexes may be poured.
5N30.15 Use a thermopile and galvanometer to show the infrared energy in the continuous spectrum. Insert a water cell.
5N30.15 Reproducing Herschel's experiment and his discovery of infrared radiation. A liquid crystal sheet is used as the detector.
5N30.20 Part 1. A way to demonstrate the presence of characteristic ultraviolet lines of mercury.
5N30.20 Part 2. A way to demonstrate the far ultraviolet line of mercury on fluorescent dyed cloth or paper.
5N30.20 A phosphorescent sheet is used to detect ultraviolet wavelengths beyond the violet end of the visible spectrum.
5N30.20 A carbon arc is projected through quartz optics and prism to a screen of half white paper and half fluorescent paper.

5N30.30 A 12 cm transmitter and receiver are demonstrated.
5N30.30 Build a high quality source and detector for $\$ 25$. Explicit instructions.
5N30.30 An LED bar graph indicates signal strength as a microwave transmitter is rotated around a receiver and as the beam is blocked by a metal sheet.
5N30.31 Listen for minima as a second transmitter is moved back and forth a wavelength.
5N30.33 A modulated signal from a HP 616A generator is passed through a cavity to a detector with provisions to modify the cavity.
5N30.35 A Plexiglas box between the transmitter and receiver has no effect until filled with water.
Place dry and wet cloths in the microwave beam.

IR camera and projected spectrum 5N30.45

IR camera and remote control 5N30.50

IR from remote control device device

Looking at different objects and the spectrum with a webcam that has the IR filter removed.

5N30.50
5N30.51
5N30.55
Connect a solar cell to a small amplifier / speaker. Point a remote control at the solar cell and press a button. The infrared signal will be heard.
5N30.55 The signals from a remote control is detected with a solar cell connected to a mini amplifier with speaker. Confirm that the remote is emitting in the redinfrared range by using a red and a blue filter.

IR control devices penetration of X -rays
absorption coefficents

5N30.60
5N30.80 Use the ionization method with an electroscope to show penetration of X rays.
5N30.81 Show the thickness of various materials needed to cut the intensity of a beam in half.

	GEOMETRICAL OPTICS	6A00.00	
	Speed of Light	6A01.00	
PIRA 200	speed of light	6A01.10	Demonstrate speed of light by the path difference method with a fast pulser and fast oscilloscope.
UMN, 6A01.10	speed of light	6A01.10	A fast pulser is used to demonstrate speed of light by the path difference method.
F\&A, Oa-4	velocity of light	6A01.10	The displacement of a pulse from a fast pulser is viewed on a sampling oscilloscope as the path length is changed. Insert different media in the path.
Mei, 35-1.5	speed of light - moving reflector	6A01.10	Fancy speed of light apparatus fully documented. Diagrams, Pictures.
$\begin{aligned} & \text { AJP, 65(7), 614- } \\ & 618 \end{aligned}$	measuring the speed of light using a fibre optic kit	6A01.10	This is a nice discussion of the "time delay method" of measuring the speed of light using the fibre optic method, and a good explanation of the equipment needed.
AJP 76 (9), 812	speed of light	6A01.10	A tabletop experiment that directly measures the speed of light using a pulsed diode laser, reflecting mirror, photodiode detector, and an oscilloscope. Electric circuit diagrams included.
AJP 41(5),722	pulser circuit	6A01.11	A pulser circuit for the moving reflector speed of light apparatus.
AJP 34(7),ix	speed of light - fast pulse	6A01.11	Use a high repetition rate pulsed light from TRW to demonstrate the speed of light.
AJP 55(9),853	pulser circuit	6A01.11	An LED pulser circuit that emits a 20 ns pulse.
AJP 37(11),1154	pulser circuit	6A01.11	A light pulser circuit based on the MV 10A LED.
AJP 38(11),1353	speed of light - N2 laser pulser	6A01.11	A N2 pulsed laser is used in the moving reflector setup.
AJP 40(5),740	speed of light - spark source	6A01.12	Construction and properties of a spark light source.
AJP 37(9),939	microwave moving reflector	6A01.15	A small microwave pulse generator gives short pulses.
PIRA 1000	speed of light - two path	6A01.20	
Mei, 35-1.4	speed of light - two path	6A01.20	Fast flash through two paths to a photomultiplier tube. Diagrams, Pictures.
Mei, 35-1.3	speed of light - two path	6A01.21	A spot of the display trace of a fast oscilloscope is passed through two different paths to a photomultiplier tube whose output is displayed on the same trace. Diagram, Picture.
AJP 37(11),1163	errata - corrected diagram	6A01.25	Corrected diagram for figure 2 in AJP 37(8),818 (1969).
AJP 41(2),272	speed of light	6A01.25	The MV50 LED is pulsed in this simple time of flight measurement.
AJP 50(12),1157	speed of light - minimal apparatus	6A01.25	An inexpensive time of flight apparatus using a strobed LED and voltmeter.
AJP 59(5),443	speed of light - time of flight	6A01.25	An acoustico-optic modulator chops a laser beam in a time of flight setup.
AJP 36(11),1021	speed of light choppers	6A01.25	Use a 250 tooth commercial gear as a light chopper.
AJP 37(8),816	speed of light - phase shift	6A01.26	Many circuits are given. Features a solid-state electro-optical light modulator to replace the Kerr cell.
AJP 40(11),1705	optical radar	6A01.27	A commercial (Optitron Inc.) speed of light apparatus with an ultraviolet pulser.
PIRA 1000	speed of light - rotating mirror	6A01.30	
Mei, 35-1.1	speed of light - rotating mirror	6A01.30	The position of the reflected image from a rotating mirror is measured for clockwise and counterclockwise rotations. Diagram, Appendix, p. 1353.
AJP 40(6),910	speed of light - rotating mirror	6A01.31	Photodiode detector with the rotating mirror.
AJP 39(10),1145	speed of light - rotating mirror	6A01.31	A laser beam is used with the rotating mirror method. Detector circuits given.
AJP 46(11),1189	speed of light - combined method	6A01.32	A rotating mirror chops the laser beam and a beam splitter gives near and far paths.
AJP 47(3),288	Leybold speed of light modification	6A01.36	When both sides of the rotating mirror are exposed, deflections as large as 2 cm can be observed with the unaided eye.
AJP 29(10),711	Leybold speed of light rotation rate	6A01.36	Instead of comparing the motor sound to a tuning fork, use a microphone to pick up the motor sound and display it on an oscilloscope, use Lissajous figures with a reference.
AJP 39(12),1537	more Leybold improvements	6A01.36	Use a solar cell with the AJP 32(7),567 technique.
AJP 32(7),567	Leybold speed of light improvements	6A01.36	Find the lateral displacement of the returning beam with a photomultiplier on a carriage.
Mei, 35-1.2	Leybold speed of light improvements	6A01.36	Use a microphone, oscillator, and oscilloscope to measure the motor frequency of the Leybold speed of light apparatus. Reference: AJP 29(10),711.
AJP 44(6),546	speed of light - microwave interferometer	6A01.38	The Doppler beat frequency from the detector is used to drive a spark generator.

TPT 35(6), 323
Sut, L-17

AJP 58(11),1059
AJP 69(2), 110

PIRA 1000
Disc 21-07
PIRA 1000

F\&A, Oa-1

Disc 21-08
Sut, H-148

PIRA 1000

AJP 59(3),242
TPT 3(5),230
PIRA 500
F\&A, Ob-11
PIRA 1000
UMN, 6A10.11
Sut, L-22
Disc 21-20
PIRA 500
UMN, 6A10.15
PIRA 1000
Disc 21-18
PIRA 500
F\&A, Ob-1
Disc 21-19

Mei, 34-1.5

PIRA 1000
UMN, 6A10.22
AJP 50(5),473
Sut, L-19

PIRA 1000
PIRA 500
F\&A, Ob-6
Sut, L-21
Ehrlich 1, p. 179

Disc 21-24
PIRA 1000
UMN, 6A10.31
AJP 50(8),765
D\&R, O-130
speed of light - microwave oven
speed of light - models
group velocity of light
speed of light - electrical measurement
Straight Line Propagation
light in a vacuum
light in a vacuum
straight line propagation shadows
straight line propagation of light
straight line propagation
propagation star
chalk dust
Reflection from Flat Surfaces
optical design software
reflection model
blackboard optics - plane mirror
blackboard optics - plane mirror
optical disk with flat mirror
optical disk with flat mirror
optical disk with flat mirror angle of incidence, reflection
laser and flat mirror
laser and flat mirror
microwave reflection
microwave reflection
diffuse and specular reflection
smooth and rough surface reflection
diffuse and specular reflection
diffuse reflection
aluminum foil reflection
aluminum foil reflection
scattering with aluminum foil
reflection - normal and grazing
ripple tank reflection
corner cube
corner reflector
corner cube
corner cube
corner reflection
large corner cube
large corner cube
large corner cube
large corner cube marshmallows until hot spots appear. Measure the distance between hot spots to get the wavelength of the microwave. Remember the hot spot separation should be distances of wavelength/2. Calculate the speed of light.
6A01.39 Correction to TPT 35(4), 231.
6A01.40 Set up mirrors on the lab bench to help students visualize the standard methods. Do the sound analog (S-81). Set up a rotating mirror.
6A01.50 Measure the speed of light to 0.02% and verify the relationship between group and phase velocity. Low cost circuit is given.
6A01.60 Determination of the speed of light using an LRC circuit.
6A02.00
6A02.10
6A02.10
6A02.15

6A02.15
A good point source shows straight line propagation of light by shadow projection.
6A02.15
6A02.16

6A02.35
6 A10.00
6A10.05
6A10.09

6A10.10
6A10.10
6A10.11
6A10.11
6A10.11
6A10.11
6A10.15
6A10.15

6A10.18
6A10.18
6A10.20
6A10.20
6A10.20

6A10.21

6A10.22
6A10.22
6A10.22

6A10.24

6A10.25
6A10.30
6A10.30
6A10.30
6A10.30

6A10.30
6A10.31
6A10.31
6A10.31
6A10.31

Use commercial optical design software to model and display geometrical optics.
A string and pulley arrangement shows the minimum path for reflection from a flat surface.

Blackboard optics - plane mirror.
Use a single beam with the optical disk and a flat mirror element.
Turn the optical disk with a single beam of light hitting the mirror.
Aim a beam of light at a mirror at the center of a disc, rotate the disc.

Shine a laser at a flat mirror on the lecture bench and use chalk dust to make the beam visible.

Reflect a microwave beam off a metal plate into a receiver.
Chalk dust sprinkled on a mirror blurs the image of a light reflecting onto the wall.
Show a beam on light reflecting off a mirror on an optics board. Replace the mirror with a sheet of paper.
Hold frosted glass at various angles in a beam of light focused on the wall.

Same as AJP 50(5),473.
Reflect light off a sheet of aluminum foil, then crumple and flatten it to create many facets.
Place a lantern and piece of clear glass midway between two walls and show the difference between reflecting by grazing on one wall and normal reflection on the other. Also compare glass and silvered at grazing and normal incidence.

Three reflectors are placed on the inside corner of a box.
Two mirrors at 90 degrees or three mirrors mutually perpendicular.
Three mirrors mutually perpendicular are taped together to form a corner cube.
Look at your image in a corner cube.

Use large mirror wall tiles (12 in sq) to make a large corner reflector.
Use mirror "tiles" to make a large corner reflector.

Mei, 34-1.2	signaling mirror
F\&A, Ob-9	perversion
D\&R, O-105	perversion
PIRA 1000	parity reversal in a mirror
Disc 21-22	parity reversal in a mirror
PIRA 500	angled mirrors
UMN, 6A10.40	angled mirrors
F\&A, Ob-4	mirrors at an angle
Mei, 34-1.1	angled mirrors
D\&R, O-125	angled mirrors
AJP, 75 (4), 342	angled mirrors
Ehrlich 1, p. 178	angled mirrors
Disc 21-23	hinged mirrors
Sut, L-20	hinged mirrors
Hil, O-1c	hinged mirrors, kaleidoscopes
D\&R, O-135	kaleidoscope
AJP 58(6),565	angled mirrors - laser spots
AJP 30(5),380	hinged mirrors theory
PIRA 500	parallel mirrors
F\&A, Ob-5	parallel mirrors
D\&R, O-120	parallel mirrors
AJP 72(1), 53	parallel mirrors
Disc 21-25	barbershop mirrors
PIRA 500	full view mirror
UMN, 6A10.50	full view mirror
F\&A, Ob-3	height of a mirror for full view
Hil, O-1d	large plane mirror
Sprott, 6.9	talking head
Bil\&Mai, p 331	antigravity mirror
PIRA 500	cold candle
UMN, 6A10.60	cold candle
F\&A, Ob-2	candle in a glass of water
Sut, L-18	candle in a glass of water
D\&R, O-100	candle in a glass of water
Sprott, 6.10	candle in a glass of water
TPT 15(6), 360	candle in a flask - Pepper's ghost
TPT 22(9), 591	Pepper's ghost
TPT 49(6), 338	Pepper's ghost

6A10.33 A plane mirror with a small unsilvered area in the center is used for signaling. Diagram.
6A10.35 Perversion can be demonstrated in public with a license plate and a plane mirror. Sorry, no inversion.
6A10.35 Perversion is studied with the word "AMBULANCE" arranged such that it can be read correctly in a rear view mirror.
6A10.37
6A10.37 View a Cartesian coordinate system in a mirror.
6A10.40
6A10.40
6A10.40 A candle placed between angled mirrors forms multiple images.
6A10.40 Two hinged front surface mirrors show multiple images of an object placed between them. Diagram.
6A10.40 An object placed between variable angle mirrors forms multiple images.
6A10.40 A short article with picture explaining some of the physics of angled mirrors and multiple images.
6A10.40 An object placed between variable angle mirrors forms multiple images. The number of images seen depends on the angle of the mirrors.
6A10.40 Mirrors angled at 60 degrees give one object and five images arranged in a hexagon.
6A10.41 Place a light between two mirrors hinged together and standing vertically. Place a sheet of clear glass between the mirrors forming an isosceles triangle. A few more variations are given.
6A10.42 Hinged mirrors are shown at 60 and 30 degrees along with 60 and 30 degree kaleidoscopes.
6A10.42 A simple kaleidoscope constructed from 3 microscope slides and 2 plastic film canisters
6A10.43 The hyperboloid of revolution formed by the successive reflections of a laser beam on two plane angled mirrors is explained by a simple geometrical method.
6A10.44 The theorem of Rosendahl is applied to the hinged mirror problem to predict the number of images formed at various inclinations.
6A10.45
6A10.45 An infinite number of images are formed with a candle between parallel mirrors.
6A10.45 An infinite number of images are formed with an object between parallel mirrors. Best if one mirror has a hole in the center for easy viewing.
6A10.45 The color of the object becomes darker and greener if common secondsurface plane mirrors are used.
6A10.45 Place objects between parallel mirrors and view them over one of the mirrors.
6A10.50
6A10.50
6A10.50
Shades are pulled up from the bottom and down from the top covering a mirror until a person can just see their entire height.
6A10.51 A three foot plane mirror is used to show all of a six foot person.
6A10.55 Reflections from a mirror mounted beneath a table give the illusion that a disembodied head is sitting on the table.
6A10.57 Straddle a large mirror so that it is between your legs. Lift the leg that is in front of the mirror and it will appear you are levitating.
6A10.60
6A10.60
6A10.60 A candle in front of a plate glass forms an image in a glass of water behind.
6A10.60 A candle is placed in front of a sheet of glass and a beaker of water an equal distance behind. Place the entire apparatus on a rotating table.
6A10.60 A candle in front of a plate of glass form an image in a battery jar of water. Can also be done with identical light bulbs in identical sockets.
6A10.60 A candle in front of a plate glass forms an image in a glass of water behind the plate glass.
6A10.60 The illusion of a candle burning in a flask, a modern version of the Pepper's ghost illusion done in the 1860's.
6A10.60 Description of several optical illusions including Pepper's ghost with diagrams.
6A10.60 Historical description of Pepper's ghost illusion with diagrams.

Bil\&Mai, p 328	cold candle
Disc 21-21	location of image
PIRA 1000	half silvered mirror box
D\&R, O-115	mirror box
Sprott, 6.10	mirror box
Disc 21-26	Mirror Box
TPT 28(7),468	sawblade optics
TPT 30(5), 295	chinese magic mirror
TPT 30(7), 327	chinese magic mirror
TPT 31(7), 325	chinese magic mirror
TPT 32(7), 329	chinese magic mirror
TPT 35(9), 536	chinese magic mirror
ref.	chinese magic mirror
	Reflection from Curved Surfaces
PIRA 200	blackboard optics - curved mirrors
PIRA 1000 - Old	blackboard optics - curved mirrors
F\&A, Oc-1	blackboard optics - concave mirror
F\&A, Oc-2	blackboard optics - convex mirror
$\begin{aligned} & \text { D\&R, O-150, O- } \\ & 155 \end{aligned}$	blackboard optics - curved mirrors
Disc 22-01	concave and convex mirrors
PIRA 1000	optical disc with curved mirrors
UMN, 6A20.11	optical disc with curved mirrors
F\&A, Oc-3	optical disc with curved mirrors
Mei, 34-1.18	large optical disc
PIRA 500	parallel lasers and curved mirrors
UMN, 6A20.15	parallel lasers and curved mirrors
Bil\&Mai, p 332	parallel lasers and curved mirrors
PIRA 1000	spherical abberation in a mirror
Disc 22-02	spherical abberation in a mirror
AJP 36(11),1022	off focal point source
Sut, L-25	concave mirrors - caustics
AJP 35(6),534	variable curved mirrors
F\&A, Ob-10	elliptical tank
Sut, L-26	ellipsoidal mirror
PIRA 500	mirror \& rose
UMN, 6A20.30	mirror \& rose

6A10.60 A candle in front of a plate glass forms an image that appears to be behind the glass. Place a finger in the "flame" of the virtual image.
6A10.60 Place a sheet of glass between a burning candle and a glass of water so the image of the candle appears in the glass.
6A10.65
6A10.65 Two people look at opposite sides of a large sheet of acrylic or glass. As the light over one subject is dimmed, the light over the other brightens causing metamorphosis.
6A10.65 People look at opposite sides of a large sheet of acrylic or glass. As the light over one subject is dimmed, the light over the other brightens causing metamorphosis.
6A10.65 Two people look into opposite ends of a box containing a half silvered mirror in the center. As the light on one end is dimmed, the light on the other brightens, causing metamorphosis.
6A10.76 Keep the sawblade perpendicular by lining up the reflection of the board in the sawblade.
6A10.80 The decorative pattern on the back of a bronze mirror is revealed when light is reflected from the polished front side onto a screen.
6A10.80 Comments on the TPT 30(5), 295 article.
6A10.80 More comments about the TPT 30(5), 295 article.
6A10.80 A second look at how the magic mirror produces the reflected image.
6A10.80 How the magic mirror is used to teach optics principles in physics classes.
6A10.80 The decorative pattern on the back of a bronze mirror is revealed when light is reflected from the polished front side onto a screen. See 3D40.51 or TPT 30(7), 341.
6A20.00

6A20.10

6A20.10

6A20.10
6A20.10
Blackboard optics - convex mirror.

6A20.10 Blackboard optics, concave and convex mirrors

6A20.10 Shine parallel beams at convex and concave mirrors. Use a thread screen for display.
6A20.11
6A20.11 Use the optical disc with multiple beams and curved lens elements.
6A20.11 Mount either concave or convex mirrors in the optical disc.
6A20.11 A large translucent screen and large lens elements scale up the Hartl optical disc. Diagrams.
6A20.15

6A20.15 Shine parallel lasers at converging and diverging mirrors and use chalk dust to make the beams visible.
6A20.15 Shine parallel lasers at a concave mirror and use a fog machine to make the beams visible.
6A20.20
6A20.20
Shine parallel rays at spherical and parabolic mirror elements, noting the difference in aberration.
6A20.21 A picture of the caustic formed by parallel laser rays incident on a parabolic mirror at 30 degrees.
6A20.24 Directions for making a large cylindrical or parabolic mirror element.
6A20.26 Aluminized mylar stretched over a coffee can makes a variable positive or negative mirror when the can is pressurized or evacuated.
6A20.27 A filament lamp is placed at one focus of an elliptically shaped wall of shiny aluminum and chalk dust shows the image at the other focus.
6A20.28 Compare the light intensity from the lamps at the near and far focus of an ellipsoidal mirror. Directions for making the mirror element. Diagram.

F\&A, Oc-10	flower in a vase
Sut, L-24	lamp in the socket
Sut, L-23	mirror and rose
$\begin{aligned} & \text { D\&R, O-160, O- } \\ & 165 \end{aligned}$	lamp in the socket
F\&A, Oc-11	cold candle
D\&R, O-165	cold candle
Disc 22-05	large concave mirror
PIRA 1000	optic mirage
UMN, 6A20.35	optic mirage
TPT 28(8),534	optic mirage
F\&A, Oc-7	optic mirage
D\&R, O-175	optic mirage
AJP 46(3),297	shine an light on the Optic Mirage
F\&A, Oc-6	red ball in hemisphere
Mei, 34-1.3	swinging lamp and concave mirror
D\&R, O-160	red ball in hemisphere
Bil\&Mai, p 334	bi-colored ball in hemisphere
PIRA 500	projected arrow with mirror
UMN, 6A20.40	projected arrow with mirror
PIRA 1000	projected filament with mirror
UMN, 6A20.41	projected filament with mirror
F\&A, Oc-4	image with a concave mirror
Bil\&Mai, p 329	image with a concave mirror
AJP 58(3),280	rotating liquid mirror
PIRA 500	convex and concave mirrors
F\&A, Oc-8	no image with convex mirror
Hil, O-1f	convex and concave mirrors
$\begin{aligned} & \text { D\&R, O-150, O- } \\ & 155 \end{aligned}$	convex and concave mirrors
Hil, O-1e	convex and concave mirrors
F\&A, Oc-5	amusement park mirrors
D\&R, O-140	amusement park mirrors
Sut, L-27	convex mirror
Ehrlich 1, p. 184	convex mirror - focal length
PIRA 1000	energy at a focal point
F\&A, Oc-9	lighting a cigarette
Disc 22-03	energy at a focal point
PIRA 500	Refractive Index apparent depth with TV
F\&A, Od-7	apparent depth with TV camera
F\&A, Od-6	apparent depth

6A20.30 A hidden flower at the center of curvature of a parabolic mirror appears in an empty vase.
6A20.30 A 40 W lamp is projected onto an empty socket.
6A20.30 Hints for projecting a real image (rose) on an object (vase).
6A20.30 A lamp image is projected onto an empty socket.
6A20.31 Hold your finger in the inverted image of a candle burning at the center of curvature of a parabolic mirror.
6A20.31 Place the candle with axis horizontal at the center of curvature of a large spherical mirror. Candle will appear to burn at both ends with one flame pointed up and the other flame pointed down.
6A20.31 Hold a candle and other objects at the center of curvature of a large convex mirror.
6A20.35
6A20.35 Same as Oc-7.
6A20.35 Derivation of additional "magic separations" of the Optic Mirage that give images.
6A20.35 Two concave mirrors face each other. Images of objects resting on the bottom mirror appear at the center hole of the top mirror.
6A20.35 Two concave mirrors face each other. Images of objects resting on the bottom mirror appear at the center hole of the top mirror.
6A20.36 Shine a light on an shiny object in the Optic Mirage and the reflections will look real.
6A20.37 Looking at a red ball pendulum suspended from the rim of a hemispherical concave mirror makes one puke.
6A20.37 A lamp pendulum is swung between the center of curvature and the principle focus on a concave mirror.
6A20.37 An optics toy that has a red ball pendulum suspended from the rim of a hemispherical concave mirror.
6A20.37 Looking at a bi-colored pendulum suspended from the rim of a hemispherical concave mirror makes one puke.
6A20.40
6A20.40 A converging mirror is used to project an image of an illuminated arrow onto a screen.
6A20.41
6A20.41 A converging mirror is used to project the image of a light bulb filament onto a screen. Masks can be used to stop down the mirror.
6A20.41 A concave mirror is used to image a lamp filament on a screen or the wall.
6A20.41 A concave mirror is used to image a light bulb with the letter "F" drawn on it onto a wall or screen.
6A20.42 Rotate a pan of glycerine mixed with dark dye, using a lighted object as a source and ground glass screen or TV camera as a detector.
6A20.45
6A20.45 Try to project the image of a filament from a convex mirror.
6A20.45 Large 16" convex and concave mirrors are shown.
6A20.45 Large concave and convex mirrors are shown.
6A20.45 Project a lamp image with a concave mirror, then try convex.
6A20.50 Cylindrical mirrors are made with a ten inch radius of curvature.
6A20.50 A rectangular flexible mirror is bent to make concave and convex mirrors to view objects in the horizontal and the vertical.
6A20.51 View the image of your nose in a $1 / 2^{\prime \prime}$ diameter steel ball through a short focal length lens.
6A20.55 The focal length of a convex mirror is found using a meter stick.
6A20.60
6A20.60 Light a cigarette at the focal point of a parabolic mirror concentrating the beam of an arc light.
6A20.60 Remove the projection head of an overhead projector and hold a piece of paper at the focal point until it bursts into flame.
6A40.00
6A40.10
6A40.10 Focus a camera on a spot and then note how far the camera is moved to refocus when a clear plastic block is placed on the spot.
6A40.11 Look down into a tall graduate and estimate the distance to a coin at the bottom.

D\&R, O-220
apparent depth on the overhead

Ehrlich 1, p. 182 apparent depth

Mei, 34-1.8	focusing telescope method
Mei, 33-7.8	microwave index of refraction
AJP 33(1),62	refractive index of ice
PIRA 500	count fringes
UMN, 6A40.20	count fringes AJP 35(5),435
Michelson index of refraction	
AJP 39(2),224	Michelson index of refraction
Hil, O-2c	Michelson index of refraction

Mei, 34-1.9

TPT 28(5),323

PIRA 200
PIRA 500 - Old

D\&R, O-215

D\&R, O-21

Bil\&Mai, p 33
Ehrlich 2, p. 163 disappearing beaker

Disc 22-10 disappearing eye dropper

AJP 28(8),743
Sut, L-33

Bil\&Mai, p 337

TPT, 36(7), 420
AJP 47(1),120

AJP 54(10), 956
grating in aquarium
Sut, L-29

AJP 46(4),426
refractive index of beer

Mei, 34-1.7
PIRA 1000
AJP 40(6),913
Mei, 34-1.12

Abbe refractometer variable index of refraction tank variable index of refraction tank variable index of refraction tank

6A40.11 Place a transparent ruler under a beaker of water filled to a measured depth d on the overhead and focus. Raise another transparent ruler up the outside of the beaker until it to is in focus (d minus h). $d / d-h$ should be the index of refraction of water.
6A40.11 A water filled jar is placed over a transparency on the overhead projector which is focused until the lettering is clear. Slide a pencil along the outside of the jar until the point is also in sharp focus to show apparent depth.

6A40.12 Move a telescope back and forth on a optical bench to focus on the front and then on the back of a block of Plexiglas or container of liquid.
6A40.13 The index of refraction is determined by measuring the distance between minima with a movable plane mirror in a container of liquid. Diagram.
6A40.15 Freeze water by pumping in a hollow acrylic prism and measure the minimum deviation.
6A40.20
6A40.20
6A40.20 Place a gas cell in one leg of the Michelson interferometer and evacuate air or let in a gas while counting fringes.
6A40.20 Count fringes of laser light as air is let into an evacuated chamber in one leg of a Michelson interferometer
6A40.20 A vacuum chamber is put in one leg of a Michelson interferometer and fringes are counted as air or a gas is leaked into the chamber. Reference: TPT 6(4),176.
6A40.21 Improvements on the Raleigh refractometer to make the fringes more visible for easier counting as the air is let back in to the tube.
6A40.25 In addition to letting air (21 fringes) into one arm of the Michelson interferometer, let in He (3 fringes) and SF6 (55 fringes).
6A40.30
6A40.30 A cats face drawn on a beaker appears to float in the middle of a larger beaker filled with baby oil or Wesson oil.
6A40.30 Use Johnson's baby oil or Wesson oil to make a small beaker disappear when immersed. If the beaker has graduations or words they will appear to be floating in the liquid.
6A40.30 Smash a test tube and place the pieces into a beaker of baby oil. Pull out an unbroken test tube.
6A40.30 A small beaker inside a larger beaker is made to disappear when vegetable oil is poured in.
6A40.30 A small beaker disappears when placed into a larger beaker filled with baby oil.
6A40.30 Place an eyedropper in a liquid with an index of refraction matched to the glass.
6A40.31 A table of Christiansen filter pairs. See AJP 25,440 (1957)
6A40.31 A mixture of crushed glass and a liquid with the same index of refraction as glass is warmed in a container and exhibits colors. Directions for making a permanent display. Reference.
6A40.33 A small piece of glass protrudes from the corner of a square battery jar at a 45 degree angle. A laser beam is directed through the jar at a right angle to the side so that it passes through the glass and produces two beams. Fill the jar with vegetable oil and one of the beams disappears.
6A40.35 Refraction of light, using diffracted light, through a water and air interface is explored.
6A40.36 Shine a laser beam through a grating so the beam splits the air/liquid interface and measure the difference in the diffraction pattern for the light passing through the air and liquid.
6A40.36 Mount a transmission grating inside an aquarium and measure the diffracted laser beam on the other end with and without water in the tank.
6A40.37 A shadow projected through a glass cube has a different length than normal.

6A40.38 The ratio of the apparent diameter to the actual diameter of a stick of pepperoni in a glass of beer gives the index of refraction. In the classroom, use a mesh projected on the wall and measure offset of a vertical wire.

6A40.39
6A40.40
6A40.40 Shine a laser beam through an aquarium with an unstirred sugar solution.
6A40.40 How to make a tank with varying concentrations of benzol and CS2.

Demonstration	Bibliography
AJP 56(12),1099	gradient index lens
PIRA 1000	mirage
Sut, L-32	mirage
Mei, 34-1.15	mirage
AJP 51(3),270	mirage with a laser
AJP 51(5),475	laser beam deflection - thermal gradient
AJP 37(3),332	mirage with laser
AJP 57(10),953	superior "superior" image
D\&R, O-225	laser beam deflection - twinkling
D\&R, O-226	laser and hot plate
Sprott, 6.4	laser beam deflection - twinkling
Ehrlich 2, p. 164	mirage - superior mirage
AJP 42(9),774	mirage explanation note
PIRA 1000	oil, water, laser
PIRA 1000	Schlieren image
AJP 49(2),158	cheap Schlieren
Mei, 34-1.27	Schlieren, etc.
AJP 29(9),642	Schlieren image of a candle
F\&A, Op-1	Schlieren image of a candle
AJP 52(5),467	single mirror Schlieren system
AJP 50(8),764	Schmidt-Cassegrain Schlieren
Mei, 34-1.26	Toepler Schlieren apparatus
Sut, L-31	refraction by gases
PIRA 1000	short beer
AJP 45(6),582	tall beer
AJP 43(8),741	cylindrical lens and short beers
AJP 44(6),601	short beers
AJP 47(8),744	beer mugs
AJP 44(8),799	short beer comment
AJP 46(11),1197	plasma laser-beam focusing
	Refraction from Flat Surfaces
PIRA 500	blackboard optics - refraction
F\&A, Od-2	blackboard optics - refraction
D\&R, O-200	blackboard optics - refraction
PIRA 1000	optical disk with glass block
UMN, 6A42.11	optical disk with glass block
Disc 22-06	refraction/reflection from plastic
F\&A, Od-3	optical disc - semicircle

6A40.42 A small gradient index lens is passed around the class. It looks like a glass rod but one sees an inverted image when looking along the axis.
6A40.45
6A40.45 How to heat a long plate to demonstrate the mirage effect.
6A40.46 The image from a slide projector is directed just above a brass plate heated with a burner.
6A40.47 A laser beam almost grazing a hot plate will show deflection when the hot plate is turned on.
6A40.47 An apparatus for cooling a plate to deflect a laser beam downward.
6A40.47 A laser beam is imaged through a keyhole and the beam then passes through a 1 meter oven.
6A40.47 A laser beam passing through a tank of water begins to deflect immediately when heat lamps are turned on. Images are also observed.
6A40.47 A laser beam close to the top of a hot plate. The laser beam is run through an aperture after the hot plate and before the screen. The spot on the wall will jiggle, twinkle, or even wink out at times when the plate is turned on.

6A40.47 A laser beam almost grazing a hot plate will "dance" when the hot plate is turned on
6A40.47 A laser beam passed over the top of a Bunsen burner produces a spot on the wall that twinkles like a star.
6A40.47 A focusable flashlight beam passing through a tank of water begins to deflect when heat lamps above the tank are turned on.
6A40.49 A note correcting misleading textbook explanations of the mirage.
6A40.50
6A40.60
6A40.60 A small, compact, portable, and inexpensive Schlieren instrument using an ordinary lamp and a light source.
6A40.60 Show and compare Schlieren, direct shadow, and interferometeric method of detecting small changes in the index of refraction of air. Diagrams, Details in appendix, p. 1352.
6A40.61 A simple arrangement with a point source, lens, and candle near the lens, aperture, and screen for lecture demonstration purposes.
6A40.61 Laser light is used in Schlieren projection of a candle flame.
6A40.62 Two Ronchi rulings are placed at the radius of curvature of a spherical mirror.
6A40.63 Two Schmidt-Cassegraion telescopes are used to make a simple inline Schlieren system.
6A40.65 A simpler Schlieren setup with colors indicating amount of deviation.
6A40.67 Shadow project the Bunsen burner ($\mathrm{H}-137$), hold a hot object in one arm on the Michelson interferometer.
6A40.70
6A40.70 Properly designed glassware makes the beer look taller.
6A40.70 Analysis of the apparent inner diameter thick cylinder of a liquid of different index of refraction.
6A40.70 Paint the inside of the illusion cylinder, (AJP 43(8),741).
6A40.70 Two beer mugs were found that have the same outer dimensions and both appear to hold the same amount of beer when full, but actually differ in volume by a factor of two.
6A40.70 Easy explanation.
6A40.90 An expanded laser beam grazing a flat combustion flame from a paint stripper is focused into a line. A second perpendicular flame gives a point.
6A42.00
6A42.10
6A42.10
Blackboard optics with a single beam and a large rectangle and prism of Plexiglas.
6A42.10 Blackboard optics with a single beam and a large acrylic rectangular block. Add a plane mirror to the back of the block to reflect internal beam and show it is parallel to the beam reflected from the front surface.
6A42.11
6A42.11 A single beam of light on the optical disc is used to show refraction through a rectangular block of glass.
6A42.12 Rotate a rectangle of plastic in a single beam of light.
6A42.15 A single beam of light is refracted at the flat but not the curved side if it leaves along a radius.

Demonstration Bibliography

D\&R, O-205	blackboard optics - prism, semicircle
PIRA 1000	optical disk with prism, semicircle
UMN, 6A44.11	optical disk with prism, semicircle
Mei, 34-1.6	semicircular element on disc
PIRA 500	big plastic refraction tank
F\&A, Oe-1	critical angle in a refraction tank
Sut, L-35	refraction tank
Bil\&Mai, p 341	critical angle in a refraction tank
Bil\&Mai, p 343	critical angle / total internal reflection
Disc 22-11	critical angle/ total internal reflection
UMN, 6A44.22	big plastic refraction tank
PIRA 1000	Snell's wheel
PIRA 1000	ripple tank total internal reflection
AJP 45(6),550	ripple tank total reflection
ref.	frustrated total internal reflection
Ehrlich 1, p. 180	fiber optics - ulexite
PIRA 200	laser and fiber optics
UMN, 6A44.40	laser and fiber optics
$\mathrm{F} \& \mathrm{~A}, \mathrm{Oe}-7$	light pipe - spiral
Sut, L-34	curved glass tube
Hil, O-2e	light pipes
D\&R, O-255	laser and fiber optics
Sprott, 6.5	light pipe - spiral
Disc 22-13	light pipes
PIRA 1000	optical path in fibers
Disc 22-14	optical path in fibers
PIRA 1000	steal the signal
UMN, 6A44.42	steal the signal
D\&R, O-258	steal the signal
ref.	steal the signal
AJP 53(2),182	bounce around a tube
D\&R, O-255	bounce around a tube
PIRA 1000	water stream light pipe
AJP 44(6),604	water stream light pipe
Sut, L-36	illuminated fountain
D\&R, O-250	water stream light pipe
Sprott, 6.6	water stream light pipe
Bil\&Mai, p 342	water stream light pipe
Ehrlich 1, p. 181	water stream light pipe
Disc 22-15	laser waterfall
PIRA 200 - Old	light below surface

July 2015
Optics
6A44.10 Single and multiple beams of light pass through large acrylic prisms and semicircles.
6A44.11
6A44.11 A single beam of light on the optical disk shows total internal reflection when passed through a prism.
6A44.11 A beam of light entering a semicircular glass disc normal to the curved surface is reflected off the flat side.
6A44.20
6A44.20 A beam in a tank of water is rotated until there is total internal reflection at the surface.
6A44.20 Adjust the path of a beam with mirrors in a tank of water with fluorescein to show total internal reflection.
6A44.20 Fill a refraction tank with water that contains a pinch of powdered coffee creamer. Direct a laser beam up through one side of the tank towards the top surface of the water.
6A44.20 Tape playing cards to the outside walls and bottom of a refraction tank. Fill the tank with water and observe what critical angle and total internal reflection hath wrought.
6A44.20 Shine a beam through the side of a tank containing fluorescein. Rotate a mirror in the tank so the beam passes through the critical angle.
6A44.22
6A44.25
6A44.30
6A44.30 Vary the angle of incidence of ripple tank waves to a boundary with water depths of 13 and 3 mm .
6A44.35 see 7A50.12
6A44.37 Ulexite or "TV rock" is a naturally occuring mineral that consists of parallel optical fibers. Place a sample of this on a written page and read the lettering at the top of the rock.
6A44.40 Shine a laser into a curved plastic rod.
6A44.40 A laser is used with a bundle of fiber optics, a curled Plexiglas rod, and a 1" square lean rod.
6A44.40 Light is projected down a clear Plexiglas spiral.
6A44.40 Shine a bright light source through a curved glass tube.
6A44.40 Several light pipes and fiber optics are shown.
6A44.40 Shine a laser through several light pipes.
6A44.40 A long spiral rod illuminated with a low-power laser.
6A44.40 Shine a laser into a curved plastic rod.
6A44.41
6A44.41
6A44.42
6A44.42
6A44.42
Shine a laser into a spiral acrylic light pipe. Dip the spiral into baby oil, or coat with vaseline, and note that the light pipe no longer reflects light internally.
6A44.42 See 7A50.10.
6A44.43 A laser beam bounces around a thick walled Plexiglas tube due to total internal reflection.
6A44.43 A laser beam follows a helical path around a thick walled acrylic tube.
6A44.45
6A44.45 Shine a laser beam down the water stream issuing from the orifice of a Plexiglas tank of water.
6A44.45 Shine a light down a stream of water.
6A44.45 Shine a laser beam down the center of an orifice issuing from a large plastic soda bottle. A Florence flask with a two hole stopper may also be used.

6A44.45 A stream of water illuminated with a laser or high-intensity white light act as a light guide.
6A44.45 Shine a laser beam down the center of an orifice issuing water from a large plastic bottle.
6A44.45 Shine a flashlight down a stream of water flowing from a hole in the bottom of a clear plastic cup.
6A44.45 Shine a laser down the center of a nozzle and it follows the water stream.

6A44.50 An underwater light illuminates powder on the surface of water to form a central spot of light.
UMN, 6A44.50
F\&A, Oe-2

AJP 51(5),469

AJP 49(8),794

F\&A, Oe-5
Ehrlich 1, p. 180
F\&A, Oe-4
Sut, L-40

PIRA 1000
F\&A, Oe-3

Sut, L-39

Ehrlich 2, p. 157
Disc 22-12
Sut, L-37

Sut, L-38

F\&A, Oe-6
Sut, L-41
F\&A, Of-2

F\&A, Ob-7
F\&A, Of-3

F\&A, Of-4
Hil, O-2d
AJP 59(5),477

PIRA 500
UMN, 6A46.10
F\&A, Oj-10
Sut, L-43

D\&R, O-275

D\&R, O-275

D\&R, O-280

Ehrlich 1, p. 183
AJP 77 (9), 795
Sut, L-45 artificial rainbow
AJP 58(6),593 secondary rainbow

Sut, L-44 rainbow droplets

AJP 56(11),1006 rainbow dust
PIRA 1000
ring of light
light below surface
ring of light index of refraction
ring of darkness
water/benzol surface
oil and water/alcohol initerface
hidden mercury in a test tube
black ball turns silver
black ball turns silver
soot ball
silver soot ball
silver soot ball
glass-air interface
near critical angle
add water to snow
diamond
right angle prism inverter
right angle prism - double
reflection prisms
Goos-Haenchen shift

Rainbow

rainbow
rainbow
rainbow
rainbow
rainbow
rainbow
rainbow
rainbow
rainbow
Sut, L-44 rainbow droplets
rainbow mode
total internal and metallic reflection 6A44.54
inversion with a right angle prism
two right angle prisms - inversion
6A44.55

6A46.00
6A46.10
6A46.10

6A46.20

6A44.50 Same as Oe-2.
6A44.50 An underwater light illuminates powder on the surface of water to form a central spot of light.
6A44.51 Find the index of refraction of transparent plates by wetting a filter paper on one side, shining the laser in that side, and measuring the diameter of the light circle.
6A44.52 Shine a laser through a sample to a white diffusely reflecting surface and measure the darkened circle on the top surface.
6A44.53 Total internal reflection from a water/benzol surface.
6A44.53 Total internal reflection occurs at an oil and water/alcohol interface.
6A44.54 Mercury in a partially filled test tube cannot be seen from above when immersed in water.
View a test tube half full of mercury half in water from an angle of 100 degrees to the incident beam. The glass-air interface is brighter.

6A44.55 A soot covered ball appears silver under water due to reflected light from air trapped on the surface of the ball.
6A44.55 A ball covered with soot appears silvery in water due to the air trapped on the soot forming an air-water interface.
6A44.55 A soot covered metal ball appears silver when suspended underwater.
6A44.55 A ball coated with soot appears silver in water.
6A44.56 Two thin strips of glass are sealed with an air barrier and immersed in water. Turned to the proper angle to the incident beam it will exhibit total internal reflection.
6A44.56 Use the entrapped air slide in a water bath or air between right angle prisms to show the colors of the transmitted and reflected light near the critical angle. Dispersing the two beams will show complementary spectra.

6A44.59 Project light through snow or chopped ice and add water.
6A44.60 A thin beam of light is directed on a diamond and the reflections are projected onto a cardboard.
6A44.65 Project an image upside down and place a right angle prism in the beam to invert the image.
6A44.65 A right angle prism placed in a projected beam inverts the image.
6A44.66 A beam entering the hypotenuse of a right angle prism is inverted and reversed.
6A44.67 Two right angle prisms are arranged to invert and pervert the image.
6A44.68 Several prisms demonstrate total internal reflection.
6A44.70 The sideways displacement of a beam at total internal reflection is shown with 3 cm microwaves

6A46.10 An arc lamp directed at a sphere of water forms a rainbow on a screen.
6A46.10 Project a beam through a spherical flask of water and view the rainbow on a screen placed between the light and the flask.
6A46.10 A slit of light from a slide projector grazes a beaker or square plastic container filled with water producing a rainbow.
6A46.10 A clear plastic cup filled with water is placed on the overhead. A dispersed circular rainbow will be seen on the ceiling.
6A46.10 Project a beam through a spherical flask of water and view the rainbow on a screen with center hole placed between the light source and the flask.

6A46.10 A rainbow is produced by shining a flashlight at the side of a jar of water.
6A46.10 A project in which students use numerical methods to analyze the physics of the rainbow.
6A46.11 Form a vertical circle "rainbow" by placing a tube of water between a prism and screen.
6A46.12 Use a single sphere with the back surface coated with a reflecting material to show both primary and secondary bows with increased intensity.

6A46.15 Small droplets formed by spraying an atomizer on a soot covered glass plate glisten like colored jewels when viewed at 41 degrees.
6A46.16 On using small glass spheres to generate bows and halos.

Mei, 34-1.16	rainbow model
Mei, 34-1.17	rainbow
TPT 28(7),509	rod and dowel raindrop model
PIRA 1000	optical disc with spherical lens
UMN, 6A46.30	optical disc with spherical lens
Disc 23-24	rainbow disc
	Thin Lens
PIRA 500	blackboard optics - thin lens
F\&A, Og-7	blackboard optics - thin lens
D\&R, O-310	blackboard optics - thin lenses
PIRA 1000	optical disk with thin lens
UMN, 6A60.11	optical disk with thin lens
F\&A, Og-10	optical disc - lenses
F\&A, Og-1	optical disc - refraction at curved surfaces
PIRA 500	ripple tank convex lens
UMN, 6A60.15	ripple tank convex lens
F\&A, Sm-6	ripple tank - lens model
PIRA 1000	ripple tank concave lens
UMN, 6A60.16	ripple tank concave lens
PIRA 500	parallel lasers and lenses
UMN, 6A60.20	parallel lasers and lenses
F\&A, Og-9	parallel lasers and lenses
AJP 70(12), 1184	ray tracing with lenses
Disc 22-18	ray tracing with lenses
PIRA 200	thin lens projection
UMN, 6A60.30	projected filament with a lens
F\&A, Og-5	thin lens projection
Disc 22-16	real image formation
PIRA 1000	projected arrow with a lens
UMN, 6A60.31	projected arrow with a lens
D\&R, 0-315	projected arrow with a lens
D\&R, O-320	project arrow with lens - cover hal lens
Bil\&Mai, p 345	projected arrow with a lens
Ehrlich 2, p. 161	image with lens - cover half lens
F\&A, Og-6	thin concave lens
Hil, O-4a	image location
PIRA 1000	lens magnification
Disc 22-17	lens magnification
AJP 76 (9), 856	submerged light bulb
UMN, 6A60.40	position of virtual image
AJP 48(4),322	position of a virtual image with a TV
PIRA 1000	position of a virtual image
F\&A, Og-12	focal length of a lens - mirror

6A46.20 Depict a three dimensional model of the rainbow with strings representing light rays.
6A46.25 A mechanical model for demonstrating rainbow formation shows why the rainbow is produced and why size depends on the time of day.
6A46.26 A rod and dowel raindrop model is used to show why a rainbow is bowshaped.
6A46.30
6A46.30 A single beam into a circular glass element is refracted, totally internally reflected, and refracted out again.
6A46.30 A single beam is used with a spherical glass element on an optical board to show the path of refracted light that produces a rainbow.
6A60.00
6A60.10
6A60.10
6A60.10
6A60.11
6A60.11
6A60.11
6A60.12
6A60.15
6A60.15
6A60.15
6A60.16
6A60.16
6A60.20
6A60.20
Parallel lasers are passed through converging and diverging lenses. Chalk dust illuminates the beams.
6A60.20 Parallel lasers are used with chalk dust to show the path of rays through a lens and combinations of lenses.
6A60.20 A ray tracing approach to thin lens analysis. This ray tracing approach accommodates skew rays providing a more complete analysis.
6A60.20 Show parallel rays passing through a lens element and converging.
6A60.30 Project the filament of a lamp with a thin lens.
6A60.30 Project the filament of a light bulb on the wall. The lens can be stopped down.
6A60.30 Project the filament of a lamp with a thin lens.
6A60.30 With a source and screen at the ends of a long optical bench, show the two positions a lens will produce an image.
6A60.31
6A60.31 Use an illuminated arrow with a converging lens to project an image on a screen.
6A60.31 Use an illuminated arrow with a converging lens to project an image on a screen. Two such commercial light sources are shown.
6A60.31 Use an illuminated arrow with a converging lens to project an image on a screen. Cover the bottom half of the lens and observe the image.
6A60.31 Use an illuminated arrow with a converging lens to project an image on a screen.
6A60.31 Form an image on a screen with a converging lens. Cover half of the lens with a piece of cardboard. The image just gets dimmer.
6A60.32 Try to project an image with a thin concave lens.
6A60.33 A set of lenses for demonstrating the six general cases for object and image distances.
6A60.35
6A60.35
6A60.37 Exploring the unusual optical properties displayed by submerged clear and frosted light bulbs.
6A60.40
6A60.40
Find the virtual image location by focusing on an object through a lens removing the lens, and moving the object to a focused position. Also the apparent depth with a TV method.
6A60.45
6A60.45 When a lamp is at the focal length, the image is at the same place if a mirror is placed directly behind the lens.

TPT, 37(2), 94	how to quickly estimate the focal length of a diverging lens
Sut, L-50	effect of medium on focal length
Sut, L-47	lenses
PIRA 500	pinholes projected with a lens
UMN, 6A60.50	pinholes projected with a lens
F\&A, Oa-2	pinholes projected with a lens
Sut, L-48	action of a lens
D\&R, O-300	pinholes projected with a lens
AJP 48(11),990	flat flames as lenses
PIRA 1000	paraffin lens and microwaves
UMN, 6A60.60	paraffin lens and microwaves
Mei, 33-7.2	microwave lens
	Pinhole
PIRA 1000	pinhole projection
Sut, L-15	pinhole projection
Hil, O-1a	pinhole projection
ref.	pinholes projected with a lens
PIRA 500	pinhole camera
UMN, 6A61.20	pinhole camera
F\&A, Oa-3	pinhole camera
D\&R, O-350	pinhole camera
Disc 21-09	pinhole camera
Sut, L-16	pinhole camera
AJP 49(5),715	pinhole imagery
Ehrlich 2, p. 167	pinhole imagery
$\begin{aligned} & \text { D\&R, O-350, O- } \\ & 590 \end{aligned}$	pinhole imagery
Mei, 34-1.10	pinhole camera
Mei, 34-1.11	fish-eye camera
Ehrlich 2, p. 168	negative pinhole image
AJP 55(12),1128	Thick Lens computer assisted optics
PIRA 500	improving an image with a stop
F\&A, Oh-2	improving an image with a stop
D\&R, O-370	improving an image with a stop
F\&A, Oh-3	depth of focus
PIRA 1000	optical disc - circular glass plate
F\&A, Og-4	optical disc - circular glass plate
PIRA 500	chromatic aberration
UMN, 6A65.20	chromatic aberration
AJP 68(9), 869	chromatic aberration
F\&A, Oj-9	chromatic aberration

6A60.46 A simple method for finding the focal length is explained.

6A60.48 Find the focal length of a lens, then find the focal length of the same lens in water.
6A60.49 All sorts of focal length stuff.
6A60.50
6A60.50
6A60.50 Pinholes are pricked in a black paper covering a long filament bulb. Bring the multiple images into one image with a converging lens.
6A60.50 Project the images of a filament through several pinholes and then add a lens to collect the many into a single image.
6A60.50 Pinholes are pricked in a black paper covering a bulb. Bring the multiple images into one image with a large converging lens.
6A60.55 More of the original Phil Johnson humor = I haven't figured this out and have to go home to eat, so maybe some other time. The description would be: Using large flat oxyacetylene flames as lenses to focus a laser beam.

6A60.60
6A60.60
6A60.60
Construct a microwave lens and prisms of stacks of properly contoured aluminum sheets separated by just over one half the wavelength.
6A61.00
6A61.10
6A61.10
Place a lamp in a box covered with heavy paper and poke a hole in the paper with a wire 1-2 mm in diameter. Poke more holes for more images. Try different size holes.
6A61.10 Interpose a metal plate with two holes between a lamp and a screen on an optical bench.
6A61.15 see 6A60.50
6A61.20
6A61.20
6A61.20
6A61.20
6A61.20
Construction of a simple pinhole camera from a shoe box.
Project a lamp filament onto a screen. Vary the distance of the screen and the size of the pinhole. Includes animation.
6A61.21 A sliding box with has pinhole at one end and a frosted glass at the other. Try a 1" diameter hole in the shutter of a window in a darkened room. Directions on making a pinhole camera.
6A61.22 A complete discussion of pinhole imagery.
6A61.22 Varying the size of the pinholes will change the fuzziness and brightness of an image in a predictable way.
6A61.22 A pinhole will allow a person to focus clearly on an object at 5 cm . Approximate 5 X magnification will also result.
6A61.23 A small tube covered with tin foil with a small hole replaces the lens of a TV camera.
6A61.30 A pinhole camera filled with water or solid Lucite gives a fish-eye view. Diagram, Pictures.
6A61.35 A small sphere or screw head is place between a circular fluorescent light and a screen. A negative image of the light appears on the screen.
6A65.00
6A65.09
The authors describe a program that covers spherical and chromatic aberration in addition to other topics. BASIC, PC, available from authors.
6A65.10
6A65.10
6A65.10
6A65.11 Use a six inch long glowing wire as an extended object for showing the effect of stopping down a lens.
6A65.15
6A65.15 Use a circular plate of glass with the optical disc as an example of a thick lens.
6A65.20
6A65.20
6A65.20
How to project chromatic aberration in a large lecture classroom using an overhead projector and another glass or Fresnel lens.
6A65.20 A diaphragm moved near the focus selects red or blue light from beams passing through the edge of a lens.

Mei, 34-1.23	aplanic properties of a sphere
D\&R, O-380	chromatic aberration
Disc 22-22	chromatic aberration
Mei, 34-1.22	chromatic aberration
Mei, 36-7.2	lens aberrations with a laser
Sut, L-49	chromatic and spherical aberratio
PIRA 500 UMN, 6A65.30 Sut, L-52	barrel and pincushion distortion barrel and pincushion distortion barrel and pincushion distortion
D\&R, O-375	barrel and pincushion distortion
PIRA 1000	off axis distortion
Disc 22-24	off axis distortion
Disc 22-23	astigmatism
PIRA 1000	astigmatism and distortion
Sut, L-51	astigmatism and distortion
D\&R, O-370	astigmatism
PIRA 500	spherical aberration
D\&R, O-170	spherical aberration
D\&R, O-370	spherical aberration
Disc 22-21	spherical aberration
F\&A, Oh-1	abberation with a plano convex lens
AJP 32(5),355	spherical abberation and coma with a laser
PIRA 1000	fillable air lens
F\&A, Og-2	water lens
D\&R, O-305	fillable air lenses
D\&R, O-330	water lens
Ehrlich 1, p. 177	fillable air lenses

Ehrlich 2, p. 161 water lens
Ehrlich 2, p. 162 rotating water lens

Disc 22-20	fillable air lenses spherical lens
Mei, 34-1.13	wine bottle lens
F\&A, Og-3	watch glass lens
F\&A, Og-11	
Hil, O-4c CHOICE OXIDE D\&R, O-340 TITANIUM OXIDE	

6A65.21 Aplanic systems show no spherical aberration or coma for some special position of object and image demonstrated here with a spherical lens.
6A65.21 Show chromatic aberration using a slide projector, large thick lens, and red and blue or violet Kodak filters.
6A65.21 Project spots of light on a screen from several points on a lens. Note chromatic aberration and then add a second correction lens.
6A65.22 Show the image formation distance for red and UV light using a fluorescent screen to display the UV.
6A65.23 Good quality telescope and microscope objectives are used to show aberrations in optical systems.
6A65.24 Use diaphragms with central, annular, and other openings to show spherical and chromatic aberration.

6A65.30
6A65.30
6A65.30 Project an illuminated wire mesh with a large lens. Place a diaphragm between the lens and the mesh for barrel distortion and between the lens and the screen for pincushion distortion.
6A65.30 Project a pincushion distortion using a slide projector with no lens, a variable aperture stop, wire mesh screen, and large lens. Some barrel distortion.

6A65.31
6A65.31 Parallel rays of light pass through a lens element held off axis.
6A65.34 Focus light from a circular hole on a screen, then add a cylindrical lens.
6A65.35
6A65.35 An illuminated wire mesh is projected onto a screen with a short focal length condenser lens. Turn the lens about an axis parallel to either set of wires and the horizontal and vertical wires will focus at different points.
6A65.35 An illuminated wire mesh is projected on a screen with a lens. Turn the lens about an axis parallel to either set of wires and the horizontal and vertical wires will focus at different points.
6A65.40
6A65.40 An image of a light bulb with writing on it is projected onto a screen with a concave mirror. Stop the outer portions of the mirror and then the center.
6A65.40 Project an image with a thick planoconvex lens. Stop the outer portion of the lens, then the center.
6A65.40 Project an image with a spherical planoconvex lens. Stop the outer portion of the lens, then the center.
6A65.45 A series of parallel beams around the outside edge of a plano convex lens made visible with chalk dust are better focused when the light enters the curved side.
6A65.46 Diagram and pictures of a setup to project lens aberrations with a laser.
6A65.52
6A65.52 A beam of light is directed through a round flask filled with water.
6A65.52 Convex and concave lenses which can be filled with water or air are used in a trough of water with fluorescin dye added for visibility.
6A65.52 Add water to saran wrap that is stretched over a ring stand to produce a plano-convex water lens.
6A65.52 A variety of objects that can be used as convex and concave lenses, prisms, or mirrors which can be filled with water or air and used in a tank of water with some powedered milk or dairy creamer added for visibility. The overhead projector is used as a light source.
6A65.52 Add some water to a transparent plastic globe to make a plano-convex water lens.
6A65.52 Add some water to a transparent plastic globe to make a plano-convex water lens. Place this on an overhead projector and give it a spin. Observe the change in the focal length.
6A65.52 Convex and concave lenses are filled with water and air in water and air.
6A65.53 Compare a thermometer at the center of a water filled flask to one at the far side. Picture.
6A65.54 Fill a round flask with a wine bottle bottom with water and fluorescein to show diverging light.
6A65.55 A vertical lens can be formed by pouring various liquids into a watch glass.
6A65.56 CHOICE OXIDE GLASS LAMP is viewed through a tube filled with water.
6A65.56 TITANIUM OXIDE is viewed through a large diameter acrylic rod.

6A65.58 A light beam incident on the side of a glass rod at some angle will produce a cone with the half angle equal to the angle of incidence.
6A65.60 The advantages of plastic lenses.
6A65.70
6A65.70 An article on the discovery of stepped lenses.
6A65.70 Fresnel lenses from overhead projectors and their construction.
6A65.70 A large plastic Fresnel lens is shown to have the focusing properties of conventional lenses.
6A65.70 Fresnel lens magnification. Animation showing construction of a Fresnel lens.
6A70.00
6A70.10
6A70.10
6A70.10 Make a demonstration microscope with a short focal length lens and reading glass.
6A70.12 A diagram on a wall chart shows the action of a microscope.
6A70.13 A mirror arrangement and fake microscope make normal objects seem miniaturized.
6A70.14 A Leeuwenhoek 100 X magnifier is made with a glass bead on the end of a tapered tube.
6A70.20
6A70.20
6A70.20
Set up astronomical, terrestrial, and Galilean telescopes for students to look through individually.
6A70.21 Observe with a Questar telescope.
6A70.22 Make a heliostat for a room with a south facing window. Reference: AJP 38(3),391-2.
6A70.23 Large telescopes are available on the roof for observations.
6A70.25 An illuminated wire mesh is projected on a screen using a telephoto lens setup.
6A70.30
6A70.31
6A70.35
6A70.40 A wire screen placed at the point where a real image is formed is projected through a second lens to form a combined image.
6A70.45 A projection lantern double lens system.
6A70.50 A long discussion on measuring with moire fringes. Diagrams, Construction details in appendix, p. 1346.
6A70.60 The beam size may be changed with or without inversion by placing the second lens at the sum or difference of the focal lengths.
6A70.65 An optical bench setup shows the concept of entrance and exit pupil.
6B00.00
6B10.00
6B10.10
6B10.10
Use a point source to superimpose shadows of a rectangle and a $3 \mathrm{~h} \times 3 \mathrm{w}$ checkerboard rectangle.
6B10.10 A rectangular paddle and a $3 \mathrm{H} \times 3 \mathrm{~W}$ paddle are placed so shadows overlap and the distances are measured.
6B10.15 A wire frame pyramid connects areas of 1,4 , and 16 units.
6B10.15 A wire frame pyramid connects areas of 1,4 , and 16 units.
6B10.20
6B10.20
Double and triple the distance from an arc source to a photocell connected to a galvanometer.
6B10.20 Use a Weston type foot-candle meter to measure the inverse square law.
6B10.20 A light meter, meter stick, overhead projector, and large piece of opaque cardboard are used to plot light intensity versus distance. Equate this to an electrical field point charge. See 5A20.20.
6B10.20 Double and triple the distance between a source and photometer. Graph.
6B10.30
6B10.30
Two large paraffin blocks with tin foil sandwiched in between make a sensitive photometer. Use with lamps on either side.
6B10.30 Two paraffin blocks separated by an aluminum sheet are moved between two light sources until they appear equally bright.
6B10.30 Tin foil is sandwiched between two blocks of paraffin. Can be mounted in a box for greater accuracy.

Demonstration Bibliography	
PIRA 1000	grease spot photometer
F\&A, Oi-3	grease spot photometer
Sut, L-14	Bunsen grease spot photometer
Ehrlich 2, p. 165	grease spot photometer
PIRA 1000	Rumford shadow photometer
F\&A, Oi-2	Rumford shadow photometer
Sut, L-13	Rumford shadow photometer
PIRA 1000	frosted globe - surface brightness
UMN, 6B10.50	frosted globe - surface brightness
F\&A, Oi-6	surface brightness
PIRA 1000	frosted globes
UMN, 6B10.55	frosted globes
F\&A, Oi-8	surface brightness of a lens
F\&A, Oi-7	reflected surface brightness
AJP 43(1),111	laser and light bulb
F\&A, Oi-5	covered strobe and detector
PIRA 1000 AJP 29(10),666	Radiation Pressure radiometer - quartz fiber radiation pressure
Sut, A-60	radiometer
Sut, A-59	radiometer
AJP 34(3),272	light pressure comment
	Blackbodies
PIRA 200 - Old	variac and light bulb
UMN, 6B40.10	variac and light bulb
Sut, L-99	variac and light bulb
PIRA 500	hole in a box
UMN, 6B40.20	hole in a box
F\&A, Hf-2	hole in a black box
Bil\&Mai, p 360	hole in a box
Ehrlich 1, p. 114	hole in a box
Disc 24-25	Bichsel boxes
PIRA 1000	carbon block
UMN, 6B40.25	carbon block
Mei, 38-5.5	hole in a hot ball
PIRA 1000	carbon rod
UMN, 6B40.26	carbon rod
F\&A, Hf-3	radiation from a black body

6B10.35
6B10.35 A piece of paper with a grease spot is moved between two light sources until the spot disappears.
6B10.35 A grease spot disappears when illuminated equally from both sides. Diagram of a grease spot box.
6B10.35 A piece of paper with a grease spot is moved between two light sources until the spot disappears. Use bulbs of different wattages to test the inverse square law.
6B10.40
6B10.40 Light sources are moved until their shadows of the same object are of equal intensity.
6B10.40 Two light sources are moved so the shadow cast by a vertical rod is of the same intensity.
6B10.50
6B10.50 The surface brightness of a 40 W bulb is compared to a frosted globe placed over it.
6B10.50 A lamp with measured candlepower is enclosed in a frosted globe.
6B10.55
6B10.55
6B10.60
6B10.65
Place the eye at the image point of a lens focused on a dim lamp.
With a bright spot at the object point of a concave mirror and the eye at the image point, the whole mirror seems to have the same surface brightness as the spot.
6B10.70 A . 5 mW laser beam can be seen on the glass beside the bright center of a 25 W frosted incandescent bulb.
6B10.80 The amplitude of a signal displayed on an oscilloscope from a translucent covered photodetector and from a translucent covered strobe changes as the angles and distances are changed.
6B30.00
6B30.10
6B30.10
Construction details for a quartz fiber radiometer. Deflection of one radian is easily achieved with a microscope lamp.
6B30.10 The deflection of a quartz fiber radiometer is measured statically under high vacuum.
6B30.11 Focus a beam of light intermittently on a vane of the quartz fiber radiometer at the frequency of oscillation.
6B30.20 Brings attention to a paper that devotes six pages to describing errors in the "classical work by Nichols and Hull".
6B40.00
6B40.10 Vary the voltage to a 1 KW light bulb with a variac to show color change with temperature.
6B40.10 Vary the voltage to a 1 KW light bulb with a variac to show color change with temperature.
6B40.10 Vary the voltage across a clear glass lamp from zero to 50% overvoltage. Also measure the intensity and plot against power.
6B40.20
6B40.20 Holes in black boxes are blacker than the boxes. One box is painted white inside.
6B40.20 A box painted black has a hole in the side.
6B40.20 A box with a hole has 4 different mattings with colors of dark gray, light black, dark black, and white that can be placed on the inside. The darkest hole is observed when the white matting is in place.
6B40.20 A hole in a box painted white on the inside is a good example of a blackbody.
6B40.20 Two black boxes have blacker appearing holes in them. One box actually is painted white inside.
6B40.25
6B40.25 A carbon block with a hole bored in it is heated red hot with a torch. The hole glows brighter.
6B40.25 An iron ball with a hole is heated red hot.
6B40.26
6B40.26
Bore a hole in an old carbon arc rod and heat electrically. The hole glows brighter.
6B40.30 Heat red hot a carbon block that has both a drilled hole and a white porcelain plug.

Mei, 38-5.4	carbon block and porcelain
Sut, H-158	graphite and porcelain
Sut, L-97	good absorbers - good radiators
PIRA 1000	$X-Y$ spectrum recorder
UMN, 6B40.40	$X-Y$ spectrum recorder
PIRA 1000 Mei, 38-5.11	IR spectrum on a galvanometer plotting the spectrum
Sut, L-98	radiation intensity curve
Disc 23-22	infrared in the spectrum
PIRA 1000	project the spectrum and change the temperature
Mei, 38-5.13	radiation vs. temperature
D\&R, S-170	radiation spectrum of a hot object
Disc 24-18	radiation spectrum of a hot object
Mei, 38-5.12	Stefan-Boltzman equation
AJP 43(11),1004	microwave blackbody
	DIFFRACTION
PIRA 200	Diffraction Through One Slit single slit and laser
UMN, 6C10.10	single slit and laser
F\&A, Ol-6	single slit and laser
PIRA 1000	Cornell plate - single slit
UMN, 6C10.12	Cornell plate - single slit
Disc 23-03	Cornell plate - single slit
PIRA 200 - Old	adjustable slit and laser
UMN, 6C10.15	adjustable slit and laser
F\&A, Ol-7	adjustable slit and laser
Mei, 35-3.8	diffraction limited resolution
D\&R, O-505	adjustable slit and laser
Disc 23-02	adjustable slit and laser
PIRA 1000	two finger slit
Sut, L-73	two finger slit
D\&R, O-505	two finger slit
Bil\&Mai, p 350	two finger slit
Ehrlich 1, p. 202	adjustable single slit
AJP 33(3),245	adjustable single slit
Ehrlich 1, p. 201	eyelid slit
$\begin{aligned} & \text { F\&A, Ol-3 } \\ & \text { Sut, L-82 } \end{aligned}$	single slit diffraction - hand held single and double slits
Mei, 35-3.2	Cornell plate
Hil, O-7c	Cornell plate

July 2015
6B40.30 Two holes are drilled in a carbon block, one is filled with a porcelain insulator, and the block is heated with a torch.
6B40.30 Graphite and porcelain heated red hot look the same. A pattern on a porcelain dish shows brighter when heated.
6B40.35 An electric element (E-171) with chalk marks or china with a pattern are heated until they glow.
6B40.40
6B40.40
The black body radiation curve is traced on a $X-Y$ recorder from a thermopile. detector riding on the pen arm.
6B40.41
6B40.41
Measure the output of a thermopile as it is moved across a spectrum. Monochrometer in appendix, p. 1362, Plots.
6B40.41 Explore the energy distribution of the continuous spectrum of a carbon arc with a sensitive thermopile and galvanometer.
6B40.41 Hold a thermopile connected to a galvanometer in different parts of a spectrum.
6B40.55
6B40.55 A more detailed look at varying the temperature of a black body and measuring with a thermopile. Slip red, green, and blue filters over a long filament bulb. Increase voltage with a variac and observe radiated colors at different filament temperatures.

6B40.55 Project the spectrum from a projector lamp and change the voltage.
6B40.62 Measuring sigma by the relative method using a Hefner lamp as a standard radiator.
6B40.70 Microwave radiation emitted or absorbed by a cavity is detected and displayed on an oscilloscope.
6C00.00
6 C 10.00
6C10.10 Shine a laser beam through single slits of various sizes.
6C10.10 A laser beam is passed through slits of various widths, and the diffraction patterns are shown on the wall.
6C10.10 Direct laser beam through single slits of various sizes.
6 C10.12
6C10.12
6C10.12 Laser and Cornell slide - measurements from on screen can be used in calculations.
6C10.15 Shine a laser beam through an adjustable slit.
6C10.15
6C10.15 Project a laser beam through an adjustable slit.
6C10.15 A beam of light is projected through an adjustable slit into a telescope attached to a TV camera. The central slit widens as the slit is closed.
6C10.15 Shine a laser beam through an adjustable slit.
6C10.15 The diffraction pattern from a laser passing through an adjustable slit spreads as the slit is closed.
6C10.20
6C10.20 Have each student look at a vertical filament lamp through the slit formed by holding two fingers together.
6C10.20 Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.
6C10.20 Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.
6C10.21 An adjustable single slit made from two razor blades. Look at an unfrosted light bulb with a linear filament.
6C10.21 Look through a vernier caliper toward a monochromatic light 5 to 10 m away.
6C10.22 Looking at the filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.
6C10.25 Look at a filament through a dark plate with a line scratched in it.
6C10.26 Single and double lines are ruled on a photographic plate. Students look at a line filament covered with half red and half blue filters. A ruling tool is described.
6C10.27 Pass out Cornell plates to the students and have them look at a line filament.
6C10.27 Pass out the Cornell plate.

Demonstration Bibliography	
PIRA 1000	slit on photodiode array
Mei, 35-3.3	slit array
Sut, L-83	single and double slit projected
Mei, 35-3.1	white light diffraction
TPT, 37(2), 106	diffraction patterns with light and motion sensors
AJP 53(6),599	rotating mirror detector
AJP 54(10),956	electric razor detector sweep
AJP 38(8),1039	motorized slit sweep
AJP 54(3),283	rotating mirror detector
AJP 54(9),851	single slit and relative phase
AJP 52(7),653	TV tube detector
PIRA 1000	microwave diffraction
UMN, 6C10.50	microwave diffraction
F\&A, Ol-2	microwave single slit diffraction
Disc 23-01	microwave diffraction
Mei, 35-3.9	diffraction limited resolution
AJP 29(9),xvii	diffraction limited resolution
AJP 37(1),105	microscope resolving power
	Diffraction Around Objects
PIRA 200 - Old	Arago's (Poisson's) spot
UMN, 6C20.10	laser and diffraction objects
AJP 36(4),ix	Arago white spot
AJP 70(2), 169	Poisson's bright spot imager
AJP, 78 (6), 598	Poisson's bright spot
Sut, L-78	diffraction about a circular object
Hil, O-7f. 3	Arago's spot
D\&R, O-555	Poisson's bright spot
Bil\&Mai, p 351	Poisson's bright spot
Ehrlich 2, p. 176	Poisson's spot
Disc 23-05	Poisson's bright spot
AJP 35(2),xix	photographing diffraction
AJP 44(1),70	large scale diffraction
Mei, 35-3.5	diffraction around a coin
PIRA 500	knife edge diffraction
F\&A, Ol-21	diffraction around objects
D\&R, O-530	diffraction around objects
Disc 23-08	knife edge diffraction

6C10.30
6C10.30 A slit array of randomly spaced single or double slits follows the imaging lens projecting a slit on the wall.
6C10.30 Focus a slit on the wall and place photographic plates with slits near the lens. For the single slit, parallel lines are unevenly spaced. For the parallel slit, pairs of lines of equal spacing are randomly spaced.
6C10.33 A slit is projected on the wall and a second slit is placed at the focal point of the lens.
6C10.42 Using sensors to find and measure the peaks from a laser diffraction pattern.
6C10.43 A rotating mirror sweeps the interference pattern across a photodiode and the output is displayed on an oscilloscope.
6C10.43 A mirror mounted on an electric razor is used to sweep a diffraction pattern across a sensitive photodiode, and the resulting pattern is displayed on an oscilloscope.
6C10.43 A slit is motorized and a microscope objective projects the observation plane onto a photodiode detector. The scope sweep is synchronized with the motor speed.
6C10.43 A rotating mirror sweeps a diffraction pattern across a photodiode and the pattern is shown on an oscilloscope.
6C10.44 A double slit is used to sample the light from a single slit to give information about the relative phases.
6C10.47 Look at the composite output from a TV camera on an oscilloscope at the same time the pattern is displayed on the screen.
6C10.50
6C10.50 3 cm microwave and a single slit.
6 C 10.50 Single slit diffraction with a microwave apparatus.
6C10.50 An adjustable slit on the Brett Carrol microwave board (receiver and transmitter are mounted on a large vertical circle with a built in LED bar graph signal strength indicator.
6C10.61 Demonstrating the resolving power of a microscope is tricky.
6C10.62 A "picket fence lantern slide with an adjustable slit on the screen side of the projection lens.
6C10.64 Modify ordinary objectives by inserting diaphragms at the back focal plane. Use a binocular microscope with a normal ocular on one side.
6C20.00
6C20.10 Shine a laser beam at a small ball and look at the diffraction pattern.
6 C 20.10 A laser beam is diffracted around balls.
6C20.10 A corridor demonstration using a flashlight bulb, a ball bearing and a small telescope.
6C20.10 The Poisson bright spot apparatus using white light is modified to obtain images of objects placed in the light path.
6C20.10 Use energy flow lines to provide a complementary answer to Fresnel's wave theory of light.
6C20.10 A coin is placed between a pinhole and a screen. A small hole is punched in the screen in the shadow of the coin. While looking at the coin through the hole, a ring of light will be seen.
6C20.10 Arago's spot with a small lamp, telescope, and ball bearing over a 90' distance.
6C20.10 Shine a diverging laser beam at a small ball bearing or round-headed pin. Observe the "bright spot" at the center of the shadow.
6C20.10 Shine a diverging laser beam at a penny mounted on a bamboo skewer. Observe the "bright spot" at the center of the shadow.
6C20.10 Poisson's spot with an unfrosted light bulb, pinhole, 1 cm focal length lens, and a spherical headed pin.
6C20.10 A point source is used to illuminate a small ball.
6C20.12 Simple setup of a camera with the lens removed, an object and a flashlight bulb.
6C20.13 Use a penny and a long light path.
6C20.13 Project the shadow from a point source onto a translucent screen.
6C20.15
6C20.15 Diffraction of laser light around a razor edge, wires, small balls, etc. is viewed on a screen.
6C20.15 Diffraction of a divergent laser beam around a razor blade or needle.
6C20.15 Slowly move a knife edge into a laser beam.

Demonstration Bibliography	
Mei, 36-5.2	laser diffraction objects
AJP 38(3),348	diffraction around large objects
Sut, L-77	Fresnel diffraction
PIRA 500	thin wire diffraction
UMN, 6C20.20	thin wire diffraction
AJP 45(4),404	diffraciton pattern of a hair
AJP 41(7),931	fake double slit
AJP 42(5),412	diameter of a hair by diffraction
D\&R, O-532	diameter of a hair by diffraction
Disc 23-04	thin wire diffraction
PIRA 1000	shadow of a needle
Disc 23-06	shadow of a needle
PIRA 500	pinhole diffraction
UMN, 6C20.30	pinhole diffraction
Mei, 36-7.1	Airy diffraction rings
D\&R, O-550	pinhole diffraction
Ehrlich 1, p. 204	pinhole diffraction
Disc 23-07	pinhole diffraction
AJP 42(8),696	triangular aperature
TPT 34(6), 382	square and circular aperatures
D\&R, O-530	square and circular aperatures
PIRA 1000	zone plate lens
F\&A, Ol-23	zone plate lens
AJP 59(2),158	zone plates on a laser printer
F\&A, Ol-22	microwave Fresnel zones
Mei, 33-7.14	microwave Fresnel diffraction
Hil, O-7i. 2	microwave Fresnel zones
AJP 30(1),55	microwave zone plates
Sut, L-74	pass the razor blade
Sut, L-76	diffraction peep show
Mei, 35-3.4	parallel beam array
Sut, L-75	diffraction by a feather
AJP 50(10),949	viewing diffraction on TV
	INTERFERENCE Interference from Two Sources
PIRA 1000	interference model
UMN, 6D10.05	interference model
PIRA 200	double slits and laser
UMN, 6D10.10	double slits and laser
F\&A, Ol-9	double slits and laser
D\&R, O-405	double slits and laser
Bil\&Mai, p 348	double slits and laser
Disc 23-11	double slit interference
PIRA 1000	Cornell plate - two slit
UMN, 6D10.11	Cornel plate - two slit

6C20.16 A list of recommended diffraction objects for use with laser beams. Pictures.
6C20.17 Expand a laser beam to 1-3" and look at the diffraction pattern of large objects. A folded optical path brings the viewing screen close to the object.

6C20.18
Objects placed between a pinhole and a screen show striking diffraction patterns.
6C20.20
6C20.20
6C20.20
6C20.20 Put a straight pin in the laser beam.
6C20.20 Use Babinet's principle to measure the diameter of a hair by the fringes.
6C20.20 Calculate the diameter of hair by measuring the diffraction fringes.
6C20.20 Place a . 22 mm diameter wire in a laser beam and measure the diameter by the diffraction pattern. Measurements can be taken from the video.
6C20.22
6C20.22 A point source is placed behind a pair of needles.
6C20.30
6C20.30
6C20.30 As a laser beam is stopped down to a region of constant intensity, the Airy diffraction rings will appear.
6C20.30 A laser beam passes through a pinhole in aluminum foil.
6C20.30 Look at an unfrosted light bulb through a pinhole in aluminum foil.
6C20.30 A laser passes through a pinhole in aluminum foil. Data can be taken from the video.
6C20.33 The Fraunhofer diffraction pattern of a triangular aperture is predicted by an argument very similar to that used for a single slit.
6C20.35 Uniform circular holes salvaged from non-aerosol hair spray bottles give distortion free circular fringes.
6C20.35 View the diffraction pattern of square holes or the center of a double edged razor blade.
6C20.40
6C20.40
6C20.42 A program to produce zone plates on a laser printer with discussion of limitations and applications.
6C20.45 A aluminum sheet with concentric rings that can be removed and replaced in various configurations is sized to work with a microwave transmitter.

6C20.45 Circular apertures are cut in aluminum sheets to simulate zone plates.
6 C20.45 A 12 cm microwave Fresnel zone demonstration.
6C20.46 The design of three varieties of microwave zone plates for 12 cm waves and lecture room use.
6C20.51 Students hold a razor blade close to the eye so as to cut off part of an arc lamp.
6C20.52 A 5 m long box holds a permanent diffraction setup.
6C20.58 An array of 25 small holes is projected to give parallel light beams which are used with slits and apertures to give patterns on the wall.
6C20.62 An image of a slit is blocked by a vertical rod. When a feather is placed between the lens and slit, light is scattered by diffraction onto the screen.
6 C20.91 If the laser beam is expanded, diffraction patterns can be projected directly onto the bare videcon tube.
6D00.00
6D10.00
6D10.05
6D10.05
6D10.10
6D10.10
6D10.10
Shine a laser beam through double slits of different widths and spacing
Pass a laser beam through double slits of different widths and spacing. Direct a laser through double slits of different dimensions.
6D10.10 Pass a laser beam through a double slit. Calculate slit widths and slit to slit distance.
6D10.10 Shine a laser beam through double slits of different widths and spacing.
6D10.10 Pass a laser beam through double slits on the Cornell slide.

6D10.11
6D10.11

AJP 47(6),554	making double slits
PIRA 1000	double slit on $X-Y$ recorder
UMN, 6D10.15	double slit on $\mathrm{X}-\mathrm{Y}$ recorder
AJP 44(4),399	double slit on $\mathrm{X}-\mathrm{Y}$ recorder
AJP 47(12),1103	double slit on $\mathrm{X}-\mathrm{Y}$ recorder
PIRA 1000	double slit on a photodiode array
AJP 46(9),945	photodiode array
F\&A, Ol-8	photodiode array detector
AJP 69(8), 917	a simple interference scanner
PIRA 1000	microwave two slit interference
UMN, 6D10.20	microwave two slit interference
F\&A, Ol-4	microwave two slit interference
Mei, 33-7.9	microwave double slit diffraction
Hil, O-7i. 1	microwave double slit
Disc 23-10	microwave double slit interference
PIRA 1000	microwave double source interference
UMN, 6D10.25	microwave double source interference
F\&A, Ol-5	two slit interference - hand held
PIRA 1000	ripple tank incoherence
AJP 56(8),745	ripple tank incoherence
AJP 40(3),470	coherence and interference
AJP 41(5),720	coherence and interference of light
AJP 41(2),284	coherence and interference in a tube
AJP 46(7),727	cylindrical tube interference
F\&A, Ol-11	Fresnel biprism
Sut, L-84	Fresnel biprism
D\&R, O-410	Fresnel biprism
F\&A, Ol-12	Billet half lens
AJP 53(11),1115	double slit wavefront measurement
AJP 31(12), xiv	measuring interference fringes
AJP 40(1),201	interference from " X " slits
TPT 28(5),336	computer generated interference
AJP 46(11),1158	digital electronic diffraction
AJP 52(8),755	group and phase velocity by interference
AJP 51(4),380	3D interference patterns
	Interference of Polarized Light
AJP 41(4),583	interference of polarized light
AJP 52(12),1141	interference of polarized light

6D10.14 Photograph two dark wires against a white background with high contrast film and use the negative for a double slit.
6D10.15
6D10.15
6D10.15
6D10.15 Mount a dor
Mount a detector on the the traveling arm of an $\mathrm{X}-\mathrm{Y}$ recorder and trace out the intensity pattern of a double slit.
6D10.17
6D10.17 Shine the diffraction pattern on a photodiode array and display the intensity plot on an oscilloscope.
6D10.17 Project the pattern from the laser and adjustable slit onto a photodiode array and observe the intensity on an oscilloscope.
6D10.18 An interference and diffraction scanner based on a 10 cm long linear potentiometer.
6D10.20
6D10.20
6D10.20
6D10.20 The set up for double slit diffraction using 3.37 cm microwaves.
6D10.20 A 12 cm microwave double slit demonstration.
6D10.20 Two sets of slits with different spacing on the Brett Carrol microwave board.
6D10.25
6D10.25 12 cm microwave is set up with two transmitters.
6D10.30 Look at a filament lamp through parallel lines scratched in a dark plate.
6D10.35
6D10.35 The necessary conditions for interference are shown with a dripping water double source that can be adjusted to show irregular changes in initial phase differences.
6D10.36 An interference pattern results from a laser grazing the wall of a glass tube. The effect is not observable with non-coherent light.
More variance on the subject.
6D10.37 This explanation of the interference pattern from the inner and outer edges of a glass tube differs from AJP 40(3),470.
6D10.38 The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources.
6D10.41 A laser through a Fresnel biprism gives two interference sources.
6D10.41 A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit.
6D10.41 A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced.
6D10.42 A split convex lens acts like a Fresnel biprism and gives an interference pattern.
6D10.46 As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation.
6D10.47 Use two filaments. Line up the central image of one filament with the first maximum of the other filament.
6D10.48 Crossed slits produce hyperbolic interference patterns.
6D10.51 A simple GW-BASIC program for generating two point interference patterns.

6D10.52 A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus.
6D10.61 The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed.
6D10.90 Direct the laser interference pattern from the back of the room off a mirror and toward the students into a smoke filled box.

6D15.00

6D15.01 On using unpolarized light.
6D15.10 Polarized laser light is focused by a lens on a small calcite crystal and the interference pattern of the two resulting beams depends on the type and orientation of a second polarizer.

AJP 39(6),679	interference of polarized light
AJP 31(4),303	interference question
AJP 42(5),408	Quantum Mechanics polarized light demos
AJP 51(5),464	polarized double slit diffraction
AJP 30(6),470	total interference
AJP 38(7),917	Fresnel-Arago law
AJP 31(8),624	interference of polarized light
AJP 49(7),690	interference of polarized light
AJP 38(10),1249	interference of polarized light
AJP 40(5),735	elliptically polarized interference
AJP 30(10),772	interference of polarized light
	Gratings
PIRA 200	number of slits
UMN, 6D20.10	Cornell plate - gratings
F\&A, Ol-10	number of slits
Disc 23-12	multiple slit interference
Sut, L-85	project a course grating
AJP 52(1), 77	grating in air and water
TPT 28(2),98	which side has the gratings?
AJP 76 (1), 43	grating equation - graphical representation
PIRA 500	gratings and laser
UMN, 6D20.15	gratings and laser
Sprott, 6.2	gratings and laser
Bil\&Mai, p 352	grating and laser
PIRA 500	projected spectra with grating
UMN, 6D20.20	projected spectra with grating
Disc 23-13	interference gratings
TPT 29(7), 423 ref.	holographic or phase gratings student gratings and carousel
Ehrlich 1, p. 203	measure wavelength with a grating
TPT 2(2),85	measure wavelength with a grating
AJP 41(7),932	beer can spectroscope
TPT 28(5),343	film canister spectroscope
Mei, 35-3.7	grazing incidence diffraction
AJP 33(11),922	measuring wavelength with a ruler
Mei, 36-4.6	measuring wavelength with a ruler
D\&R, O-525	measuring wavelength with a ruler

6D15.10 A polarized laser beam passes through a calcite crystal and a polarizing sheet is interposed and rotated to make fringes appear and disappear.
6D15.14 Mellon AJP 30(10), 772 was wrong and here is why...
6D15.15 Eigenstates of the prism, etc.

6D15.20 The diffraction patterns from parallel and perpendicular light through a double slit.
6D15.20 Show the standard interference patterns with Polaroids in each path aligned parallel, then rotate one and the pattern disappears.
6D15.20 Use a laser to obtain widely separated fringes from a double slit. Cut ribbons of polarizer and hold with orthogonal polarization in the two exit beams and the fringes disappear..
6D15.21 Pointer to articles in other publications.
6D15.22 Demonstrating the Fresnel-Arago laws for interference of polarized light using a grating as a beam splitter and observing the interference fringes in its conjugate plane.
6D15.25 Polarized light is passed through a double slit, the two output beams are polarized perpendicularly, and a third polarizer can be used as an analyzer.

6D15.26 The double slit with orthogonal elliptical polarization.
6D15.30 Put a quarter wave plate in one path of a Michelson interferometer and show the waves don't have to have the same polarization to interfere.
6D20.00
6D20.10 Shine a laser beam through various numbers of slits with the same spacing.

6D20.10
6D20.10 A laser is directed through various numbers of slits with the same spacing.

6D20.10 Pass a laser beam through three sets of multiple slits on the Cornell slide.
6D20.11 A course grating is placed between an illuminated slit and the projection lens. A fine grating must be placed near the screen.
6D20.12 Measure the pattern of a laser beam incident on a diffraction grating placed inside an empty aquarium and with it full of water.
6D20.13 Wet one surface of the grating with alcohol and if it is the grating side, the intensity of the diffraction maxima decrease.
6D20.13 The diffraction grating equation is represented by a useful graph that makes analysis of the diffraction orders produced by the grating easier.
6D20.15
6D20.15
6D20.15
A laser beam passed through a grating is compared with a beam of white light passed through the same grating.
6D20.15 Shine a laser beam through a grating and onto a screen. Measure the distance from the grating to the screen and the distance between the maxima to calculate the wavelength of the laser light.
6D20.20
6D20.20 White light, mercury, and sodium sources are passed through 300 and 600 lines per mm gratings.
6D20.20 Shine a white light beam through gratings of 3000, 4000, and 6000 lines/cm.

6D20.23 The making, characteristics, and uses of holographic gratings.
6D20.25 see 7B10.10.
6D20.26 Look through a plastic grating at several different line sources to observe their spectra and measure their wavelengths.
6D20.26 Look through a grating at a line source and measure the distance to the source and the angle of the lines.
6D20.28 Drink the beer, tape a replica grating over the hole, cut a slit in the bottom.
6D20.28 Make a slit in the cover of a film canister and place a grating over a hole in the bottom made with a \#2 cork bore.
6D20.30 Grazing incidence on a very course grating produces minute path differences.
6D20.31 A laser is diffracted at grazing incidence off the rulings of a steel scale.

6D20.31 Diffraction of a laser beam by grazing incidence on a machinists rule.
6D20.31 A laser beam is diffracted at grazing incidence off the rulings of an engraved steel ruler.

Ehrlich 2, p. 172	measuring wavelength with	6D20.31	A laser beam is diffracted at a grazing incidence off the rulings of a steel ruler.
AJP 59(4),367	compact disk grating	6D20.32	Information on the pit and groove sizes and an example setup.
AJP 41(5),730	wire diffraction gratings	6D20.35	Reconstruction of Fraunhofer's original gratings made of \#42 wire at 80/inch.
TPT42(2), 76	wire diffraction gratings	6D20.35	Wire diffraction gratings made from brass bolts and \# 40 or \# 43 bare copper wire.
AJP 54(8),735	dispersion and resolving power	6D20.40	A discussion of the distinction between dispersion and resolving power of a grating.
AJP 38(3),382	gratings and minimum deviation	6D20.42	On the advantages of using diffraction gratings at the angle of minimum deviation instead of the position of perpendicular incidence.
AJP 30(2),106	first order gratings	6D20.45	Gratings that produce only one order either side of the central maximum are made by photographing Fraunhofer diffraction fringes.
AJP 39(1),123	Babinet's principle - 2D	6D20.46	Carefully drawn black spots on white paper are photographically reduced and the positive and negative copies are used as complementary arrays.
AJP 39(1),122	Babinet's principle	6D20.47	A technique for constructing complementary gratings for demonstrating Babinet's principle.
AJP, 78 (7), 678	Babinet's principle	6D20.47	The diffraction of ultrasound by a circular disk and an aperture of the same size are investigated. A discussion of the paradox of waves out of phase which is regarded as a defect of Fresnel's theory.
PIRA 500	crossed gratings and laser	6D20.50	
UMN, 6D20.50	crossed gratings and laser	6D20.50	Same as Ol-13.
F\&A, Ol-13	crossed gratings	6D20.50	Two gratings are crossed and placed in a laser beam.
Sprott, 6.2	crossed gratings and laser	6D20.50	A laser beam passed through a fine mesh screen produces interesting interference patterns.
AJP 39(10),1271	crossed gratings in smoke box	6D20.52	A laser and crossed gratings in a smoke box. Discusses patterns from skew beams.
Mei, 36-5.3	diffraction grating and laser	6D20.53	Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens.
PIRA 500	two dimensional gratings and las	6D20.55	
Sut, L-79	two dimensional grating	6D20.55	View an automobile headlamp through a small square of silk.
$\begin{aligned} & \text { D\&R, O-515, S- } \\ & 210 \end{aligned}$	fine mesh and laser	6D20.55	Shine a laser through fine wire mesh or wire cloth and observe the patterns. Mesh with 60 to 400 wires per inch work best.
PIRA 1000	regular and irregular patterns	6D20.56	
UMN, 6D20.56	regular and irregular patterns	6D20.56	
AJP 37(9),871	regular and irregular patterns	6D20.56	Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.
AJP 53(3),227	hole gratings	6D20.56	A source for hole gratings of several spacings, sizes, and arrangements.
AJP 42(2),91	optical crystal set	6D20.57	Seven 2×2 slides, each containing four samples used to study the simple Laue approach to diffraction by crystals. Winner of the 1973 AAPT apparatus competition.
AJP 53(3),237	optical simulation of electron diffraction	6D20.58	Generate and reduce dot patterns that generate patterns with laser light that are similar to various electron diffraction patterns.
PIRA 1000	random multiple gratings	6D20.59	
AJP 41(5),714	water droplets	6D20.61	Exhale on clean glass.
Sut, L-80	red blood cells	6D20.62	Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.
AJP 35(3), xxii	dust on the mirror	6D20.63	Dust a bathroom mirror and hold a small light as close to the eye as possible.
Mei, 35-3.6	lycopodium powder diffraction	6D20.63	A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60 throw.
AJP 46(11),1193	scatter light interference	6D20.64	How to make a scatter plate with a speckle diameter of 3 microns.
Mei, 35-3.10	ultrasonic wave diffraction	6D20.70	Light is diffracted by ultrasonic waves in a liquid.
Mei, 36-4.7	speckle spots and random diffraction	6D20.75	The sparkling of a spot illuminated by a laser beam on the wall is caused by random interference patterns caused by scattered light.
AJP 41(6),844	speckle patterns in arc light	6D20.76	Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.
AJP 40(1),207	speckle patterns in unfiltered sunlight	6D20.76	Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.
AJP 40(11),1693	reconstruction of diffraction pattern	6D20.80	Reconstruct the image of a light source by viewing its diffraction pattern through a similar grating placed in front of the camera lens.
AJP 43(12),1054	Fabry-Perot "multiple slit"	6D20.85	An adjustable "multiple slit" interference pattern can be shown with a FabryPerot interferometer.
	Thin Films	6D30.00	
PIRA 200	Newton's rings	6D30.10	Reflect white light off Newton's rings onto the wall.

Demonstration Bibliography	
UMN, 6D30.10	Newton's rings
F\&A, Ol-17	Newton's rings
Sut, L-71	Newton's rings
Hil, O-7f. 2	Newton's rings
D\&R, O-460	Newton's rings
Disc 23-15	Newton's rings
AJP 59(7),662	Newton's rings - HeNe
AJP 46(2),187	Netwon's rings - float glass
PIRA 200	soap film interference
UMN, 6D30.20	soap film interference
F\&A, Ol-16	soap film interference
Sut, L-68	soap film interference
Sut, L-67	soap film interference
D\&R, O-465	soap film interference
D\&R, O-467	soap film in a soda bottle
Bil\&Mai, p 354	soap film interference - CO2
Ehrlich 1, p. 205	soap film interference
Ehrlich 2, p. 173	soap film interference
Disc 23-18	soap film interference
AJP 53(2),177	stable black soap films
TPT 28(7),479	soap film transmission and reflection
AJP 29(19),713	constant soap film
Sut, L-69	Boys rainbow cup
PIRA 500	air wedge
UMN, 6D30.30	air wedge
F\&A, Ol-18	air wedge
Mei, 35-2.2	air wedge with sodium light
Sut, L-70	air wedge
AJP 72(2), 279	air wedge
D\&R, O-455	air wedge
Disc 23-14	glass plates in sodium light
	air wedge and expanded laser beam
TPT 41(4), 250	mirror and expanded laser beam
PIRA 500	Pohl's mica sheet
UMN, 6D30.40	Pohl's mica sheet
F\&A, Ol-15	mica interference
Mei, 35-2.3	Pohl's mica sheet
Hil, O-7e	Pohl's mica sheet

6D30.10 Newton's rings are projected on the wall.
6D30.10 Reflect light off a long focal length lens squeezed against a flat glass.
6D30.10 A long focal length lens is held against a flat. Note change of ring size with different colored light.
6D30.10 Newton's rings with monochromatic light.
6D30.10 A gap between a thin prism and glass plate clamped together will produce brilliant rings when illuminated with a mercury lamp. A diverging laser beam or sodium light will give monochromatic fringes. Also, reflected light off a long focal length lens squeezed against a flat glass.
6D30.10 Reflect white light off a Newton's rings apparatus onto a screen.
6D30.11 Not the standard. The laser light reflected from the curved and flat surfaces of a plano-convex lens is superimposed on a screen.
6D30.12 Some diagrams and pictures of arrangements using float glass (very flat) to demonstrate Newton's rings.
6D30.20 Reflect white light off a soap film onto a screen.
6D30.20 Project white light reflected off a soap film in a wire frame onto the wall.
6D30.20 Reflect white light off a soap film onto a screen.
6D30.20 Illuminate a soap film with an extended source in a darkened room.
6D30.20 Project light reflecting off a soap film onto a screen.
6D30.20 Project light reflecting off a soap film onto a screen with a large lens. Use Kodak filters to produce monochromatic fringes.
6D30.20 Use a soda bottle to hold soap films for long term viewing.
6D30.20 Soap bubbles are introduced into an aquarium partly filled with CO2 gas. The CO2 will move into the bubbles increasing their size, causing the bubble film to become thin and change color.
6D30.20 An interference pattern of stripes in thin films is observed using soap bubbles.
6D30.20 Long lasting soap bubbles are made on the mouth of an Erlenmeyer filter flask partially filled with water.
6D30.20 Reflect white light off a soap film on a wire frame.
6D30.21 Vidal Sasson - Extra Gentle Formula makes black films lasting five minutes or longer.
6D30.22 A configuration that allows simultaneous viewing of transmitted and reflected patterns shows the colors of corresponding bands are complementary.

6D30.23 Fit a large graduate with a rectangular frame with the handle protruding through the stopper. Fill half full with soap solution.
6D30.25 Rotate a hemispherical shell with a soap film across the front so the black spot forms in the middle.
6D30.30
6D30.30
6D30.30 A sodium lamp illuminates an air wedge between two plates of glass.
6D30.30 Diffuse sodium light with frosted glass before reflecting it off two plane glass plates.
6D30.30 Reflect an extended monochromatic source off two large pieces of plate glass held together.
6D30.30 The visibility of the interference fringes can be increased by replacing the glass plates with one-way mirrors. Measurements done with an Ocean Optics spectrometer.
6D30.30 A sodium lamp illuminates an air wedge between two plates of glass. Precise patterns can be obtained using optical flats.
6D30.30 The diffused light from a high intensity sodium lamp is viewed by reflection off one and two pieces of plate glass.
6D30.35 An expanded laser beam is reflected off of two pieces of plate glass held together.
6D30.35 An expanded laser beam shines onto a back surface mirror. Reflections off the front glass surface and the silver coated back surface of the mirror produce large interference patterns.
6D30.40
6D30.40
6D30.40 Show interference by reflection of filtered mercury light from a mica sheet onto a screen.
6D30.40 Reflect light from a mercury point source off a thin sheet of mica onto the opposite wall. Derivation.
6D30.40 Mercury light is reflected off a thin mica sheet. Mercury light source reference: AJP 19(4),248.

Demonstration Bibliography

D\&R, O-470	mica interference
Disc 23-17	Pohl's mica sheet
Mei, 35-2.4	turpentine film
TPT 17(6), 392	evaporating film - alcohol
AJP 44(8),794	absorption phase shift
Mei, 35-2.5	temper colors
PIRA 1000	interference filters
Mei, 35-2.6	interference filter
Disc 23-16	interference filters
Hil, O-7f. 1	interference films
Hil, O-7d	oil film
Mei, 33-7.13	microwave thin film interference
	Interferometers
Ehrlich 2, p. 187	Michelson - Morley simulation
PIRA 200	Michelson interferometer
UMN, 6D40.10	Michelson interferometer
AJP 30(8),604	Michelson interferometer modified
AJP, 50 (11), 987	Michelson interferometer
F\&A, Ol-19	Michelson interferometer
Mei, 35-2.7	Michelson interferometer
Sut, L-72	Michelson interferometer
$\begin{aligned} & \text { D\&R, O-440, S- } \\ & 050 \end{aligned}$	Michelson interferometer
Disc 23-20	Michelson interferometer - white light
AJP 39(9),1091	Michelson interferometer - large class
AJP 35(2),161	Michelson interferometer - power
AJP 39(11),1395	Michelson interferometer alignment
PIRA 1000	interference fringes with audio
AJP 47(4),378	interference fringes with audio
AJP 39(4),412	Michelson interferometer advanced topics
PIRA 500	microwave interferometer
Mei, 33-7.6	microwave interferometer
Disc 23-19	Michelson interferometer
Mei, 33-7.4	microwave interferometer
D\&R, O-430	microwave interferometer

6D30.40 Show interference by the reflection of mercury light from a mica sheet onto a screen.
6D30.40 Mercury light reflects off a sheet of mica onto a screen.
6D30.45 White light incident of the surface of turpentine on water at an angle of 45-60 degrees is focused on a screen.
6D30.46 Show an interference pattern by shining an expanded laser beam on an inverted test tube. Pour alcohol over the test tube and watch the fringes shift with a definite velocity as the alcohol evaporates.
6D30.48 Cover the back of a microscope slide with streaks of an absorbing dye and observed under monochromatic light.
6D30.50 A thin film of oxide forms on a polished steel sheet when it is heated.
6D30.60
6D30.60 An interference filter for the mercury green line is used with white, mercury, and neon light at different angles of incidence.
6D30.60 White light is seen in reflection and transmission on a thread screen using three different interference filters.
6D30.61 A broad source (36 sq in) He lamp is used to examine thin metal films.
6D30.65 The thickness of a film of oil on a pan of water that can be varied by sliding an iron bar across the surface makes an excellent variable interference filter.

6D30.70 Show interference by transmission and reflection with two ground glass sheets, one stationary and the other movable on an optical bench.
6D40.00
6D40.05
The basic Michelson - Morley experiment is illustrated on the overhead projector using 1 inch diameter ball bearings, note cards, and some thick cardboard.
6D40.10 Use a Michelson interferometer with either laser or white light.
6D40.10 Pass laser light through a commercial interferometer onto the wall. Can also be done with white light.
6D40.10 The Cenco M3 interferometer is modified to obtain good results without the clock drive (AJP 27,520 (1959)).
6D40.10 Michelson and Morley published data on their experiment that showed large systematic trends. However, they did not explain how they removed these trends in their analysis. The paper attempts to reconstruct the missing part of the analysis.
6D40.10 Use a Michelson interferometer with either laser or white light.
6D40.10 The Michelson interferometer.
6D40.10 Project colored fringes from white light onto a screen, insert a hot object in one path.
6D40.10 Use a Michelson interferometer with the expanded beam from a laser.

6D40.10 A commercial interferometer with white light. Both circular and line fringes are shown.
6D40.11 Use a laser with the Michelson interferometer and expand the exit beam with a microscope objective.
6D40.12 Measure the power of solar cells in the two outputs of the Michelson interferometer.
6D40.13 Hints on alignment techniques.

6D40.15
6D40.15 A photocell detector detects fringes and the output is converted to an audio signal.
6D40.16 Use the Michelson interferometer to demonstrate graphically the Fourier transform nature of Fraunhoffer diffraction and introduce basic concepts of coherent optics.
6D40.20
6D40.20 Thorough discussion of the microwave interferometer including using it to calibrate a meter stick.
6D40.20 An interferometer constructed with 3 cm microwaves and using a mesh screen that functions as a half silvered mirror. Constructive and destructive interference is heard as the reflector is moved.
6D40.21 Three microwave interferometers: Lloyd's mirror, Michelson's interferometer, grid-detection interferometer, are shown. Pictures.
6D40.21 Use 11cm microwaves and a metal sheet to demonstrate Lloyd's mirror.

UMN, 6D40.25	microwave interferometer
F\&A, Ol-20	microwave Michelson interferometer
D\&R, O-410	Lloyd's mirror
Mei, 35-2.10	Jamin interferometer
Mei, 35-2.9	Jamin interferometer
AJP 29(10),669	Sagnac interferometer - real fringes
AJP 30(10),724	Fabry-Perot interferometer
Mei, 35-2.8	triangular interferometer
AJP 43(11),940	coupled cavity interferometer
AJP 33(6),487	coherence length
Mei, 36-4.1	long path interferometer
Mei, 36-4.2	long path interferometer
Mei, 36-4.3	double ended interferometer
Mei, 36-4.4	transverse coherence
Mei, 36-4.5	thick reflecting plate
Mei, 35-2.11	Fresnel interferometers
AJP 73(12), 1135	low cost Fabry-Perot cavity
AJP 35(3),265	Mylar Fabry- Perot interferomete
AJP 35(3),xxii	inexpensive Fabry-Perot
AJP 33(7),532	low cost Fabry-Perot interferometer
AJP 33(12),1088	medium cost Fabry-Perot
AJP 36(1), ix	low cost Fabry-Perot
AJP 33(12),1090	low cost comment
AJP 71(2), 184	low cost Fabry-Perot cavity
Hil, O-10d	Fabry-Perot etalon
AJP 59(11),992	Fabry-Perot interferometer
AJP 52(6),563	simple gauge-length interferometer
AJP 49(5),477	listening to the Doppler shift of light
Mei, 19-6.7	satellite tracking using Doppler
Mei, 35-2.12	spherical mirror interferometer
AJP 44(4),391	optical Doppler shift
AJP 46(7),763	Doppler effect with light
AJP 37(7),744	Doppler radar
AJP 33(6),499	Doppler shift with microwaves
TPT 30(2), 102	radar gun
TPT 40(2), 94	radar gun

6D40.22 Use 4 cm microwaves and 10" square platforms of Plexiglas to demonstrate Lloyd's mirror, Michelson's interferometer, and grid-detection interferometers on the overhead.
6D40.25 Demonstrate an interferometer using chicken wire mirrors and a 12 cm microwave.
6D40.25 Make a microwave Michelson interferometer with window screen reflectors and a chicken wire half reflector.
6D40.27 A front surface mirror is brought close to an expanded laser beam at a very small grazing angle. Interference lines are formed on a screen.
6D40.30 The two mirrors are adjustable about mutually perpendicular axes.
6D40.30 Use second surface mirrors at an angle to generate parallel beams in this interferometer.
6D40.35 Real fringes are observed with the Sagnac interferometer with both a point source and an extended source. Virtual fringes require an extended source. Also applies to Michelson interferometer.
6D40.35 Construction details for a Fabry-Perot interferometer. Applications: optical measurements, index of refraction of a gas, and the Zeeman effect.
6D40.40 The triangular interferometer is explained. Diagrams, Construction details in appendix, p. 1353.
6D40.42 A prism mounted on a phonograph turntable is used to rapidly vary the path length of the external cavity.
6D40.45 Use a long path interferometer to demonstrate the coherence length is at least 12 m . Also transverse coherence.
6D40.45 The movable mirror can be at least 6 m away giving a coherence length of 12 m.

6D40.46 A long path interferometer uses corner reflectors instead of mirrors and the output beam is directed onto a photodetector feeding an audio oscillator.

6D40.47 Demonstrates the coherence of beams emitted from opposite ends of the laser tube.
6D40.48 Misaligning the mirrors still gives fringes.
6D40.49 Interference from waves reflected off two sides of a plate, limited to thin films in ordinary light, works in thick glass with lasers.
6D40.50 Two different setups of Fresnel interferometers are discussed.
6D40.54 Another low cost scanning Fabry-Perot cavity for laser experiments.
6D40.54 Design of an interferometer using metalized mylar as mirrors.
6D40.54 Use standard "one-way" mirrors.
6D40.54 Construction of Fabry-Perot devices from microscope cover glasses and plate glass.
6D40.54 Use Pyrex optical flats.
6D40.54 Use surplus optically flat circular plates.
6D40.54 Spacings up to $1 / 4$ " are possible.
6D40.54 A low cost scanning Fabry-Perot cavity for laser experiments.
6D40.55 Directions for construction an inexpensive Fabry-Perot etalon. Reference: AJP 36(1),ix.
6D40.56 Add some mirrors to a commercially made linear positioning stage.
6D40.57 A simple low-cost interferometer using only manufacturers' stock components.
6D40.60 Light from a laser beam is reflected off fixed and movable mirrors, mixed on a photodetector, and the resulting signal is amplified and drives a speaker.

6D40.60 Beats between a generator and Sputnik I are recorded and played back while projecting a spot on a map indicating position.
6D40.60 An interferometer with two spherical mirrors is designed to show wind around objects, heat effects, and strain effects.
6D40.61 Show the frequency shift of a laser beam bouncing off a moving mirror with a spectrum analyzer.
6D40.61 Using a laser beam, retroreflector on a moving air track, beam splitter, and stationary mirror, observe the signal of the beat pattern from a silicon photodiode on an oscilloscope.
6D40.62 Diagram of apparatus for Doppler radar. The reflector is mounted on a $1 / 32$ scale slot car.
6D40.62 Some of the transmitted signal and the signal received after reflection off a moving object are fed to a mixer.
6D40.62 Testing a radar gun and the tuning fork used to calibrate it for accuracy.
6D40.62 Determining the speed of objects in the classroom with a radar gun.

Demonstrat	Bibliography	July 2015	
Mei, 19-6.8	complicated Doppler shift setups	6D40.70	Sophisticated Doppler shift experiments with construction details, diagrams, and 7 references.
	COLOR	6F00.00	
	Synthesis and Analysis of Color	6F10.00	
PIRA 500	color box	6F10.10	
UMN, 6F10.10	color box	6F10.10	A commercial Singerman box projects blue, red, and green light onto a screen with individually variable intensity.
F\&A, Oj-3	color box	6F10.10	Overlap red, green, and blue light of adjustable intensity on a translucent screen.
Hil, O-6a	color box	6F10.10	The Welch color box shows the addition of the primary colors.
Disc 23-26	color box - additive color mixing	6F10.10	Mix red, green, and blue in a color box.
Sut, L-88	color addition	6F10.11	Red, green, and blue lamps shine from the corners of a white triangle. A rod or rods are placed on the screen to show the colors of shadows.
Hil, O-6b	Cenco color apparatus	6F10.12	The primary colors can be projected onto a screen.
Mei, 35-7.6	color synthesizer	6F10.13	A color synthesizer allows demonstration of the significance of dominate wavelength, purity, luminosity, etc.
Sut, L-89	color addition	6F10.15	Wratten filters Nos. 19, 47, and 61 are used to make a slide with $1 / 3$ of a circle of each color. A projection arrangement shows the combination of colors and division of light between the separate colors.
Mei, 35-7.1	color projector	6F10.16	Adapting a lantern slide projector for mixing primary colors.
D\&R, O-720	color projector or projectors	6F10.16	A single slide projector with three mirrors on blocks, or three separate slide projectors are used to overlap or mix the three primary colors on a screen.
Mei, 35-7.4	color projector	6F10.17	Many color demonstrations are performed with a slide projector and slides reflected off swivel mirrors.
Mei, 35-7.2	lantern slide colors	6F10.18	A diffraction grating is held in front of a lantern projector with seven slits, one side with primary additive colors, the other with subtractive, and the center white.
PIRA 500	color filters	6F10.20	
UMN, 6F10.20	color filters	6F10.20	Cyan, magenta, and yellow filters are available as loose squares or fixed in a Plexiglas holder for use on the overhead projector.
D\&R, O-730	color filters	6F10.20	Red, green, blue, cyan, yellow, and magenta filters are used on an overhead.
AJP 37(6),662	dichromatic primary pairs	6F10.22	Discussion of the standard light addition, subtraction, as they relate to two color mixing.
AJP 47(2),142	artist's colors	6F10.23	On why artists use red, yellow, and blue instead of red, green, and blue.
AJP 47(7),573	artist's colors - letter	6F10.23	Hey guys, artists use pigments, not light, and anyway the subtractive primary colors are cyan, magenta, and yellow. Information of 4-color printing and real artist's pigments too.
Bil\&Mai, p 318	artist's colors	6F10.23	Identify the primary colors of light as red, blue, and green using colored flashlights. Cyan, magenta, and yellow filters are place on top of one another on an overhead projector. Use these demonstrations to help discuss the difference between the primary colors of light and the primary colors of pigments.
PIRA 1000	spinning color disc	6F10.25	
F\&A, Oj-2	spinning color disc	6F10.25	A disc with colored sectors appears white when rotated.
Sut, L-93	spinning color disc	6F10.25	Disks with colored sectors are spun until the colors blend together.
D\&R, O-710	color fan	6F10.25	A three blade fan, each blade painted a primary color appears white when rotated. Difficult to find right color mix for a good white.
TPT, 36(6), 347	as easy as R, G, B	6F10.25	Using commercially available light sticks and a variable-speed drill to make white light.
Bil\&Mai, p 320	as easy as R, G, B	6F10.25	Use red, green, and blue light sticks and a variable speed drill to make white light.
Disc 23-25	Newton's color disc	6F10.25	A spinning disc of colored sectors appears white.
Mei, 35-7.7	weird slit with Hg light	6F10.26	A slit and "inverted slit" used with Hg and a prism produce the normal line spectra and "inverted spectrum" of complementary colors.
PIRA 1000	recombining the spectrum	6F10.30	
F\&A, Oj-4	recombining the spectrum	6F10.30	Recombine the spectrum after passing through a prism to get white light or remove a color and get the complement.
Mei, 35-7.5	recombining colors	6F10.30	Recombining dispersed light after reflecting out various colors, etc.
Sut, L-92	recombining the spectrum	6F10.30	Obtain a spectrum with a prism, reflect out a color with a small thin mirror, and recombine the light with a lens.
PIRA 1000	purity of the spectrum	6F10.33	
F\&A, Oj-1	purity of the spectrum	6F10.33	A second prism at right angles bends each color without dispersion.

Mei, 35-1.6	splitting and recombining
Mei, 35-5.5	dispersion and recombination complementary shadow PIRA 1000 UMN, 6F10.45 Mei, 35-7.8
red and green complementary shadow	
D\&R, O-750	complementary shadow
Sut, L-96	metal films and dyes
Sut, L-95	dichromatism
Sut, L-87	three conditions for color
Sut, L-91	color due to absorption
PIRA 1000	colors in spectral light colored yarn
Mei, 35-7.3 23-23 colors in spectral light Disc AJP 39(2),201	

Dispersion

dispersion curve of a prism dispersion curve of a prism
deviation with no dispersion
dispersion with no deviation
Mei, 35-5.1
Mei, 35-5.2
Mei, 35-5.3 bending dark absorption line of sodium

AJP 56(10),948
optical ceramics: dispersion

PIRA 200	Scattering sunset
UMN, 6F40.10	sunset
D\&R, O-040	artificial sunset
D\&R, O-615	scattering and sunset
AJP 70(6), 620	scattering and sunset

AJP 70 (1), $91 \quad$ scattering and sunset
AJP 76 (9), 816 scattering of sky light

Sprott, $6.7 \quad$ scattering and sunset - Rayleigh scattering
Disc 24-08
F\&A, On-1
Mei, 35-4.1
artificial sunset
sunset
sunset

6F10.35 A half spectrum filter splits out light from a beam which is then recombined at a spot.
6F10.36 Several variations of recombining dispersed light from a prism.
6F10.45
6F10.45
6F10.45 Shadows of red and white lights illuminating the same object from different angles appear to produce green light.
6F10.45 Two flashlights, one with red filter, one with green filter, will produce a shadow of an additional color when illuminating the same object.
6F10.61 A thin film of gold transmits green but looks reddish-yellow by reflection. Dyes also transmit and reflect different colors.
6F10.65 Green cellophane transmits more red light than green. Stack lots of sheets and the color of transmitted light changes from green to red.
6F10.70 The three conditions are: Color must be in the source, the object must reflect or transmit the color, the detector must be sensitive to the color. Shine different colored light at different colored objects.
6F10.71 Light from a projection lantern reflected off red, green, and blue glass to the ceiling is the same but the transmitted light is colored by absorption.
6F10.75
6F10.75 Skeins of colored yarn are illuminated with different colored light.
6F10.75 A rose is viewed in white, red, green, and blue light.
6F10.80 Lecture room experiments are proposed which demonstrate complementary color transitions due to complementary boundary conditions at the aperture.

6F30.00
6F30.10
6F30.10 Light passes through a grating and then through a second slit at right angles and a prism generating a dispersion curve in color on the screen.
6F30.15 Light passed through oppositely pointed crown and flint glass prisms adjusted to give light deviated in two directions but with no dispersion.
6F30.20 Light passes through prisms of crown and flint glass adjusted to give two beams of the same dispersion but different deviation.
6F30.30 Overcoming the difficulties of showing anomalous dispersion with fuchsin.
6F30.30 An absorption cell for the anomalous dispersion of sodium is described. Diagrams, Construction details in appendix, p. 1354.
6F30.31 When salt is heated on a flame in the path of a narrow beam of light before dispersion, the edges of the spectrum close to the dark band bend up or down.
6F30.50 A custom fabricated prism made from LaSFN-9 glass shows a cutoff between transmission and total internal reflection that can be tuned through the visible spectrum by turning the prism.
6F40.00
6F40.10 Pass a beam of white light through a tank of water with scattering centers from a solution of oil in alcohol.
6F40.10 A beam of white light is passed through a tank of water and a solution of cedarwood oil in alcohol is poured in to create scattering centers.
6F40.10 Pass a slide projector beam through a hypo solution and add acid. Lysol will also work.
6F40.10 Add powdered creamer in increments to a beaker of water on the overhead. Observe scattered light with a polarizer. Transmitted light will go from white to yellow-red until extinction occurs.
6F40.10 An absorption spectrophotometer is used to measure the wavelength dependence of light scattering from small spheres suspended in water. Measured values are compared to values predicted by the Rayleigh and Mie theories.
6F40.10 An observation of Mie scattering by using polystyrene microspheres of different diameters. Different diameters give different colors.
6F40.10 A model is described for the gas in the atmosphere and used to obtain the irradiance for sunlight scattered by the gas molecules contained in a coherence volume.
6F40.10 A white light passing through a liquid scatters primarily the blue light causing the transmitted light to appear red.
6F40.10 Pass a beam through a hypo solution and add acid.
6F40.11 Light scattering with a hypo solution.
6F40.11 HCl into hypo solution scatters blue light.

Sut, L-46	sunset
AJP 53(2),184	various scattering centers, Mei scattering
Mei, 35-4.2	red and blue beam
PIRA 1000	optical ceramics scattering
AJP 56(10),948	optical ceramics - Rayleigh scattering
Sut, L-100	color of smoke
AJP 77 (11), 1010	wavelength selective scattering
PIRA 1000	microwave scattering
Mei, 33-7.17	microwave scattering
AJP 55(6),524	multiple scattering
AJP 55(1),87	halos
Sut, L-81	dust halos
Ehrlich 1, p. 206	halos
AJP 45(4),331	lunar halo picture
	POLARIZATION
	Dichroic Polarization
Mei, 35-6.1	generating polarized light
TPT 28(7),464	many light demonstrations
PIRA 200	Polaroids on the overhead
UMN, 6H10.10	Polaroids on the overhead
Sut, L-122	Polaroids on the overhead
D\&R, O-610	Polaroids on the overhead
Bil\&Mai, p 322	Polaroids on the overhead
Ehrlich 1, p. 172	Polaroids on the overhead
Disc 24-01	Polaroid sheets crossed and uncrossed
F\&A, Om-9	Polaroids
Hil, O-8b	polarization kit
PIRA 200	microwave polarization
UMN, 6H10.20	microwave polarization
F\&A, Om-1	microwave polarization
Mei, 33-7.11	microwave polarization
AJP 71(5), 452	microwave polarization
Disc 24-04	microwave polarization
PIRA 500	polarization - mechanical model
Sut, L-116	polarization - mechanical model
D\&R, O-605	polarization - mechanical model
Ehrlich 1, p. 173	polarization - mechanical model
Sut, L-117	polarization - mechanical model
PIRA 1000	Polaroids cut at 45 degrees
Disc 24-02	Polaroids cut at 45 degrees

6F40.11 A beam of light is scattered when passed through water containing hypo and HCl .
6F40.12 Alternatives to hypo for the sunset demo including latex spheres that demonstrate Mie scattering.
6F40.15 A red beam is passed through a solution of gum mastic but a blue beam is not. Diagram.
6F40.20
6F40.20 Type 7070 glass is treated to induce glass-in-glass phase separation used to show Rayleigh scattering.
6F40.30 Cigarette smoke is blue, but after exhaling is white.
6F40.40 Structural color caused by wavelength selective scattering of light by microscopic features such as the scales on some insects. Morpho butterfly wings and peacock feathers are examples.
6F40.50
6F40.50 Show scattering of microwaves with a dielectric dipole inserted in the beam. Picture.
6F40.60 Examples of common observations inexplicable by single scattering, e.g., darkening of wet sand, whiteness of milk, etc., are discussed without invoking the complete incoherent scattering theory.
6F40.80 Look at a point source lamp through a fogged microscope slide.
6F40.80 A glass plate covered with dust is held in a beam that converges into a hole in a screen. Circular halos appear on the screen around the hole.
6F40.80 Look at an unfrosted light bulb through a fog you have exhaled onto a glass slide.
6F40.82 Picture and analysis of an unusual lunar halo.
6 H 00.00
6 H 10.00
6H10.05 Lists all methods of generating polarized light.
6H10.06 Strain patterns, polarization by reflection, pile of plates, scattering, rotary dispersion, the Faraday effect, interference in polarized white light, double refraction, polarizing microscope, double refraction in sticky tape.
6H10.10 Show polarization with two sheets of Polaroid and a pair of sunglasses on an overhead projector.
6H10.10 Two sheets of Polaroid and a pair of sunglasses are provided with an overhead projector.
6H10.10 Commercially available polarizing plates are now available. (1930's)
6H10.10 Two sheets of Polaroids are rotated on an overhead projector.
6H10.10 Show polarization with two sheets of Polaroid on an overhead projector.
6H10.10 Two sheets of Polaroid on the overhead projector.
6 H 10.10 Two Polaroid sheets are partially overlapped while aligned and at 90 degrees.
6H10.11 A beam from an arc lamp is directed through two Polaroid sheets.
6H10.15 Polaroid sheets for the overhead plus a lot of other stuff.
6 H 10.20 Hold a grid of parallel wires in a microwave beam and rotate the grid.
6H10.20 A "hamburger grill" filter is used to demonstrate polarization from a 12 cm dipole.
6H10.20 A grid of parallel wires is held in a microwave beam.
6 H 10.20 Microwave polarization is shown by rotating the receiver or using a grating.

6H10.20 Construction of a strip grating that can convert a linearly polarized plane wave into one that is circularly polarized.
6 H 10.20 A slotted disc is rotated in the microwave beam.
6H10.30
6H10.30 Two boxes, one a polarizer and the other an analyzer, are built with a center slot that can be oriented either horizontally or vertically. Use with waves on a rubber hose.
6H10.30 Two large wooden slits oriented parallel or perpendicular to one another with a long helical spring passing through both.
6H10.30 A long spring passing through a vertical slit is used to demonstrate polarization of transverse waves.
6H10.31 A pendulum is hung from a long strut restrained by slack cords. Circular motion of the pendulum will be damped into a line by the motion of the strut.

6 H 10.40
6H10.40 Cut squares of Polaroid so the axes are at 45 degrees. Now turning one upside down causes cancellation.

AJP 33(4),xxv	making black glass
PIRA 200	Brewster's angle
UMN, 6H20.10	Brewster's angle
D\&R, O-620	Brewster's angle
AJP 69(11), 1166	polarization by reflection
Ehrlich 1, p. 171	Brewster's angle
Disc 24-05	polarization by reflection
Mei, 35-6.2	tilt the windowpane
Mei, 36-6.2	Brewster's angle with a laser
Mei, 36-6.1	polarization of the laser beam
PIRA 1000	microwave Brewster's angle
Mei, 33-7.12	microwave Brewster's angle
PIRA 500	polarization by double reflection
UMN, 6H20.20	polarization by double reflection
F\&A, Om-16	polarization from two plates
F\&A, Om-2	polarization of double reflection
Mei, 35-6.3	double mirror Brewster's angle
Hil, O-8a	double reflection polarization

Disc 24-06 polarization by double reflection

Sut, L-123	Norrenberg's polariscope
Sut, L-125	large scale polarizer
PIRA 1000	Brewster's cone F\&A, Om-18 Sut, L-124
Brewster's cone pyramid method	
PIRA 500	stack of plates
Sut, L-126	stack of plates

6H20.00
6H20.05 Eliminate the reflection off the second surface of a glass plate with a Canada balsam and lampblack suspension on the back side.
6H20.10 Rotate a Polariod filter in a beam that reflects at Brewster's angle off a glass onto a screen.
6H20.10 A beam of white light is reflected off a sheet of black glass at Brewster's angle onto the wall. A Polaroid is provided to test.
6H20.10 A beam of white light is reflected off a stack of glass plates at Brewster's angle. Rotate a Polaroid in the incoming and reflected beams.
6H20.10 Measurments of reflected light with an interface and light sensor.
6H20.10 Plate glass, a Polaroid filter, a protractor, and a focusable light source are used to demonstrate Brewster's angle.
6H20.10 Rotate a Polaroid filter in a beam that reflects off a glass onto a screen.
6H20.11 Reflect plane polarized light off a window pane and vary the angle of incidence through Brewster's angle.
6H20.12 Using horizontally polarized laser light, rotate a glass plate through Brewster's angle to observe a null.
6H20.12 Rotate a Polaroid in the beam of a laser with Brewster's angle mirrors.
6H20.15
6H20.15
6H20.20
6 H 20.20
6H20.20
6H20.20
Two black glass mirrors - one fixed and the other rotates.
Reflect light off a black mirror onto a second rotating black mirror to produce extinction.
6H20.20 Two glass plates are mounted in a box at Brewster's angle with the second able to rotate around the axis of the incident light.
6H20.20 Direct unpolarized light at a glass plate at 57 degrees, then to another plate at the same angle of incidence and perpendicular to the polarized light.

6H20.20
Offset a beam of light by double reflection off a glass, then rotate the first glass 90 degrees to obtain extinction. Replace the glass with metal mirrors and no polarization takes place.
6H20.21 Light strikes two black glass plates in succession, each at 57 degrees. Rotate the second glass plate and replace it with a mirror.
6H20.25 A large box with two black glass plates gives an extended source of plane polarized light.
6H20.30
6H20.30 A black glass cone at Brewster's angle.
6H20.31 Illuminate a rotatable pyramid made of four triangles of black glass mounted at 57 degrees with the base with plane polarized light.
6H20.40
6H20.40 A stack of glass plates at 57 degrees will transmit and reflect light that is cross polarized.
6H30.00
6H30.01 One vector moves along with a fixed orientation in space while five others, at quarter wavelengths, rotate.
6H30.10
6H30.10
6H30.10
6H30.10
6H30.30
6H30.30 A beam of polarized light is rotated when directed up a vertical tube filled with sugar solution.
6H30.30 Show a beam of polarized light up through a tube with a sugar solution and scattering centers. The beam rotates and colors are separated.
6 H 30.30 Illuminate a tube of corn syrup from the bottom. Insert and rotate a Polaroid filter between the light and tube.
6H30.35 Pass a polarized laser beam through a cylinder filled with a quinine sulfate solution.
6H30.40 Insert a tube of liquid sugar between crossed Polaroids.
6H30.40 Fill an aquarium with Karo syrup and insert glass objects - prism, block, balls. View the collection through motorized crossed Polaroids
6H30.40 Place a bottle of Karo syrup between crossed Polaroids
6H30.40 Insert a tube of sugar solution between crossed Polaroids

D\&R, O-690	Karo syrup tube
Disc 24-11	optical activity in corn syrup
F\&A, Om-19	Karo syrup prism
Mei, 35-6.5	three tanks
D\&R, O-685	three tanks
Sut, L-131	quartz "biplate"
AJP 50(11),1051	quartz slices
PIRA 1000	microwave optical rotation
Mei, 33-7.16	microwave optical activity
AJP 39(8),920	microwave optical rotation
PIRA 1000	Faraday rotation
Sut, L-132	Faraday rotation
Sut, L-133	Faraday rotation
Mei, 35-6.18	rotation by magnetic field Birefringence
PIRA 200 - Old	two calcite crystals
F\&A, Om-6	two calcite crystals
PIRA 1000	calcite and Polaroid on the overhead
UMN, 6H35.15	calcite and Polaroid on the overhead
F\&A, Om-5	ordinary and extraordinary ray
Sut, L-120	calcite and Polaroid on the overhead
D\&R, O-625	calcite and Polaroid on the overhead
Bil\&Mai, p 322	calcite and Polaroid on the overhead
Ehrlich 1, p. 174 Disc 24-16	calcite and Polaroid on the overhead double refraction in calcite
PIRA 1000	Plexiglas birefringence
UMN, 6H35.17	Plexiglas birefringence
AJP 73(4), 357	birefringent filters
AJP 59(12),1086	Plexiglas birefringence
$\begin{aligned} & \text { AJP, 65(5), 449- } \\ & 450 \end{aligned}$	Plexiglas birefringence
$\begin{aligned} & \text { AJP, 65(7), 672- } \\ & 674 \end{aligned}$	Plexiglas birefringence - a modification of Schneider's experiment

6H30.40 Place Karo syrup in a 50 to 60 cm acrylic tube. Shine a beam of light from a projector lengthwise through the tube. A Polaroid placed between the light source and the tube will produce a corkscrew rainbow. Also, a beaker of Karo syrup between crossed Polaroids on the overhead.
6H30.40 A bottle of corn syrup between Polaroids, three overlapping containers of equal thickness between Polaroids
6H30.41 Colors change as one Polaroid is rotated in a Karo syrup prism between crossed Polaroids
6H30.42 Compare the rotation of plane polarized light in tanks containing sugar solution, turpentine, and water.
6H30.42 Compare the rotation of plane polarized light in tanks containing sugar solution, turpentine, and water. Karo syrup (dextrose) gives right-handed rotation while levulose gives left-handed rotation.
6H30.45 A quartz "biplate" is set between two crossed Polaroids at 45 degrees, then a tube of sugar solution is also inserted and rotated.
6H30.60 ? = More Phil Johnson humor. The paper describes the interference patterns that can be displayed through quartz slices that have been cut perpendicular to the optical axis.
6 H 30.70
6H30.70 A styrofoam box contains 1200 coils of wire aligned in an array and wound in the same sense will rotate microwave radiation.
6H30.71 A microwave analog of optical rotation in cholesteric liquid crystals. Plastic sheets with small parallel wires are stacked so the wires on successive layers vary in a screw type fashion.
6H30.80
6H30.80 Polarized light is passed through holes in an electromagnet bored parallel with the magnetic field. A specimen is placed in the magnet and the rotation is determined when the magnet is energized.
6H30.81 Insert a partially filled glass container of Halowax or carbon tetrachloride into the core of a solenoid between crossed Polaroids
6 H 30.82 A CS2 cell placed in a solenoid rotates the plane of polarization of light.
6H35.00
6H35.10 Use a second calcite crystal to show the polarization of the ordinary and extraordinary rays.
6H35.10 Use a second calcite crystal to show the polarization of the ordinary and extraordinary rays.
6H35.15

6H35.15 Rotate a calcite crystal on an overhead projector covered except for a small hole. Use a Polaroid sheet to check polarity.
6H35.15 Rotate a calcite crystal with one beam entering and two will emerge, one on axis and the other rotating around.
6H35.15 Project a hole in a strongly illuminated cardboard onto a screen through a calcite crystal. Interpose and rotate a polarizing plate to make the two images disappear alternately, or use a Wollaston prism.
6H35.15 Place a mask with $1-2 \mathrm{~mm}$ dia hole on the overhead. Place a calcite crystal over the hole and rotate until two beams emerge. Check polarization of these beams with a Polaroid.
6H35.15 Place a transparency with words on an overhead projector. Place a calcite crystal on a portion of the words and rotate until you see two images of the words. Hold a Polaroid above the crystal and rotate.
6H35.15 A calcite crystal shows two images of whatever is placed beneath it. Use a Polaroid filter to shut off one image or the other.
6H35.15 Place a calcite crystal over printed material or a metal plate with a small hole.
6H35.17
6H35.17 Same as AJP 59, (12), 1086
6H35.17 Low cost birefringent filters constructed from cellophane tape.
6H35.17 Show birefringence of a Plexiglas rod directly with a linearly polarized laser. Also easily construct half and quarter wave plates.
6H35.17 A good guide to building your own Lucite optics for the demonstrations of birefringence in polarized light.
6H35.17 A macroscopic demo of birefringence in Lucite/Plexiglas. A linearly polarized laser is shone along the axis of the Plexiglas cut with a 45 degree surface so both the direct image and a perpendicular image can be seen at the same time.

F\&A, Om-3	birefringence crystal model
Sut, L-118	pendulum model
Sut, L-119	model of double refraction
AJP 53(3),279	wood stick polarization wave models
Hil, O-8c	retardation plate models
F\&A, Om-4	wavefront models
Mei, 35-6.11	birefringent crystal axes
F\&A, Om-8	Nichol prism
F\&A, Om-7	Nichol prism model
Sut, L-121	polarizing crystals
PIRA 500	quarter wave plate
F\&A, Om-11	quarter-wave plate
Disc 24-15	quarter wave plate
AJP 54(5),455	mechanical model half wave plate
Mei, 35-6.16	half and quarter wave plates
PIRA 1000	half wave plate
F\&A, Om-10	half wave plate
Mei, 35-6.15	half wave plate
PIRA 200 - Old	stress plastic
UMN, 6H35.50	stress plastic
UMN, 6H35.50	stress plastic
AJP 44(11),1138	stress plastic
F\&A, Om-15	stress plastic
Sut, L-134	stress plastic
D\&R, O-660	stress plastic
Disc 24-13	stress plastic
F\&A, Om-12	crystal structure of ice
Mei, 35-6.12	quartz wedge
Mei, 35-6.13	quartz wedge
Mei, 35-6.14	various crystal thicknesses
Mei, 35-6.17	sign on crystals
PIRA 1000	butterfly, etc.
UMN, 6H35.53	butterfly, etc.
Sut, L-136	butterfly
F\&A, Om-14	color with mica
PIRA 500	cellophane between polarizers
AJP 49(9),881	cellophane between Polaroids
Mei, 35-6.4	cellophane between Polaroids
$\begin{aligned} & \mathrm{D} \& R, \mathrm{O}-630, \mathrm{O} \\ & 625 \end{aligned}$	cellophane between Polaroids
Disc 24-09	cellophane between Polaroids
Disc 24-10	polarized lion
Disc 24-12	polage

6H35.20 A flexible crystal model is used to show how the index of refraction can vary in a crystal.
6H35.21 Strike a pendulum with a blow, then wait $1 / 4,1 / 2$, or $3 / 4$ period and strike another equal blow at right angles to the first.
6H35.21 A double pendulum displaced in an oblique direction will move in a curved orbit.
6H35.22 Stick models of plane and circular polarized light.
6H35.23 Fifteen models of retardation plates. Reference: AJP 21(9),466-7.
6 H 35.24 Wire models show spherical and elliptical wavefronts in crystals.
6H35.25 Examine calcite crystals cut perpendicular, parallel, and along the cleavage axis under a microscope.
6H35.30 One of a pair of Nichol prisms is rotated as a beam of light from an arc lamp is projected through.
6H35.31 Construct a wire frame model to show how calcite crystals are cut to form a Nichol prism.
6H35.32 Explain the action of tourmaline crystals and the Nicol prism with models.
6H35.40
6H35.40 Insert a quarter-wave plate between Nichol prisms at 45 degrees giving circular polarization.
6H35.40 Place a quarter wave disc between a Polaroid and a mirror.
6H35.41 An anisotropic spring and metal ball system is the mechanical analog of a half-wave plate.
6H35.44 Use half and quarter wave plates with polarized sodium light.
6H35.45
6H35.45 Insert a half wave plate between Nichol prisms at 45 degrees giving plane polarized light.
6H35.45 Use a quartz wedge to show the effect of a half wave plate.
6 H 35.50 A set of plastic shapes are bent between crossed Polaroids.
6 H 35.50 A set of plastic shapes are bent between crossed Polaroids.
6H35.50 A commercial squeeze device and little plastic shapes are used between crossed Polaroids.
6H35.50 Plastic shapes on the overhead between crossed Polaroids
6H35.50 Various shapes of plastic fit in a squeezer between crossed Polaroids in a lantern projector.
6H35.50 Plastic is stressed between crossed Polaroids ALSO - Stroke a strip of glass longitudinally between crossed Polaroids and standing waves are apparent.

6H35.50 Stressed polyethylene bags or acrylic between crossed Polaroids.
6H35.50 Stress a plastic bar between crossed Polaroids
6H35.51 A thin slab of ice is placed between crossed Polaroids
6H35.52 Interference colors are shown with a quartz wedge in red, green and white light polarized light.
6H35.52 A setup to show the spectral analysis of the colors of a quartz wedge.
6 H 35.52 Various crystals are placed between crossed Polaroids including etchings.
6H35.52 A setup using a quartz wedge or sensitive plate to determine the sign of crystals.
6H35.53
6H35.53
6H35.53 Mica, cellophane, etc. cut into specific shapes and thicknesses are placed between crossed Polaroids.
6H35.54 Rotate a mica sheet between crossed Polaroids.
6H35.55
6H35.55 A nice short explanation of interference colors and a kitchen table variation where the polarizer and analyzer are not obvious.
6H35.55 A doubly refracting material between fixed and rotatable Polaroid sheets demonstrates color change with Polaroid rotation.
6H35.55 Cellophane placed between two sheets of Polaroid. Rotate either the cellophane or the Polaroids.
6H35.55 Interesting designs show up when plates with layered cellophane are placed between crossed Polaroids
6H35.56 The second polarizer is reflected light from a horizontal plate of glass.
6H35.57 Optically active art work - metamorphosis of a cocoon into a butterfly as one Polaroid rotates.

Kerr effect with optical ceramics
Sut, L-135

AJP 41(2),270
PIRA 1000
Mei, 17-8.3

PIRA 500
UMN, 6H50.10
F\&A, On-2

Mei, 35-6.9

Mei, 35-6.8
Sut, L-128
Bil\&Mai, p 324

Ehrlich 1, p. 171 polarization by scattering

Disc 24-07
polarization by scattering
Mei, 36-6.3
Sut, L-127

Mei, 35-6.7
PIRA 1000
Mei, 35-6.10

PIRA 1000
TPT 28(9),598

PIRA 200
PIRA 500 - Old
UMN, 6 J10.10
F\&A, Og-8
Hil, O-5b. 1
Mei, 34-2.1
Sut, L-65

PIRA 1000
UMN, $6 J 10.30$
Sut, L-58

D\&R, O-580

PIRA 1000
scattered laser light
polarized scattering in a beaker
scattering tube
depolarization by diffuse reflection
depolarization by diffuse reflection
Haidinger's brush
Haidinger's brush

THE EYE

The Eye
eye model
eye model
eye model
eye model
eye model
water flask model of the eye
eye model
eye model
blind spot
blind spot
blind spot
blind spot

6H35.60 Replace the nitrobenzene in the Kerr cell with an optical ceramic. An interesting welding goggles application is discussed.
6H35.61 Halowax oil is used between the plates of a capacitor set between crossed Polaroids Charge the capacitor with an electrostatic machine and the transmitted light will vary.
6H35.62 Directions for making cells with thin layers of the liquid crystal MBBA and various optics experiments with the material.
6H35.65
6H35.80 A colloidal solution demonstrates birefringence accompanying flow. Preparation instructions.
6H50.00
6H50.10
6H50.10 Use a sheet of Polaroid to check the polarization of scattering from a beam of light passing through a tank of water with scattering particles.
6H50.10 Rotate a Polaroid in the incoming beam or at the top and side of the tank in the sunset demonstration.
6H50.10 A mirror at 45 degrees mounted above the scattering tank reflects light scattered up onto the same Polaroid analyzer as the light scattered to the side.
6H50.10 Shine light in one side of a box with a scattering solution and look at the scattered light out in a perpendicular direction.
6H50.10 Rotate a Polaroid in the incident beam of the sunset experiment with a mirror oriented at 45 degrees above the tank.
6H50.10 Use a sheet of Polaroid to check the polarization of scattering from a beam of light passing through a tank of water with scattering particles. Use PineSol.
6H50.10 Use a sheet of Polaroid to show the polarization of light scattered by 90 degrees from light passing through a tank of water with powdered milk or dairy creamer as the scattering particles.
6H50.10 Add milk to water and show polarization of light scattered from a beam.
6H50.11 Rotate a polarized laser about its own axis as it is scattered from a solution.
6H50.20 A beam of light is directed down into a beaker of water containing scattering centers. Rotate a sheet of Polaroid in front of the beaker or in the beam before it enters the water.
6H50.21 Direct polarized or unpolarized light up a vertical tube filled with a solution containing scattering centers.

Reflect a beam of polarized light off a chalk surface through a Polaroid analyzer.
6H50.90
6H50.90 Train yourself to detect polarized light with the naked eye. Most people can.
6300.00
$6 J 10.00$
$6 J 10.10$
$6 J 10.10$
$6 J 10.10$
6J10.10 Show a take-apart model of the eye.
6J10.10 The standard take-apart eye model.
6J10.21 A large flask filled with water, a little fluorescein, and some external lenses make a model of the eye in near and far sighted conditions.
6J10.21 A spherical lens filled with milky water represents the eyeball. Use a large lens in front of the sphere to show inverted image, near and far sightedness.

6J10.21 How to construct a small but accurate model of the human eye.
$6 J 10.30$
$6 J 10.30$
6J10.30 Move a white cross toward a white spot on the blackboard while the students close one eye.
6J10.30 Place a black dot and a black cross about 5 cm apart on a white card. Close one eye and look at cross while moving card away from the eye until the dot disappears.

Sut, L-59	inversion of image on the retina
Sut, L-64	astigmatism
Sut, L-66	eyeglasses
Sut, L-63	chromatic aberration of the eye
PIRA 1000	resolving power of the eye
Sut, L-86	resolving power of the eye
D\&R, O-570	resolving power of the eye
PIRA 1000	resolving power with TV
Disc 23-09	resolving power with TV
AJP 58(6),552	Computer generated Sayce chart
Mei, 34-1.14	locating images by parallax
PIRA 1000	Physiology retinal fatigue - color disc
F\&A, Oi-12	retinal fatigue - color disc
Sut, L-94	retinal fatigue - color disk
Mei, 6-2.8	psychological colors
PIRA 1000	visual fatigue
Sut, L-61	visual fatigue
D\&R, O-770	visual fatigue
Mei, 6-2.2	after image and judgement of size
PIRA 1000	persistence of vision
UMN, 6J11.30	persistence of vision
AJP 71(8), 774	persistence of vision
Bil\&Mai, p 4	persistence of vision
Mei, 6-2.7	persistence of vision
TPT, 36(7), 442	the time delay in human vision
AJP 43(1),113	colored fans
Mei, 6-2.9	tubeless television
D\&R, O-585	tubeless television
Sprott, 6.11	tubeless television
F\&A, Oi-9	integration of light pulses
Sut, L-60	fluorescence of the retina
F\&A, Oi-10	jarring the eye
Mei, 6-2.4	subjectivity of colors
Mei, 6-2.11	Mach disk
Mei, 6-2.1	relative black and white
F\&A, Oi-11	most sensitive to green light
PIRA 1000	impossible triangles
Disc 21-12	impossible triangles

$6 J 10.40$

6 J 10.50 Look at a chart of radial black lines.
6J10.55 Project an image of concentric circles crossed by radial lines. Place a lens and then a correcting lens over the projection lens.
6 J 10.60 A purple filter is mounted in front of a straight filament lamp.
$6 J 10.80$
6J10.80 The limit of resolving two filaments of an auto headlamp is 25-30 feet. ALSO - show slides of the "Navicula" made with green and UV light. Reference.
6J10.80 Place two black dots about 2 mm apart on a note card and observe from increasing distances until unable to resolve. Determine the angular resolution.
$6 J 10.81$
6J10.81 The camera zooms in on a vertical series of back illuminated double slits, each separated by half the distance of the preceding pair.
6J10.85 A valuable background discussion on the resolution of the eye and a computer generated Sayce is shown. An external slit is used to stop down the eye pupil.
6J10.90 An arrangement is shown for locating real and virtual images by parallax.
$6 J 11.00$
$6 J 11.10$
6J11.10 A red light placed behind a rotating disc with a slot at the border of half black and half white appears different colors depending on the direction of rotation.

6J11.10 A disk with a notch, half black, half white is spun in front of a red lamp. The lamp appears green or red depending on the direction that the disk spins.

6J11.11 A black and white patterned disc appears colored when rotated.
6J11.20
$6 J 11.20$
Stare at a bright spot and a complementary color appears when the spot is turned off.
6J11.20 Stare at a brightly colored object in good light for about 30 seconds. Look away to a white paper or wall and see the image in complementary color. The retinal fatigue image seems to change size.
$6 J 11.30$
$6 J 11.30$
6J11.30 A mathematical description of the Roget Illusion and anorthoscope. Simple devices are shown.
6J11.30 Use a strobe light to read a phrase written on the blades of a spinning fan.

6J11.30 A wheel with circles with phase shifted dots painted on the rim is spun in strobed light.
6J11.31 Exploring the time delay in vision by spinning LED's on a turntable
6J11.32 Paint a four bladed fan different colors and illuminate with a strobe.
$6 J 11.33$ Wave a wand at the point a projected image is focused.
6J11.33 Wave a meter stick at the point where a projected image is focused.
6J11.33 A visual image appears in midair when waving a light-colored stick near the focal plane of a slide projector.
6J11.35 If light intensity from a strobe that appears continuous at 3000 Hz is cut in half, it will appear continuous at about 1700 Hz .
6J11.36 Shine an UV source with a visible filter toward the class and notice the luminous haze that covers the field of view.
6J11.37 Stamp your foot while watching a free running oscilloscope.
6 J 11.40 A red spot projected on the wall looks orange or brown if it is surrounded by white or black.
6J11.42 A spinning disk appears to have light and dark rings where it should be uniform.
6J11.44 A bright light shining on a black screen looks the same as a filtered light shining on a white screen.
6J11.46 A stick moved up and down in a projected spectrum will appear to bend at the green light area.
$6 J 11.50$
6J11.50 An optical illusion that depends on viewing angle.

TPT 28(8),562
Mei, 6-2.3
D\&R, O-805
Sprott, 6.12
AJP 42(7),531
TPT 46(2), 121

AJP 33(12),1085
TPT 19(8), 564

TPT 20(2), 72

TPT 33(2), 117
D\&R, W-060
PIRA 1000
Sut, L-62

AJP 43(8),714

AJP 35(11),1056
AJP 43(11), 954
AJP 71(9), 948
Mei, 37-1
PIRA 200
AJP 44(10), 927
Hil, O-10a

D\&R, O-485
Ehrlich 1, p. 205
Disc 23-21
AJP 45(5),493

AJP 43(4),297
PIRA 1000
Hil, O-10b
AJP 57(6),560

AJP 57(5),439
AJP 57(5),445

AJP 57(2),133

AJP 55(9),823
AJP 50(3),281

AJP 50(3),280
AJP 35(5),ix
AJP 40(12), 1866
AJP 37(4),455
AJP 41(7), 932
AJP 36(2),ix
AJP 35(8),773
the square that ain't there
optical illusions
optical illusions
optical illusions
perception
perception - shades of gray
depth perception - special case
Pulfrich illusion - Pulfrich
pendulum
Pulfrich illusion - Pulfrich pendulum
Pulfrich illusion - Pulfrich pendulum
Pulfrich illusion - Pulfrich
pendulum
color blindness
color blindness

MODERN OPTICS
 Holography

geometric model for holography
introduction to holography
practial holography
phase holography
hologram chapter
holograms
360 degree reflection holography
360 degree hologram
holograms
hologram eyeglasses holograms
single beam 360 degree
holograms
360 degree holograms
in class holograms
holographic camera
making holographic interferograms
thin-transmission holograms
thin-transmission holograms
rainbow hologram with beaker of water
real time holograms
single beam holography
single beam holography
vibration testing for holography
low cost holography
inexpensive holography table
inexpensive spatial filter
inexpensive beam splitters
inexpensive holography

6J11.51 A cutout of a square in black paper has the illusion of being a white square on top of black paper.
6J11.52 Compare the height to the width of a projected hat.
$6 J 11.52$ Four real optical illusions and explanations. 6 spoofs.
6J11.52 Transparencies containing optical illusions projected on a screen.
6J11.55 Many cases of optical perception are discussed along with some audio and miscellaneous phenomena.
6J11.56 A gray box placed partially over a black background. The part of the box inside the black background looks darker than that ouside the black background, especially if a pencil is placed across the intersection.
6J11.60 Apparatus for the demonstration of depth perception when due solely to the geometrical disparity of binocular vision.
6J11.65 A pendulum is swinging in a plane but appears to have an elliptical orbit if viewed with a filter over one eye.
6J11.65 More comments on TPT 19(8), 564.

6J11.65 A pendulum is swinging in a plane but appears to have an elliptical orbit if viewed with a filter over one eye.
6J11.65 A pendulum is swinging in a plane but appears to have an elliptical orbit if viewed with a filter or thin transparent film over one eye.
$6 J 11.70$
6J11.70 Use standard color blindness slides or charts to test the students.

6Q00.00

6Q10.00
6Q10.01 A geometrical model which, without sacrificing any physical principles, correctly explains all the major characteristics of holograms.
6Q10.01 Holography at the level of an undergraduate optics course.
6Q10.01 A "from the beginning" article on holography.
6Q10.01 A mathematical description of thick hologram recording and playback is given using a basic wave front representation.
6Q10.01 A chapter on holograms in Meiners by Tung H. Jeong.
6Q10.10 Show a hologram.
6Q10.10 Two methods of making 360 degree reflection holograms.
6Q10.10 A 360 degree hologram From Edmund Scientific is observed with a Hg lamp and 5461 Angstrom filter.
6Q10.10 Transmission and 120 degree holograms.
6Q10.10 A pair of eyeglasses with holographic images of eyeballs.
6Q10.10 A video of a 360 degree transmission hologram.
6Q10.11 A very simple arrangement using only a single lens to diverge a laser beam.

6Q10.11 Simple configuration for a good quality hologram.
6Q10.20
6Q10.21 A Gaertner holographic system on an optical table.
6Q10.30 Directions for making a simple and cheap plate holder.

6Q10.31 A long article on Abramson ray-tracing holograms.
6Q10.32 A long article on a simple ray-tracing method for thin-transmission holograms.
6Q10.40 Use a beaker of water in making the rainbow hologram.

6Q10.42 How to make real time good quality interferograms.
6Q10.45 Use single beam holography to study mechanical vibrations of an opaque object.
6Q10.45 Demonstrate real time holograms that last several hours without glass plate film, etc.
6Q10.50 A vertical Michelson interferometer is constructed on the optical table with a pool of mercury as one mirror.
6Q10.60 Diagrams of single and double beam methods for making holographs.
6Q10.60 Four inches of newspapers and twelve tennis balls support a concrete slab.
6Q10.60 Substitute a microscope with an $x-y$ stage for a commercial spatial filter.
6Q10.60 Use dime-store back silvered mirrors for beam splitters for holography. 6Q10.60 A simple method for making holograms.

Demonstration Bibliography

D\&R, O-490	inexpensive holography
AJP 38(2),266	simple hologram arrangement
AJP 35(11),1092	instant holograms
AJP 36(1),62	holography for sophmore lab
AJP 44(7),712	beam splitter for holography
AJP 48(5),409	rear reflections in plates
AJP 36(2),ix	film holder for holography
AJP 43(2),185	simple hologram verification
AJP 39(3),349	holography without darkroom
AJP 37(7),748	diffuser as beam splitter
AJP 39(7),840	holography with 1 mw laser
AJP 38(8),1046	holography table
AJP 43(7),652	axial mode detector
AJP 45(6),590	comment on AJP 44(7),712
AJP 42(5),425	Kerr cell driver
AJP 44(8),774	computer holograms
AJP 38(7),919	reconstruction of acoustic holograms
AJP, 45(11), 1027	holograph of a holograph
	Physical Optics
PIRA 1000	Abbe demonstrations
AJP 30(5),342	simple Abbe demonstrations
AJP 46(2),185	Abbe's theory of imaging
AJP 39(10),1164	optical simulation of the electron microscope
AJP 48(8),674	phase reversal effect - single slit
AJP 40(4),571	symmetries in Fraunhofer Diffraction
AJP 39(8),959	spatial filtering
AJP 42(7),614	mapping transform

6Q10.60 Directions and references for making holograms with inexpensive equipment and laser.
6Q10.62 A simple hologram arrangement using ball bearings as beam expander mirrors.
6Q10.63 Use Polaroid film for holograms.
6Q10.65 A simple hologram camera.
6Q10.70 A double front surface mirror splitter, and the Edmond 41960 variable density beam splitter.
6Q10.71 Put black PVC masking tape on the back of the holographic plate.
6Q10.71 Use a 35 mm camera (both Kodak 649-F and SO-243 films come in 35 mm).
6Q10.72 Method for finding the orientation necessary for viewing and the location of the hologram on the film.
6Q10.72 Dye the plates with a blue-green attenuator and use laser light in a red poor background.
6Q10.73 Get by with a single beam expander by using the polished back of the diffuser as a beam splitter.
6Q10.74 A technique for low exposure holography.
6Q10.75 Construction of an oscillation damped table for holography.
6Q10.76 The output of a fast silicon photodiode is mixed with a UHF signal and the oscillator is tuned to give a 0 Hz difference frequency.
6Q10.77 Two points of concern.
6Q10.78 Modulate a laser beam with a Kerr cell. A circuit for a driver is given.
6Q10.81 Generate holograms with an HP 9100B desktop calculator and plotter.
6Q10.82 A photocopy of a hologram produced from sound waves in air was used to reconstruct an image with laser light and a crude setup.
6Q10.85 A virtual image of a lens appears in front of a plate and images of various objects appear behind.
6Q20.00
6Q20.10
6Q20.10 Techniques of demonstrating Abbe theory of image formation with simple microscope equipment avoiding use of special Abbe diffraction gratings.
6Q20.10 A demonstration to show both image and diffraction pattern formation.
6Q20.11 An optical setup simulates an electron microscope imaging a twodimensional lattice. Demonstrates Abbe's theory of the microscope.
6Q20.20 Illuminate a double slit with the central maximum from a single slit diffraction pattern, then move the double slit so one slit is illuminated by the central maximum and the other by the first sideband.
6Q20.21 The Fraunhofer diffraction patterns for eight apertures each show a central maximum and interesting symmetries.
6Q20.30 An optimum lens configuration for optical spatial filtering for use in amplitude modification techniques.
6Q20.35 A distorted image is viewed at 45 degrees to the axes of cylindrical convex and concave mirrors resulting in recognizable mirror images.

PIRA 200
UMN, 7A10.10
F\&A, Ok-3
Mei, 38-2.1

Sut, A-89
Hil, A-4b
D\&R, S-095
Bil\&Mai, p 356
Disc 24-19
PIRA 1000
UMN, 7A10.12
AJP 34(2),172
AJP 33(9), 746

PIRA 1000

Sut, A-90	discovery of the photoelectric effect
AJP 44(3),305	photoelectric effect with geige counter photoelectric effect with prism
F\&A, Ok-4	photoelectric effect circuit
AJP 53(9),911	photoelectric effect circuits
TPT 1(5),229	photoelectric effect circuit AJP 38(6),767 AJP 46(2),133 TPD 3(8),380 photoelectric effect circuit effect circuit

AJP 39(12),1542
PIRA 500
UMN, 7A10.30
AJP 29(10),706
TPT 1(3),183

F\&A, MPb-1	stopping potential
Mei, 38-2.4	stopping potential
Sut, A-93	stopping potential
AJP 44(8),796	stopping potential error
D\&R, S-100	Planck's constant - LED's

AJP, 78 (9), 933 Maxwell-Boltzmann distribution
LED's
PIRA 1000 photoelectric threshold
AJP 43(4),370 photoelectric threshold
Mei, 40-1.9
Mei, 38-2.3
Sut, A-92

QUANTUM EFFECTS

Photoelectric Effect

photoelectric effect in zinc photoelectric effect in zinc photoelectric effect in zinc photoelectric effect in zinc
surface photoelectric effect photoelectric effect in zinc photoelectric effect in zinc
photoelectric effect in zinc
photoelectric effect in zinc
photoelectric charging
photoelectric charging
photoelectric charging
photoelectric charging
discovery of the photoelectric effect
effect
counter
photoelectric effect circuit
photoelectric effect circuits photoelectric effect circuit photoelectric effect circuit
photoelectric effect circuit stopping potential
stopping potential
otential
stopping potential
photoelectric threshold
phototube and electrometer
photoelectric threshold

7A00.00
7A10.00
7A10.10
7A10.10
7A10.10
7A10.10
Use UV light to discharge a clean zinc plate mounted on an electroscope.
Discharge a clean zinc plate mounted on an electroscope with UV light.
Discharge a zinc plate on an electroscope with UV light.
A clean zinc plate mounted on a charged electroscope, discharges the electroscope when the light source is not covered with glass.
7A10.10 UV light shines on a zinc plate on an electroscope. More.
7A10.10 Discharge a zinc plate on an electroscope.
7A10.10 Discharge a freshly polished zinc plate on an electroscope with UV light from a carbon arc lamp. Don't use a lens.
7A10.10 Discharge a clean zinc plate mounted on an electroscope with UV light. Use a glass plate to block the UV light.
7A10.10 Zinc plate on an electroscope, charged negative, glass UV barrier.
7A10.12
7A10.12
7A10.12
7A10.12
Same as AJP 33(9), 746.
Additions to the AJP 33,746 (1965) article.
Hold a positively charged object next to the zinc plate on an uncharged electroscope while illuminating it with an UV light. The electroscope will charge positively.
7A10.15
7A10.15 A spark passes between two zinc electrodes attached to a 15 KV transformer when UV light is present.
7A10.17 Conversion of photons to electrons in lead foil.
7A10.20 Project different parts of the spectra onto a zinc plate on a charged electroscope.
7A10.23 A photoelectric effect apparatus based on the AD 515 electrometer op amp allows relatively inexpensive and easy direct measurement of the photopotential between anode and photocathode.
7A10.24 Very cheap current detector substitutes.
7A10.26 Single transistor circuit for use with RCA 929 phototube.
7A10.26 An op-amp circuit for a 1P39 or similar phototube.
7A10.27 A helpful article on stopping potential with all the basic vital information, e.g., the wavelengths of the spectral lines of mercury, and featuring a transistorized current amplifier.
7A10.28 Circuit diagram for an amplifier for use with the 1P39 tube.
7A10.30
7A10.30
7A10.30 Equipment and circuit diagrams for stopping potential demonstration.
7A10.30 Simple apparatus based on the 929 phototube. Several demonstrations and discussion sections for studying the photoelectric effect and measuring Planck's constant.
7A10.30 Measure the stopping potential of the lines of the mercury spectrum with a phototube.
7A10.30 A mercury arc lamp is used with filters giving passbands of one spectral line onto the cathode of a 1P39 phototube.
7A10.30 The potential in the collector is changed while measuring the current under different colored light.
7A10.31 A widespread error in elementary texts on the stopping potential.
7A10.33 Plot graphs of voltage vs. frequency for several LED's. Multiply the slope of the graph by the electronic charge to calculate Planck's constant. Observations of the Maxwell-Boltzmann distribution in the emission spectra of six LED's spanning the visible spectrum.
7A10.35
7A10.35
7A10.35
Rotate the spectrum across a zinc plate until the current rises sharply.
The photoelectric threshold demonstrator consists of a projected spectrum, a sample holder, and a translucent screen.
7A10.35 A 929 phototube is connected to a electrometer and the voltage observed while sweeping the tube across a projected spectrum.
7A10.35 Measure the current from a photocell exposed to different colored light.

Demonstration	Bibliography	July 2015	
Mei, 40-1.10	photoconductivity	7A10.36	A photocell is passed through the spectrum while resistance is measured.
Mei, 38-2.2	photoelectric charging of a capacitor	7A10.37	A double pole, double throw switch connects a vacuum phototube to a capacitor, then a galvanometer while different lamps shine on the phototube.
Sut, A-91	alkali metal photocell	7A10.38	A simple circuit for showing photoelectric current.
PIRA 1000	solar cells	7A10.40	
Sut, A-96	barrier-layer cells	7A10.40	Measure the current from a cell of the type used in foot candle meters.
Hil, E-3f	Sun batteries	7A10.40	This must be a photocell connected to an ammeter.
Ehrlich 1, p. 146	solar cells	7A10.40	A small fan is powered by a solar cell and a bright light source.
Disc 24-21	solar cells	7A10.40	Shine a bright light on selenium solar cells and run a small motor.
Hil, A-4c	ring a bell	7A10.41	Shine a light on a photoelectric cell to ring a bell.
Hil, A-4d	photo-voltaic switch	7A10.42	Turn on a light using a light beam and photo-voltaic cell.
Hil, A-4e	photo detector	7A10.43	Modulate a light and use a photo detector and amplifier with a speaker.
PIRA 1000	photo conduction vs. thermopile	7A10.50	
Mei, 40-1.8	photoconduction vs. thermopile	7A10.50	A CdS photocell and thermopile are moved across a projected spectrum and the outputs compared for frequency response.
PIRA 1000	carrier recombination and lifetime	7A10.60	
Mei, 40-1.11	carrier recombination and lifetime	7A10.65	A photoconductor is strobed and the output observed on an oscilloscope.
Sut, E-212	sodium photoelectric cell	7A10.71	On making a sodium photoelectric cell.
Sut, A-94	commercial vacuum photocells	7A10.72	Discussion of low cost ceasium-on-oxidized-silver photocells.
Sut, A-95	commercial gas-filled photocells	7A10.73	The characteristics of argon filled photocells.
Sut, E-170	selenium photoconductor	7A10.74	Directions for making a selenium photoconductor.
AJP 29(5),xi	making photoconductors	7A10.76	Directions for preparing cadmium sulfide surfaces.
Sut, A-100	photochemical reaction	7A10.99	A mixture of hydrogen and chlorine is set off by a light flash.
	Millikan Oil Drop	7A15.00	
PIRA 1000	Millikan oil drop	7A15.10	
Sut, A-76	oil drop experiment	7A15.10	The real oil drop experiment.
AJP 73(8), 789	Millikan oil drop	7A15.10	Put a flexcam over the eyepiece of the Millikan oil drop apparatus and do video analysis of the experiment results.
Hil, A-2b	Millikan oil drop experiment	7A15.10	The small Millikan chamber and telescope.
Disc 24-24	Millikan oil drop	7A15.10	The real experiment and an animated sequence explaining the apparatus.
AJP, 50 (5), 394	Millikan oil drop	7A15.10	A look at Millikan's 1913 data on oil drops to look for evidence of charge quantization and for fractional residual charge.
AJP 29(3),xxvi	Millikan oil drop illuminator	7A15.11	A microscope lamp makes an excellent illuminator for the oil drop experiment.
AJP 40(3),474	Millikan oil drop - laser illumination	7A15.11	Replace the light in the Welch apparatus with a laser.
AJP 40(5),768	Millikan oil drop - Pasco apparatus evaluation	7A15.12	Problems with the Pasco apparatus.
AJP 36(12),1169	Millikan oil drop suggestions	7A15.12	Three suggestions for the Pasco apparatus.
AJP 34(2),xv	Millikan oil drop charge change	7A15.13	Put a quartz lamp between the plates.
AJP 33(5),411	Millikan oil drop charge change	7A15.13	The spark from a small tesla coil is used to change the charge on the drops.
AJP 36(12),1170	drop discriminator and ionizer	7A15.14	Modification to introduce drops into the apparatus.
PIRA 1000	Millikan oil drop model	7A15.20	
Mei, 29-2.6	Millikan oil drop with soap bubble	7A15.20	Blow a soap bubble on a sleeve attached to an electrostatic generator.
Mei, 29-2.5	Millikan oil drop model with glass beads	7A15.21	Tiny glass balls are levitated in this model of Millikan's experiment.
F\&A, Eb-15	model of Millikan oil drop experiment	7A15.25	Place a balloon between two large metal plates attached to a Wimshurst.
Mei, 29-2.7	Millikan oil drop large version	7A15.25	A small light foam plastic ball is the drop between parallel plates in this scaled up oil drop demonstration.
Sut, A-75	model oil drop experiment	7A15.25	Balance a ping pong ball between two charged plates.
AJP 33(5),406	air drop in a field	7A15.40	An apparent violation of Earnshaw's theorem when a float moves towards a field minimum.
	Compton Effect	7A20.00	
PIRA 500	Compton effect with a multichannel analyzer	7A20.10	
UMN, 7A20.10	Compton effect with a multichannel analyzer	7A20.10	Same as AJP 52(2)183.
AJP 52(2),183	simple Compton effect	7A20.10	Use a multichannel analyzer to observe the normal Compton edge while the source and detector are isolated. Bring aluminum and lead blocks nearby and observe the backscattered peaks.
Mei, 38-3.1	Compton scattering with turntable	7A20.15	A shielded source faces a scatterer with a scintillator rotating around at various angles. Pictures.

Demonstration	Bibliography
Mei, 38-3.2	X-ray Compton scattering
	Wave Mechanics
PIRA 500	optical barrier penetration
AJP 54(7),601	frustrated total internal reflection
AJP 33(5),xviii	frustrated total internal reflection
AJP 43(1),107	optical barrier penetration
AJP 76 (3), 224	frustrated total internal reflection
AJP 76 (8), 746	frustrated total internal reflection
Mei, 38-6.7	barrier penetration
Ehrlich 2, p. 182	frustrated total internal reflection
ref.	frustrated total internal reflection
AJP 39(10),1141	almost total reflection
AJP 52(4),377	frustrated total internal reflection
Mei, 38-6.8	tunnel effect
PIRA 500	microwave barrier penetration
AJP 31(10),808	microwave barrier penetration
AJP 39(1),74	optical and microwave penetration
Mei, 38-6.6	frustrated total internal reflection
Disc 24-22	microwave barrier penetration
AJP 33(10),xiii	microwave tunnel effect
AJP 34(3),260	microwave tunnel effect
PIRA 1000	circular vibrating soap film
Mei, 38-6.3	circular vibrating soap film
Mei, 38-6.4	circular Rubens tube
PIRA 200	vibrating circular wire
UMN, 7A50.40	vibrating circular wire
AJP 33(10),xiv	vibrating circular wire
Mei, 38-6.5	vibrating circular wire
PIRA 1000 AJP 51(3),239	complementary rule uncertainty principle with E\&M
AJP 39(3),302	complementarity rule
AJP 34(12),1122	electric analog circuit
AJP 50(11),996	photon counter - correlator
AJP 41(8),990	Kronig-Penny model analog computer
PIRA 1000	Mermin's Bell theorem boxes

7A20.20 An X-ray beam strikes an aluminum plate at 45 degrees and the beam is scattered into an ionization chamber while a copper plate is inserted into the beam before and after scattering.
7A50.00
7A50.10
7A50.10 A review of the history and theory. Pellin-Broca prisms eliminate reflection losses when measurements are taken.
7A50.10 Squeeze two right angle prisms together with a "c" clamp while directing a beam of light at the interface.
7A50.10 A laboratory setup of optical barrier penetration.
7A50.10 A method to demonstrate frustrated total internal reflection in the visible using the 100 nm thick air film near the center of Newton's rings.
7A50.10 Frustrated total internal reflection using a laser and a wedge shaped air gap between two glass prisms.
7A50.10 Frustrated total internal reflection with light and glass prisms demonstrates barrier penetration.
7A50.10 Frustrated total internal reflection demonstrated using a glass of water. This is an analog to quantum mechanical tunneling or barrier penetration.
7A50.10 See 6A44.42.
7A50.11 Use a plano-convex lens between the prisms and laser beam illumination.
7A50.12 A good note on frustrated total internal reflection and other accompanying physics.
7A50.15 Rocksalt prisms with gaps of 5 microns and 15 microns show transmission of IR to a thermopile in one case only.
7A50.20
7A50.20 Two right angle paraffin prisms are used with 3 cm microwaves to demonstrate barrier penetration.
7A50.20 Two detectors are used in both optical and microwave barrier penetration to quantitatively show the reflected and transmitted beams.
7A50.20 Demonstrate frustrated total internal reflection using microwaves and two right angle paraffin prisms. Pictures, Reference: AJP 31(10),808.
7A50.20 Microwaves are totally reflected off a plastic prism until another is touching the first.
7A50.21 A waveguide transmission line with three dielectric regions driven at 5 GHz .

7A50.21 A microwave "potential barrier" of three sections of waveguide - with dielectric, air and again dielectric.
7 750.30
7A50.30 Soap films are vibrated at audio frequencies to produce standing waves which are projected on a screen.
7A50.35 A 4' diameter circular Rubens flame tube demonstrates circular standing waves. Picture.
7A50.40 Excite a circular wire at audio frequencies with an electromagnet driver to produce standing waves.
7A50.40
7A50.40 Eigenfrequences of a 2.2" dia. wire circle are obtained by exciting with a 650 ohm relay coil.
7A50.40 A circular wire is excited at audio frequencies with an electromagnet driver to produce standing waves. Diagram, Pictures, Reference: AJP 33(10),xiv.

7A50.50
7A50.50 Interpret the inverse relation between the pulse length of a signal on the oscilloscope and the spectral-energy density on a spectrum analyzer as a demonstration of the uncertainty principle.
7A50.50 Circuit for a generator that produces $1,2,4,8$, or 16 pulses in a packet. Decrease in bandwidth for longer packets is evident when the Fourier power spectrum is viewed.
7A50.52 A three dimensional electrical network of inductors and capacitors models energy density in three dimensions.
7A50.60 A low cost time correlator-photon counter enables demonstrations of intensity correlation function, photon-bunching, coherence time, and related topics.

7A50.80 Diagram for an analog computer to simulate the Kronig-Penny model wave functions.

7A50.90

Demonstratio	Bibliography	July 2015	
AJP 53(12),1143	Mermin's Bell theorem boxes	7A50.90	A logic circuit that makes Mermin's gedanken experiment a feasible and instructive lecture demonstration.
AJP 41(3),418	noncommuting operators	7A50.90	Use the Abbe theory of image formation in the microscope to demonstrate noncommutativity.
	Particle/Wave Duality	7A55.00	
PIRA 1000	wave/particle sound analogy	7A55.10	
AJP 49(4),299	wave/particle sound analogy	7A55.10	A discussion of Henry's "principle of uncertainty": that it seems fundamentally impossible to exactly determine both the pitch and duration of sounds in space
PIRA 1000	wave/particle model with dice	7A55.15	
AJP 30(1),69	wave/particle model with dice	7A55.15	Dice numbered 1-2-3-6-7-8 are thrown and the results plotted, building a pattern similar to a single slit over many throws.
PIRA 1000	single photon interference	7A55.20	
AJP 40(7),1003	single photon interference	7A55.20	The source, slit, and viewing screen rotated first towards the viewer, and then towards a phototube where it is shown that the photons are individual pulses.
AJP 59(5),458	wave/particle transition	7A55.22	Film detectors are placed very close and then further away from a double slit to show the transition from particle to wave behavior. For $\mathrm{d}=1 \mathrm{~mm}$, the transition occurs at about . 1 mm .
AJP 44(3),306	electron interference phenomena	7A55.30	Electron interference is shown on a Seimens Elmiskop 101 equipped with a TV image intensifier. As the current density is increased, the flashes form a fringe pattern.
	X-ray and Electron Diffraction	7A60.00	
PIRA 200	electron diffraction	7A60.10	Rings or spots are shown with the old Welch electron diffraction tube.
UMN, 7B60.10	electron diffraction	7A60.10	Rings or spots are shown with the old Welch electron diffraction tube.
Mei, 38-7.5	electron diffraction	7A60.10	The Meiners/Welch electron diffraction tube. Pictures, Diagram, Reference: AJP,30, ,549.
Hil, A-13b	electron diffraction	7A60.10	The Welch electron diffraction apparatus.
Disc 24-23	electron diffraction	7A60.10	Rings are obtained from a commercial tube with a graphite target.
AJP 42(1),4	electron diffraction - multiple slits	7A60.11	A method for making 3 micron wide slits. A schematic for the electron diffraction apparatus is given.
AJP 30(12),891	TV tube electron diffraction	7A60.12	With the cooperation of a TV tube manufacturer, a gold foil was placed in a black and white TV tube.
Mei, 38-7.4	TV tube electron diffraction	7A60.12	Work with a local TV tube rebuilder to make an electron diffraction tube from an old TV
PIRA 500	Miller indices	7A60.15	
UMN, 7B60.15	Miller indices	7A60.15	
AJP 37(3),333	Miller indices	7A60.15	A solid model of the cuprite crystal habit with the various Miller indices labels on the faces.
PIRA 1000	diffraction model	7A60.20	
Sut, A-109	X-ray and electron diffraction model	7A60.20	Generate a ring pattern by rotating fine mesh wire gauze in a point source of light.
Mei, 38-7.1	model Laue diffraction pattern	7A60.21	Direct a beam of light off a wood cylinder with radial glass vanes to a screen.
D\&R, O-515	model Laue diffraction pattern	7A60.21	Direct a laser beam through two mounted meshs in series. Observe pattern of diffraction by two planes of mesh, analogous to Laue pattern in X-rays resulting from diffraction by two planes of atoms.
Mei, 38-7.2	model Laue diffraction pattern	7A60.22	Reflect a beam of light off a single polished rod onto a screen to illustrate Laue diffraction.
AJP 29(6),341	optical analog of X-ray diffraction	7A60.24	Compare Fraunhofer diffraction patterns from masks containing repeating arrays of holes with X-ray diagrams.
D\&R, S-225	optical analog of X-ray diffraction	7A60.24	View a 15-25 W lamp from several meters through a silk scarf, handkerchief, or panty hose. Optical diffraction pattern is similar to that of X rays diffracted from fine powder.
AJP 31(10),807	spherical projection model	7A60.26	Colored dots on the surface of a Lucite sphere represent the projection of the spots as if a single crystal was irradiated at the center of a spherical film.
AJP 47(3),289	blocking patterns in crystal lattices	7A60.27	Take a model of a crystal, replace an atom with a point source such as a flashlight battery, project the shadow pattern on a screen.
Mei, 38-7.6	bent crystal spectrometer model	7A60.28	A model of the Caushois bent crystal spectrometer using a beam of light and a stack of microscope slides.
PIRA 1000	electron "Poisson spot"	7A60.30	
AJP 58(12),1143	electron "Poisson spot"	7A60.30	Fresnel zones and the "Poisson spot" with electrons using an electron microscope with a good deal of historical development.
PIRA 1000	field emmission electron microscope	7A60.40	

UMN, 7A60.40

Mei, 38-7.7

PIRA 500
UMN, 7B60.50
AJP 28(5),415

Mei, 33-7.15
AJP 77 (10), 942
rotating crysta
crystal diffraction improved Welch-Bragg mount
microwave crystal diffraction models models
ripple tank Bragg diffraction
ripple tank Bragg reflection

X-ray

X

X-ray diffraction
AJP 30(12),864 X-ray diffraction model
sample X-ray tube
X-ray tube

Josephson junction analog
Josephson junction analog

Josephson junction analog

PIRA 1000 Josephson effect simple demo
AJP 53(5),445

AJP 40(6),897

TPT 38(3), 168
TPT 28(4), 205
AJP 77(9), 847

AJP 74(12), 1136

PIRA 1000

PIRA 1000 - Old

ATOMIC PHYSICS

line spectra and student gratings
student gratings and line sources

Modern Physics

 electron microscope.7A60.45 A coin used as an electrode in a highly evacuated tube forms an image on a fluorescent screen when voltage is high enough.

7A60.50
7A60.50
7A60.50 Apparatus Drawings Project No. 6: Three cm microwaves and a ball bearing array demonstrate crystal diffraction. Klystron source.
Microwave diffraction is observed from a crystal model made of steel bearings mounted in a styrofoam cube.
7A60.50 Lattices of steel ball bearings embedded in styrofoam form crystal models for microwave diffraction.
7A60.50 Description of a rotating crystal microwave Bragg diffraction apparatus that can be easily constructed.
7A60.51 Use rods to make the model crystal lattice. Use a computer interface to measure the difracted intensities.
7A60.51 A parallelogram device that sweeps both arms through equal angles and has a direct reading of the sine of the angle.
7A60.51 Use $1 / 2^{\prime \prime}$ brads in place of ball bearings to make the analog of polarized particles.
7A60.51 Make models of crystals for microwave diffraction by inserting a No. 7 lead shot in styrofoam balls and then making models of the crystal structures.

7A60.60
7A60.60
Floating arrays of pith balls model atoms for ripple tank Bragg diffraction. Also ripple tank construction techniques. Diagrams.
7A60.61 An array of rods is used to demonstrate Bragg reflection. Picture.
7A60.90
7A60.90
7A60.90
Use a beam, rock salt, and X-ray photographic paper to show diffraction.
Crystalline powder diffraction patterns with the Tel-X-Ometer 80 apparatus.
7A60.91 X-ray diffraction of a rock salt crystal mounted on a goniometer with GM tube detector.
7A60.92 If you need to demonstrate the reciprocal lattice concept in relation to singlecrystal X -ray diffraction patterns, this is for you.
7A60.95
7A60.95
7A70.00
7A70.10
7A70.10

7A70.20
7A70.20

7A70.25
7A70.25
7A70.25
7A70.25
7A70.30
7A70.30

7B00.00
7B10.00
7B10.10
7B10.10

Abstract from the 1981 apparatus competition describing an electronic circuit for demonstrating Josephson junction behavior.
7A70.10 A Pendulum analog of a small-area Josephson junction between two superconductors is coupled to the analogs of other circuit elements to demonstrate a variety of time dependent phenomena observed in actual devices.

Niobium wire is twisted together, varnished and built into a simple stainless tube that can be inserted into a helium dewar. I-V curves are observed on an oscilloscope.
7A70.20 A indium film with lots of holes is used with a standard magnetometer.
Show a large X-ray tube.

Press a magnet into a superconductor. The magnet is pinned by the impurities in the superconductor giving great stability.
A explanation of how flux pinning works in a Type II superconductor.
A demonstration of levitation, suspension and movement of a superconductor over a magnetic track.
Variational theory used to explain the high stability observed in magnetic force experiments with strongly pinned superconductors.

Place a small KCl crystal in a tube furnace and project the intense blue color that is injected and diffuses through the crystal when 300 V is applied.

Have students view line sources through replica gratings.

Demonstration	Bibliography
UMN, 7C10.10	line and continuous spectra with gratings
Sut, L-102	line spectra and student gratings
Hil, O-9b	emission spectra
D\&R, O-510, O-	emission spectra and holographic
520, \& S-220	grating ${ }_{\text {helium spectrum analysis }}$
AJP 77 (10), 920	helium spectrum analysis
Bil\&Mai, p 362	line and continuous spectra with gratings
Disc 25-01	emission spectra
PIRA 1000	flame salts
Sut, L-104	bright line spectrum
Disc 25-07	flame salts
Sut, L-105	band emission spectra
PIRA 1000	line spectra and large grating
Mei, 39-1.1	line spectra tubes and large grating
Hil, O-9c	prism spectrometer
PIRA 1000	project spectral lines
UMN, 7B10.20	project spectral lines
UMN, 7B10.25	spectral chart
Sut, A-8	salt electrode arcs
Sut, A-69	emmision spectra - Balmer series
AJP 28(1),35	Balmer series spectrum tube
Sut, A-110	X-ray line spectra model
AJP 58(9),893	Raman effect - simple apparatus
AJP, 78 (7), 671	Raman effect - simple apparatus
	Absorption
PIRA 500	sodium absorption/emission
UMN, 7C11.10	sodium absorption/emission
F\&A, Oo-4	sodium absorption/emission
AJP 35(11),1032	Monochromator
Sut, L-107	sodium absorption/emission
Mei, 39-1.9	sodium absorption/emission
F\&A, Oo-3	dark line sodium spectra
Mei, 39-1.4	sodium absorption lines
AJP 31(12),945	sodium flame
Sut, L-108	sodium absorption lines
Sut, L-103	imitation line spectra
PIRA 500	spectral absorption by sodium vapor

7B10.10 Students look at a carousel of line spectra lamps and a line filament with replica gratings.
7B10.10 Replica gratings are passed out, sources can be connected in series with an induction coil.
7B10.10 Line spectra are viewed through 13,400 lines/inch gratings.
7B10.10 Observe the emission spectra from different spectral tubes through a holographic grating. Osram lamps can also be used.
7B10.10 A spreadsheet that introduces students to the analysis of helium atomic spectrum data.
7B10.10 Students look at line sources and a line filament with replica gratings or grating glasses.
7B10.10 Four spectral tubes and white light through a grating.
7B11.11
7B10.11 Sources for bright line spectra: high melting point metals are used as electrodes in an arc lamp, the salts of low melting point metals are burned in a flame, gases are heated in discharge tubes.
7B11.11 The colors of different flame salts are observed.
7B10.12 Nitrogen, cyanogen, water vapor, and hydrogen show molecular band spectra.
7B10.15
7B10.15 A box with five Pluecker line spectra tubes are mounted in a box with a replica grating front.
7B10.17 Students can view emission spectra individually with a spectrometer.
7B10.20
7B10.20 Project high intensity Na and Hg lamps through 300 or 600 lines/mm gratings.
7B10.25 A spectral chart showing emission spectra of several gases.
7B10.30 Pinhole project a carbon arc onto a screen, pack an electrode with a salt, project a spectrum through a prism.
7B10.40 Measure the deviations of the Balmer series of a projected spectrum of hydrogen.
7B10.42 Apparatus Drawing Project No. 1: report on constructing and filling a reliable Balmer series tube with a useful life of greater than 1500 hours.
7B10.50 Pour lead shot into a pan.
7B10.60 A simple double cell apparatus that can be inserted into a 200 mW argon laser for direct observation of the virtual image of the spectra of the scattered light.
7B10.60 A high performance Raman spectrometer made with simple optical components.
7B11.00
7B11.10
7B11.10 A TV camera shows the Na doublet from a spectrometer in both emission and absorption.
7B11.10 A grating spectrometer that resolves the sodium d lines is used to show emission by a salt flame and absorption of white light by the flame.
7B11.11 Design of a simple monochromator with folded optics that will resolve 1 angstrom lines.
7B11.12 Illuminate half a slit with a sodium flame, half with sunlight from a heliostat. Compare emission and absorption lines.
7B11.13 A projection system is aligned so both emission and absorption lines of sodium are visible from an arc with one electrode drilled and filled with anhydrous sodium carbonate.
7B11.15 White light is passed through a concrete block containing a second arc that vaporizes sodium and the spectrum produced shows the sodium d line.

7B11.15 White light is passed through sodium flames before being dispersed by a prism.
7B11.16 Place a Pyrex test tube at 45 degrees with the bottom in the hottest part of the flame.
7B11.16 Three methods of burning sodium in an arc and generating enough sodium vapor to show a strong absorption line.
7B11.19 While projecting a slide of the continuous spectrum, insert another plate with lines drawn on representing the absorption spectrum of a gas.

Demonstration	Bibliography
AJP 30(9),654	sodium absorption cloud
AJP 36(3),ix	two lamp flame absorption
Sut, A-70	sodium absorption spectra
PIRA 1000	flame absorption projected flame absorption projected
Mei, 39-1.7	spectral absorption by sodium Disc 25-02
vapor F\&A, Oo-2 1000 mercury vapor shadow mercury vapor shadow	
Mei, 39-1.5	mercury vapor shadow
PIRA 1000 filtered spectrum Sut, L-90 filtered spectrum	
D\&R, O-740	filtered spectrum
Hil, O-6c filtergraph Hil, O-9d ploting absorption	
Sut, L-115	photocell measurement of absorption
PIRA 1000	band absorption spectra
UMN, 7B11.60	Glo-Doodler absorption
TPT 29(7),454	didymium glass
AJP, 65(4), 352-4 absorption spectra of rare earths	

Sut, L-109 band absorption spectrum

D\&R, O-285 band absorption spectrum

Sut, L-110

Mei, 39-1.6
Mei, 35-4.3
Hil, O-9a
TPT 29(7), 454 "Vanish" absorption

TPT 44(9), 618 "Vanish" absorption

PIRA 1000
Disc 25-09
PIRA 500
UMN, 7B13.10
F\&A, Oo-1

Mei, 39-4.1

7B11.20 A cloud of black smoke seems to form when vapor from flame heated salt is illuminated with a sodium lamp.
7B11.23 Use two lamps (He and Na) with a single condenser and target to provide a reference with the sodium flame absorption.
7B11.24 Several methods for producing sodium vapor and passing white light through.
7B11.25
7B11.25 The light from an arc lamp is focused on a Bunsen burner flame on the way to being projected on the screen.
7B11.25 Sodium flame looks dark when illuminated with sodium light.
7B11.30
7B11.30 Mercury vapor illuminated with a mercury lamp casts a shadow on a Willemite screen.
7B11.30 A UV lamp shines on a zinc sulfide screen while mercury vapors waft from a heated watchglass.
7B11.40
7B11.40 Part of a beam of white light is projected through a prism. When a filter is inserted in the beam, the spectrum and transmitted light are compared.
7B11.40 Filters inserted between light source and grating of a projected spectrum will show narrow or wide absorption bands depending on the filter.
7B11.45 A slide with four filters and the corresponding spectrographic diagrams.
7B11.47 A motor drive is connected to a grating and the output of a lead sulfide detector is plotted on a strip chart recorder as the spectrum is scanned with various filters and intensities. Reference: AJP 35(6),542-3.
7B11.47 Use suitable sources, cells, and filters to measure absorption of substances with a photocell.
7B11.60
7B11.60 Use the front sheet of a Glo-Doodler etching toy to show a strong absorption band.
7B11.65 Didymium glass, a mixture of praseodymium and neodymium and used by glass blowers, will produce 5 broad absorption bands.
7B11.65 The absorption spectra of rare earths is easily observed in the classroom in this experiment. Praesidymium, Neodymium, and Holmium oxides can be used in solution and displayed to the classroom. An excellent Astronomy class demonstration.
7B11.70 A flask of nitrous oxide is placed in the beam of white light before dispersion by a prism spectroscope. Didymium glass and dilute blood are also suggested.
7B11.72 Antifreeze (ethylene glycol) in a beaker will produce an absorption band when placed in the beam of white light before dispersion by a holographic grating.
Show the absorption spectrum of chlorophyll obtained by macerating leaves in methyl alcohol. Red and Green transmit.
7B11.77 A monochrometer (38-5.11) is used to demonstrate water absorption bands.
7B11.80 An absorbing solution is placed in a liquid cell placed in a beam of light before dispersion.
7B11.80 Absorption cells filled with liquids are used with a 35 mm projector and the B \& L spectra projection kit.
7B11.85 Shine a $\mathrm{He}-\mathrm{Ne}$ laser and a solid state laser emitting at 670 nm through a solution of Vanish. The He-Ne laser light will be completely absorbed while the solid state laser light will pass through.
7B11.85 Shine a He -Ne laser and a solid state laser emitting at 670 nm through a solution of Vanish. The He-Ne laser light will be completely absorbed while the solid state laser light will pass through.
7B13.00
7B13.05
7B13.05
7B13.10
7B13.10
7B13.10 Direct a white light beam through an evacuated flask containing iodine crystals.
7B13.10 Focus a carbon arc on a large evacuated Florence flask containing iodine crystals.

Demonstration Bibliography

Sut, A-68	iodine resonance radiation
Mei, 39-4.2	potassium resonance radiation
PIRA 1000	sodium vapor beam
Mei, 39-4.4	sodium vapor beam
Mei, 39-4.3	resonance radiation - sodium vapor
Mei, 39-1.8	Hanle effect
PIRA 1000	UV spectrum by fluorescence
Sut, L-111	UV spectrum by fluorescence
Mei, 39-1.2	projected mercury spectum
D\&R, S-180	projected mercury spectrum
Mei, 39-1.3	ultraviolet lines photographed
TPT 19(7), 483	ultraviolet lines
TPT 19(9), 618	ultraviolet lines
PIRA 500	fluorescence and phosphorescence
F\&A, Ok-2	black light
D\&R, O-760	fluorescence
Sprott, 6.8	fluorescence
Disc 25-11	fluorescence
Sut, L-114	fluorescence and phosphorescence
Hil, O-11a	fluorescence and phosphorescence
Bil\&Mai, p 358	fluorescence and phosphorescence
TPT 48(3), 186	quantum dots
PIRA 1000	luminescence
Disc 25-10	luminescence
Sut, A-105	fluorescence by X-rays
Mei, 39-4.5	phosphorescence
AJP 29(3),xxv	phosphorescence decay
	Fine Splitting
PIRA 500	Zeeman splitting with mercury
F\&A, MPc-1	Zeeman splitting with mercury
AJP 41(3),423	Zeeman splitting - three tubes
AJP 39(11),1387	Zeeman effect - sources
AJP 41(2),287	Zeeman effect - source
Mei, 39-2.3	Zeeman effect - mercury vapor
PIRA 1000	Zeeman effect - sodium flame
Mei, 39-2.2	Zeeman effect - sodium flame
Mei, 39-2.1	Zeeman effect - sodium flame

July 2015
Modern Physics
7B13.10 Pass a cone of white light through an evacuated flask containing heated iodine crystals.
7B13.15 Heat a pellet of potassium placed in an evacuated flask while passing white light through the flask
7B13.20
7B13.20
A sodium furnace in an evacuated bell jar produces a sodium vapor beam that forms a "pencil" of resonance reradiation when illuminated with sodium light.
7B13.20 A sodium vapor bulb is prepared and heated in a furnace while sodium and mercury light is passed through.
7B13.25 Measure the resonance polarization of mercury light from a quartz resonance cell of mercury vapor. Diagrams, References.
7B13.40
7B13.40 A screen painted with quinine sulfate fluoresces in the UV. Use Quartz optics.
7B13.42 The weak lines of the projected mercury spectrum are made visible by painting half of a card with fluorescent paint.
7B13.42 The weak lines of the projected mercury spectrum are made visible using a fluorescent card. Intensity may be increased by carefully removing the glass envelope of the bulb.
7B13.44 Ultraviolet lines from a carbon arc or mercury lamp are projected onto ultraviolet sensitive photographic paper.
7B13.44 Use cloth or stationary treated with laundry detergents or dyes that fluoresce and show the ultraviolet lines of a mercury light source.
7B13.44 Show the far ultraviolet lines of a quartz enclosed mercury light source using a homemade flexible plastic aluminized reflection grating.
7B13.50

7B13.50 Use a black lamp to illuminate fluorescent materials.
7B13.50 Detergent boxes with fluorescent ink, fluorescent chalk, and antifreeze in black light.
7B13.50 Materials illuminated with ultraviolet light re-emit visible light.
7B13.50 A collection of fluorescent materials in black light.
7B13.51 Show many substances that fluoresce and phosphoresce in UV light.

7B13.52 Dyes, cloth, paint, etc. and an interesting retardation demonstration with a vibrating meter stick and a thin transparent film over one eye.
7B13.53 Use UV sensitive craft beads and glow in the dark plastic string with a UV light. The craft beads undergo a UV induced color change but are not fluorescent.
7B13.54 An inquiry on the 4 different colors emitted by vials of the same materials. When illuminated with a black light the color of the emitted light depends on the size of the quantum dots.
7B13.55
7B13.55 A glow-in-the-dark sword exposed to black light. The covered portion does not glow as brightly.
7B13.58 An X-ray tube in a box in a dark room is used to show fluorescence in many materials.
7B13.60 Recipes are given for compounds with different luminescence. Several demonstrations are discussed.
7B13.63 Illuminate a P7 tube face with UV light, then mask half and expose the other half to red light. The masked side will remain luminous.

7B20.00

7B20.10
7B20.10 A mercury lamp between the poles of a large electromagnet is focused on a Fabry-Perot interferometer.
7B20.11 Sodium, mercury, and neon tubes used in Zeeman splitting.
7B20.11 Sodium, mercury, and neon tubes for the Zeeman effect.
7B20.11 Use the violet 4046 line from the Cenco 79661 mercury tube.
7B20.14 The light from a mercury lamp is focused on an air stream containing mercury vapor between the poles of an electromagnet.
7B20.15
7B20.15 Focus sodium light on a bead of borax heated between the poles of an electromagnet.
7B20.15 Sodium light focused on a sodium flame between the poles of an electromagnet will absorb until the field is turned on.

Demonstration	Bibliography	July 2015	
PIRA 500	Stern-Gerlach experiment	7B20.20	
AJP, 50 (8), 697	Stern-Gerlach experiment	7B20.20	The paradox in the classical treatment of the Stern-Gerlach experiment can be resolved if the torque on the magnetic moment is taken into account.
PIRA 1000	Stern-Gerlach crystal model	7B20.25	
UMN, 7B20.25	Stern-Gerlach crystal model	7B20.25	
PIRA 500	ESR - low field	7B20.30	
AJP 37(2),222	ESR - simple low field	7B20.30	A circuit for showing ESR in DPPH as a lecture demonstration.
AJP 30(12),927	ESR apparatus	7B20.31	Simple ESR apparatus.
AJP 35(3),xxi	ESR coil	7B20.32	A small helix plugs into a waveguide to coax transition.
AJP 33(4),xxvi	ESR mechanical analog	7B20.33	The shaft of a gyro is made from a permanent Alnico magnet, the Earth's field represents the DC field in the ESR experiment, two Helmholtz coils are used to model the microwave radiation.
AJP 35(7),iii	ESR references	7B20.34	References for anyone planning to apply the AJP 35(3) note.
PIRA 500	Mossbauer experiment	7B20.40	
PIRA 1000	Mossbauer model	7B20.45	
AJP 40(9),1336	Mossbauer effect - air track analog	7B20.45	Burn a string constraining spring loaded air gliders. Vary the mass of the "nucleus" glider.
Mei, 41-2.7	Mossbauer effect model	7B20.45	A suspended gun firing steel balls serves as a gamma ray emitting nucleus in a Mossbauer effect model. Picture, Diagrams, Construction details in appendix, p. 1373.
	Ionization Potential	7B30.00	
PIRA 1000	ionization potential of mercury	7B30.10	
Sut, A8144A-67	ionization potential of mercury	7B30.10	Measure the ionization potential of mercury vapor in a FG-57 tube at different temperatures.
Hil, A-6b	ionization potential	7B30.11	Looks like some older commercial apparatus to show the ionization potentials of mercury and xenon.
AJP 33(5),xvii	ionization potential of xenon	7B30.12	Use the Frank-Hertz principle to show the ionization potential of xenon in a 2D21 Thyratron.
AJP 34(4),366	comparrison of apparatus	7B30.13	The Klinger and Leybold apparatus are compared.
PIRA 500	Frank-Hertz experiment	7 B 30.20	
Mei, 39-3.1	Frank-Hertz experiment	7B30.20	A qualitative lecture demonstration on the oscilloscope.
Disc 25-12	Frank-Hertz experiment	7B30.20	The curve generated by a commercial tube is shown on an oscilloscope.
TPT 2(6),282	Frank-Hertz modification	7B30.21	The collector is made very negative to both the grid and cathode. When the accelerating potential is increased, the collector current appears in the opposite sense.
AJP 35(6),541	homemade Frank-Hertz tube	7B30.22	Replace the commercial cathode and filament assembly with a piece of 7 mil tungsten wire.
AJP 33(10),849	homemade Frank-Hertz tube	7B30.22	Directions for making a solder glass tube.
Mei, 39-3.2	Frank-Hertz experiment	7B30.23	An argon filled CTIC thyatron is mounted on a board. The circuit is drawn on the board.
AJP 43(2),190	Frank-Hertz automated on an $X-Y$ recorder	7B30.24	Connect the constant current source to the X and the electrometer output to the Y of an $\mathrm{X}-\mathrm{Y}$ recorder.
AJP 74(5), 423	what really happens?	7B30.26	A new look at the Frank-Hertz experiment reveals some surprising data. The results contradict the usual assumption that the spacings between successive minima or maxima are equal.
AJP 56(8),696	what really happens?	7B30.26	Gives the standard textbook explanation and then goes beyond.
PIRA 1000	excited states model	7B30.40	
AJP 36(1),49	air track model ??????	7B30.40	A small air track is caught by a large one. Models a collision between an "electron" and an "atom" capable of being raised to an excited state.
AJP 37(5),562	collisions and excited states model	7B30.40	Expansion on AJP 36(1),49. Slight modification to model inelastic collisions of the second kind.
	Electron Properties	7B35.00	
PIRA 1000	discharge at low pressure	7 B 35.10	
TPT 2(4),178	discharge at low pressure	7B35.10	Lower the pressure with a cooling bath while running the discharge tube with a spark coil.
F\&A, Ep-7	Crookes tube	7B35.10	Evacuate a glass tube while a high voltage is applied to electrodes at the ends of the tube.
Disc 25-05	discharge tube and vacuum pump	7B35.10	Pump down a long tube while applying a high voltage across the ends.
D\&R, S-150	discharge at low pressure	7B35.10	The pressure is reduced in a long tube while high voltage from an induction coil is applied to the electrodes.
Mei, 30-4.1	Paschen's law of gas discharge	7B35.20	Pump down a double tube assembly with electrodes at different distances with a constant voltage on each set of electrodes.
PIRA 1000	Maltese cross	7B35.40	

Demonstration Bibliography
F\&A, Ep-10
Disc 25-04
PIRA 1000
F\&A, Ep-9

Disc 17-17
Mei, $30-4.2$

Mei, 30-1.5

PIRA 1000
Sprott, 4.8
Disc 25-06
AJP 49(3),217
AJP 49(3),211
AJP 49(3),223
AJP 49(3),206
AJP 49(3),205
PIRA 500
UMN, 7B50.20
D\&R, S-105
Hil, A-5b
ref.
AJP 28(7),676
Sut, A-66
Sut, A-62
PIRA 500
Hil, A-1a
AJP 33(11),xvii

TPT 3(4),158
PIRA 200
UMN, 7D10.10
Bil\&Mai, p 366

Sut, A-111
Hil, A-18d
PIRA 1000
AJP 39(2), 221
Disc 25-16
AJP 39(10),1274
AJP 39(10), 1282
AJP 39(10),1282
TPT 52(2), 115

PIRA 1000
Mei, 41-1.6
Hil, A-15d

Maltese cross
Maltese cross
paddle wheel
paddle wheel
paddle wheel
hot and cold cathode discharge
arc characteristics
plasma tube
plasma tubes or globes
plasma tube
Atomic Models
history of the atom - symposium history of the atom - symposium history of the atom - symposium history of the atom - symposium
history of the atom
electron orbital models
electron orbital models
electron orbital models
Bohr model
Bohr model
wave function model
electron shell model
equilibrium configurations
periodic charts
periodic charts
atomic beam apparatus

NUCLEAR PHYSICS

Radioactivity
radiation saftey
Geiger counter \& samples
Geiger counter \& samples
Geiger counter \& samples
sources of radioactivity
radioactive plate
half life with isotope generator
half life with isotope generator
half life
isotope generator
isotope generator
reply to comment
radioactive dating - carbon dating
radon in the air radon, thoron in the air
radon in the air

7B35.40 An electron beam produces a shadow of a Maltese cross on a fluorescent screen
7B35.40
7B35.50
7B35.50
The Phil Johnson humor continues with: "I don't have a category for this". The description is: The commercial Crookes' tube with a paddle wheel. The electron beam transfers its momentum to the paddle wheel and turns it to make it roll on the rails.
The commercial Crookes' tube with a paddle wheel.
7B35.50
7B35.70 uncooled.
7B35.71
7B35.75
7B35.75
7B35.75
7B50.00
7B50.01
7B50.01
7B50.01
7B50.01
7B50.01
7B50.10
7B50.10
7B50.10
Several models showing integer number of wavelengths as when orbital electrons form standing waves in the hydrogen atom.
7B50.11 A motorized model with fluorescent electrons and nucleus to be viewed in the dark.
7B50.11 See 3D40.50, Ehrlich 1.
7B50.15 Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.
7B50.16 Golf tees are inserted into predrilled holes in a plywood sheet to represent electrons in the various shells.
7B50.20 Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described.
7B50.50
7B50.50
7B50.90
7D00.00
7D10.00
7D10.09
Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgently needed information.
7D10.10
7D10.10
7D10.10
Listen to a Geiger counter when radioactive samples are tested. Use index cards, aluminum plates and lead to determine the type of radiation emitted by the samples.
7D10.11 Obtain radioactive ore or old radon seeds.
7D10.12 A red "fiesta" plate is checked for radioactivity.
7D10.20
7D10.20
7D10.20
7D10.21 The commercial Cs/Ba generator.
7D10.21 On the amount of the longer-lived Sn coming through the generator.
7D10.21 You idiots.
7D10.23 Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.
7D10.25
7D10.25 Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr .
7D10.25 Pump air through a filter and place the filter under a counter attached to a strip chart recorder. Reference: AJP 28(11), 743.

D\&R, S-252	radon in the air
AJP 29(11),789	emanation electroscope
Hil, A-15e	emanation electroscope
PIRA 1000	activation by a neutron source
Mei, 41-1.1	activation by a neutron source
AJP 34(3),246	buildup and decay
Hil, A-15f	half life of silver
Hil, A-18c	half life of silver
AJP 31(9),734	radioactive iodine source
PIRA 500	secular equilibrium
Mei, 41-1.4	secular and transient equilibrium
Sut, A-115	radioactive decay model
D\&R, S-250	radioactive decay model
Mei, 41-1.5	secular equilibruim in series
Mei, 41-1.3	simultaneous decay model
Mei, 41-1.2	water flow model of decay
PIRA 1000	electrical analog of decay
AJP 46(2),189	electrical analog of decay
AJP 45(3),288	atomic radiative decay analog
AJP 39(11),1408	analog computer decay model
PIRA 1000	dice on the overhead
UMN, 7D10.50	dice on the overhead
AJP 51(2),185	dice on the overhead
Bil\&Mai, p 363	dice on the overhead
PIRA 1000	coin toss half life
PIRA 500	range and absorption
UMN, 7D10.50	range and absorption
Disc 25-14	nuclear shielding
Hil, A-16a	alpha, beta, and gamma ray absorption
Mei, 41-1.7	exponential absorption model
Sut, A-113	range of alpha particles
Sut, A-114	scattering of alpha particles
PIRA 1000	cosmic rays
Sut, A-121	coincidence counters for cosmic rays
AJP 69(8), 896	cosmic rays
Disc 25-17	cosmic rays
Ehrlich 2, p. 179	Nuclear Reactions marble chain reaction
PIRA 500	mousetraps
UMN, 7D20.10	mousetraps
F\&A, MPa-1	mousetrap chain reaction

Modern Physics

7D10.25 Electrostatically charge an inflated balloon and allow this to set in the room for an hour. Pop the balloon and measure the counts with a Geiger counter. The balloon should measure about 10 times background.
7D10.27 Demonstrate the thorium half life by observing the decay of an emanation electroscope.
7D10.27 The Welch emanation electroscope is used to demonstrate the thorium half life. Reference: AJP 29(11),789.
7D10.30
7D10.30 A coin is placed with a neutron source on a paraffin block for a minute and then tested for radioactivity.
7D10.31 Aluminum foil on the rim of a wheel rotates between a neutron source and beta detector.
7D10.33 Measure the half life of silver activated by a neutron source.
7D10.33 Use a neutron source and silver dollar.
7D10.36 Irradiate the sodium iodide crystal that is in the scintillation spectrometer.
7D10.40
7D10.40 Water flow models of the half life, the half life of the daughter being much less than the half life of the parent.
7D10.40 Cylindrical vessels placed above each other show a hydraulic model of radioactive decay.
7D10.40 Poker chips are used to simulate radioactive decay.
7D10.41 A model of a series of disintegrations with a series of capillary tubes emptying into each other.
7D10.41 Water from two capillaries starting with water at different heights is collected and the results plotted.
7D10.42 Water drips from a capillary for equal time intervals into a series of test tubes. In another setup, the water drips through wire meshes to a counter.

7D10.45
7D10.47 An electrical circuit allows three consecutive first-order rate reactions.
7D10.47 The response of an electrical circuit is compared to the decay characteristics of coupled three level atomic systems.
7D10.48 Circuit for an analog computer does a three stage nuclear chain decay.
7D10.50
7D10.50
7D10.50 Drill a face centered hole through each of twenty dice and roll the bunch on an overhead projector, removing the ones that light shows through.
7D10.50 Drill a face centered hole through each of 48 dice and roll the bunch on an overhead projector, removing the ones that light shows through.
7D10.55 Toss some coins into the air and onto a table. Count and keep those that are heads. Collect the tails and toss again. Count and keep the heads, and again toss the tails. Repeat until all are counted.

7D10.60
7D10.60 Different barriers are placed between a gamma source and a detector.
7D10.60 Cardboard, aluminum, and lead sheets shield a detector.
7D10.61 A set of absorbers for showing alpha, beta, and gamma absorption.
7D10.65 A series of neutral density filters are added to a light and photocell arrangement to model absorption.
7D10.70 Bring an alpha source near a grid and plate connected to an electroscope.
7D10.75 A thin metal foil placed between an alpha source and a detector shows the intensity of scattering dependent on angle.
7D10.80
7D10.80
7D10.80 Measuring and modeling cosmic ray showers with a microcomputer-based laboratory system.
7D10.80 Scintillator paddles are placed on each side of a person and simultaneous events indicate cosmic ray muons passing through the body.
7D20.00
7D20.05 A chain reaction simulation made from rows of marbles on an inclined board. Start an avalanche with a single marble.
7D20.10
7D20.10 56 mousetraps in a cage are each set with two corks.
7D20.10 A large number of mousetraps set with two corks each in a large cage.

Demonstration	Bibliography		uly 2015 Modern Physics
D\&R, S-265	mousetrap chain reaction	7D20.10	A large number of mousetraps set with silicone balls in an acrylic enclosure. Trigger with a single "neutron".
Disc 25-15	mousetrap chain reaction	7D20.10	Ping pong balls on mousetraps.
AJP 48(1),86	better mousetrap	7D20.11	An electronic mousetrap array that can be used as a single event "bomb" or a continuous self-sustaining nuclear reaction.
AJP 31(1),62	mousetrap improvments	7D20.11	Attach groups of six mousetraps to a hardwood block. The spacing between the blocks can be varied to produce subcritical, critical, or supercritical assemblies. Place two wood blocks on each trap.
Sut, A-65	nuclear disintegration model	7D20.12	A ball rolls down an incline and hits a group of balls in a small potential well.
D\&R, S-260	nuclear disintegration model	7D20.12	Ball bearings or marbles roll down and inclined aluminum channel and hit a group of balls in a small potential well.
PIRA 1000	match chain reactions	7D20.15	
UMN, 7D20.15	match chain reactions	7D20.15	
AJP 51(2),185	match chain reaction	7D20.15	Matches are spaced differently in two perpendicular rows. Light the match at the junction and the entire row with the smaller spacing ignites.
PIRA 1000	dominoes chain reaction	7D20.20	
UMN, 7D20.16	dominoes chain reaction	7D20.20	Knock down a row of dominoes of ever increasing size.
AJP 51(2),182	dominoes chain reaction	7D20.20	A whisp of cotton knocks over a small domino starting a chain reaction in which each succeeding domino is $11 / 2$ times larger in all dimensions.
Mei, 41-2.12	uranium model	7D20.30	A sphere contains internal mechanisms to eject two balls (electrons) after a ball is dropped in (thermal neutron.) Pictures, Construction details in appendix, p. 1378.
Mei, 41-2.13	uranium fission model - U235	7D20.31	A wooden sphere flies apart and ejects two wood balls and an iron sphere when an iron sphere is dropped in. Pictures, Construction details in appendix, p. 1380.
AJP 51(2),185	fission model - liquid drop	7D20.35	Probe a motor oil drop in alcohol/water to induce "fission".
Mei, 41-2.6	moderation of fast neutrons	7D20.40	The moderation of fast neutrons in paraffin yields both fast and thermal neutrons shown by shielding the boron counter with a Cd sheet and detecting thermal neutrons from a second paraffin block.
Mei, 41-2.11	water model xenon poisoning reactor	7D20.41	A water flow model of the behavior of a thermal neutron reactor with xenon poisoning.
Mei, 41-2.8	resonance absorption of gamma rays	7D20.60	Model of resonance absorption of gamma rays consists of an electromagnetically driven tuning fork and audio oscillator.
AJP 50(7),586	nuclear explosion effects	7D20.90	An introductory level summary of the physics of a nuclear bomb explosion and the effects on humans.
	Particle Detectors	7D30.00	
PIRA 1000	Ludlum Detectors	7D30.05	
UMN, 7D30.15	Ludlum Detectors	7D30.05	Ludlum hand held alpha, beta, and gamma detectors are used with a variety of sources.
Hil, A-18b	survey meters	7D30.05	Alpha, beta, and gamma survey meter and slow neutron monitor.
AJP 57(11),1051	Geiger-Muller tube to Apple circuit	7D30.06	A simple complete circuit for biasing a Geiger-Muller tube, pulse shaping, and interfacing to an Apple computer.
AJP 46(2),191	Poisson distribution of counts	7D30.08	An electronic circuit provides output pulses when the time interval between pulses is of the preset value. Show the difference between inputs from a scintillation detector and Geiger counter.
PIRA 1000	nixie Geiger counter	7D30.10	
UMN, 7D30.10	nixie Geiger counter	7D30.10	A Geiger tube in a lead brick is used with a nixie tube counter.
F\&A, MPa-2	nixie Geiger counter	7D30.10	A Geiger tube in a lead block is attached to a nixie tube counter.
Sut, A-118	Geiger-Muller tube	7D30.11	Make a simple tube with a wire down the middle at low pressure. Includes circuits for counters.
Sut, A-119	Geiger point counter	7D30.12	A Geiger point counter made with an ordinary steel phonograph needle.
Sut, A-120	water jet counter	7D30.13	A fine water jet impinging on a rubber diaphragm is controlled by a metal electrode.
Mei, 41-3.7	ionizaton avalanche model	7D30.14	Rows of balls held on an inclined plank at intervals by wires form an avalanche starting with one ball as more balls are knocked out in each interval.
PIRA 1000	thermal neutron detector	7D30.15	
Mei, 41-2.10	thermal neutron detector	7D30.15	A UO2 detector for fission produced thermal neutrons.
AJP 34(12),1182	neutron howitzer	7D30.16	A 55 gal drum filled with paraffin.
Hil, A-18a	neutron howitzer	7D30.16	A 2 curie neutron source is used with a BF3 detector.
PIRA 500	alpha detector	7D30.20	
UMN, 7D30.20	alpha detector	7D30.20	The Cenco alpha detector with a high voltage bias between a plate and a wire grid.
AJP 30(2),140	Cenco alpha detector review	7D30.20	Long review of the Cenco alpha counter originally developed by Harold Waage.

7D30.20 A grid over a plate is biased just below sparking and an alpha source is brought near. Cenco photo.
7D30.21 Directions on making a simple homemade single wire spark counter.
7D30.21 Simple alpha detector construction using a single wire and plate with 1 kv high voltage supply.
7D30.22 Use a silicon photodiode as a alpha detector. A charge sensitive preamp design is included.
7D30.25
7D30.25 Plans for two types of spark chambers: multiplate and "curtain discharge".
7D30.25 Construction details, driver and power supply circuits for a small spark chamber.
7D30.25 A small spark chamber is shown. Pictures, Construction details in appendix, p.1390, Reference: AJP 31(8),571.

7D30.28 A simple parallel plate ionization chamber built in an aluminum roasting chamber with a sensitive volume of 75 cubic inches.
7D30.30 A magnet is used to bend electrons from a beta source past a shield to a detector.
7D30.31 A qualitative beta spectrometer for use as a lecture demonstration. Pictures, Diagrams, Construction details in appendix, p. 1370.
7D30.32 A small beta spectrometer with a 4 " face.
7D30.40 Several samples are placed on a large sheet of film overnight and the film is developed the next day showing which are radioactive.
7D30.41 On using Polaroid land sheet film packets as a detector for radiation experiments and demonstrations.
7D30.50
7D30.50 Squeeze the rubber bulb of the Wilson cloud chamber and watch tracks from an alpha source.
7D30.50 The Knipp type chamber with a rubber bulb and alpha source.
7D30.50 Squeeze the rubber bulb of the cloud chamber and watch tracks from an alpha source.
7D30.51 An expansion cloud chamber mounted in a lantern projector.
7D30.55 An automatically cycling Wilson cloud chamber. Pictures, Construction details in appendix, p.1382, Reference: AJP 18(3),149.
7D30.60 Dry ice diffusion cloud chambers.
7D30.60
7D30.60 Drawings of a lamp housing and chamber housing.
7D30.60 A $10 \times 10 \times 10 \mathrm{~cm}$ Plexiglas cube cloud chamber suitable for TV projection.
7D30.60 A transparent plastic refrigerator jar on a cake of dry ice serves as a small continuous cloud chamber.
7D30.60 Using cheap parts to make a dry ice cloud chamber.
7D30.60 A large chamber supersaturated with alcohol vapor is cooled with an alcohol/dry ice bath at the bottom.
7D30.60 A large alcohol/dry ice cloud chamber is shown. Pictures.
7D30.60 Alcohol in a jar placed on dry ice makes a cheap cloud chamber.
7D30.60 Dry ice diffusion cloud chambers.
7D30.62 A fancier dry ice and alcohol cloud chamber.
7D30.63 The design of a LN2 cooled diffusion cloud chamber with increased sensitivity and quick startup.
7D30.64 Design for a vacuum jacket that increases the sensitive area of the chamber.
7D30.65 A glycol cloud chamber is heated at the top and cooled with running water at the bottom.
7D30.68 Black dye (Nigrosin) in methanol provides a dark nonreflective background, other hints.
7D30.69 Place a spark gap in the steam coming from a teakettle.
7D30.70 A conical pendulum is accelerated by periodic electrical forces four times per revolution to model the motion of a charged particle in an isochronous cyclotron with four 90 degree Dees.
7D30.70 A Ball is gravitationally accelerated along a spiral grove in an apparatus designed to demonstrate the principles of acceleration and phase stability in a cyclotron.
7D30.70
7D30.70
7D30.71 A ping pong ball is accelerated in a Plexiglas tube when a series of ring electrodes are charged by a Wimshurst

7D30.71 A Wimshurst charges a model linear accelerator that shoots sand out one end.
7D30.75 Inverted pendulum model of focusing in a particle accelerator.
7D30.78 A steel ball bounces on an oscillating piston with concave surface to provide focusing. At constant amplitude, the ball bounces lower when the period is decreased.
7D30.80
7D30.80 Welch. Two slide sets taken at the 20" in chamber at the Brookhaven National Laboratory.
7D30.80 Pictures and analysis of bubble chamber pictures.
7D30.80 Determination of the rest mass of a hyperon particle from bubble chamber pictures. Pictures.
7D30.90 Apparatus Drawings Project No. 7: A mass spectrometer for undergraduate lab with a resolving power of 75.
7D30.90 Apparatus Drawings Project No. 5: Small Mass Spectrometer. Construction plans for a small radius 180 degree mass spectrometer with a salt coated tungsten filament, 1 K gauss, 100V, resolving power 33.
7D30.90 A model mass spectrometer using a magnet, ruler or aluminum angle, and different size ball bearings.
7D30.90 A model mass spectrometer is constructed using a magnet, ruler, and different size ball bearings.
7D30.95 A pair of scintillation counters face each other across an electron beam interrupted by a card with the appropriate equipment to detect coincidences.

7D40.00
7D40.10
7D40.10 A modified gyroscope model of NMR. Diagram, References, AJP 29(10),709.
7D40.11 A gyroscope with a permanent magnet is placed on like poles of an electromagnet.
7D40.12 A gyroscope model designed to show the magnetic transitions when the field and Larmor frequency are identical.
7D40.13 The top post of the Maxwell top is constrained by rubber bands attached to a frame to demonstrate the "flopping" of the magnetic moment vector which increases or decreases the precession angle.
7D40.13 A spinning gyro over an electromagnet demonstrates Larmor precession. Diagram, Picture, Construction details in appendix, p. 1392.
7D40.15 A small magnet suspended and driven with Helmholtz coils will oscillate at a particular frequency, but at a different frequency if a static field is applied at right angles.
7D40.16 A bicycle wheel gyro used to show Larmor precession.
7D40.20 An air bearing gyro with Alnico magnet in the ball and Helmholtz coils.
7D40.20 NMR principles are demonstrated with an air gyro mounted between Helmholtz coils. Diagrams, Reference: AJP 33(4),322.
7D40.22 An air driven magnetic top mounted between Helmholtz coils demonstrates spinning dipole interaction with external fields. Pictures, Construction details in appendix, p. 1393.
7D40.30
7D40.30 Design and construction of a simple pulsed NMR spectrometer, used first in a high school physics class.
7D40.30 Four demonstrations with a simplified spin echo instrument.
7D40.31 A bottle of powdered cobalt, a grid current meter, and a tuned oscillator show a small dip in grid current at resonance.
7D40.40 Block diagram of a method to demonstrate NMR in a fixed field by sweeping and modulating the frequency.
7D40.40 A description of a simple and inexpensive demonstration model of pulsed magnetic resonance effects.
7D40.40 Circuits for a simple NMR spectrometer.
7D50.00
7D50.10
7D50.10 Balls roll down a ramp onto a potential surface to model Rutherford scattering.
7D50.10 Balls roll down an incline onto a scattering surface. Eighteen pockets ring the surface.
7D50.11 Ink dipped balls are rolled down an incline toward a clear plastic potential hill on an overhead projector stage.

Modern Physics

Sut, A-63
Mei, 41-2.3
AJP 72(2), 237
AJP 29(4), xiii

Sut, A-64

AJP 29(12),854

Bil\&Mai, p 359
AJP 29(6),349

AJP 33(12),1055
PIRA 1000
Disc 25-13
PIRA 1000
Mei, 39-5.1

Hil, A-5a
Mei, 41-2.2

Mei, 41-2.1

D\&R, S-255

AJP 31(11),888

Mei, 39-5.2
PIRA 1000
UMN, 7D50.46
AJP 28(6),561

Mei, 41-2.4

Mei, 41-2.5

PIRA 500
UMN, 7E10.10
PIRA 1000
UMN, 7E10.20
AJP 49(11), 1030
Ehrlich 2, p. 185

	RELATIVITY Special Relativity
ref.	gravitational surface
PIRA 1000	Lorentz transformation machine
AJP 31(10),802	Lorentz transformation machine
Mei, 38-1.3	Lorentz transformation machine

PIRA 1000
flow ripple tank - twin source flow ripple tank

7D50.12 A magnet pendulum is repulsed by the pole of a vertical electromagnet. Orbits can be demonstrated in the attracting case.
7D50.13 An electromagnet pendulum suspended from an aluminum rod swings by an electromagnet on the table.
7D50.14 Use magnets and a ring of Hall switches to determine the force law from scattering.
7D50.14 A dry ice puck with a vertically mounted magnet is placed on a glass plate with a second vertically oriented magnet just underneath to give an inverse square force.
7D50.15 A ping pong ball pendulum is suspended above a Van de Graaff generator.

7D50.16 On using the "Welch" ball bearing scattering apparatus to model the conditions of an experiment in nuclear physics as far as possible.
7D50.16 Construct a "Welch" style scattering apparatus to model the conditions of the Rutherford experiment.
7D50.19 Apparatus Drawings Project No. 16: Simple Rutherford scattering using an annular ring of scattering material. The distance from the ring to the detector is varied giving scattering angles from 28 to 71 degrees.
7D50.19 Take data for thirty minutes as a lecture demonstration.
7D50.20
7D50.20 An animation of alpha particle scattering.
7D50.30
7D50.30 Vertical needle magnets stuck in corks float in a pan of water surrounded by a coil on the overhead projector.
7D50.30 Looks like it might be the vertical magnets in a coil apparatus. Reference: H.E.White, Modern College Physics, 5th ed., p 452.

7D50.35 An apparatus to randomly shoot steel balls at models of the Thomson or Rutherford atom.
7D50.40 A Lucite $1 / r$ surface with a well and accelerating ramp for ball bearings is used to show repulsion, capture, and ejection. Picture, Construction details in appendix., p. 1372.
7D50.40 A cone made from cardboard or fiberglass. Launch ball bearings to show scattering and capture.
7D50.42 Deform a rubber sheet by boiling water in a test tube and holding it against the rubber sheet so it gets sucked down, then lift the test tube to make a potential barrier.
7D50.45 A ball rolling in a funnel falls into the middle.
7D50.46
7D50.46
7D50.65
The chemical heart vibrates in various modes giving a crude model of a nucleus. Recipe included.
7D50.65 The mercury amoeba is used to demonstrate vibratory motion analogous to oscillations of an excited nucleus. Reference: AJP 28(6),561.
7D50.90 A paraffin block is inserted to scatter x-rays into a Geiger counter.
7E00.00

7E10.00
7E10.10
7E10.10
7E10.20
7E10.20
7E10.50
7E10.60
A Rubik's cube is used as a model of quark confinement.
The hypothetical faster than light abilities of tachyons is explored using transparencies on the overhead projector.
7F00.00
7F10.00
7F10.05
7F10.10
7F10.10

7F10.20
7F10.20

A machine shows the behavior of clocks and measuring rods in two reference frames.
7F10.10 A device offers visual representation of the space and time coordinates of two reference frames in uniform relative motion. Picture, Reference: AJP 31(10),802.
see 8 C 20.20

Wave propagation upstream and downstream is shown with a flow ripple tank. Picture.

Mei, 38-1.2	flow ripple tank - twin source
PIRA 1000	foam rubber roller
AJP 31(12),913	Fitzgerald contraction model
Ehrlich 2, p. 184	time dilation simulation
AJP 73(9), 876	time dilation - twin paradox
TPT 3(5),218	time dilation - high school gedanken
AJP, 75 (9), 805	time dilation - twin paradox
AJP 76(4 \& 5),360	time dilation - twin paradox
Ehrlich 2, p. 191	relatavistic length contraction
AJP 56(10),941	relativistic length contraction simple diagrams
AJP, 50 (3), 278	relativistic length contraction
AJP 48(9),780	induction coil relativity
AJP, 58(11), 1066	computer relativistic phenomena
AJP 57(6),508	computer software review
AJP 56(7),600	many colored relativity engine
AJP 47(3),218	cylindrical relatvity model
AJP 38(8),971	geometrical appearances
ref.	time reversal invariance
PIRA 200	Lorentz Transformation
PIRA 500 - Old	Lorentz Transformation
UMN, 7F10.60	Lorentz Transformation
PIRA 500	Hewitt Film
UMN, 7F10.65	Hewitt film
PIRA 1000	Majestic clockwork
AJP 50(4),300	General Relativity general relativity primer
AJP 50(3),232	film loop review article

July 2015
7F10.20 Twin source interference in a moving medium is demonstrated with a flow ripple tank and variable phase generator.
7F10.25
7F10.26 A stick traveling at constant velocity makes a traveling dimple in an elastic sheet.
7F10.30 A folding carpenters ruler is used to simulate the effects of time dilation in a "bouncing light pulse clock".
7F10.31 An explicit formula for differential aging from acceleration.
7F10.31 Algebra and geometry only covering a gedanken experiment of time dilation and space contraction.
7F10.31 How do clocks, initially synched in the laboratory frame, fall out of sync as their speed relative to the lab increases.
7F10.31 Two java applets developed to interactively explore time dilation.

7F10.32 The "pole in a garage" paradox is demonstrated using a collapsible pointer and two cardboard boxes.
7F10.32 Simple diagrams for representing relativistic length contraction and time dilation.
7F10.32 Additional length contraction of an accelerated meter stick when viewed from an inertial system.
7F10.35 On using the simple induction coil and galvanometer as a special relativity demonstration.
7F10.40 The Edwin F Taylor Spacetime Software is used to generate printouts demonstrating aberration, the Doppler effect, the headlight effect, etc.
7F10.40 An evaluation of the Taylor "Space-time" software, used mainly in a homework mode.
7F10.41 The author's review of a simple program about relativistic space and time that requires no knowledge of physics, algebra, or geometry.
7F10.50 A spacetime diagram rolled on a cardboard tube is used to demonstrate the nature of simultaneity and the propagation of light in a rotating coordinate system.
7F10.55 Some examples are illustrated in detail.
7F10.60 see 1N30.23
7F10.60
7F10.60
7F10.60
The Mechanical Universe chapter 42 and the Hewitt film "Relativistic Time Dilation"
7F10.65
7F10.65
7F10.66
7F20.00
7F20.01 A tutorial article.
7F20.10 Two film loops, "Uniformly Accelerated Reference Frame", and "Twin Paradox", are thoroughly reviewed.

	PLANETARY ASTRONOMY	8A00.00	
	HISTORICAL ASTRONOMY	8A05.00	
TPT 37(8), 476	calendar wheels	8A05.10	Native American celestial calendar wheels and how to construct them.
PIRA LOCAL	Stonehenge	8A05.15	Many models of this famous megalith are available.
AJP 45(2), 125	megaliths	8A05.16	Some historical background on megalighic astronomy.
TPT, 31(6), 383	constellations	8A05.20	Constellations used to interpret historical legends.
TPT, 29(2), 80	constellations	8A05.20	The Big Dipper used to tell time.
TPT 25(8), 500	Eratosthenes measurment of Earth's radius	8A05.30	Eratosthenes determination of the circumference of the Earth updated by doing the experiment from an aircraft.
TPT 26(3), 154	Eratosthenes measurment of Earth's radius	8A05.30	Eratosthenes experiment redone using meter sticks instead of wells.
TPT 31(7), 440	Eratosthenes measurment of Earth's radius	8A05.30	Trying to calculate the radius of the Earth by watching the Sun set twice, once from the bottom and then from the top of a tall building.
TPT 31(9), 519	measurment of Earth's radius	8A05.30	The calculation done using feet and miles. Also several other neat problems using Earth's radius as a starting point.
TPT 38(6), 360	measurment of Earth's diameter	8A05.30	A GPS is used to calculate the diameter of the Earth.
TPT 38(3), 179	Eratosthenes - scale of Earth/Moon/Sun system	8A05.30	Using Eratosthenes calculation of the diameter of the Earth to calculate the size of the Moon.
AJP 31(6),456	Eudoxus: homocentric spheres models	8A05.33	Two homocentric models of Eudoxus: one shows the motion of the Sun, the other shows retrograde motion.
AJP 30(9),615	Ptolemaic and Copernian orbits	8A05.35	An analog computer (circuit given) displays orbits and epicycles on an oscilloscope.
TPT 25(8), 493	Kepler and planetary orbits	8A05.40	Kepler's third law and the rise time of stars.
TPT 34(1), 42	Kepler and planetary orbits	8A05.40	Applying Kepler's third law to elliptical orbits.
TPT 36(1), 40	Kepler and planetary orbits	8A05.40	Measuring an asteroids orbit to test Kepler's first and second law.
TPT 36(4), 212	Kepler and planetary orbits	8A05.40	A graphical representation of Kepler's third law.
TPT 42(9), 530	Kepler and planetary orbits	8A05.40	Kepler's third law calculations without a calculator.
AJP, 69(4), 481	Kepler and planetary orbits	8A05.40	A hodographic solution to Kepler's laws.
AJP, 69(10), 1036	Kepler and planetary orbits	8A05.40	An unusual verification of Kepler's first law.
AJP 52(2),185	sundial	8A05.50	A Plexiglas model of a sundial.
TPT 10(3), 117	sundial	8A05.50	Detailed descriptions, pictures, and how to time correct a sundial.
TPT 37(2), 113	sundial	8A05.50	Constructing a portable sundial.
TPT 41(5), 268	sundial, solar pocket watch	8A05.50	Picture of a portable sundial (solar pocket watch) dated 1573.
TPT 41(8), 380	sundial, solar pocket watch	8A05.50	Additional observations on TPT 41(5), 268.
AJP 42(5),372	horizontal sundial	8A05.55	An analytic solution for determining the markings on a sundial and a description of construction.
AJP 33(2),165	cross-staff	8A05.60	Cut a meter stick into $571 / 3 \mathrm{~cm}$ and $422 / 3 \mathrm{~cm}$. (At $571 / 3 \mathrm{~cm}$ one degree equals one cm.) Some refinements.
PIRA LOCAL	sextant	8A05.70	Pictures of and directions for sextants.
TPT 38(4), 238	sextant	8A05.70	An easily constructed mini-sextant and directions for it's use.
PIRA LOCAL	artificial horizon	8A05.80	A mercury filled dish that is used for an artificial horizon when taking measurments with a sextant during times when the real horizon is obscured.
PIRA LOCAL	chronometer	8A05.85	An accurate ships time piece used in conjunction with the sextant to determine longitude and latitude.
AJP 38(3),391	heliostat	8A05.90	Picture of a heliostat
	SOLAR SYSTEM MECHANICS origin of the Solar System	$\begin{aligned} & 8 A 10.00 \\ & 8 \mathrm{~A} 10.05 \end{aligned}$	
TPT 5(8), 363	origin of the Solar System	8A10.05	Discussion on how the Solar System was formed.
TPT 29(5), 268	planetary nebula	8A10.06	On the formation of planetary nebula.
PIRA 200	Orrery model	8A10.10	A mechanical model of the inner planets.
UMN, 8A10.10	Orrery model	8A10.10	
F\&A, Ma-3	Orrery model	8A10.10	A motor driven model of the Sun, Moon, Earth system.
D\&R, S-390	Orrery model	8A10.10	A mechanical model of the inner planets
TPT 16(4), 223	scale model of the Solar System	8A10.15	The scale model of the Solar System as a hallway demo.
TPT 29(6), 371	scale model of the Solar System	8A10.15	The 1:10 billion Colorado Scale-Model Solar System on the University of Colorado - Boulder campus.
TPT 27(1), 38	scale model of the Solar System Scale of the Solar System - Video	$\begin{aligned} & 8 \mathrm{~A} 10.15 \\ & 8 \mathrm{~A} 10.15 \end{aligned}$	Globes and balloons used to model the planets of the Solar System.
	Inflatable Solar System	8A10.15	

DemonstrationBibliography Solar System on a String				
TPT 43(2), 120	scale of the orbital radii of the planets locating stars			
AJP 53(6),591		\quad	TPT 44(3), 168	locating stars
:---	:---			
AJP, 78 (11), tracking stars, Sun, and Moon				
1128				

EARTH - MOON MECHANICS

TPT 31(7), 419

PIRA 200

UMN, 8A10.25
TPT 38(6), 371

Earth's Seasons
Seasonal Tilt
Tilt of the Earth - Video
phases of the Moon - terminator line demo
phases of the Moon
phases of the Moon

8A10.15
8A10.16 A hat pin, roll of tape, and some markers used to scale the orbital radii of the planets.
8A10.20 A simple analytical method at the descriptive astronomy level for locating stars.
8A10.20 Using the stars of the Big Dipper to teach vectors.
8A10.22 Construction of an electromechanical device that automatically and continually tracks celestial objects.
8A10.25 Punch holes in a can bottom in the Big Dipper pattern and place over a point source of light. Rotate the can.
8A10.30 Description of a homemade planetarium.
8A10.30 Description of a small homemade planetarium dome.
8A10.33
8A10.35
8A10.35
8A10.40 An explanation of how a sidereal day differs from a solar day and how to calculate the difference.
8A10.42 A simple method to measure the length of the sidereal day.
8A10.42 Use simple equipment to measure the sidereal day.
8A10.44 Use orbital mechanics and centripital force to calculate the sidereal year.
8A10.45 See 1E20.10.
8A10.50 A graph that shows the precession of the equinox from 1890 to 2000 and a discussion of its pedagogical value.
8A10.70 A demonstration using sugar water to show why the Sun appears elliptical instead of round when viewed through the atmosphere.
8A10.70 The appearance of the flattening of the solar disk and the appearance of the "anti-Sun" captured on film.
8A10.70 The apparent ellipticity of the setting Sun.
8A10.70 On the flatness of the setting Sun.
8A10.75 A complete explanation of distortions produced by the atmosphere.
8A10.80 A good explanation of how the analemma couples the seasonal declination changes of the Sun with the "Equation of Time".
8A10.80 How to plot and demonstrate the noncircularity of the Earth's orbit around the Sun.
8A10.80 Analemma used to show why sunrise can be at the same time for several weeks while the length of the day increases.
8A10.80 Additional comments on TPT 34(1), 58
8A10.80 See 1A10.41. The standard Geochron is used to show analemma, the part of the Earth lit by the Sun at any given time, etc.
8A10.80 An experiment plotting the subsolar point (the place on Earth where the Sun is directly overhead at solar noon).
8A10.80 Explains why the length of the morning and afternoon do not increase in the same proportion as the length of the day gets longer.
8A10.90
8A10.90
8A10.90
8A10.90 Using the apparent motion of the Sun to teach vectors and scalar products.
8A10.90 A formula for the number of days between the winter solstice and the latest sunrise.
8A10.90 The autumn and spring equinoxes do not have equal length days and nights. Index of refraction through the atmosphere makes the day about 9 minutes longer than the night.

8A20.00

8A20.05
8A20.07
8A20.08
8A20.15

8A20.15
8A20.15

View a ball illuminated by a distant light with a TV camera as the angle between the ball and light varies.
Showing the Earth's seasons with a 3-D model.

How the view of the crescent moon changes from the northern to southern hemisphere.

Demonstration Bibliography	
TPT 34(6), 360	phases of the Moon
TPT 31(3), 178	phases of the Moon
TPT 32(2), 126	phases of the Moon
TPT 3(6),263	phases models
TPT 37(9), 528	phases of the planets albedo
TPT 23(5), 293	brightness of the Moon
AJP, 78 (8), 834	eccentricity of the Moon's orbit
PIRA 500	eclipse models
TPT 34(6), 376	eclipse model solar eclipse
TPT 17(7), 443	solar eclipse
TPT 9(5), 276	solar eclipse
TPT 35(9), 515	solar eclipse
TPT 34(4), 232	solar eclipse
TPT 32(6), 347	solar eclipse, pinhole images lunar eclipse
TPT 44(3), 181	lunar eclipse umbra, penumbra
PIRA LOCAL	umbra, penumbra
	Transit - Mercury \& Venus
TPT 21(4), 218	occultations
TPT 30(5), 290	occultations
AJP 45(10), 914	occultations
PIRA LOCAL	Earth/Moon system
TPT 44(1), 48	Earth/Moon system
	Center of Mass - Earth/Moon
TPT, 44(7), 414	Earth/Moon system
TPT 33(2), 90	Earth/Moon distance
TPT 10(1), 40	Earth/Moon distance
PIRA 1000	pinhead Earth
UMN, 8A10.40	pinhead Earth
TPT 38(2), 115	scale model of the
TPT 11(8), 489	Earth/Moon/Sun system scale model of the
	Earth/Moon/Sun system
	Moon \& Tides
	VIEWS FROM EARTH
PIRA 1000	horizon astronomy model
UMN, 8A10.50	horizon astronomy model
D\&R, S-360	horizon calculations
TPT 38(9), 528	estimating the distance to the horizon
AJP, 50 (9), 795	estimating the distance to the horizon
D \& R, S-360	estimating the distance to the horizon
PIRA 1000	Cinhelium
UMN, 8A10.51	Cinhelium
PIRA 200	retrograde motion model
UMN, 8A10.55	retrograde motion model
AJP 55(5),393	retrograde motion model letter
AJP 54(11),1021	retrograde motion model
TPT 37(6), 342	retrograde motion of Mars
AJP 43(7), 639	retrograde motion
TPT 30(5), 302	retrograde motion

8A20.15 Phases of the moon shown with a styrofoam ball, light source, and a CCD camera.
8A20.15 A handy way to teach "Moon Phases".
8A20.15 An exercise in Moon watching and observation of phases of the Moon.
8A20.17 Illuminated models for showing the phases of Venus and the Moon.
8A20.19 Calculating the phases of the outer planets.
8A20.20
8A20.20
8A20.22
8A20.25
8A20.25
8A20.30
8A20.30
8A20.30
8A20.30
8A20.31
8A20.32
8A20.35
8A20.35
8A20.37
8A20.37
8A20.40
8A20.45
8A20.45
8A20.45
8A20.50

8A20.50

8A20.50
8A20.55
8A20.60
8A20.60
8A20.70
8A20.70
8A20.70

8A20.70

8A20.80

8A30.00
8A30.10
8A30.10
8A30.10
8A30.10

8A30.10

8A30.13

8A30.20
8A30.20
8A30.30
8A30.30
8A30.30
8A30.30
都
Two balls driven by independent clock motors are connected with a rod fixed through one ball and sliding through the other.
8A30.32 How to plot the retrograde motion of Mars on paper.
8A30.32 Three methods to plot retrograde motion, one is simpler than the others.
8A30.32 A method of plotting retrograde motion on a large scale to be done outdoors with twine and students.

Demonstration	Bibliography
TPT 21(4), 252	retrograde motion
AJP 73(11), 1023	retrograde motion
TPT 35(9), 554	retrograde motion
Mei, 8-8.5	epicycles
Mei, 8-8.4	epicycles
Mei, 8-8.6	epicycles
TPT 19(2), 116	synodic period
TPT 23(3), 154	synodic period
TPT 35(6), 379	tidal locking
TPT 41 (6), 363	tidal locking
TPT 35(1), 34	parallax
AJP 45(5), 490	parallax
AJP 45(12), 1221	parallax
AJP 45(11), 1124	parallax
AJP, 69(10), 1096	autoresonance
TPT, 44(6), 381	Roche Limit
PIRA 200	VIEWS FROM EARTH - 2 celestial sphere
UMN, 8A10.80	celestial sphere
Mei, 8-8.8	celestial sphere
TPT 18(6), 465	celestial sphere
TPT 25(7), 438	celestial sphere
TPT 10(2), 96	celestial sphere
AJP 73(11), 1030	celestial sphere
TPT, 45(6), 369	satellite orbits
TPT 31(2), 122	satellite orbits
TPT 36(2), 122	satellite orbits
TPT 19(3), 181	satellite orbits
TPT 23(1), 29	satellite orbis
TPT 46(4), 237	satellite orbit model

8A30.32 Plotting retrograde motion in a manner that gives a better diagram.
8A30.32 Using retrograde motion to understand and determine orbital parameters of a planet using only geometry and trigonometry.
8A30.34 Retrograde motion and epicycles are shown using polar graph paper and a fender washer.
8A30.40 An Orrery carries a small flashlight on a rod between Earth and Jupiter to project epicycloidal motion.
8A30.40 A elliptical Lucite dish has two arms attached to one foci. Place some ball bearings between the two arms and rotate the rear arm at constant angular velocity.
8A30.40 A diagram of how to make a fairly simple crank device to trace out elliptical through cusped figures with a penlight.
8A30.50 Using calculations to show that the conjuction and opposition of a planet are not "perfect" due to non-circular orbits.
8A30.50 Use relative angular velocity to calculate the synodic period.
8A30.60 A demonstration on how the Moon and other moons become tidally locked.
8A30.60 Why the same side of the Moon always faces the Earth.
8A30.70 Measuring the distance to an outer planet by parallax with a camera.
8A30.70 Have students measure the distance to objects in the classroom by parallax using a camera to better understand stellar parallax.
8A30.70 Another simple photographic experiment to help students understand parallax.
8A30.72 A laboratory model to calculate stellar distances by parallax and relative magnitude.
8A30.80 3:2 and 2:1 resonances of the planets and asteroids.
8A30.90 A calculation of the Roche limit of a Jovian planet and a simulated experiment to test the calculation.

8A35.00
8A35.10 A simple model celestial sphere is made from a round bottom flask. Pictures.

8A35.10
8A35.10 A simple model celestial sphere is made from a round bottom flask. Pictures.
8A35.15 Modifying the Replogle Model 15620 celestial sphere.
8A35.16 Making your own celestial sphere by locating stars.
8A35.18 Difficulties teaching concepts with a celestial sphere may be simplified by construction of a mechanical Armillary.
8A35.18 Introducing students to the celestial sphere should always be done with a companion Earth-Sun model.
8A35.30 Plotting the orbits of the planets from existing data and charts.
8A35.30 Orbital periods of Mercury, Venus, and the Earth simulated using a whirligig setup.
8A35.30 Calculating how long it takes for a planet to fall into the Sun if its orbital motion is arrested and relating that to the orbital period of the planet.
8A35.32 The orbital motion of the Moon explained by projectile motion.
8A35.35 Calculation showing that an orbiting satellite is in freefall.
8A35.35 Making a satellite/Earth system model from glass tubing, a model rocket, nylon thread, a support stand, wooden sphere, and hooked masses.

PLANETARY PROPERTIES 8A40.00

PIRA 1000
UMN, 8A20.10
TPT 32(8), 506
TPT 26(5), 280

GLOBES, HEMISPHERES, \&
MAPS
globes
globes
globes and hemispheres
globes and hemispheres

8A40.10
8A40.10 Globes of Earth, the Moon, Mercury, Venus, Mars, etc.
8A40.20 The angles of any triangle on a sphere or hemisphere always add up to more than 180 degrees.
8A40.20 The minimum path length joining two points on a sphere's surface is a segment of a "great circle".

PLANETARY PROPERTIES -8A50.00
2
THE PLANETS

Astronomy

	Mercury	8A50.10	
TPT 29(6), 346	Mercury's orbit	8A50.12	Plotting Mercury's orbit from data in The Astronomical Almanac.
AJP 56(12), 1097	perihelion of Mercury	8A50.15	A calculation for the precession of the perihelion of Mercury.
AJP 73(8), 730	perihelion of Mercury	8A50.15	The precession of the perihelion of Mercury's orbit calculated using the LaPlace-Runge-Lenz vector.
AJP 70(5), 498	perihelion of Mercury	8A50.15	A Lagrangian yielding the same equations of motion that Einstein derived for the precession of the perihelion of Mercury.
AJP, 54, 245	perihelion of Mercury	8A50.15	Mercury's precession according to special relativity.
	Venus	8A50.20	
	Earth	8A50.30	
TPT 25(2), 86	Earth's rotation	8A50.30	Does the Earth rotate. Seven "proofs" for the rotation of the Earth.
TPT 25(7), 418	Earth's rotation	8A50.30	Several other experiments carried out that proved the Earth rotates.
TPT 30(4), 196	Earth's rotation	8A50.30	One more "proof" the Earth rotates.
TPT 30(2), 111	Earth's rotation	8A50.30	Additional experiments on how we sense the Earth rotates.
TPT 33(3), 144	Earth's rotation	8A50.30	Leeuwenhoek's "Proof" of the Earth's rotation.
TPT 33(2), 116	Earth's rotation	8A50.30	Emperical evidence the Earth rotates by marking the length of a shadow of a rod in two minute intervals starting 20 minutes before midday and ending 20 minutes after midday.
	Geological Timeline - Earth	8A50.34	
	The Moon	8A50.35	
TPT 38(3), 179	The Moon	8A50.35	What information it takes to calculate the size of the Moon.
TPT 11(1), 43	The Moon	8A50.35	A calculation of how high you can jump on the Moon.
TPT 29(3), 160	The Moon's orbit	8A50.36	How to observe the Moon's path with a cross-staff and plot its path.
TPT 18(7), 504	The Moon's orbit	8A50.36	Measuring the Moon's orbit
TPT 38(9), 522	moonquakes	8A50.38	Detection and analysis of moonquakes by the seismometers left on the Moon by the Apollo astronauts.
AJP 46(7),762	The Moon's offset center-of-mass	8A50.39	Comments on the center-of -mass offset of the Moon.
	Mars	8A50.40	
TPT, 43(5), 293	Mars Missions, Orbital Timing	8A50.41	The problems, physics principles, and timing involved in a mission from Earth to Mars.
TPT 36(3), 154	Aerobraking at Mars	8A50.42	The physics of aerobraking at Mars.
	Mars' moons	8A50.45	
	Jupiter	8A50.50	
TPT 35(3), 178	Jupiter	8A50.52	Looking at the Solar System from Jupiter's reference frame.
	Jupiter's moons / Galilean Satellites	8A50.55	
TPT 19(6), 402	Io	8A50.55	The volcanos on lo.
TPT 25(8), 508	Europa's Ocean	8A50.55	An exercise exploring the effect of freefall acceleration on buoyancy and waves.
TPT 30(2), 103	Galileo's discovery of Jupiter's moons	8A50.55	A look at the challenges Galileo faced during his observation of the Jovian moons.
	Saturn	8A50.60	
	Saturn's moons	8A50.65	
TPT 26(4), 207	Mimas	8A50.65	Statistics about Mimas and the view of Saturn from Mimas.
	Uranus	8A50.70	
	Uranus' moons	8A50.75	
	Neptune	8A50.80	
	Neptune's moons	8A50.85	
	PLANETARY PROPERTIES - 8A60.00$\mathbf{3}$PLANETIODS, MINOR OBJECTS		
TPT 45(1), 14	Pluto/Charon	8A60.10	The history and process that resulted in Pluto's demotion from a planet to a minor object.
TPT 38, 534	Pluto/Charon	8A60.10	How big does an object have to be to be considered a planet.
	asteroids	8A60.20	
TPT 40(8), 487	asteroids	8A60.25	The physics of asteroid/Earth collisions.
AJP 74(8), 717	asteroids	8A60.25	Describes the trajectory of an asteroid as it approaches a planet of much greater mass. Values are given for Earth, Mars, Jupiter, and Saturn.
AJP 74(9), 789	asteroids	8A60.25	Estimates of catastrophic asteroid and comet impacts on the Earth.
AJP 71(7), 687	asteroids	8A60.25	How asteroid or comet impacts is not the cause of and would not significantly change the eccentricity of Earth's orbit.
TPT 5(1), 5	meteorites	8A60.30	Mass spectroscopy of meteorites.
TPT 37(2), 123	meteors	8A60.35	"Observing" a meteors ionized trail by using radio.
	Outer Solar System Objects	8A60.40	

8A60.50
8A60.60 Teaching about and helping with the search for extra-solar planets.
8A60.60 The precision it takes to detect extra-solar planets.
8A60.60 Teaching about data and detection of extra-solar planets by asking how our solar system would look if viewed by an observer from far away using the same detection methods.
8A60.70 Using cosmic rays to study matter in the galaxy outside our solar system.

8A60.70 Using cosmic rays to study matter in the galaxy outside our solar system.
TPT 39(2), 120
TPT 39(7), 400
TPT 42(4), 208

TPT 20(4), 222
TPT 20(5), 289

system

matter from outside our solar system

PLANETARY PROPERTIES -8A70.00

4

PLANETARY

CHARACTERISTICS

geological samples
Planetary Magnetism
TPT 45(3), 168
TPT 26(5), 266
ref. refraction/twinkling
TPT 35(2), 90 effective depth of Earth's
atmosphere
AJP 71(10), 979 thickness of Earth's atmosphere
TPT 43(9), 578
AJP 74(9), 804
ref.
ref.
PIRA LOCAL

TPT 16(7), 490
PIRA LOCAL
TPT 35(7), 391
TPT 40(4), 239
TPT 45(8), 502
precipitation in the Solar System

TPT 17(4), 228 aurora
TPT 43(9), 573 aurora
TPT 44(2), 68 aurora
TPT 33(1), 34 auroral measurements
TPT 33(2), 71 auroral measurements
lightening whistlers
ref.
PIRA LOCAL
planetary density model
PIRA LOCAL planetary gravities

PIRA LOCAL Red Hot Ball

TPT 35(4), 230 Earth's glow
TPT 16(7), 479 earthquakes
PIRA 500
Earth's magnetic field
sounding balloon experiment sprites
greenhouse effect
Cloud Formation
IR Telescope Model
Gaseous Planets
gaseous planet atmospheres
Rotational Banding
planetary atmospheres
planetary atmospheres
culvert whistlers
cratering

The Kuiper Belt

8A70.05 Assortments of rocks, minerals, or gemstones.
8A70.10
8A70.10 An elementary model of Earth's magnetic field capturing some features of the geodynamo.
8A70.20 The interaction of radiation from the Sun and the Earth's atmosphere determines the Earth's climate.
8A70.20 Refer to 6A40.47 to demonstrate how observing planets and stars through the atmosphere makes them appear to twinkle.
8A70.20 Using "The Old Farmers Almanac" to calculate the effective depth of the atmosphere.
8A70.20 A method of estimating the thickness of the atmosphere by light scattering.
8A70.22 Atmospheric measurements using sounding balloons.
8A70.30 Exotic lightening that takes place above thunderstorms.
8A70.40 See 4B50.60 for demonstrations of the greenhouse effect.
8A70.45 See 4B70.20 for cloud in a bottle demonstrations.
8A70.48 Construction of a simple IR telescope.
8A70.50
8A70.50 Float bubbles on layers of Freon, CO2, or other heavy gasses in the bottom of a fish tank.
8A70.55 Rheoscopic fluid in a round bottom flasked placed on a turntable will show rotational banding when turned for a few seconds.
8A70.55 A demonstration that can be used to explain rotational banding in planetary atmospheres.
8A70.55 The composition of the atmospheres of the planets and the moon Titan. How would acoustic waves travel in these atmospheres.
8A70.60 Descriptions of the types of precipitation that fall on the other planets and moons in the Solar System. Some of these can be brought into the classroom.
8A70.65 Historical and detailed explanation of Earth's aurora.
8A70.65 A brief description of aurora and how to photograph them.
8A70.65 Comments and corrections to TPT 43(9), 573.
8A70.65 How to obtain and plot auroral data in the classroom.
8A70.65 Additions to TPT 33(1), 34.
8A70.70 lonospherice whistlers at radio frequencies.
8A70.70 See 3B25.67 for acoustical examples, demonstrations, and comparisons to ionospheric whistlers.
8A70.75 Place 10 cm cubes of aluminum, wood, foam, and hollow foam with a steel ball inside in 4000 ml beakers of water.
8A70.78 Use pennies and soda cans to show how a can of soda would feel on different planets. Mercury $=38$ pennies, Venus =101, Earth = 1 can of soda or 100 pennies, the Moon =12, Mars =38, Jupiter = 293, Saturn = 119, Uranus and Neptune $=133$, Pluto $=0$.
8A70.80 Heat a small metal ball until it glows red hot. Watch it cool with a black and white camera or an IR camera. Observe that it still glows in the camera even though the eye can no longer see it. A match may be lit off the apparently non-glowing ball for effect.
8A70.80 The Earth glows from nuclear processes in the interior.
8A70.85 Student participation in P-wave and S-wave demonstrations.

UMN, 8A20.30	cratering
PIRA LOCAL	cratering
AJP 68(8), 771	cratering
TPT 27(2), 118	

8A70.90 Drop ball bearings into a pan of glass beads or flour. Illuminate with a lamp from the side of the pan to provide contrast.
8A70.90 Drop ball bearings into a pan of glass beads. Illuminate with a lamp from the side of the pan to provide contrast.
8A70.90 Impact cratering studied in the laboratory using a marble for the meteorite, salt for the target, and a video camera to record the impact. Frame by frame analysis.
8A70.91 High speed photography and analysis of milk drops falling into coffee that can be applied to cratering.

PLANETARY PROPERTIES -8A80.00
5
COMETS AND THE SEARCH
FOR LIFE
PIRA LOCAL make a comet

PIRA LOCAL Ed's comet

PIRA 1000
UMN, 8A10.65
TPT 23(1), 6
TPT 22(8), 488
TPT 15(2), 110
TPT 15(4), 260
TPT 23(4), 225
TPT 23(8), 490
TPT 23(8), 485
TPT 34(9), 558
TPT 35(6), 348
TPT 35(4), 247
PIRA LOCAL
TPT 20(2), 90
comet orbit
comet orbit
comet orbits

Halley's comet
Halley's comet
Halley's comet
Halley's comet
Halley's comet
Halley's comet
comet Hale-Bopp
comet Hale-Bopp
comets emit x-rays
creating life in the classroom
life on other planets

STELLAR ASTRONOMY

8A80.10
Mix sand and snow in a pan. Add some water and mix some more. Form a muddy snow ball with a knotted end of a string at its center. Place this in a beaker of liquid nitrogen to harden and then swing the "comet" around your head.
8A80.10 A Styrofoam ball with a tail of turkey feathers is attached to a string. Swing this around your head.
8A80.20
8A80.20
8A80.20
The erroneous view that in Newton's Principia one can find a proof that inverse-square central forces implies a conic-section orbit.
8A80.30 About Halley's comet.
8A80.30 Preparing to observe Halley's comet in 1986
8A80.30 Getting ready for observation of Halley's comet.
8A80.30 More on Halley's comet.
8A80.30 Making a Halley's comet orbit model.
8A80.30 Making sense of the apparent path of Halley's comet.
8A80.40 A computer preview of comet Hale-Bopp.
8A80.40 Photographs and data review of comet Hale-Bopp.
8A80.80 Surprise, comets emit x-rays.
8A80.90 Spoof the creation of life in the classroom by putting the necessary ingredients in a tank, add UV light and lightening, and voila.
8A80.95 Searching for life on other planets. What to look for.

8B00.00

8B10.00
8B10.10
8B10.20
A 60 watt bulb represents the sun. Use with a globe of the Earth.
Accurate methods to calculate the amount of energy the Earth receives from the Sun.
8B10.20
8B10.20
8B10.20
8B10.22
8B10.24 Use a light bulb of known wattage to calculate
minosity of the Sun
8B10.24 Experiments measuring the solar constant used to calculate the luminosity of the Sun.
8B10.24 Estimating $h c / k$ from observations of sunlight.
8B10.24 Corrections to AJP 73(5), 457.
8B10.25 A calculation that puts the Sun's Wien peak at 710 nm .
8B10.25 A discussion of why the human eye sees best at the yellow-green wavelengths which is well away from the Wien peak.
8B10.25 Additional comments on AJP 71(3), 216.
8B10.30 How to calculate the Sun's temperature from known data.
8B10.35 How to use a pinhole to calculate the diameter of the Sun.
8B10.35 How to use a pinhole to calculate the diameter of the Sun.
8B10.35 Using ratios and models in class to bring the size of the Sun into perspective.

8B10.35 How the observed size of the Sun changes from perihelion to aphelion.
8B10.35 Use an index card with a small hole and a meter stick to determine the diameter of the Sun.
8B10.40 An explanation of the convection cells and how do make a demonstration using a skillet, aluminum powder, and silicon oil.

8B10.40 The cover of this edition of TPT showing the convection cells made with a skillet, aluminum or brass powder, and silicon oil.
8B10.40 Making a lava lamp which can be used to show convection cells.
8B10.50
8B10.50 A light bulb on a variac is turned up to visible glow and placed on an overhead projector that is turned off. When the overhead is turned on, the filament appears as a dark spot.
8B10.50 A light bulb on a variac is turned up to visible glow and placed on an overhead projector that is turned off. When the overhead is turned on, the filament appears as a dark spot.
8B10.50 In a brightly lit room open the door to a dimly lit hallway. The hallway appears dark. Gradually dim the room lights and observe how the hallway dramatically lights up.
8B10.60 Use a Bumble Ball (a common toy) to illustrate the random walk of high energy photons in a star.
8B10.60 Use a Bumble Ball (a common toy) to illustrate the random walk of high energy photons in a star.
8B10.60 Flip coin to model 1-d random walk. Execute a computer program or shake a pan of ping pong balls or tennis balls to model a 2-d random walk.
8B10.70
8B10.80 A model for the overhead using a transparent grooved plastic ruler, two magnetic marbles or spheres, and a piece of folded index card.
8B10.80 A model built from magnets to demonstrate the forces in nuclear fusion.
8B10.80 A look at fission and fusion and a determination as to which processes or nuclei release more energy.
8B10.90 How to demo the Poynting-Robertson effect using an air track, air glider, and an air hose blowing air down onto the air track.

8B20.00
8B20.10
8B20.20
Using stellar spectra to classify stars according to temperature.
How the energy of a photon is directly proportional to frequency and how this is not a violation of energy conservation when applied to the observed Doppler effect.
8B20.20 A further discussion on energy conservation and the Doppler effect.
8B20.20 A flaw in the argument of observed red shifts as proof of an expanding universe.
8B20.20 The effect of the Doppler shift on the spectrum of stars as observed by space travelers.
8B20.40 Gamma ray line astronomy (GRLA) used to detect spectral features from stars.

8B30.00
8B30.10
8B30.10
8B30.10
Six LEDs are adjusted so they appear to form a linear progression from dim to bright. The actual brightness is then measured.
8B30.20 Using part of the PSSC text to teach about the HR diagram.
8B30.20 The use of variable stars as a means to observe aging of stars.
8B30.20 Corrections to TPT, 25(7), 420.
8B30.20 A discussion of a simple but often missed important implication of the Main Sequence.
8B30.20 A student-centered, learning-cycle approach to teaching star life cycles.
8B30.20 Why is the Sun so large. Deriving a lower limit on the radius and mass of a hydrogen-burning star. Why 90 percent of stars lie in the "main sequence".

8B30.20 Additional comments on AJP 74(1), 10.
8B30.20 Transformation of a main sequence star to a red giant is discussed.
8B30.30 Inquiry based Stellar lifecycle exercise.
8B30.30 How the force of gravity can be responsible for the birth and death of stars.

8B30.30 A look at how a star is born and the processes that determine it's lifecycle.

8B30.30 Part 2 of a look at how a star is born and the processes that determine it's lifecycle.
8B30.30 Corrections to TPT 10(5), 250.

TPT 28(6), 425	binary star system
TPT 17(7), 456	binary star system
AJP 35(9), 817	binary star system binary star system
TPT 7(8), 453	variable star simulation
AJP 51(7),668	variable star simulation
TPT 31(9), 541	variable stars
AJP 46(11),1197	synthesized variable star
AJP 44(12),1227	variable star simulation
AJP 54(11),976	digital variable star
PIRA LOCAL	variable star simulation

AJP 71(1), 11	supernova
TPT 9(6), 326	supernova
TPT 7(1), 24	supernova
PIRA 500	supernova core bounce
TPT 28(8),558	supernova core bounce
TPT 33(6), 358	supernova core bounce
TPT 33(9), 548	supernova core bounce
TPT 33(1), 56	supernova core bounce
AJP 39(6), 656	supernova core bounce
TPT 30(1), 46	supernova core bounce
TPT 30(4), 197	supernova core bounce
PIRA LOCAL	flashbulb supernova
AJP 72(7), 892	neutron stars
PIRA 1000	pulsar model
PIRA 1000	pulsar recording
TPT 9(5), 232	pulsars
AJP 46(5), 530	pulsars
AJP 68(8), 775	x-ray pulsar white dwarfs nebula
PIRA 1000	forward and backward scattering
UMN, 8B10.40	forward and backward scattering
PIRA LOCAL	forward and backward scattering

BLACK HOLES

TPT 41(5), 299
TPT 41(6),
AJP 73(12), 1148
AJP 45(5), 423
AJP 46(6),678
TPT 23(9), 540

TPT 24(1), 29
black holes

AJP 56(1), 27 black holes

8B30.35 Two different size balls on a rod can be used to model a binary star system.

8B30.35 A model eclipsing binary star system using light bulbs.
8B30.35 A discussion of the aberration of light from a binary star system.
8B30.35 How to observe eclipsing binary stars and make a model from an "N" gauge railroad set and light bulbs.
8B30.40
8B30.40 A ball eclipses a lamp. The output from a phototransistor is conditioned by a ADC/microcomputer/DAC on the way to an oscilloscope display.
8B30.40 Variable stars are used to provide information about properties, processes, and evolution of stars.
8B30.42 Use a PROM to store the curves for variable stars. No microprocessor, the curve is generated with a simple hardware circuit.
8B30.42 A dimmer control is varied by a cam on a motor drive.
8B30.42 A simple circuit drives a lamp with data stored in EPROM to generate real light curves from various types of variable stars. Also includes discussion of a classroom photometer.
8B30.42 A 12 volt, 15 watt lamp is plugged into a Pasco digital function generatoramplifier. Set the generator at about 1 Hz . and observe the intensity change.

8B30.42 Resource Letter: OTS-1: Obervations and theory of supernovae. Also, many books and review articles.
8B30.45 What happens and what results from the death of a star.
8B30.45 The Crab Nebula and some results from the death of a star.
8B30.50
8B30.50 Use the double ball bounce to illustrate supernova core bounce.
8B30.50 Use the "Astro-Blaster" toy to demonstrate the supernova core bounce.
8B30.50 Other combinations of ball that can be used to demonstrate a supernova core bounce.
8B30.50 How to make an aligner for elastic collision of multiple dropped balls.
8B30.50 Velocity amplification in collision experiments involving Superballs. Analysis and how to make the demonstration.
8B30.50 Analysis of multiple ball collisions and suggestions for safer multiple ball collision demonstrations.
8B30.50 Comments on nonideal multiball collisions.
8B30.55 A flashbulb is placed on the lecture bench hidden behind some "innocent" barrier. The instructor sets it off at an "appropriate" moment.
8B30.60 Neutron star projects for undergraduates.
8B30.65
8B30.70
8B30.70
8B30.70
Calculation of the "spindown" rate of the x-ray pulsar SGR 1806-20.
8B30.75
8B30.90
8B30.95

8B30.95 Clap erasers in front of and behind a clear 60 W lamp.

8B30.95 Aim a laser or laser pointer through a fish tank filled with water that has a small amount of Pine-Sol added to it. Forward, side, and back scattering can be observed.
8B40.00
8B40.10 Some simple black hole thermodynamics.
8B40.10 Corrections to TPT 41(5), 299.
8B40.10 Two analytical models of gravitational collapse.
8B40.10 A look inside a black hole.
8B40.10 A simple model for the emission of particles by black holes.
8B40.10 Part 1. To convey the properties of black hole to students it is useful to put them human terms, such as "The hazards of encountering a black hole".

8B40.10 Part 2. To convey the properties of black hole to students it is useful to put them human terms, such as "The hazards of encountering a black hole".

8B40.10 How long can an observer wait before rescuing an object falling into a black hole.

Demonstration	Bibliography	Astronomy	
TPT 39(2), 84	black holes	8B40.10	How dense is a black hole??
AJP 42(11), 1039	black holes	8B40.10	On the radius of black holes. A black hole in our galactic center.
TPT 46(1), 10	black holes	8B40.10	
PIRA 1000	black hole surface - fiberglass or plastic	8B40.20	
UMN, 8C20.10	black hole surface - fiberglass or plastic	8B40.20	A large fiberglass black hole potential surface from some museum in Philly.
D\&R, M-822	black hole surface - fiberglass or plastic	8B40.20	A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of $1 / R$ cones.
TPT 28(8), 575	black hole surface - fiberglass or plastic	8B40.20	A cardboard funnel constructed to give results similar to fiberglass or plastic models found in science museums.
PIRA 200	membrane table	8B40.30	
PIRA 500 - Old	membrane table	8B40.30	
UMN, 8C20.20	membrane table	8B40.30	Swimsuit fabric stretched over a wood frame is deformed with a weight and balls are rolled around.
TPT 16(7), 504	potential well/hill	8B40.35	How to make a potential well or hill from a Pexiglas sheet on a frame.
ref.	potential well/hill	8B40.35	See 1L20.12.
ref.	gravity well	8B40.40	See 1L20.10. Use this demonstration when discussing black holes and gravity wells.
	magnetic field coupling	8B40.50	
	STELLAR MISCELLANEOUS	8B50.00	
TPT 39(3), 187	distance to stars	8B50.10	How to construct an "Astronomy Angulator" to calculate small angles to assist in naked-eye observations.
Mei, 35-2.13	stellar diameter measurement	8B50.20	The angular separation of two artificial stars is measured by the Michelson method of measuring stellar diameters. Diagrams, Reference: AJP 27(2),101.
TPT 39(7), 428	interferometry	8B50.30	Stellar interferometers used to measure the angular diameters of stars.
TPT 28(8), 526	stellar energy radiation	8B50.40	A look at the processes that determine the energy radiated by a star.
AJP 46(1), 23	stellar radiation	8B50.50	What does it take to make a sun shine.
TPT 31(7), 422	lookback time	8B50.60	Note historic events going on when light from specific distant stars started its journey to Earth.
TPT 27(7), 518	lookback time	8B50.60	Lookback times and how to calculate them.
TPT 38(2), 122	Olbers' paradox	8B50.70	Why is the sky dark at night when there are so many stars.
AJP 45(2), 119	Olbers' paradox	8B50.70	Why is the sky dark at night when there are so many stars.
AJP 46(9), 923	Olbers' paradox	8B50.70	The expansion of the universe may also be used to explain Olbers' paradox.
TPT 36(3), 176	gamma ray bursts	8B50.80	Gamma Ray Bursts (GRB's) and the effects of time dialation and time contraction.
	COSMOLOGY	8C00.00	
	MODELS OF THE UNIVERSE	8C10.00	
TPT 18(9), 639	cosmological models	8C10.05	A discussion of Red Shift, unbound universe, and other factors, and how they are applied to comological models.
TPT 38(9), 564	The Big Bang	8C10.10	The Big Bang and chirality of the universe.
TPT 36(9), 529	cosmic microwave background	8C10.20	The study of anisotropies in the CMB.
AJP 70(2), 106	cosmic microwave background	8C10.20	The study of anisotropies in the CMB.
TPT 16(3), 137	steady state, expanding, or contracting universe	8C10.25	A look at the question " Is the universe open or closed"?
AJP 45(7), 642	steady state, expanding, or contracting universe	8C10.25	The general Doppler formula in a nonstatic universe is derived.
PIRA 200	expanding universe	8C10.30	Pull a rubber hose threaded through five large styrofoam balls.
UMN, 8C10.10	expanding universe	8C10.30	Pull a rubber hose threaded through five large styrofoam balls.
Ehrlich 2, p. 189	expanding universe	8C10.30	A simulation of the expansion of the universe using two transparancies with random dot patterns on the overhead projector.
AJP 50(6),571	expanding universe	8C10.30	Pull on a rubber rope with "galaxies" attached.
TPT 29(2), 103	expanding universe	8C10.30	Use transparencies of a sample universe on the overhead to show center of expansion in an expanding universe.
AJP 69(2), 125	expanding universe	8C10.30	Using a strip of latex to model how long a light pulse would take to travel from one galaxy to another in an expanding universe.
PIRA 1000	inflating balloon	8C10.35	
UMN, 8C10.15	inflating balloon	8C10.35	A balloon with galaxies drawn on is blown up with compressed air.
PIRA 1000	expanding universe on a white board	8C10.37	

TPT 20(9), 617	expanding universe
PIRA 1000	bubble universe
UMN, 8C10.20	bubble universe
PIRA 1000	galaxy model
UMN, 8C10.30	galaxy model
	View of Galactic Center
	Spiral Galaxies
	Radio Galaxies
	One Million Galaxies
	GRAVITATIONAL EFFECTS
PIRA 1000	Klein bottle
UMN, 8C10.40	Klein bottle
PIRA 1000	Moebius strip
UMN, 8C10.45	Moebius strip
PIRA 1000	saddle shape
UMN, 8C10.50	saddle shape
TPT 33(5), 286	saddle shape
TPT 15(5), 298	saddle shape
TPT 16(1), 8	saddle shape
AJP 63(2), 186	saddle shape
TPT 30(2), 92	non-Euclidean geometry
TPT 22(9), 557	non-Euclidean geometry
TPT 29(3), 147	non-Euclidean geometry
PIRA 500	gravitational lens
UMN, 8C20.40	gravitational lens
TPT 25(7), 440	gravitational lens
TPT 34(9), 555	gravitational lens
AJP 48(10),883	gravitational lens
AJP 37(1),103	gravitational lens
AJP 49(7),652	gravitational lens
AJP 69(2), 218	gravitational lenses
AJP 56(5), 413	gravitational lens
AJP 55(4), 336	gravitational lens
AJP 46(8), 801	gravitational lens
TPT 38(9), 524	gravitational lens
TPT 39(4), 198	gravitational lens
AJP 55(5), 428	gravitational lens
PIRA 500	galactic lens
UMN, 8C20.45	galactic lens
AJP 51(9),860	galactic lens
TPT 44(7), 416	gravitational waves
TPT 44(7), 420	gravitational waves
TPT 22(5), 282	gravitational waves
TPT 34(8), 496	quasars
TPT 35(1), 5	quasars
AJP 55(3), 214	quasars
	Cosmic Strings
	Dark Matter

July 2015
Astronomy
8C10.39 Are we able to use experimantal evidence to calculate the total vector momentum of our expanding universe. Is it zero?
8C10.40
8C10.40 Use a straw to blow bubbles in liquid soap.
8C10.50
8C10.50
8C10.55
8C10.60
8C10.70
8C10.80

8C20.00
8C20.10
8C20.10
8C20.20
8C20.20 A strip of aluminum about six inches wide and six feet long is made into a Moebius strip
8C20.30
8C20.30
8C20.30
Two models of a negatively curved two-dimensional space. One of fiberglass, and one made with strings.
8C20.30 A butternut squash provides a negative space over small distances. At large distances the space becomes positive. A hubbard squash has a positive space.
8C20.30 Two more examples. A hollowed out grapefruit is a positive space. Pringles potato chips are examples of negative space.
8C20.30 A ball is not stable when placed on a saddle shape, but surprisingly does become stable if the saddle shape is rotated.
8C20.35 Counting distant radio sources to determine if the overall curvature of space is positively curved, flat, or negatively curved.
8C20.35 A discussion of gravity touching on non-Euclidean geometry and the geometry of three dimensional space.
8C20.35
8C20.40
8C20.40 A machined Plexiglas lens bends light like a black hole.
8C20.40 Viewing a fish in a fish tank. Refraction of light as the optical counterpart of a gravitational lens.
8C20.40 Constructions of a simple gravitational lens demonstration.
8C20.40 An equation is developed for constructing a Plexiglas lens.
8C20.40 Directions for constructing a gravitational lens simulator from Plexiglas. Ref: Phys.Rev. 133, B835 (1964).
8C20.40 A plastic lens that bends light the same way a black hole does. Theory and directions for construction of a lens.
8C20.40 A computer program to visualize gravitational lenses.
8C20.42 Henry Cavendish and Johann von Soldner calculated that light would be deflected by gravitational bodies long before Einstein.
8C20.42 How would the outer world look from an observer located in a gravitational lens.
8C20.42 The principle of equivalence and the deflection of light by the Sun.
8C20.42 The prediction and test of Einstein's 1916 prediction.
8C20.42 Additional comments on TPT 38(9), 524.
8C20.43 The black hole as a gravitational lens.
8C20.45
8C20.45
8C20.45 A machined Plexiglas lens bends light like an extended mass distribution.
8C20.50 Icebreaker activities to use when introducing the subject of gravitational waves.
8C20.50 About the new generation of gravitational wave detectors.
8C20.50 On the detection of gravitational waves.
8C20.60 Quasars and superluminal velocities in astronomy.
8C20.60 More on TPT 34(8), 496.
8C20.60 The use of quasars in teaching introductory special relativity.
Demonstration

TPT 21(4), 250
TPT 35(3), 186
TPT 29(7), 459
TPT 29(8), 500
TPT 30(2), 70
TPT 42(7), 423
TPT 43(1), 4
PIRA LOCAL

TPT 48(4), 251
TPT 49(9), 546
TPT 18(7), 548
TPT 14(8), 479
TPT 4(3), 99
TPT 2(2), 72
PIRA LOCAL
TPT 17(2), 132
TPT 18(1), 64
TPT 22(4), 248
PIRA LOCAL
TPT 36(7), 403
TPT 24(1), 21
TPT 19(8), 527

TPT 46(4), 237
PIRA LOCAL
TPT 43(7), 454
TPT 43(7), 452
TPT 44(7), 424
TPT 2(2), 70
TPT 23(1), 29
TPT 37(4), 196

TPT 39(8), 476
TPT 13(4), 232

TPT 23(8), 466
slingshot effect

ASTRONOMY TEACHING

 TECHNIQUES
TECHNIQUES AND PROJECTS

TPT 44(9), 607
TPT 38(9), 544
teaching astronomy with games
building an observational astronomy program

MISCELLANEOUS ASTRONOMY 8D10.00

astrophotography astrophotography daytime observations
daytime observations
daytime observations
tossing on a rotating space station 8D10.30
tossing on a rotating space station 8 D 10.30

8D10.80
8D20.00
8D20.10
Using the very small radio telescope (VSRT) to teach high school physics.
8D20.10 Six articles by Prof. George Swenson and how to instructions for building a portable radio interferometer.
8D20.10 Observing "cosmic synchrotrons" with a radio telescope.
8D20.10 About the 210 foot diameter radio telescope at Parkes, New South Wales.
8D20.10 About the radio telescope at Mullard Observatory, Cambridge, England.
8D20.20 Show the old microwave telescope.
8D20.30 Build an infrared telescope using the 1P-25 image conversion tube.
8D20.30 How to build an improved handheld infrared telescope.
8D20.30 A simple infrared telescope made with kitchen materials.
8D20.40 See 6A70.20.
8D20.50 A look at the Polar and Dynamic Explorer satellites.
8D20.60 Views of our Sun at the soft X-ray wavelengths.
8D20.70 An explanation of gamma ray astronomy and the instruments used to observe very high energy gamma ray sources.
8D20.70 Gamma ray line astronomy and the instruments used for observation.
8D30.00
8D30.10 Building a satellite model to demonstrate centripital force and satellite motion.
8D30.20 Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc.
8D30.50 How to simulate realistic satellite orbits and the effect that atmospheric drag has on them.
8D30.50 The effect of atmospheric drag and temperature on satellite orbits.
8D30.50 Relativistic effects on clocks aboard GPS satellites.
8D30.50 Determination of a satellite orbit using the doppler effect.
8D30.50 Calculating the velocity of orbiting satellites.
8D30.60 A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on.

8D30.60 A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft.
8D30.60 A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit.
8D30.70 A simple explanation of the "slingshot effect" or "gravity assist".
8E00.00
8E30.00
8E30.10 Using a game based on "Who wants to be a Millionaire" to teach astronomy.
8E30.20 Tips on how to build an observational astronomy program to expand your physics department.

8E30.30 Using online astronomical catalogues to expand your experimental astronomy possibilites.
8E30.40 Student projects using up to date world wide web book sized sites and spaceflight as the means to ask questions.

PIRA 1000
Mei, 6-1.4
PIRA 1000
Mei, 6-1.3
TPT 4(1),19
Hil, M-10b
Mei, 6-1
Mei, 6-1.6
PIRA 1000
UMN, 9A10.31
PIRA 1000
Mei, 6-1.5
AJP 43(10), 927
AJP 55(3),219
PIRA 1000
UMN, 9A20.10
PIRA 1000
UMN, 9A20.11
PIRA 1000
UMN, 9A20.15
PIRA 1000
UMN, 9A20.16
PIRA 1000
UMN, 9A20.20
PIRA 1000
UMN, 9A20.30
PIRA 1000
UMN, 9A20.40
PIRA 1000
UMN, 9A20.50
PIRA 1000
UMN, 9A30.05
Mei, 34-2.4
PIRA 1000
UMN, 9A30.10
PIRA 1000
UMN, 9A30.11
PIRA 1000
UMN, 9A30.15
PIRA 1000
UMN, 9A30.20
Sut, L-1
PIRA LOCAL
PIRA 1000
UMN, 9A34.10
PIRA 1000
UMN, 9A34.20
PIRA 1000
UMN, 9A34.30
PIRA 1000
UMN, 9A34.35
PIRA 1000
UMN, 9A34.40
AJP 34(8),706
TPT 2(2),77
Mei, 34-2.3

Support Systems

 Blackboard Toolscompass
compass
protractor
protractor
drawing conic sections
drawing vectors
blackboard graphs
blackboard graphs
angle templates
angle templates
sine wave templates templates for drawing waves templates for sine curves moveable blackboards

Audio

wireless microphone
wireless microphone
multiple wireless microphones
multiple wireless microphones
cord microphone
cord microphone
multiple cord microphones multiple cord microphones
CD player
CD player
audio cassette
audio cassette
phonograph
phonograph
reel to reel
reel to reel

Slide Projectors

mobile screen
mobile screen projection screen
35 mm projector
35 mm projector
two 35 mm projectors
two 35 mm projectors
35 mm to go
35 mm to go lantern projector $31 / 4 \times 4$ projector projection lanterns light pointer
Film Projectors
16 mm projector
16 mm projector
film loop projector
film loop projector
super 8 mm projector
super 8 mm projector
8 mm projector
8 mm projector
film strip projector
film strip projector
anechoic chamber

Overhead Projectors

overhead projection techniques
overhead projector construction

9A00.00
9A10.00
9A10.10
9 910.11
9A10.12
9A10.12

9A10.31
9A10.31
9A10.35
9A10.35

9A20.00
9A20.10
9A20.10
9A20.11
9A20.11
9A20.15
9A20.15
9A20.16
9A20.16
9A20.20
9A20.20
9A20.30
9A20.30
9A20.40
9A20.40
9A20.50
9A20.50
9A30.00
9A30.05
9A30.05
9A30.06
9A30.10
9A30.10
9A30.11
9A30.11
9A30.15
9A30.15
9A30.20
9A30. 20
9A30.21
9A30.30
9A34.00
9A34.10
9A34.10
9A34.20
9A34.20
9A34.30
9A34.30
9A34.35
9A34.35
9A34.40
9A34.40
9A34.51
9A36.00
9A36.05
9 936.06

A blackboard straight edge with a permanently mounted angle indicator. Diagram.
9A10.14 Simple blackboard tools for drawing the ellipse, parabola, and hyperbola.
9A10.15 A drafting machine mounted on the blackboard helps in drawing vectors.
9A10.21 Sources of help for making large blackboard graphs.
9A10.21 Slides of coordinate systems can be projected on the blackboard with an overhead projector.

9A10.35 Make a Masonite half period template with a scale at 10 degree intervals.
9A10.40 A long article on movable blackboards.
Modifying a steel tape measure to make a blackboard compass. Diagram.

Large triangles are used on the chalkboard.
Cardboard templates for various sine waves.

On using projection lanterns to magnify demonstrations. Diagram.
A handheld light pointer unit with arrow image and focusing ability.

Eliminate the sound of the projector with a portable anechoic chamber.
On the advantages of using the overhead projector. Many examples.
Make your own overhead projector. Diagram.

Demonstratio	Bibliography	July 2015	
PIRA 1000	overhead projector	9 A 36.10	
UMN, 9A36.10	overhead projector	9A36.10	
AJP 55(1),89	longer focal length	9 A 36.11	Adding an auxiliary lens to increase the focal length of an overhead projector.
AJP 51(2),183	projecting vertical objects with the overhead	9 A 36.12	Lay the projector on its back and tape a shaving mirror to the lens box.
AJP 37(1),108	"vertical" overhead projectors	9 A 36.12	Add an additional mirror to a projector on its back to invert the image left to right.
PIRA 1000	two overhead projectors	9 A 36.15	
UMN, 9A36.15	two overhead projectors	9 A 36.15	
AJP 52(4),379	LCD on the overhead	9A36.20	Take the back off the LCD.
AJP 54(3),282	digital multimeter on the overhead	9A36.20	Remove the reflecting foil from the back of the LCD display.
AJP 29(6),374	projection meter	9A36.20	Review of a commercial projection meter (HV meter - Williamson Development Company)
AJP 52(5),467	LCD devices on the overhead	9A36.20	Take the backing off LCD devices and use them in the transmission mode on the overhead projector.
AJP 41(9),1116	projection galvanometer	9 A 36.20	Use a laser with a d'Arsonval galvanometer.
Mei, 30-1.8	projection meter	9A36.20	Use the Cenco projection meter in a lantern projector.
Mei, 30-1.9	projection meter	9A36.20	A projection meter mount for a slide projector.
Mei, 30-1.7	projection meter	9A36.20	Project a standard meter on a screen.
Hil, E-2a	projection meters	9A36.20	Two projection meters for the overhead with assorted accessories.
PIRA 1000	write on film rolls	9A36.30	
UMN, 9A36.30	write on film	9A36.30	
AJP 32(10),xiv	projecting thermometers	9A36.40	Alcohol thermometers are easily projected on the overhead projector. Add a scale on the side.
AJP 32(9),xiii	multiexposure transparencies	9 A 36.50	Use Polaroid 146-L film to make instant transparencies.
AJP 47(3),291	action effects on the overhead	9A36.60	A review of special commercially available polarizing materials that allow simulation of various motions on the overhead projector.
	Video and Computer Projection	9A38.00	
PIRA 1000	TV table (color)	9 A 38.10	
UMN, 9A38.10	TV table (color)	9 A 38.10	
PIRA 1000	TV table (B\&W)	9 A 38.11	
UMN, 9A38.11	TV table (B\&W)	9 A 38.11	
PIRA 1000	tripod TV (color)	9 A 38.15	
UMN, 9A38.15	tripod TV (color)	9 A 38.15	
PIRA 1000	tripod TV (B\&W)	9 A 38.16	
UMN, 9A38.16	tripod TV (B\&W)	9 A 38.16	
PIRA 1000	tripod TV (IR)	9 A 38.17	
UMN, 9A38.17	tripod TV (IR)	9 A 38.17	
AJP 33(1),xxvi	projecting oscilloscopes on TV	9 A 38.18	Use a TV cameras and classroom monitors to enlarge an oscilloscope screen.
PIRA 1000	video projector	9 A 38.20	
UMN, 9A38.20	video projector	9 A 38.20	
PIRA 1000	LCD panel	9 A 38.21	
UMN, 9A38.21	LCD panel	9 A 38.21	
PIRA 1000	color LCD panel	9 938.22	
UMN, 9A38.22	color LCD panel	9 A 38.22	
PIRA 1000	classroom monitors	9 A 38.25	
UMN, 9A38.25	classroom monitors	9 A 38.25	
PIRA 1000	monitor on cart	9 A 38.26	
UMN, 9A38.26	monitor on cart	9 A 38.26	
PIRA 1000	video disc	9 A 38.30	
UMN, 9A38.30	video disc player - level I	9A38.30	
UMN, 9A38.31	video disc with computer	9 A 38.31	
PIRA 1000	VHS tape deck	9 A 38.40	
UMN, 9A38.40	VHS tape deck	9 A 38.40	
PIRA 1000	3/4" tape deck	9 A 38.45	
UMN, 9A38.45	3/4" tape deck	9 A 38.45	
PIRA 1000	IBM clone	9A38.50	
UMN, 9A38.50	IBM clone	9 A 38.50	
PIRA 1000	Mac	9 A 38.60	
UMN, 9A38.60	Mac	9A38.60	
	Photography	9A40.00	
AJP 30(12),921	strobe photography	9 A 40.10	A strobe photography primer.
AJP 37(2),227	strobe photography	9 A 40.11	On using the Polaroid "Big Swinger" camera with a rotating disk strobe.

AJP 42(5),387	light flasher for lab
AJP 39(3),343	miniflashers for "strobe" photos
TPT 28(1),12	high-speed flash photography
AJP 58(4),397	video peak store
AJP 38(8),1044	scope camera
AJP 37(2), 226	scope camera
AJP 36(11),1022	polaroid positive and negative
AJP 38(3),385	Schlieren photography
AJP 44(3),308	Polaroid ED-10 attachment
AJP 44(3),309	Polaroid ground glass back
AJP 38(8),1046	X-Y, Chart Recorders chart recorder pen
AJP 46(10),1082	projection plotter
AJP 30(6),439	X-Y projection plotter
AJP 34(4),361	projection X - Y plotter
Mei, 7-1.9	X-Y projection plotter
Mei, 7-1.11	$\mathrm{X}-\mathrm{Y}$ projector plotter
AJP 33(11),xvii	X-Y recorder
Mei, 7-1.10	X-Y projection plotter
AJP 37(9),861	spot follower attachment
AJP 53(8),792	cheap optical scanner
	Buildings
AJP 38(11),1366	"The Design of Physics Buildings"
AJP 33(12),1050	science lecture hall - Berkley
AJP 36(10),964	lecture auditoria design
AJP 41(11),1233	Frank C. Waltz Lecture Halls
AJP 29(1),50	physics building classroom addition
AJP 30(11),841	about lecture tables
AJP 33(1),45	Kansas State building
AJP 31(6),417	physics building at UC - Riverside
AJP 29(11),753	Pierre S. du Pont Science Building
AJP 43(12),1049	Museums physics learning center
AJP 40(7),978	The Exploratorium
AJP 39(3),243	European scientific museums
AJP 40(3),433	modern physics in European museums
	Resource Books
AJP 47(10),835	resource letter PhD-1
AJP 32(1),56	Soviet lecture demonstrations
AJP 40(1),183	Unclassified Demonstrations rope sliding off table
AJP 42(12),1123	surface plasmons on gold
AJP 35(6),482	apparatus competition awards

9A40.12 Design of a small battery powered light flasher with "grain of wheat" lamps.

9A40.12 Circuit design for a small battery powered neon flasher.
9A40.15 A long article on high speed flash photography with sound triggering.
9A40.18 A video technology that combines several images into a single frame resembling strobe photography.
9A40.20 A scope camera made from a 2 lb coffee can and a Polaroid camera.
9A40.20 A hood design for using the Polaroid CU5 camera with Tektronix oscilloscopes.
9A40.30 Treat the negatives with an 18\% solution of sodium sulfite.
9A40.40 Diagram of an optical system for Schlieren photography, suggestions of interesting Schlieren effects.
9A40.50 An attachment for mounting the Polaroid ED-10 camera on divided circle spectrometers.
9A40.50 On making a ground glass back for Polaroid cameras.
9A50.00
9A50.01 Use a Leroy reservoir pen on a Leeds and Northrup or Brown chart recorder.
9A50.10 Replace the $X-Y$ recorder plate with a Fresnel mirror and use as the stage on an overhead projector.
9A50.10 Apparatus Drawings Project No 28: Mechanical and electrical construction plans for a plotter designed to fit the 10×10 stage of an overhead projector.

9A50.10 A long extension arm translates the motion from an $X-Y$ plotter to an adjacent overhead projector.
9A50.10 An X-Y projection plotter, Pictures, Diagram, Construction details in appendix, p. 537.
9A50.10 The Huston X-Y recorder is adapted for the overhead projector. Pictures.
9A50.11 Two Heath Servo Recorders are used (non-destructively) to make an X-Y recorder that is suitable for overhead projection.
9A50.11 An X-Y recorder is constructed from two Heath Servo Recorders without disabling either unit. Diagram.
9A50.14 Two photocells in a bridge arrangement to attach to a chart recorder. Made for the Cavendish experiment.
9A50.15 Mount a photocell at the pen location of a computer controlled $\mathrm{X}-\mathrm{Y}$ plotter.
9A60.00
9A60.10 Book review: "The Design of Physics Buildings", from England. Also mentions "Modern Physics Buildings"
9A60.10 A 550 seat hall with triangular rotating stage and CCTV facilities.
9A60.10 Design of a 380 seat auditorium.
9A60.10 Post use review of new lecture halls with rotating stage.
9A60.10 Discussion of a building project.

9A60.20 Cover your black table tops with matte white.
9A60.40 Floor plans, construction details, and special features of a new physics-math building at Kansas State University.
Planning and plans for a building for a twenty staff, ninety grad students and a 300 seat lecture hall with rotating front.
Article on building design with particular attention on procedure in planning.

9A65.00
AA
9A65.01
9A65.01 A survey of wermean scien
9A65.01 Four museums display some discovery apparatus in modern physics.

9A70.00

9A70.10 A listing of many sources of information on lecture demonstrations.
9A70.20 A translation project on a series of eight volumes on lecture demonstrations is available in microfilm.

9A73.00

9A73.01 Analysis of the rope sliding off the table for beginning students.
9A73.01 A demonstration of the surface plasmons at the gold-air interface.
9A73.10 List of awards for the 1967 apparatus competition awards - three lecture demonstration, three undergraduate laboratory.

TPT 28(7),495	Ballistic Pendulum demonstrations	9A73.11	Five additional demonstrations using the Ballistic pendulum.
TPT 28(7),492	demo collection	9A73.12	Ten demonstrations from "Turning the World Inside Out". This book should be entered into the bibliography at some point.
TPT 28(5),312	meter stick mechanics	9A73.13	Five standard demonstrations performed with meter sticks: reaction time, finding the center of mass, cantilevered stack, greater than " g ", pendulum vibrations.
AJP 44(6),602	corridor displays	9A73.20	A list of twenty interactive displays in corridor glass cabinets.
AJP 34(8),660	quantitative corridor exhibits	9A73.20	These corridor type exhibits are actually used as low cost laboratories. Not much description of individual displays.
AJP 53(7),690	second order phase transition model	9A73.30	A mechanical model exhibits spontaneous symmetry breaking similar to that in a ferroelectric material.
AJP 53(12),1172	bird-in-shell toy	9A73.31	A discussion of the bird-in-shell toy exhibiting a catastrophe similar to firstorder phase transition.
AJP 47(6),539	air table interstitial atoms	9A73.32	Magnetic cylinders on an overhead projector air table demonstrate all the features of dumbbell shaped interstitial atoms.
Sprott, 6.13	fractals	9A73.40	Transparencies or computer images containing fractals are projected on the wall or screen.
TPT 46(8), 473	Diet Coke and Mentos	9A73.50	An open ended experiment that explores the variables of the Diet Coke and Mentos reaction.
AJP 76(6), 551	Diet Coke and Mentos	9A73.50	Experiments that identify the surface roughness for bubble growth sites and the chemical reaction of potassium benzoate and aspartame as the two main reasons for the explosive reaction.
AJP 77(8), 677	Diet Coke and liquid nitrogen	9A73.50	Direct immersion of an open bottle of Diet Coke into liquid nitrogen can also cause rapid nucleation and a violent reaction.
AJP 77(4), 293	Diet Coke and iron filings	9A73.50	Iron filings are a substitute for Mentos in the popular reaction.
	Philosophy	9A75.00	
AJP 30(8),594	films vs. demonstrations	9A75.10	A study finding the use of films in place of demonstrations is an effective instructional tool.
AJP 39(4),454	cost of labs and lecture	9A75.10	Cost per student contact hour for labs and lecture is compared.
AJP 51(4),305	conceptual physics lecture	9A75.11	Paul G. Hewitt's Millikan lecture 1982 on conceptual physics.
AJP 28(4),306	rationale of lecture demonstrations	9A75.11	Four unique contributions lecture demonstrations make to physics teaching.
AJP 51(4),297	philosophy of lecture demonstrations	9A75.11	The activity of "demonstrating" is actually one of the many ways of doing physics, and more straight talk from Harald C. Jensen.
AJP 28(6),539	Wesleyan conference summary	9A75.12	Summary of the conference on lecture demonstrations listing eight points and ten recommendations.
AJP 35(5),440	labs as lecture demonstrations	9A75.20	Set up labs as lecture demonstrations in such a way that allows all the students to take data directly in their lecture seats. Example of a glider on an inclined air track.
AJP 45(5),433	demonstration homework problems	9A75.23	Demonstration problems as homework performed at the Physics Learning Center.
AJP 28(3),263	"Continental Classroom" reviews	9A75.50	Three appraisals of the "Continential Classroom" television program featuring Harvey White.
AJP 28(4),368	physics on TV	9A75.50	Harvey E. White discusses the turntable lecture room front and teaching from a studio.
M-002 (D\&R)	buttons \& signs	9A75.60	Make bumper stickers or buttons with puns and slogans. Several are shown.
D\&R, M-002	buttons and signs	9A75.60	Buttons and signs with puns and logos.
D\&R, O-045	buttons and signs	9A75.60	Sign of Maxwell's Equations.
D\&R, M-006	buttons and signs	9A75.60	Buttons and signs with puns and logos.
	Films	$9 \mathrm{A80.00}$	
AJP 41(4),604	Kodansha color slide set	9 A 80.05	Review of the Kodansha set of 360 color slides.
AJP 45(4),384	quantum computer generated images	9A80.05	Description of a set of computer generated slides.
AJP 41(6),848	physics transparencies	9A80.06	Review of a collection of 82 color transparencies with 159 overlays.
AJP 44(12),1236	films released	9A80.10	A list of 17 films released.
AJP 44(11),1146	films released	9 A 80.10	List of 25 films released, some film loops.
AJP 44(8),811	films released	9 A 80.10	A list of 19 films released.
AJP 44(10),1022	films released	9 A 80.10	A list of 18 films released, includes some film loops.
AJP 36(4),302	films - 16 mm (1020)	9 A 80.10	A list of 1020 films by field, with addresses of distributors. (1968).
AJP 44(4),407	films released	9A80.10	A list of 23 films released.
AJP 44(2),197	films released	9 A 80.10	A list of eighteen films released.
AJP 36(6),475	resource letter - films	9A80.10	A resource letter on physics films. 149 films were selected with brief annotation.
AJP 30(5),321	film listing - 220 films	9 A 80.10	220 more films are added to the 1960 list.

AJP 29(4),222	films for physics - 1960
AJP 44(6),621	films released
AJP 33(10),806	single concept films
AJP 35(3),177	making quantum computer movi
AJP 39(1),4	short films
AJP 30(7),517	making physics films
AJP 39(5),588	film competition
AJP 35(2),166	films released
AJP 44(1),116	film loop review
AJP 44(4),406	film review
AJP 32(1),62	film/film loops: Ripple Tank
AJP 41(8),1034	film loop review
AJP 44(6),619	film loop review
D\&R, S-030	film loop-Relativistic Ride
AJP 44(10),1021	film loop review
AJP 43(3),290	Skylab film loops
AJP 44(11),1144	film loop review
AJP 40(10),1502	computer film notes
AJP 40(1),46	dynamic electric field pictures
AJP 40(2),343	film loop review
AJP 37(5),514	computer film notes
AJP 38(8),984	hydrogen wave functions computer
AJP 40(11),1657	computer film notes
AJP 34(6),470	quantum-mechanical harmonic oscillator
AJP 39(8),952	computer film notes
AJP 41(6),836	computer film loop notes
AJP 39(12),1540	film loop notes
AJP 36(5),412	film notes
AJP 44(8),810	film loop review
AJP 31(5),400	film review: Forces (PSSC)
AJP 44(4),405	film review
AJP 31(7),552	film review
AJP 42(11),1047	film review
AJP 44(5),499	film review
AJP 31(5),390	film announcement
AJP 39(7),849	film review
AJP 44(12),1234	film review
AJP 44(11),1145	film review
AJP 44(5),498	film review
AJP 31(9), 735	film review

AJP $44(6), 621$
AJP 33(10), 806
AJP 35(3),177

AJP 39(1),4
AJP 30(7),517
AJP 39(5),588
AJP 35(2),166
AJP 44(1), 116 film loop review

AJP 44(4),406 film review
AJP 32(1),62 film/film loops: Ripple Tank

AJP 44(6),619 film loop review

D\&R, S-030 film loop - Relativistic Ride

AJP 44(10), 1021 film loop review

AJP 44(11), 1144 film loop review

9A80.10 450 films listed by field with distributors.
9A80.10 A list of 28 films released.
9A80.11 Franklin Miller introduces the concept of single concept films.
9A80.20 The details of generating computer movies in quantum mechanics.

9A80.20 The Millikan lecture (1970) by Franklin Miller, Jr. on making short physics films.
9A80.20 Twenty single concept films were produced. Film production from a physicist's perspective.
9A80.21 Announcement of the third film competition (1972).
9A80.21 List of fifteen films released for commercial distribution by Education Services Inc.
9A80.23 "Electrostatic Series" 19 film loops; Baez, Powell, and Bosserman; Encyclopedia Britannica Education Corp.; color.
9A80.25 "The Plutonium Connection" and "A Small Case of Blackmail" 60 min. and 27 min. (1976?).
9A80.25 Film Review: "Ripple Tank Wave Phenomena" (Series of three): B\&W, 25 min, $19 \mathrm{~min}, 23 \mathrm{~min}$, (1963?) ALSO: Nine film loops of the same.
9A80.25 Review of the fifteen loops in the "Standing Waves Series" Produced by Encyclopedia Britannica Education Corp.
9A80.25 "Relativity, A series of Computer Animated Films", set of eight, Houghton Mifflin.
9A80.25 Computer animated visual effects of the finite velocity of light. Also, includes the effects of time dialation and the Penrose-Terrell rotation.
9A80.25 "Skylab Film Series", set of 12.
9A80.26 The AAPT purchased two miles of unedited film from the skylab missions. The thirteen edited loops are announced here.
9A80.30 "Lissajous Figures and Phase Measurements" and "Lissajous Figures and Frequency Measurements"
9A80.30 Notes on generating the computer film loop "Eigenvalues in Quantum Mechanics"
9A80.30 The equations for generating pictures of the electric fields of various moving charges.
9A80.30 The physical significance of the bumps occurring in the momentum-space representation is elucidated.
9A80.30 Complete background for the film loop "Expanding Wavefronts in Special Relativity"
9A80.30 Description of the mathematics of the film loop "Quantum-Mechanical Wave Functions of the Hydrogen Atom"
9A80.30 Notes on a series of computer generated films for solid state physics - "Wave Packets in Periodic Potentials"
9A80.30 A description of the "Quantum Mechanical Harmonic Oscillator" film loop and the possibility of other films.
9A80.30 Background for the film loop "Tunneling Between Two Square Wells".
9A80.30 Notes on "Synchrotron Radiation", a fifth film in the series Electric Fields of Moving Charges.
9A80.30 Notes on making the computer generated series of four film loops on electric fields of moving charges.
9A80.30 Film notes on "Image Methods in Electrostatics" computer animated film loop.
9A80.30 "Kinetic Theory by Computer Animation", 11 films, Fitch, Kinsley, and Martin.

9A80.40 Film Review: "Forces" (PSSC), B\&W, 23 min, (1963?) -- Excerpt 7 1/2 min.
9A80.40 "Wave-Particle Duality" color, 2min., British Films, Ltd. (1976?).
9A80.40 Film Review: "Time and Clocks" (PSSC), B\&W, 27 min. (1963?)
9A80.40 "Refraction, Dispersion and Resonance" color, sound, 35 min., (1973).
9A80.40 "Galileo: The Challenge of Reason" color, 26 min. Learning Corp of America (1970).

9A80.40 Announcement of "the Ultimate Speed" and "Time Dilation"
9A80.40 Film Review: "The World of Enrico Fermi" 16mm, B\&W, 47 min, (1970), Harvard Project Physics.
9A80.40 "P-N Junction" and "The Crystal Diode" 14 and 18 min.
9A80.40 "Fusion: The Ultimate Fire" color, 15 min., (1976?).
9A80.40 "Technology: Catastrophe or Commitment?" color, 24 min., Hobel-Leiterman Productions, (1976?).
9A80.40 Film Review: "Measuring Large Distances" (PSSC), B\&W, 29 min., (1963?)

Demonstration	Bibliography
AJP 44(4),405	film review
AJP 31(6),463	film review: Inertial Mass (PSSC)
AJP 44(12),1236	film review
AJP 44(5),499	film review
AJP 43(7),659	film review
AJP 30(11),844	film review: An Experiment in Physics
AJP 31(9),735	film review
AJP 44(8),810	film review
AJP 43(5),473	film review
AJP 44(12),1235	film review
AJP 44(10),1021	film review
AJP 44(5),498	film review
AJP 43(12),1120	film review
AJP 44(7),718	film review
AJP 44(11),1146	film review
AJP 42(6),525	film review
AJP 31(5),342	film background -"Rel.Time Dilation"
AJP 44(9),901	film review
AJP 39(9),1102	film review
AJP 30(12),932	film review
AJP 31(11),889	film review
AJP 31(7),552	film reviews
AJP 44(11),1144	film review
AJP 32(7),571	film review
AJP 31(7),552	film reviews
AJP 44(12),1234	film review
AJP 42(9),804	film review
AJP 42(9),803	film review
AJP 43(2),203	film review
AJP 43(8),752	film review
AJP 31(4),307	film: Mechanical and Thermal Energy
AJP 32(7),571	film review
AJP 44(2),197	film review
AJP 33(5),414	film review:
AJP, 50 (3), 202	superfluid helium
AJP 33(10),859	film review
AJP 31(6),463	film review: Inertia (PSSC)
AJP 32(3),234	film Review: The Ultimate Speed
AJP 44(6),617	film review
AJP 33(1),63	film review: Matter Waves
AJP 44(9),902	film review
AJP 31(9),735	film review
AJP 30(10),772	film review: Photons
AJP 31(5),400	film review: Frames of Reference (PSSC)
AJP 43(12),1121	film review
AJP 44(6),618	film review
AJP 44(7),718	film review
AJP 31(9),735	film review
AJP 31(6),462	film announcement

9A80.40 "Life and the Structure of Hemoglobin" color, 30 min , KCET (1976?).
9A80.40 Film Review: "Inertial Mass", B\&W, 19 1/2 min., (1963?)
9A80.40 "Schlieren" 18 min.
9A80.40 "Ee Yi Ee Yi Oh" color, 10 min. Perennial Education Inc. (1976?).
9A80.40 "Volta and Electricity", color, sound, 33 min., Samuel Devons
9A80.40 Film review of "An Experiment in Physics", B\&W, 23 min, (1962?).
9A80.40 Film Review: "Coulomb's Law", "Coulomb's Force Constant", B\&W, 30 min . each, (1963?)
9A80.40 "The Fossil Affair", color, 24 min., (1976?).
9A80.40 "Albert Einstein: The Education of a Genius" color, sound, 44 min., Films for Humanities. (1975?)
9A80.40 "The Energy Crunch" - three films series. 40, 34, 38 min .
9A80.40 "The Kinematics of Vectors" color, 30 min .
9A80.40 "Day of the Dark Sun" color, 17 min. Iowa State, (1976?).
9A80.40 "Explorations in Space and Time" Series of eight, color, sound, 7-10 min each, Houghton Mifflin. (1973).
9A80.40 "Space: Life Out There", color, 24 min., (1976?).
9A80.40 "Birth and Death of a Star" color, 30 min .
9A80.40 "Introduction to Lasers" color, 17 min. Encyclopedia Britannica Corp. (1974?)
9A80.40 A long background article on the experiment that was the basis of the film "Time Dilation - An Experiment With mu-Mesons"
9A80.40 "Railroad to the Stars", "Solar Eclipse", "A Stranger Near the Sun", NSF, color, sound, 5 min each.
9A80.40 "Laser Light" $371 / 2 \mathrm{~min}$., Color, (1971?
9A80.40 Film Review: Archimedes' Principle, B\&W, 6 min, (1953).
9A80.40 Film Review: "Time Dilation", B\&W, 37 min , (1963?)
9A80.40 Film Review: "Long Time Intervals" (PSSC), B\&W, 24 min. (1963?)
9A80.40 "Museum of the Solar System", color, 23 min., (1976?).
9A80.40 Film Review: "Similarities in Wave Behavior", B\&W, 27 1/2 min, (1964?) Bell Laboratories, John Shive
9A80.40 Film Review: "Short Time Intervals" (PSSC), B\&W, 22 min. (1963?)
9A80.40 "The Ultimate Energy" 28 min .
9A80.40 You Can't Go Back" color, sound, 6 min., Elementary Penguin Productions.
9A80.40 "Anti-Matter" color, animated, sound, 12 min., UCLA Animation Workshop. (1973).

9A80.40 "Introduction to Holography" color, sound, 17 min., Encyclopedia Britannica Corp. (1975).
9A80.40 "The Physicists: Playing Dice with the Universe", color, sound, Document Associates, (1975?).
9A80.40 Film Review: Mechanical and Thermal Energy, B\&W, 22 min, (1963?).
9A80.40 Film Review: "Simple Waves", B\&W, 27 min, (1964?) Bell Laboratories, John Shive
9A80.40 "The Ultimate Machine" color, 30 min., Time-Life (1971).
9A80.40 Film review: "Liquid Helium II: The Superfluid" 16min., B\&W (1965?)
9A80.40 Resource letter SH-1: superfluid helium.
9A80.40 Film Review: "Lasers. Coherent Light Sources for Science and Industry: the Princeton Report" Color, 30 min .
9A80.40 Film Review: "Inertia", B\&W, 27 min., (1963?)
9A80.40 Film Review: "The Ultimate Speed", B\&W, 38 min , (1963?)
9A80.40 "Wondering About Things", color, 22 min.
9A80.40 Film review: "Matter Waves", Bell Laboratories, B\&W, 28 min.
9A80.40 "Power from the Earth", "Putting the Sun to Work", NSF, color, $12 \mathrm{~min}, 4$ min.
9A80.40 Film Review: "Speed of Light" (PSSC), B\&W, 21 min., (1963?)
9A80.40 Film review of "Photons", B\&W, 19 min, 1962?
9A80.40 Film Review: "Frames of Reference" (PSSC), B\&W, 28 min, (1963?) -Excerpt I-7 min., Excerpt II-5 1/2 min.
9A80.40 "Shadows of Bliss" color, sound, (1972).
9A80.40 "Keyhole to Eternity", color, 27 min., (1976?).
9A80.40 "Science New Frontiers Series - No Easy Answers" color, 14 min., (1976?).
9A80.40 Film Review: "Change of Scale" (PSSC), B\&W, 23 min., (1963?)
9A80.40 "Liquid Helium II, The Superfluid", B\&W, 40 min., (1963?)

AJP 44(1),116	film review
AJP 30(10),772	film: Interference of Photons
AJP 44(9),902	film review
AJP 44(9),900	film review
AJP 44(8),792	Computer Programs analog computer uses
AJP 42(1),75	analog computer module
AJP 44(11),1139	Heath analog computer modification
AJP 42(7),591	Fourier transform with analog computer
AJP 41(5),622	analog computer applications
AJP 36(12),1088	quantum mechanical ripple tank
AJP 53(7),694	alternate velocity conception
AJP 39(5),539	waves in media: BASIC program
AJP 36(9),907	FORTRAN mechanics programs
AJP 35(5),434	"Photographic" objects - relativity
AJP 35(3),275	the square well
AJP 36(3),273	simple pendulum experiment
AJP 37(4),386	Hamilton's principle of least action
AJP 39(4),442	optics programs - BASIC
	ELECTRONIC
	Timers
AJP 37(5),563	spark timer
AJP 36(1),60	transistorized spark timer
AJP 48(4),321	spark timer circuit
AJP 40(3),487	solid state spark timer
AJP 37(3),326	spark timer
AJP 36(7),642	spark timer
AJP 41(5),743	wide range spark timer
AJP 36(8),761	double sparker for air track
AJP 40(10),1549	spark timer for air track
AJP 48(11),989	spark timer modification
AJP 29(6),367	spark timer
AJP 34(6),536	electronic spark timer
AJP 35(6),ix	spark timer
AJP 40(12),1864	double spark timer - air track
AJP 39(5),566	coincident spark timer
AJP 37(10),1065	double sparker for air track
AJP 37(4),455	double sparker note
AJP 36(4),ix	two-glider spark records
AJP 41(6),831	continuous spark timer record
AJP 29(8),498	electric stop clock control
AJP 43(12),1076	electric timer control
AJP 51(2),183	versatile digital timer
AJP 46(8),864	sequential timer
AJP 28(5),507	household clock conversion
AJP 31(2),132	time switch for corridor display
AJP 43(11),1017	lecture room counter
AJP 34(8),iv	scaler as timer

9A80.40 Joseph Fraunhoffer: Dispersion" and "Joseph Fraunhoffer: Diffraction" color, sound, 16, 14 min. (1975).
9A80.40 Film review of "Interference of Photons", B\&W, 14 min., PSSC, (1962?)
9A80.40 "Action and Reaction" color, sound, 15 min., (1967).
9A80.45 "Take the World from Another Point of View" 3/4" video, 60 min.
9 A85.00
9A85.05 Additional uses of the analog computer as a teaching aid
9A85.05 The Analog Devices 433 multifunction module simplifies analog computer simulations.
9A85.05 An op amp module replaces the vacuum tube op amps in the Heath ES-201 computer.
9A85.05 Use the EIA TR-20 instructional analog computer to find the Fourier transform of some real, even functions.
9A85.05 Description of the analog computer with applications in harmonic motion, quantum mechanics, and radioactive decay.
9A85.10 Graphical presentations of the probability density of a scattering problem.
9A85.20 A program identifies students who use position criterion for judging when two objects are moving with the same velocity and includes a remedial program.

9A85.30 A program showing waves in a dispersive media with a listing in BASIC.
9A85.30 Brief descriptions of 11 dynamics programs for tutorial use.
9A85.30 A tutorial fortran program in special relativity to investigate the "photographic" appearance of objects moving past the camera at relativistic speeds.

9A85.30 A sequence of five programs (printout of one, student handouts shown) allowing the student to explore several features of the square well.
9A85.30 Description of a tutorial program in FORTRAN.
9A85.30 A PDP-1 based tutorial program.
9A85.30 Three simple optics programs in BASIC. Listings.
9B00.00
9B10.00
9B10.10 A transistorized spark timer.
9B10.10 Circuit diagram for a transistorized spark timer.
9B10.10 A complete spark timer circuit.
9B10.10 Another circuit.
9B10.10 A solid state spark timer with five frequencies between 5 and 60 Hz .
9B10.10 Circuit diagram for a simple low cost solid state synchronous spark timer.
9B10.10 Six ranges from 5 to 120 Hz .
9B10.10 Replace the jumper wire on each glider with a parallel RC combination.
9B10.10 A spark timer for the Eduquip air track.
9B10.11 Cenco spark timer modification.
9B10.12 Circuit for a tube based AC spark generator.
9B10.12 A tube based variable frequency spark timer.
9B10.13 A DC relay combined with a RC circuit to form a relaxation oscillator.
9B10.14 Plans for a double spark timer for the air track.
9B10.14 A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments.
9B10.14 Another double sparker method.
9B10.14 Re: AJP 36,761 (1968), recommends a different capacitor.
9B10.14 Leave the air track floating and attach the spark timer across the two wires.
9B10.15 The spark timer paper strip is replaced by a rotating cylinder.
9B10.20 Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts.
9B10.20 A circuit for cycle counting and clock control.
9B10.21 An inexpensive hardwired timer based on the 7217A timer chip.
9B10.22 A timer to sequentially switch many channels into a single channel strip chart recorder.
9B10.23 Add a rectifier in parallel with the switch to stop the residual motion of the clock motor.
9B10.24 Circuit for a switch with a reset timer that will open after times from a few seconds to ten minutes.
9B10.28 Complete plans and circuit boards for a high speed counter with 22 cm high display.
9B10.30 Gate a 100 KHz oscillator to a scaler.

Demonstration Bibliography	
AJP 33(2), xiii	scaler becomes photocell timer
AJP 28(9),817	free fall timer
AJP 33(6), ,	interval timing with a scaler
AJP 40(8),1168	photodiode gate
AJP 44(8),803	light operated millisecond timer
AJP 49(7),701	big X 4 timer
AJP 45(9),881	phototransistor adaptor
AJP 43(3),280	pendulum counter/timer
AJP 45(11),1126	pulse counter
	Position and Velocity Detectors
Mei, 7-1.8	kinematics instrumentation
AJP 42(5),409	ladder of light
AJP 40(1),202	air track velocity meter
AJP 56(10),950	air track timing circuit
AJP 48(8),685	mechanical start-stop gates
AJP 52(3),281	model race track kinematics
AJP 56(8),739	distributed infrared detector
AJP 48(1),85	multitimer air track system
AJP 55(11),1050	multiphotogate timer system
AJP 50(4),381	air track multitimer
AJP 54(10),894	ultrasonic ranging module interface
AJP 55(7),658	two glider ultrasonic ranging
TPT 28(6)423	corner reflectors with sonic detect
AJP 45(8),711	air track Doppler radar
AJP 35(2),159	air track Doppler radar
AJP 44(9),879	air track ultrasonic Doppler
AJP 53(1),86	air track glider position
AJP 50(1),84	induction transducer position sensor
AJP 41(3),419	air track induction speedometer
AJP 43(4),375	air track inductive recorder
AJP 37(3),327	air track timer
AJP 36(1),61	y-t air track recorder
Sut, S-67	Sources of Sound point source of sound
Mei, 19-4.16	noise generators
AJP 50(7),669	photoacoustic generator
Hil, O-7k	acoustical radiator
AJP 42(9). 780	edge tone generator

9B10.30 Circuit diagram for interfacing scalers to photocell timers.
9B10.30 Gate a multivibrator to a scaler.
9B10.30 Gate a tuning fork oscillator to a scaler.
9B10.31 A photodiode gate for the Beckman-Berkeley electronic timer.
9B10.32 Light activated gating of a 555 timer running at 100 kHz .
9B10.40 Abstract from the 1981 apparatus competition of a 1 ms timer with 2.8 in high digits.
9B10.45 A photo transistor adaptor to control stopclocks, digital stopwatches, and digital timers.
9B10.50 Circuit for a timer using a photocell that keeps track of the total time and the number of cycles.
9B10.60 Modify a four function pocket calculator to function as a pulse counter.
$9 B 15.00$
9B15.10 Motors, plotters, electronics, etc. to show simultaneous correlation between actual displacement, velocity, and acceleration. Diagrams and pictures.

9B15.11 Reflect a beam across an air track many times and record the output of a audioamp.
9B15.12 A capacitor is charged while a light beam is blocked.
9B15.13 A circuit that interfaces five digital stop watches to five gates on the air track.
9B15.14 Mechanical gates instead of photogates control relays which in turn can control something else.
9B15.15 Twenty optical sensors with an Apple computer interface are attached to a model race track to give successive time intervals.
9B15.15 Forty-six permanently mounted emitter-detector pairs are interfaced to a computer.
9B15.16 Photoelectric sensors combined with solid state memories store a sequence of time intervals which are then transferred to a digital display.
9B15.16 A multiprocessor based multiphotogate array system that allows the time interval between any set of gates to be displayed by selecting from a keyboard.
9B15.16 As the air glider passes along a tape with holes, a light beam is transmitted to a photodetector. A circuit is given to store and read out the timing information.
9B15.20 Interface the TI sonar ranging module to an Apple II through the game port.
9B15.21 Modification of the Western and Crummett system (AJP 54,894) to accommodate two gliders.
9B15.22 Simple corner reflectors eliminate alignment problems with reflectors.
9B15.28 A homodyne Doppler velocimeter with two parallel explanations.
9B15.28 Use X-band radar for air track velocity measurements.
9B15.29 Ultrasonic Doppler shift measurement of the velocity of an air track glider.
9B15.30 Ferrite magnets on the air track glider pass by a wire bent into a square wave and the induced pulses are shaped and then recorded by a microcomputer.

9B15.31 A triangular shaped coil is used in an induction system.
9B15.32 Magnets mounted on the air glider pass on both sides of a long squarewave shaped copper wire that goes to an amplifier and oscilloscope.

9B15.35 A container of fine iron particles in suspension on the glider moves past microphones attached to a tape recorder.
9B15.40 Circuit for a timer that reads out a voltage proportional to the speed of an object.
9B15.50 A roll of spark paper is used to obtain y-t records of an air track.
$9 B 17.00$
9B17.10 A mechanical apparatus coupled to a resonator to produce a point source of sound.
9B17.20 Sources of noise and their use in some demonstrations.
9B17.30 Chop an intense light beam illuminating a sealed blackened funnel.
9B17.30 Four speakers at one end of a glass lined box make a 5-10 KHz acoustical radiator. Reference: AJP 17(12),581.
9B17.40 Produce tones by blowing air by a wedge.

Demonstration Bibliography	
Sut, S-58	high pitched whistle
Sut, S-60	directional sound source
	Sound Detectors
Sut, S-75	microphones
Sut, S-76	manometric flames
Hil, S-3e	manometric capsule
Mei, 17-7.4	sensitive flame
Sut, S-71	sensitive flames
Sut, S-70	sensitive flames
Sut, S-69	sensitive flame
Sut, S-72	sensitive flames
Sut, S-73	Sensitive liquid jet
Mei, 19-9.1	sound amplification with water
Sut, S-74	sensitive liquid jet
Sut, S-78	phonodeik
Sut, S-77	phonodeik
AJP 56(7),665 AJP 32(11),xxiv	Circuits/Components/Inst. displacement transducer seismometer
AJP 35(3),xxii	electrometer display
AJP 34(3),xxix	inexpensive electrometer amplifier
AJP 40(4),623	electrometer circuit
AJP 36(10),969	vacuum tube electrometer
AJP 28(7),xiii	electrometer circuit
AJP 44(10),1016	picoammeter
AJP 34(7),vii	versatile test instrument
TPT 3(5),226	calibrating meters
TPT 3(2),77	meter tester
AJP 33(8),603	inexpensive student potentiometer
AJP 35(10),xi	null indicator circuit
AJP 35(7), iii	meter guard
AJP 42(2),108	strain gauge
AJP 52(1),86	precision voltage reference
AJP 34(12),xvi	use mototcycle batteries
AJP 30(6),vi	infrared detector
AJP 44(2),188	LED photometer
AJP 46(10),1079	photodiode photometer
AJP 42(1),77	fringe intensity photometer
AJP 28(6),563	optical tachometer
AJP 41(7),931	photointerrupt module
AJP 42(4),342	solid state photometer
AJP 57(10),840	Pasco photogate evaluation

9B17.90 Directions for making a high pitched whistle. Diagram.
9B17.91 Directions for constructing a directional sound source using a high pitched whistle. Diagram.
9B18.00
9B18.10 Connecting a carbon-granule microphone to a tube amplifier.
9B18.20 A rubber diaphragm in a device (diagram) controls flame height which is viewed in a rotating mirror.
9B18.20 A sensitive flame is viewed with a rotating mirror.
9B18.30 Noise changes a high-calm flame to the turbulent state. Leybold No. 41197.
9B18.30 Hold copper gauze above a jet and light.
9B18.30 A hood for a ordinary Bunsen burner (Diagram) that will produce a flame sensitive to sound.
9B18.30 A flame lit at the end of a glass tube drawn into a fine tip can be tuned to be very sensitive to sound.
9B18.30 A Bunsen burner with air holes covered and gas pressure reduced becomes sensitive to sound.
9B18.35 Make a sensitive jet in an aquarium to show conclusively that the jet and not the flame is sensitive.
9B18.36 A tuning fork coupled to a steady water stream breaks it up and the drops fall on a drum head.
9B18.36 Place a tuning fork against a nozzle and let the drops hit a drumhead. Couple the drumhead to the nozzle with a rod for self sustaining oscillations.

9B18.40 Diagrams of four phonodeiks and one phonelescope. All the devices are acoustic oscillographs using a diaphragm to move a small mirror.
9B18.40 Cement a small mirror on a rubber diaphragm on one end of a tube. Reflect light off a rotating mirror to the small mirror onto a screen.
9B20.00
9B20.10 An optical wedge made with a strip of 35 mm slide film.
9B20.11 A ceramic phonograph pick-up modified to be a seismometer, drives a oscilloscope directly.
9B20.13 Use the recorder output of an electrometer to drive a projection meter or lecture table meter.
Circuit for an inexpensive transistor electrometer amplifier.
9B20.13 A solid state electrometer circuit.
9B20.13 Circuit for an inexpensive vacuum tube electrometer.
9B20.13 A three tube circuit to extend the range of a RCA Ultra-Sensitive DC Microammeter (Model WV-84A).
9B20.14 Circuit for a simple picoammeter with adjustable input potential.
9B20.20 A circuit for a mercury pulser, sliding pulsar, and stable potentiometer.
9B20.20 Improves on TPT 3(2),78 (1965). Ammeter range switch and ohmmeter zero adjustment.
9B20.20 A tester to determine full scale current and internal resistance.
9B20.21 A 0.1% student potentiometer and calibration source made from off the shelf parts.
9B20.21 Add a battery and current limiting resistor to a bridge / microammeter null indicator.
9B20.21 Protect your meter movements.
9B20.23 Apparatus competition merit award looks like the precursor of the PASCO product.
9B20.25 Use a precision voltage reference built with an LM399 for use as a Wheatstone bridge reference.
9B20.28 Motorcycle batteries are a convenient size.
9B20.30 Data for the Block Associates KH-51 indium antimonide photoconductive infrared detector.
9B20.30 A circuit for using an LED as a light detector.
9B20.30 A photodiode photometer based on the PIN-125 photodiode and 741 opamp.
9B20.30 Mount a photocell on a traveling microscope stage.
9B20.30 Simple photodiode circuit detects black and white sides of a spinning top.
9B20.30 On using the GE A13A1 photointerrupt module.
9B20.30 A high sensitivity solid state photometer based on the MRD 14B photo Darlington and ULN 2157 op amp.
9B20.30 Thorough evaluation of the Pasco photogate.

9B20.30 Black and white painted surfaces give directly an absolute determination of the solar irradiance.
9B20.30 Make a photometer out of a meter and photosensitive resistance cell.
9B20.30 Use a photodiode in conjunction with a X-Y recorder to make a direct reading photodensitometer.
9B20.30 A selenium photocell hooked to a microammeter will give the reference to object beam ratio.
9B20.30 Simple photometer for measuring small light intensities over small areas. Suitable for single and multiple slit experiments.
9B20.30 A new accurate power meter based on new 100\% efficient silicon photodiodes
9B20.30 Counting photons, here for the optical barrier penetration experiment, with a liquid N2 cooled photomultiplier (1P21).
9B20.30 A photoresistor with a LED that lights when a preset level is exceeded. Use neutral density filters to vary range.
9B20.30 "Photran" light switch from Solid State Products. (1961)
9B20.30 Using the recently developed electron multiplier photocell. Picture.
9B20.35 A transistor switch in series with a DC supply is used as a audio amplifier where waveform requirements are not stringent.
9B20.35 Simple three transistor V to F converter.
9B20.35 Make a low noise, high input impedance opamp with transistors. Circuit given.
9B20.35 A mouse trap triggering a rat trap is a mechanical model of a two stage amplifier.
9B20.35 Circuit diagram for a multistage tube amplifier.
9B20.40 Control the temperature of small systems to 0.2 C using a photoresistor in the light beam of a galvanometer.
9B20.40 Use ordinary glass instead of a carbon glass thermistor to construct a inexpensive resistance thermometer.
9B20.40 A circuit for a wide range temperature controller for solid samples.
9B20.40 Millidegree temperature control in a double oven chamber.
9B20.40 Announcement of a bead type "Veco" thermistor good down to liquid nitrogen temperatures.
9B20.40 National Semiconductor LM34/35 temperature sensors have $10 \mathrm{mV} / \mathrm{deg}$ outputs.
9B20.40 A digital thermometer based on the AD590 and A/D converter with 6 digit LED driver.
9B20.40 Millidegree temperature controller.
9B20.40 A low cost differential thermostat developed for use in solar energy control.
9B20.40 Circuit for a simple diode (1N 5179) radiometer.
9B20.45 Circuit for a strain gauge bridge, used here to measure the deformation of a brass ring.
9B20.45 On the utility of inexpensive piezoelectric type phono cartridges as displacement transducers.
9B20.50 A short note on the Motorola MPX100 pressure transducer.
9B20.51 The thickness of an optically dense dye between two anvils is measured electroptically.
9B20.55 A humidity sensor that changes resistance with humidity.
9 B 20.55 The change of conductivity of silica gel is used to measure humidity.
9B20.65 The simplest probe is to blow on a meter stick which frosts up to the level of the LN2. Also, a thermocouple on a rod connected to a microammeter or millivoltmeter is inserted until the meter deflects.
$9 B 20.65$ A circuit monitors LN2 levels in a dewar.
9B20.66 An optoswitch detects the ball in an inline ball flow indicator.
9B20.70 Make a coil of 3500 turns of No. 16 wire. Data.
9B20.70 High Q inductors from United Transformer Corp. are useful in demonstrating resonance at power line frequencies.
9B20.70 Focus coils from old TV sets or field coils from old speakers are convenient due to large opening and can usually be connected directly to 120 V AC.

9B20.70 Directions for winding coils for use with 10 V DC.
9B20.70 Use Scotch tape between layers if you are trying to wind a transformer without a winder.
9B20.71 Transformer windings are used for the core of an electromagnet.

9B20.75 A catalog describing design features and operating characteristics.
9B20.75 On using photocells to turn things on. Diagram.
9B20.75 On using photocells for sensitive control. Diagram.
9B20.80 Electric and magnetic field probes where the strengths are presented audibly. Circuit diagrams.
9B20.80 Using integrated circuit Hall effect transducers.
9B20.80 Using the Microswitch 91SS12-2 Hall effect sensor.
9B20.90 A circuit starts with a VFC, ends with a counter.
9B20.90 A very simple lamp, photocell, opamp circuit to demonstrate negative feedback.
9B20.90 An electronic analog of a resistively shunted Josephson junction.
9B20.90 A circuit provides a output composed of both fast (20 sec) and slow (100 sec) time constants.
9B20.90 A circuit provides both RC integrating and differentiating circuits with 1 KHz square wave input.
9B20.92 An LED on each pin shows the logic state of integrated circuits.
9B20.92 A circuit for a simple universal logic state checker.
9B20.95 Make a breakout box with a standard duplex receptacle to banana plugs.
9B20.99 A circuit for a four digit LED display with 24 LEDs in each digit.
9 B 30.00
9B30.10 A tube with a resonant RLC circuit oscillating in the audio range. A bank of capacitors with separate keys makes an organ. Diagram.
9B30.10 A tube era audio oscillator. Circuit.
9B30.11 Schematic for a thyatron noise source. Listen and show white noise on a scope, insert a tunable adjustable width resonant circuit and show sinusoid as Q increases, some interference demonstrations.
9B30.12 A five component TTL square wave generator with a range of 0.1 to 50 kHz .
9B30.13 A simple ten step waveform digitizer made from three chips.
9B30.14 Modify the audio oscillator in A27 to be a damped oscillator that sounds like a plucked string.
9B30.15 This circuit gates bursts of periodic signals to simulate Fourier analysis of a single pulse on a wave analyzer.
9B30.16 An op-amp based harmonic oscillator capable of demonstrating the interaction between the initial transient and steady-state motion.
9B30.17 A frequency scanning device and output coupler for use with the HP 300A wave analyzer. Circuits given.
9B30.20 A mirror on a pendulum directs light onto a photovoltaic cell giving a oscillating output.
9B30.20 Circuit for a . 25 to 2.5 Hz oscillator based on the Intersil 8038 IC.
9B30.20 Mechanically rotate a Polaroid between a light source and photodetector pickup covered with another Polaroid
9B30.20 A tube circuit for generating very low frequency sine waves for AC circuit demos. Diagram.
9B30.20 Plates connected to a 12 V battery rotating in a salt water bath give AC at the frequency of rotation for use with slow circuits. Diagram.
9B30.20 A slow oscillator made from two turntables.
9B30.30 A single tube RC phase shift oscillator. Diagram.
9B30.40 A circuit for generating high frequency damped oscillations by spark discharge with parallel resistance.
9B30.40 Directions for making a 10 MHz oscillator.
9B30.40 Using "modern" tubes to generate UHF oscillations.
9B30.40 The plate of the oscillator in A-36 is modulated at an audio frequency. Diagram.
9B30.40 A circuit for generating high frequency damped oscillations by spark discharge and a series resonant circuit.
9B37.00
9B37.10 A simple circuit to convert a black and white TV set into a multiple trace oscilloscope.
9B37.10 Large oscilloscopes on the market in 1960 and reference to plans for constructing one by Harold Jensen.
9B37.10 Use the Welch demonstration oscilloscope as a slave to a high quality oscilloscope with vertical and horizontal outputs.
9B37.10 A 12" oscilloscope. Picture, Details in appendix, p.1337.

Demonstration	bliography
AJP 32(4),xvi	project oscilloscope traces
AJP 48(4),318	oscilloscope trigger
AJP 51(3),283	tektronix 503 power transformer repair
	Advanced Instruments
AJP 29(7),iii	GM scaler
AJP 53(8),793	single-channel pulse height analyzer
AJP 52(10),890	time to amplitude converter
AJP 29(9),xvii	mercury-relay pulse generator
AJP 28(6),559	rate meter circuit
AJP 36(9),920	scintillation preamp and power supply
AJP 43(11),1017	multichannel analyzers in the lab
AJP 55(12),1150	RF null detector
Sut, A-34	radios
Sut, A-33	wavemeter
AJP 29(7),451	NMR apparatus
AJP 29(8),492	electron paramagnetic resonance
AJP 43(5),465	ballistic galvanometer
AJP 29(7),445	small X-ray tube
AJP 43(2),194	make an X-ray tube
AJP 45(1),104	light bulb X-ray tube
Sut, A-102	X -ray tubes and equipment
AJP 42(2),169	plasma device
AJP 43(3),280	double plasma machine
AJP 37(9),859	droplet suspension
AJP 59(9),807	"Paul" trap - macroscopic
AJP 37(10),1013	droplet suspension
AJP 41(3),442	frequency spectrum analyzer
AJP 30(10),738	Power Supplies direct coupled amp and power supply
AJP 53(11),1116	lab power supply
AJP 42(2),158	four output power supply
AJP 44(3),301	high current supply
AJP 43(4),376	inverter
AJP 34(10),xvi	precision adjustable DC standard
AJP 38(6),769	precision voltage divider
TPT 3(7),321	surplus power supplies
AJP 35(10),xi	keeping storage cells charged
AJP 28(9),815	e/m power supply
AJP 45(5),495	e/m power supply
AJP 35(10),972	capacitor discharge switch
PIRA 1000	Light Sources eosin mister
Mei, 34-2.6	large arc lamp
AJP 33(9),xii	cool-beam projection system
Mei, 34-2.7	projection system
AJP 29(7),iii	pinlite
Mei, 34-2.2	point source of light

9B37.15 A ten inch focal length lens projects a high intensity oscilloscope pattern with magnifications up to twenty.
9B37.20 Simple circuit provides a calibrated sweep for cheap oscilloscopes.
9B37.30 Install a separate transformer if the CRT filament windings are the problem.
9B40.00
9B40.14 Review of Radiation Equipment and Accessories Corp model E-115 GM scaler and accessories. (1961)
9B40.14 A six IC single-channel pulse height analyzer.
9B40.14 A time-to amplitude circuit suitable for multichannel analyzer input.
9B40.15 Pulse generator at 60 Hz with variable decay time.
9B40.15 A four tube ratemeter circuit for standard GM negative pulses.
9B40.15 Use an RCA CA 3001 IC as a pulse preamp.
9B40.16 On the use of multichannel analyzers in the intro labs.
9B40.20 Three methods of connecting microammeters to radios as null detectors.
9B40.20 A crude radio is made by coupling an antenna to the oscillator in A-32.
9B40.20 A simple RLC wavemeter with a flashlight lamp for use with high frequencies.
9B40.30 Apparatus Drawings Project No. 18: NMR apparatus.
9B40.31 Apparatus Drawings Project No. 19: Simple lab apparatus for investigating EPR.
9B40.35 Plans for a simple ballistic magnetometer.
9B40.40 Apparatus Drawings Project No. 17: Small X-ray tube 28 kv.
9B40.40 Convert a Liebig distillation condenser into an X-ray tube.
9B40.40 Convert an ordinary showcase light bulb into an X-ray tube.
9B40.40 A discussion of X-ray tubes.
9B40.45 A device to produce a large, quiet, uniform plasma for senior laboratory.
9B40.45 A double plasma machine constructed from "throw-away" items.
9B40.50 A small chamber where a nonuniform AC field provides three dimensional containment.
9B40.50 A simplified "Paul" trap to demonstrate trapping of dust particles in a AC electric quadrupole field.
9B40.50 Same as AJP 37(9),859: A small chamber where a nonuniform AC field provides containment. Circuits and drawings.
9B40.60 Two four quadrant multiplier integrated circuits (MG 1594L) are the basis of a frequency spectrum analyzer.

9B50.00

9B50.01 Apparatus Drawings Project No. 30A: Power supply with built in direct coupled amplifier (tube based).
9B50.10 A circuit for a low cost 0 to $28 \mathrm{~V}, 0.5$ A power supply.
9B50.11 Schematic for a four output, single transformer, DC power supply using IC regulators.
9B50.12 Circuit for a 28 V DC 20 Amp power supply.
9B50.15 Schematic for a 12 V DC to 115 V AC converter.
9B50.20 Team a Kelvin-Varley voltage divider with a constant voltage supply to obtain a precision adjustable DC voltage standard.
9B50.25 An inexpensive variation of the Kelvin-Varley divider has constant input impedance for all values of the voltage ratio.
9B50.30 Replace selenium rectifiers, use 400 cycle inverters with the 400 cycle aircraft equipment.
9B50.35 Plug all storage cells into a charger on a timer that comes on for two hours every night at midnight.
9B50.40 Power supply circuit for coils, tube.
9B50.40 Independently regulated heater, focus, and plate supplies.
9B50.99 Operate a gas pulse switch "backwards".
9B60.00
$9 B 60.10$
9B60.10 Use a movie theater arc lamp.
9B60.20 The GE PAR 56/2NSP cool beam lamp has a dichroic reflector and 6 1/2" diameter.
9B60.20 Add for the 300W GE PAR 56/2NSP narrow spot cool beam Lamp. Picture.
$9 B 60.22$ 1/64" dia x 1/16" incandescent lamp from Kay Electric Company.
9B60.22 Add for the Osram HBO-109 high pressure mercury vapor lamp.

Demonstration	Bibliography
AJP 48(5),418	LED point source
AJP 45(1),106	LED point source
AJP 54(10),952	crossed gratings diverging beams
AJP 49(1),91	single grating - parallel beams
AJP 33(6), ,	strobe for hall displays
Mei, 7-2.5	motion study stroboscope
Sut, L-2	incandesent lamps
AJP 29(3),xxvi	straight line filament lamps
Mei, 34-2.5	straight line filament
AJP 39(4),454	ripple free sources
Sut, L-4	sodium and mercury vapor lamps
AJP 52(8),762	sodium lamps
AJP 44(12),1227	sodium street lamps
AJP 47(2),197	sodium source
AJP 28(9),ix	cesium vapor lamp
AJP 29(6),371	mercury source
AJP 43(10),927	monochromatic mercury source
AJP 29(12),856	hydrogen lamp
AJP 28(6),xi	atomic hydrogen lamp
AJP 28(6),xi	Hg point source
TPT 2(6),281	mercury arc
AJP 35(11),ix	electrodeless discharge tubes
AJP 36(2), x	improves gas discharge tube
AJP 43(12),1111	Fe -Ne source
AJP 30(2),127	blackbody source
Sut, L-3	glow lamps
AJP 28(6),xii	strobe flashtube
AJP 43(8),747	blinky calibration
AJP 29(11),787	optical bench source
AJP 38(1),43	resource letter of radiometry
F\&A, Ob-8	Light Paths Made Visible optical disc
Sut, L-6	optical disc
Hil, O-4b	optical disc
AJP 36(12),1170	blackboard optics
D\&R, O-007	blackboard optics
Sut, L-9	smoke box
D\&R, O-035	smoke box
TPT 28(6),420	bee smoker
AJP 48(4),320	beam splitting device
AJP 49(12),1185	conical beam in smoke box
Sut, L-10	chalk dust
D\&R, O-035	chalk dust
Sprott, 6.2	chalk dust
AJP 43(1),92	laser mount for optics
AJP 41(4),549	Gaussian beam

9B60.23 Cut the lens off an LED and use as a point source for generating a columinated light beam.
9B60.23 Use an LED in inverse square law experiments.
9B60.25 Use a laser and crossed gratings to generate a pattern of diverging beams, collimated if needed, for optics demonstrations in a smoke box.
9B60.26 Pass a laser beam through a grating, then collimate the diverging beams with a lens to obtain parallel beams for optics demonstrations.
9B60.30 A circuit to vary the rate of a neon strobe.
9B60.30 Fan blades chop a beam from a masked lamp. Diagram.
9B60.50 Line filaments, point sources, photofloods, 7/16" brass tube lamp holder.
9B60.55 Chicago Miniature Lamp Works makes three way spring suspension lamps that retain straight axial filament position.
9B60.55 A standard showcase lamp is a good line source.
9B60.59 After starting, switch spectral sources to DC from batteries.
9B60.60 Sodium vapor lamp was new in the thirties, Mercury has UV, reference for constructing other glass lamps: Rev.Sci.Inst.,3,7,1932.
9B60.61 The Norelco SOX-35 and SOX-18 low pressure sodium lamps.
9B60.62 The GE Lucalux LU250/BD lamp.
9B60.62 Low pressure sodium street lamps are discussed. Neon carrier, increased brightness, broader lines.
9B60.63 The Westinghouse CL-2 lamp has two strong lines at 8521 and 8944 A . Can be modulated at 10 KHz .
9B60.65 Use a small germicidal ozone lamp in series with a ballast.
9B60.65 Use a medium pressure Hg arc (GE H-100-A4/t3) lamp and an interference filter.
9B60.65 Review of the Hassler hydrogen lamp.
9B60.65 Announcement of the Hassler 75 W 500 hr. Balmer series lamp.
9B60.65 Announcement of the Osram HBO-109 high pressure mercury arc lamp.
9B60.65 Directions for making a mercury arc that runs off 110 V DC.
9B60.66 Excite electrodeless discharge tubes with a microwave generator.
9B60.67 A procedure for making fluorescent screens for discharge tubes.
9B60.68 The Westinghouse WL-22810A Fe-Ne lamp is a good standard wavelength source for spectroscopy.
9B60.69 Apparatus Drawings Project No. 24: A platinum wedge that can be used a blackbody or non-blackbody source. Temperatures to 1500 K .
9B60.70 Glow lamps with standard medium base are used as polarity indicators on direct current, dim strobe flashers at twice AC frequency. Argon lamp has some UV.
9B60.80 Inexpensive GE FT-30 flashtube is suitable for stroboscopic operation.
9B60.80 Calibrate a blinky with a photocell to scaler.
9B60.90 A Nite Lite makes an inexpensive extended optical bench source.
9B60.99 A resource letter reprinted from "Journal of the Optical Society of America" lists general references.
9B61.00
9B61.20 A ground glass disc makes rays of light more visible and has provision to mount various optical elements.
9B61.20 A description of the optical disc.
9B61.20 Many optical demonstrations can be shown with the optical disc.
9B61.25 Several suggestions to improve the Klinger blackboard optics system.
9B61.25 The Klinger blackboard optics system
9B61.30 A large glass fronted black box filled with smoke or ammonium chloride (A-5) fumes.
9B61.30 A box with acrylic or glass front is filled with smoke.
9B61.31 Bee smokers produce a large amount of smoke from one wadded paper towel. 1-800-Beeswax.
9B61.32 Use a stack of microscope slides to obtain parallel, convergent, and divergent sets of beams.
9B61.33 A mirror set at a small angle on the end of a rotating shaft is used to produce a reflected conical beam.
9B61.35 Clap dusty chalkboard erasers together.
9B61.35 Laser beam made visible with chalk dust.
9B61.35 Chalk dust or a smoke generator is used to make a laser beam visible.
9B61.36 A mount for a laser permits either transverse or rotational movement of the beam.
9B61.38 A rotating device with two offset lenses generates a ray envelope from a laser beam that simulates a Gaussian beam.

Demonstratio	Bibliography
Sut, L-8	gauze screen
AJP 30(12),929	tracing paper screen
AJP 33(11),970	optical tank
Sut, L-7	optical tank
TPT 2(6),278	ink paths on the overhead
TPT 2(2),87	elastic string ray model
Sut, L-5	invisibility of light
	Lasers
Mei, 36-1-3	laser theory
AJP 43(12),1057	laser modes display
AJP 50(1),90	laser transverse modes
AJP, 50 (1), 90	laser transverse modes
AJP, 50 (10), 936	laser modes display
AJP 49(9),891	polarization and intensity fluctuations
AJP 59(8),757	laser polarization simplified
AJP 49(10),915	laser resource letter
AJP 49(9),915	laser resource letter
AJP 42(11),1006	laser safety
Mei, 36-8	laser safety
AJP 34(10),989	inexpensive CO 2 gas laser
AJP 35(8),776	CO2 laser power increase
AJP 38(6),777	chemical detector for CO2 laser
AJP 38(5),655	inexpensive nitrogen laser
Sprott, 6.2	wavelengths of a HeNe laser
AJP 33(3),225	HeNe laser construction
AJP 37(3),276	construction of HeNe lasers
AJP 38(10),1250	inexpensive RF HeNe laser
AJP 44(12),1172	N2 laser
AJP 35(6),ix	uranium hydrite getter
AJP 35(8), v	correction - uranium hydride getter
AJP 45(11),1118	laser alignment
AJP 32(5),355	optics of the laser beam
AJP 35(5), x	plasma tube mirror alignment
AJP 45(1),107	HeNe laser rejunevation
AJP 45(8),778	reconditioning HeNe tubes
AJP 45(11),1127	laser communication
AJP 47(3),282	laser communication system
AJP 38(7),926	transmitting sound with laser
AJP 44(1),111	laser communication apparatus
TPT 28(8),560	laser eavesdropping
Sut, A-99	transmission of sound by light Microwave Apparatus
AJP 35(8),761	microwave system
D\&R, O-030	microwave system
AJP 32(4),xv	microwave absorber
AJP 39(1),120	supports for microwave studies

Equipment

9B61.40 White threads are stretched 2-3 mm apart on a 2×4 ' frame.
9B61.41 Use tracing paper on embroidery frames.
9B61.50 Fluorescein in an aquarium, aerosol generator.
9B61.50 A $3 \times 3 \times 36$ " water tank with some fluorescein added. Many demos mentioned.
9B61.61 Ink dipped balls are rolled down chutes at various barriers shaped like optical elements. The incident and reflected paths are traced out.
9B61.66 Elastic strings don't sag like regular string when used in three dimensional ray models.
9B61.71 Light passing through a glass fronted black box is not visible until a white card is placed inside.
$9 B 62.00$
9B62.10 Introduction to lasers.
9B62.11 Use a Fabry-Perot etalon to display both longitudinal and transverse modes.
9B62.11 Observe the transverse modes of a laser by shining a beam through a defunct laser tube to a screen a meter away.
9B62.11 Observe the transverse modes of a laser by shining a beam through a defunct laser tube to a screen a meter away.
9B62.11 An experiment where switching between axial modes during laser start up is used in the correlation of changes in the tube temperature, cavity length, and output polarization.
9B62.12 Lasers show large intensity fluctuations when externally polarized and so do some internally polarized lasers.
9B62.13 Find the angle to set the polarizer that gives constant intensity. Directions.
9B62.15 Here's the source of all laser information pre 1980.
9B62.15 Here's where to go for laser information.
9B62.20 An article on laser safety and the status of federal regulations (1974).
9B62.20 Don't look into a laser.
9B62.30 Plans for an inexpensive CO2 gas laser.
9B62.30 Power is increased by lengthening the tube and introducing a cooling system.
9B62.30 A filter paper soaked in a cobalt chloride and ammonium chloride solution turns blue where the beam strikes.
9B62.33 Directions for constructing a small pulsed ultraviolet nitrogen laser.
9B62.34 The light from a HeNe laser tube is observed through a diffraction grating. Many colors are observed.
9B62.35 Design of a 60 cm confocal resonator laser.
9B62.35 The general procedures for designing a HeNe laser.
9B62.35 Directions for making an inexpensive 3.39 micron RF excited HeNe laser.
9B62.36 Design and construction of a low cost N2 pulsed laser.
9B62.38 A method for preparing uranium hydrite inside a noble gas laser.
9B62.38 There are several errors in the description of the preparation of a getter from metallic uranium.
9B62.40 Use a square aperture to align two beams with no rotation.
9B62.40 Some optics.
9B62.40 A method for aligning mirrors on plasma tubes with respect to the tube, not each other.
9B62.50 A HeNe laser was operated in a helium environment for a day and began to lase again.
9B62.50 Reactivate the getter.
9B62.60 Bounce a laser beam off a earphone driven mirror.
9B62.60 Shine a laser through an ultrasonic light modulator.
9B62.60 Use an audio transformer in series with the cathode side of the laser power supply.
9B62.60 Modulate a laser beam by passing it through a small plastic strip attached to an earphone.
9B62.60 Development of a crude laser eavesdropping system during a student project.
9B62.60 Sound-light demonstrations with a commercial photocell.
9B65.00
9B65.10 Description of a low cost x band system for research and demonstration.
9B65.10 The Welch 3 cm system.
9B65.13 A bag of charcoal absorbs microwaves.
9B65.20 Styrofoam sheets with the edges outside the beam introduce no perturbations to the beam.

AJP 39(1),121	microwave probe antennas
AJP 41(10),1198	microwave coherer
Mei, 33-7.5	introduction to microwave optics
AJP 44(7),628	microwave optics with 1 cm waves
AJP 49(12),1149	microwave optics
Hil, O-7j	microwave demonstrations
Hil, O-7g	microwave optics
Hil, O-7h	microwave optics
	Computer Interface
AJP 57(6),561	IBM parallel printer port interface
AJP 59(11),998	ultrasonic ranging module
AJP 59(2),187	A to D on the IBM
AJP 48(4),317	computer - AV interface
AJP 56(10),953	Apple II paddle port ADC
AJP 51(11),1048	specialized interface
TPT 28(5),332	ADC for the Apple II
AJP 43(9),839	PDP-8 signal averager
AJP 50(2),187	multichannel analyzer -TRS-80 interface
AJP 52(6),566	TRS-80 data logger
	MECHANICAL Motors
	Pumps
	Vacuum
AJP 36(3),234	high vacuum system
Mei, 16-6.1	movable vacuum system
Sut, A-57	vacuum system
AJP 32(7),vi	vacuum lore
AJP 37(1),109	liquid nitrogen cold trap
AJP 30(8),v	Bayard-Alpert type ionization gauge
AJP 32(6),504	power supply for Penning vacuum gage
AJP 32(6),483	homemade high vacuum techniques
AJP 28(7),654	thin films of dielectrics and metals

Hil, M-21b vacuum deposition system
AJP 28(6),xii vacuum tube construction kit
AJP 29(10),xiii high vacuum epoxy joints
AJP 36(5),viii
AJP 32(4),xv
cheap vacuum fittings
AJP 31(4),xiii
AJP 35(11),ix
AJP 33(4),xxvi
vacuum apparatus
vacuum feed through
vacuum electrical feed-throughs

9B65.25 Design of microwave probe antennas for both electric and magnetic waves.
9B65.40 A coherer in series with a battery and galvanometer is much more sensitive than a spark gap or neon glow lamp.
9B65.90 General comments about use of microwaves in optics.
9B65.91 The advantages of using 1 cm wavelengths in physical optics including overhead projection techniques.
9B65.91 A 9 GHz system used in microwave versions of the Michelson interferometer, Bragg reflection, Brewster's law, and total internal reflection, Young's interference.
9B65.91 Microwave demonstrations using 420 MHz . Reference: AJP 20(5),307-8.
9B65.91 A complete set of 12 cm microwave optics.
$9 B 65.91$ A complete set of 3 cm microwave optics.
9B90.00
9B90.20 Very good discussion on using the parallel printer port.
9B90.20 Interfacing the TI module to a PC.
9B90.20 Hook up an ADC0804 to the parallel port.
9B90.30 Pick up the pulses that drive a computer's speaker and decode them for use in operating projectors, cameras, etc. Circuit given.
9B90.40 A simple single chip ADC interface to the paddle port with a little program to write the data.
9B90.40 Interface for the Nuclear Data 2200 or 555 multichannel analyzer to Apple II.
9B90.40 Construct a high quality ADC that plugs into an expansion slot.
9B90.50 A signal averager for the PDP-8.
9B90.50 Interface the LeCroy 3001 multichannel analyzer to a TRS-80.
9B90.50 Use the joystick inputs of the TRS-80 in a simple scheme for a four channel data logger.
$9 \mathrm{C00.00}$
9 C 10.00
9 C 20.00
9 C 25.00
9C25.10 Design of a high vacuum system suitable for lecture demonstration.
9C25.10 Pictures of a movable vacuum system good to high vacuum. Construction Details in the Appendix, p 610.
9C25.10 Construction of a portable high vacuum system.
9C25.15 Let in only dry gas or heat traps to 100 C to reduce water contamination.
9C25.15 Mount a styrofoam bucket on top of a minimum sized reentrant can-type trap.
9C25.20 A single device contains a titanium vapor pump that consists of a titanium filament depositing a film on the wall to act as a getter, and a Bayard-Alpert type ionization gauge.
9C25.20 Schematic diagram for a Penning vacuum gauge power supply.
9C25.20 Make experimental vacuum tubes with solder glass, mass produced headers, and multiple gettering.
Directions for making a transparent aluminum oxide film on a front surface mirror. The interference colors of the mirror and glass sides are complementary. A parallelogram frame permits demonstrating the change of color with angle of incidence. More.
9C25.26 A picture of a vacuum deposition system.
9C25.30 The Physikit 100A from Harries Microphysics contains parts to make several tubes.
9C25.40 From J. Sci. Instr. 37,203 (1960): Techniques for making successful high vacuum joints with epoxy resin.
9C25.40 Use thermoplastic polyethylene tubing and connectors with vacuum grease.
9C25.40 Standard plumbing "Flex Fittings" from Imperial-Eastman work very well as vacuum connectors.
9C25.40 Use Pyrex brand pipe and fittings for student high vacuum experiments.
9C25.41 Just use a spark plug.
9 C 25.41 High vacuum electrical lead-throughs good to 6000 V and up to $5 / 16$ in diameter conductor.

Demonstration Bibliography	
AJP 40(10),1550	vacuum electrical feed through
AJP 35(7),iv	vacuum seal
AJP 43(9),840	air Support air track flatness AJP 35(3),281 cooling air for the air track AJP 36(1),59
photograph the air track	

9C25.41 Use an automobile spark plug.
9C25.45 Use teflon tape.
9C30.00
9C30.20 A device for checking air track flatness.
9C30.25 Add a heat exchanger to cool the hot air from a vacuum cleaner source.
9C30.26 Use a stroboscopic shutter on a Polaroid camera instead of "black box" timers for air track demonstrations.
9C30.30 An air track made from 1×3 extruded aluminum tubing with discussion of gliders, etc.
9C30.30 Centralized blowers and spark timers.
9C30.30 Enlarge the holes with a No. 57 drill.
9C30.30 A picture of an air track mounted on a mobile cart containing all the accessories.
9C30.30 Make air tracks out of standard 2" square extruded aluminum tubing.
9C30.30 Three air tracks are carefully combined into one 8.3 m track for a hall display.
9C30.30 Mount the air track on a table with castors. See AJP 36(3),x.
9C30.31 Long article on a linear air trough.
9C30.35 Back the spring with a post so it doesn't go beyond the elastic limit.
9C30.37 Magnet configurations used to couple air gliders at a distance.
9C30.40 Two minor modifications to the air suspended pucks of Apparatus Drawings Project No. 10.
9C30.40 In contrast to AJP 32,306,(1964), experimental gas layer thickness is within 3% of theory.
9C30.40 An approximate solution of the Navier-Stokes equation for flow from the center of the puck.
9C30.40 Drill 1/4" holes in the bottom puck and a second will float on top.
9C30.40 A cylindrical puck with internal dry ice compartment.
9C30.40 Apparatus Drawings Project No. 10: Designs for air suspended pucks, both external and internal supplies.
9C30.40 Make a nonwarping plastic base for dry ice pucks.
9C30.40 A criterion for a stable design of CO2 supported pucks is developed.
9C30.40 A plastic puck with a convex surface floated 60 ft . and stops when the speed drops below a critical value.
9C30.40 How to make several different types of air supported pucks.
9C30.41 A bifilar pendulum hits the puck.
9C30.45 Several modifications to the AJP 35 (1967) 2'x2' air table.
9C30.45 A center bearing which allows the cord to pass through the center of the table.
9C30.45 An inexpensive air table made of a Masonite matboard lamination.
9C30.45 Photographing a grid pattern before or after the experiment.
9C30.45 Describing construction of the first air table, 18"x35".
9C30.46 A launcher and transparent air table for the overhead projector.
9C30.46 Directions for making an air table for the overhead projector.
9C30.50 Mold technique for making air gyro seats.
9C30.50 Announcement of the Ealing air bearing pulley.
9C35.00
9C35.01 A study of the profiles of waves for different water depths.
9C35.01 The ripple tank.
9C35.10 Hints on building ripple tanks. Diagrams and pictures. Construction details in appendix, p. 626.
9C35.10 Ripple tank construction hints. Picture.
9C35.10 A mobile ripple tank illuminated by a strobe with air powered wave makers. Picture. Construction details in appendix, p. 631.
9C35.10 A long discussion on ripple tanks.
9C35.11 Design of a ripple tank for use on the overhead projector.
9C35.20 A ripple tank driver is make from a loudspeaker.
9C35.20 Convert a household electric scissors into a variable speed oscillator.
9C35.20 Water climbs a highly charged wire (5000-10,000 V AC) touching the surface.
9C35.20 Mount a two tooth comb in an electric toothbrush.
9C35.20 Simple plane waves of different frequencies on the ripple tank.
9C35.21 A 60 Hz reed frequency meter is observed with a strobe to show phase differences.
9C35.22 Use a loudspeaker to drive the ripple tank dippers.

Equipment

9C35.23 A layer of aniline under an equal layer of water gives waves that travel at 5 $\mathrm{cm} / \mathrm{sec}$. Discusses a few of the problems associated with aniline.
9C35.30 Advice on adding a sectored disk strobe to your ripple tank.
9 C 40.00
9C40.05 A SHM driver can be made from a old truck flywheel on bearings attached to a crank.
9C40.05 Commercial motor driven mechanical vibrators are available.
9C40.05 A heavy pendulum on a knife edge can be used to generate horizontal motion of periods from 1 to 10 seconds.
9C40.05 A vibrator of fixed period is made from a clock motor.
9C40.05 An apparatus for many demonstrations in mechanical resonance.
9C40.10 Eighteen demonstrations of the "string and sticky tape" style that use a cheese dish.
9C40.15 Small hollow glass bubbles ranging from 10 to 270 microns.
9C40.15 Use floats for steam traps in electrostatics demos. Available from $11 / 2^{\prime \prime}$ to $6^{\prime \prime}$ diameter.
9C40.15 Sources for plastic balls, hemispheres, and styrofoam balls (1961).
9C40.15 A source of hollow stainless balls from $5 / 8$ " to 10 " diameter.
9C40.17 Use ordinary white paper and heat shrink tubing.
9C40.17 Stranded tungsten wire from GE for use in vacuum metalizing.
9C40.19 Use a teflon plug at the end of a spinning tool.
9C40.19 Form a good corrosion resistant surface by heating to 299 C and quenching in mineral oil.
9C40.20 Constant torque devices for providing constant tension to strings and cords in recording instruments.
9C40.20 Wind springs from \#22 piano wire 1 cm diameter, $5-6 \mathrm{~cm}$ long for spring constants about $100,000 \mathrm{dyn} / \mathrm{cm}$. Source: Hunter Springs, also make constant force springs.
9C40.20 The masses don't fall off this mass hanger.
9C40.20 How to make small hooked weights out of lead.
9C40.21 Store a Slinky around a \#6 dry cell.
9C40.22 Graphite cloth heating elements can release $1 \mathrm{Kw} / \mathrm{sq}$ in. Sources for the cloth and furnaces.
9C40.23 A thin walled cellular ceramic from Corning Glass that withstands 1000 C and great thermal shock.
9C40.23 This sleeving is suitable for insulating wires in high vacuum systems.
9C40.24 To soft solder a tungsten wire, first properly tin it.
9C40.24 A method for coating tungsten, molybdenum, and tantalum with brazing metal before soldering with rosin core solder.
9C40.25 A method for joining the ends of vinyl or Tygon tubing to make endless belts.
9C40.25 Add a pushbutton switch on the side of the probe.
9C40.25 Make an endless belt of mylar by stretching a cut circle. Also, splicing various polymers.
9C40.26 Insulating tubing that shrinks on heating.
9C40.26 Describes thinwall teflon tubing.
9C40.28 Source of fasteners made from nylon 6, a special cold flow plastic.
9C40.30 Quarter inch flexible magnet supports $40 \mathrm{~g} / \mathrm{inch}$.
$9 C 40.30$ Source of ceramic ring magnets (1961).
9C40.33 75\% gallium - 25% indium (by weight) freezes at 15.5 C and wets many semiconductor surfaces making low-resistance ohmic contact.
9C40.35 Scotch brand pressure sensitive tape for electroplating works well for masking surfaces to be etched.
9C40.35 Paint this stuff on instead of using tape.
9C40.35 Foam tape with adhesive on both sides is more compliant than double sided tape.
9C40.36 Clean steel ball bearings before using epoxy to fasten on a hook.
9C40.36 Electrically conducting epoxy announcement.
9C40.36 Recipes for sand loaded epoxy, Cab-O-Sil loaded with note about stirring to destroy thixotropic property.
9C40.36 Some data on RTV.
9C40.36 A three component Plexiglas cement, or moisten with chloroform and clamp.
9C40.36 Rez-n-glue for styrofoam. 3M EC-1368 thermosetting adhesive. 3M AF-42 can be cut to shape, clamped, and cured.
9C40.36 Silver filled epoxy cements, source and data.

De	Bibliography		$y 2015$ Equipment
AJP 29(12),xv	epoxy seals in Geiger-Muller tube construction	9C40.36	Anyone can make Geiger-Muller tubes with this simple method.
AJP 34(12),xvi	epoxy dispenser	9 C 40.36	Mix epoxy and catalyst in a disposable syringe and then dispense.
AJP 30(8),vi	white lubricating compound	9 C 40.37	A compound that lubricates to 1100 C and is a grease from -40 to 140 C .
AJP 30(1),xviii	high temperature paint	9 C 40.38	An aluminum pigment paint for use between 500 and 1000 F .
AJP 30(1),xviii	pressure sensitive paint	9 C 40.38	Pressure sensitive electrically conductive paint can be used between conducting surfaces to make pressure transducers.
AJP 30(4),xiii	spandle for glassblowing	9C40.40	A tool designed to simplify straight butt, T and V joint seals, and joining capillaries.
AJP 35(7),iv	nonwetting glass surface	9C40.40	$\mathrm{L}-45$, a silicone fluid from Union Carbide, makes glass nonwetting to aqueous solutions.
AJP 29(12),xvi	polish for acrylic and aluminum	9C40.40	X-109 polish (Chem-X Inc.) works well on plastics.
AJP 28(8), x	low radioactivity glass	9C40.40	Corning Glass has a low radioactivity glass available in early 1961.
AJP 30(2),xv	low temperature solder glasses	9 C 40.40	Some data on Schott solder glasses.
AJP 30(6),vi	fused quartz products	9C40.40	Fused quartz springs, pans, fibers, and other products are available from the Worden Laboratory (1962).
AJP 28(7),xiii	IR optical materials report	9C40.40	A report listing the optical and physical properties of fifty materials for use in IR optics.
Hil, S-3h	large glass tube cutter	9C40.40	Loop a wire around a glass tube, heat it red hot electrically, pour on cold water.
AJP 32(4),xvi	dry ice chest	9 C 40.41	Line a plywood chest with 4" of styrofoam.
AJP 34(12),xv	dry ice from fire extinguisher	9 C 40.41	Discharge a fire extinguisher into a space covered with a towel.
AJP 33(12),1090	foam liquid nitrogen container	9C40.41	Use a large foam bowl for a cheap unbreakable container.
AJP 34(3),xxx	epoxy resin leak sealant	9 C 40.45	The Varian Associates "Torr-Seal".
AJP 28(7),xiv	transparent electroconductive coating	9C40.45	Pointer to Rev.Sci.Instr.31,344(1960). Apply a thin oxide film to lead glass with a resistance of $350 \mathrm{ohms} / \mathrm{square}$, light transmittance of 75%.
AJP 31(5),362	radioactive source	9C40.50	Irradiate sodium iodate 2 hrs to get a radioisotope with a half-life of 25 min .
AJP 42(3),254	determining equivalent focal length	9C40.60	A simple string method for determining the equivalent focal length of a lens.
AJP 43(12),1111	making curved slits	9C40.60	How to make slits for a double-prism non dispersive premonochromator.
AJP 44(3),310	mobile optical table	9 C 40.60	A 3' $\times 4$ ' aluminum plate with $2^{\prime \prime}$ hole spacing.
AJP 29(4),xiv	micropositioners	9 C 40.60	There are micropositioners available for optics.
AJP 49(1),88	making high quality pinholes	9C40.60	A short discharge from a pointed to a rounded electrode through a thin metal foil produces some nice pinholes.
AJP 35(5), x	making spatial filters	9C40.60	A spark from a tesla coil makes a hole in carbon paper or thin metal foil.
AJP 40(2),294	making multilayer dielectric mirrors	9C40.60	Techniques for making multilayer mirrors tuned for HeNe laser work.
AJP 41(1),138	eyepiece illuminator	9C40.60	Construct an inexpensive Gauss eyepiece illuminator from a neon pilot light in a block of aluminum.
TPT 28(9),606	cheap laser spirograph	9C40.60	Small DC motors with front silvered mirrors mounted on the shafts are use to make a cheap spirograph.
AJP 33(6),504	poor man's optical bench	9 C 40.61	Make a cheap optical bench out of round bar stock.
AJP 29(2), x	fabricating triangular optical bench	9C40.61	A 5/8" hexagonal bar stock mounted on a $17 / 8$ " hexagonal bar stock gives a bench similar to the Zeiss design.
AJP 30(7),vi	electrothermal thermocord	9C40.64	A flexible heating cord good to 450 C at $5 \mathrm{~W} / \mathrm{inch}$.
AJP 32(4),xv	resistor oven	9 C 40.65	Hollow wire wound resistors can be used as small ovens (insert mercury thermocouple for calibration of thermocouple).
AJP 36(4), x	simple linear heating rate oven	9C40.65	Design of a small oven.
AJP 32(9),679	furnace for growing metal crystals	9C40.65	A simple furnace for growing metal crystals has produced a single crystal of aluminum 2 " in diameter and 5 " high.
AJP 32(1),xiii	low cost spot welder	9 C 40.66	Copper tongs, a six volt car battery, and some components are used to make this spot welder.
AJP 32(10),xiv	spot welder	9C40.66	Schematic for a simple condenser-discharge spot welder.
AJP 52(5),468	interograph for integrals and areas	9C40.70	An interograph that produces both definite and indefinite integrals.
AJP 28(8), x	gauge blocks	9C40.70	Different nonstandard uses of gauge blocks, including feeling the attraction between two.
AJP 56(9),857	profilometer	9C40.70	A shop drawing of a profilometer that is inexpensive, accurate, and can be computer interfaced.
AJP 40(11),1706	cheap lab jack	9 C 40.80	Modify a scissors type axle jack by adding metal plates top and bottom.
AJP 37(4),456	adjustable platform	9 C 40.80	A simple adjustable platform that rides on two vertical rods.
AJP 36(2),ix	pressure cell - 350 bar	9 C 40.81	Draw up some epoxy into a 0.05 ml Microliter syringe to seal the bottom and lubricate the plunger with light vacuum oil.

MECHANICS	. 35 earth moon system
1A Measurments	. 50 air track pendulum glider
10 Basic Units	. 55 air track inchworm
. 10 basic unit set	50 Central Forces
. 361 "nsec"	. 15 arrow on a disc
. 38 body units	. 20 whirligig
. 45 WWV signal	. 26 plane on a string
. 50 one liter cube	. 30 carnival ride model
. 55 mass, volume, and density	. 45 penny on a coat hanger
. 60 Avogadro's number box	. 48 balls on a propeller
. 65 mole samples	. 50 Welch centripetal force
. 70 density samples	. 60 banked track
20 Error and Accuracy	. 70 rolling chain
. 10 Gaussian collision board	52 Deformation by Central Forces
. 20 coin flip	. 20 water parabola
. 25 dice	. 21 rotating water troughs
. 50 weight judgment	.30 balls in water centrifuge
. 60 reaction time	. 35 water and mercury centrifuge
30 Coordinate Systems	. 40 rotating candle
. 30 polar coordinates	. 50 paper saw
. 41 blackboard hemisphere	. 61 rotating rubber wheel
40 Vectors	55 Centrifugal Escape
. 14 vector components animation	. 11 the big omega
. 20 folding rule	. 20 grinding wheel
. 25 tinker toys	. 23 spinning disc with water
. 30 magnetic vector addition	. 30 falling off the merry-go-round
. 31 vector addition (parallelogram)	60 Projectile Motion
.33 vector addition (head to tail)	. 05 ball to throw
. 35 Vernier Vector Addition II	. 15 howitzer and tunnel on incline
. 40 resultant of vectors	. 16 vertical gun on accelerated car
. 70 vector dot products	. 50 parabolic path through rings
. 75 vector cross products	. 55 parabolic trajectory on incline
60 Scaling	. 60 parabolic trajectory
. 20 Scaling model for biological systems	. 65 water stream trajectory
. 30 2:1 scaling	1E RELATIVE MOTION
. 40 scaling cube	20 Rotating Reference Frames
1C MOTION IN ONE DIMENSION	. 20 Foucault pendulum model
10 Velocity	. 30 Foucault pendulum latitude model
. 27 velocity - air track and glider	. 50 rotating room
. 30 approaching instantaneous velocity	30 Coriolis Effect
. 60 muzzle velocity	. 10 draw the coriolis curve - vertical
. 65 muzzle velocity - disc	. 11 draw the coriolis curve
20 Uniform Acceleration	. 13 coriolis overhead transparency
. 12 hammer and feather on Moon	. 20 coriolis gun
. 15 drop lead and cork balls	. 28 coriolis ball on turntable
. 16 drop ball and paper	. 50 rotating TV camera
. 41 blinky track with graphs	$1 F$ NEWTON'S FIRST LAW
30 Measuring g	10 Measuring Inertia
. 15 little big ball dropper	. 10 inertia balance
. 20 big big ball dropper	. 11 inertia balance - leaf spring
. 40 falling drops	. 20 inertia bongs
. 55 catch a meter stick	. 25 foam rocks
1D MOTION IN TWO DIMENSIONS	20 Inertia of Rest
10 Displacement in Two Dimensions	. 11 bowling ball inertia balls
. 10 ball in a tube	. 15 inertia block
. 20 cycloid generator	. 20 smash your hand
. 40 mounted wheel	. 22 hit the nail on the head
. 50 ball on the edge of a disc	. 25 smash block on bed of nails
15 Velocity, Position, and Acceleration	. 33 inertia cylinder
. 12 Hobbie film loop - AAPT	. 34 coin/card snap
. 15 kick a moving ball	. 36 pin and embroidery hoop
. 30 catching the train	. 40 stick on wine glasses
. 35 passing the train	. 50 shifted air track inertia
. 40 Galileo's circle	30 Inertia of Motion
. 41 sliding weights on triangle	. 21 water hammer
. 50 brachiostochrone	. 30 car on cart on cart
. 55 triple track	. 40 nail by hand
40 Motion of the Center of Mass	. 50 pencil and plywood
. 15 loaded bolas	1G NEWTON'S SECOND LAW
. 22 air table center of mass	10 Force, Mass, and Acceleration
	.11 constant mass acceleration system .15 roller cart and bungee loop

.16 strain gage
. 20 accelerated car
.22 accelerated instructor
.25 acceleration block
.30 mass on a scale
20 Accelerated Reference Frames
.10 candle in a bottle
20 ball in a thrown tube
.30 leaky pail drop
45 dropped slinky
.76 suspended ball accelerometers
.80 cart and elastic band
.85 acceleration pendulum cart
30 Complex Systems
20 mass on spring, on balance
.30 hourglass on a balance
1H NEWTON'S THIRD LAW
10 Action and Reaction
. 15 reaction air gliders
. 20 Newton's sailboat
25 helicopter rotor
11 Recoil
.11 stool on conveyor
. 30 liquid nitrogen cannon
1J STATICS OF RIGID BODIES
10 Finding Center of Gravity
.12 irregular object center of mass
. 20 loaded beams - moving scales
.26 balance beam and bat
11 Exceeding Center of Gravity
.11 topplings cylinders
.15 tipping block on incline
.40 male and female center of gravity
20 Stable, Unstab., and Neut. Equillibrium
.12 wood block stability
. 15 block on the cylinder
.17 block on curved surfaces
20 fork, spoon, and match
.25 nine nails on one
.32 spoon on nose
.35 horse and rider
.46 tightrope walking model
.51 chair on a pedestal
.55 broom stand
70 double cone
30 Resolution of Forces
. 15 normal force
.26 rope and three weights
.27 deflect a rope
.30 break a wire with a hinge
. 40 horizontal boom
55 human force table
. 60 sail against the wind
.70 sand in a tube
75 stand on an eqg
40 Static Torque
. 15 torque wrench
16 different length wrenches
21 hinge board
.24 walking the plank
.25 torque whee
.27 torque double wheel
30 opening a door
.32 opening a trap door
45 Galileo lever
. 60 suspended ladder
.65 hanging gate
70 crane boom
.75 arm model
1K APPLICATIONS OF NEWTON'S LAW
10 Dynamic Torque
. 11 tipping blocks
.25 forces on a ladder - full scale
.40 pull the bike pedal
.41 traction force roller
.42 extended traction force
. 50 rolling uphill
20 Friction
. 05 washboard friction model
.42 friction roller
.45 frictional force rotator
.70 falling flask capstan
90 air track friction
30 Pressure
.20 pop the balloons

1L GRAVITY

10 Universal Gravitational Constant
. 20 Cavendish balance model
.50 gravitational field model

20 Orbits

. 36 film "Motion of Attracting Bodies"
. 40 conic sections
. 50 ellipse drawer
.71 film "Planetary Motion and Kepler's Laws"

1M WORK AND ENERGY

10 Work

. 10 shelf and block
.15 block on table
.16 carry a block
.25 pile driver with pop cans
20 Simple Machines
. 01 simple machine collection
.11 pulley advantage
.15 pulley and scales
.25 monkey and bananas
.35 big screw as incline plane
.40 levers
.45 body levers
30 Non-Conservative Forces
10 air track collision/sliding mass
40 Conservation of Energy
.23 reverse loop the loop
.25 energy well track
.30 ball in a trough
.33 triple track
35 roller coaster
41 Beck ballistic pendulum
.61 1-D trampoline
. 63 x-squared spring energy dependence
.64 spring ping pong gun
. 65 height of a spring launched ball
. 66 mechanical jumping bean
. 67 spring jumper
.75 obedient can
.90 rattleback
. 91 high bounce paradox
50 Mechanical Power
. 10 Pony brake
1N LINEAR MOMENTUM \& COLLISIONS
10 Impulse and Thrust
.10 collision time pendula
.35 car crashes
. 40 auto collision videodisc
.70 model rocket impulse
.80 fire extinguisher thrust
20 Conservation of Linear Momentum
.15 car on a rolling board
.25 elastic band reaction carts
21 Mass and Momentum Transfer
. 20 catapult from cart to cart
.30 ballistic air glider
.40 drop sandbag on cart
.45 vertical catapult from moving cart
22 Rockets
15 rocket lift-off video
25 balloon rocket
30 CO 2 cartridge rocket
. 33 rocket around the Moon
40 ball bearing rocket cart
30 Collisions in One Dimension
.11 bowling ball collision balls
20 3:1 collision balls
30 air track collision gliders
.33 equal and unequal mass air track collisions
.55 elastic and inelastic model
.65 double air glider bounce
40 Collisions in Two Dimensions
. 10 shooting pool
.21 air table collisions - unequal mass
.22 air table collisions - inelastic
1Q ROTATIONAL DYNAMICS

10 Moment of Inertia

.20 torsion pendulum inertia
.31 rolling bodies on incline
.55 weary roller
.70 rigid and non-rigid rollers
20 Rotational Energy
. 15 flywheel and drum with weight
20 angular acceleration wheel
.25 accelerate light and heavy pulleys
.35 bike wheel on incline
.51 bowling ball faster than "g"
.55 pennies on a meter stick
.60 falling meter sticks - scaling
30 Transfer on Angular Momentum
.15 pass bags o' rice
25 satellite de rotator
.30 catch the bag on the stool
40 Conservation of Angular Momentum
23 centrifugal governor
25 pulling on the whirligig
40 train on a circular track
.45 wheel and brake
50 pocket watch
60 sewer pipe pull
. 70 marbles and funnel
.80 Hero's engine
82 air rotator with deflectors

50 Gyros

.21 bike wheel on gimbals
.23 bike wheel precession
. 24 walking the wheel
30 MITAC gyro
31 ride a gyro
. 35 gyro in gimbals
40 suitcase gyro
.60 gyrocompass
.70 stable gyros
.72 ship stabilizer
60 Rotational Stability

15 humming top
.37 billiard ball ellipsoid
.40 tossing the book
.45 tossing the hammer
.50 spinning lariat, hoop, and disc
51 spinning rod and hoop
80 static/dynamic balance
1R PROPERTIES OF MATTER
10 Hooke's Law
20 strain gauge
.25 pull on a horizontal spring
30 springs in series and parallel
20 Tensile and Compressive Stress
11 elastic limits
. 15 Young's modulus
.20 bending beam
.25 sagging board
40 buckling tubes
. 60 Bologna bottles
70 Prince Rupert's drops
30 Shear Stress
.10 shear book
.40 torsion rod
50 Crystal Structure
. 20 crystal models
.40 crystal fault model
.45 crushing salt

FLUID MECHANICS

2A SURFACE TENSION
10 Force of Surface Tension
. 15 submerged float
.21 floating metal sheet
.25 leaky boats
. 30 surface tension balance
. 33 surface tension disc
.35 cohesion plates
.40 drop soap on lycopodium powder
. 51 rubber balloons
.80 charge and surface tension
15 Minimal Surface
.20 soap film minimal surfaces
.21 catenoid soap film
20 Capillary Action
.20 surface tension hyperbola
. 35 capillary action
30 Surface Tension Propulsion .10 surface tension boat propulsion . 30 mercury heart
2B STATICS OF FLUIDS
20 Static Pressure
.15 pressure dependent on depth
16 pressure vs. depth in water and alcohol
25 Pascal's paradox
.30 weigh a water column
32 chicken barometer
. 34 hydrostatic paradox - truncated cone
.50 Pascal's fountain
.61 two syringes
62 hydraulic can crusher
65 garbage bag blowup
.66 weight on a beach ball
.70 compressibility of water
.71 water/air compression
30 Atmospheric Pressure
.05 lead bar
. 15 crush the soda can
25 crush the soda can with vacuum pump
. 33 Madgeburg hemisphere swing
.34 Madgeburg tug-of-war
36 suction cups
.40 soda straw contest
.55 adhesion plates
.70 vacuum bazooka
35 Measuring Pressure
.10 mercury barometer
. 15 barometer in a tall bell jar
40 aneroid barometer
40 Density and Buoyancy
. 14 buoyant force
.15 finger in beaker
.18 board \& weights
.25 battleship in a bathtub
27 ship pictures full \& empty
.35 hydrometers
.42 buoyancy balloon
.43 helium balloon in a glass jar
.44 helium balloon in liquid nitrogen
.45 weight of air
.53 water and mercury "U" tube
.54 buoyancy in various liquids
.56 floating square bar
.59 density ball
.60 hydrometer
.61 different density woods
60 Siphons, Fountains, and Pumps
. 10 Hero's fountain
. 20 siphon
. 40 Mariotte flask and siphon
.60 hydraulic ram
.75 lift pump
2C DYNAMICS OF FLUIDS
10 Flow Rate
.26 syringe water velocity
20 Forces in Moving Fluids
.25 pitot tube
.36 ball in a stream of water
.44 coin in cup
. 50 airplane wing
. 70 Bjerknes' tube
. 80 Flettner rotator
30 Viscosity
.10 viscosity disc
. 25 viscosity of oil
.55 ball drop
.65 terminal velocity coffee filters
40 Turbulent and Streamline Flow
. 10 streamline flow
. 25 Poiseuille flow
. 50 laminar and turbulent flow

50 Vorticies

.15 vortex cannon
20 liquid vortices
.30 tornado tube
.35 flame tornado
60 Non Newtonian Fluids
.20 density balls in beans
30 cornstarch
.35 slime ball
40 silly putty
. 55 ketchup uzi
OSCILLATIONS AND WAVES
3A OSCILLATIONS
10 Pendula
. 14 4:1 pendulum
. 17 different mass pendula
40 variable o pendulum
15 Physical Pendula
. 30 paddle oscillator
.45 oscillating lamina
.57 sweet spot of a meter stick
.70 Kater's pendulum
20 Springs and Oscillators
.20 springs in series and parallel
.35 air track gliders between springs
.40 roller cart and springs
. 50 oscillating chain
40 Simple Harmonic Motion
.25 ball on track vs. pendulum
. 30 arrow on the wheel
.35 SHM slide
.41 tuning fork with light
.50 strain gauge SHM
.65 phase shift disc
50 Damped Oscillators
.20 damped SHM tracer
45 oscillating quilotine

60 Driven Mechanical Resonance
31 resonant driven pendula
.35 bowling ball pendula resonance
40 driven mass on spring
.43 driven spring weight
.44 drunken sailor
.55 driven torsion pendulum
60 upside-down pendulum (driven)
.70 lamppost resonance
70 Coupled Oscillations
.15 swinging mass on a spring
27 spring coupled physical pendula
.30 string coupled pendula
.40 inverted coupled pendula
.45 coupled masses on springs
. 50 oscillating magnets
75 Normal Modes
. 30 masses on a string
.40 bifilar pendulum modes
80 Lissajous Figures
. 10 Lissajous sand pendulum
. 40 Lissajous figures - laser
95 Non-Linear Systems
10 water relaxation oscillator
. 20 wood block relaxation oscillator
33 pendulum with large amplitude
38 periodic non-simple harmonic motion
. 45 amplitude jumps
.50 chaos systems
.60 parametric resonance
.70 pump a swing
80 parametric instability
3B WAVE MOTION
10 Transverse Pulses and Waves
.05 the wave - transverse
.15 tension dependence on wave speed
.16 speed of torsional waves
.17 speed of a slinky pulse
. 18 speed of pulses on ropes
.25 standing pulse
. 40 Kelvin wave apparatus
.75 pendulum waves
20 Longitudinal Pulses and Waves
.05 the wave - longitudinal
20 longitudinal wave on air track
.30 longitudinal wave model (PASCO)
.35 longitudinal wave machine
. 60 speed of particles vs. waves
70 Crova's disc
22 Standing Waves
.15 three tensions standing waves
.40 vertical vibrating bar
50 slinky standing waves
. 60 longitudinal standing waves
.70 soap film oscillations
90 crank slide
25 Impedance and Dispersion
.20 reflection - shive model
25 spring wave reflection
.26 fixed and free rope reflection
. 30 effect of bell
.35 acoustic coupling with speaker
40 soundboard
.50 dispersion in a plucked wire
55 space phone (spring horn toy)
27 Compound Waves
. 10 slinky and soda cans
.15 wave superposition - Shive model
20 adding waves apparatus
. 30 double pendulum beat drawer
30 Wave Properties of Sound
.40 speaker and candle

45 bubbles and bugle
.50 helium talking
. 55 sound velocity at different temperatures
.60 speed of sound in rod and air
.65 music box
33 Phase and Group Velocity
.20 two combs
35 Reflection and Refraction (Sound)
. 10 gas lens
.20 refraction prism - CO2
30 parabolic reflector and sound source
.60 refraction of water waves
39 Transfer of Energy in Waves
. 10 water wave model
.20 dominoes
40 Doppler Effect
. 15 Doppler whistle
.25 Doppler reed
. 30 Doppler beats
45 Shock Waves
. 15 shock waves in ripple tank
.20 pop the champagne cork
.30 solition tank
40 tsunami tank
50 Interference and Diffraction
.25 ripple tank - double slit
.50 double slit transparency
.55 interference model
55 Interference \& Diffraction of Sound
.55 diffraction pattern of a piston
.60 diffraction fence
60 Beats
.11 beat bars
.15 beat whistles
.40 ripple tank beats
3C ACOUSTICS
10 The Ear
.10 model of the ear
20 Pitch
. 30 siren disc
. 40 Savart's wheel
30 Intensity and Attenuation
.21 dB meter and horn
.30 loudness (phones and sones)
.35 hearing - 3dB
50 Wave Analysis and Synthesis .15 mechanical square wave generator
. 35 resonance tube spectrum
.40 harmonic tones (vibrating string)
.50 noise (pink and white)
.55 distinguishing harmonics with the ear
.70 wave analysis (PASCO filter)
.80 spectrum analyzer
55 Music Perception and the Voice
.20 pitch of complex tones
. 25 missing fundamental
. 30 difference tones
.35 beats vs. difference tones
. 40 chords
.45 consonance and dissonance
.55 tuning forks on resonance boxes
.70 tone quality
.74 keyboard and oscilloscope
.80 formants
.85 filtered music and speech
3D INSTRUMENTS
20 Resonance in Strings
. 20 modes of string oscillation on scope
.21 guitar and scope
. 50 Aeolian harp
22 Stringed Instruments
. 10 violin
.20 cigar box cello
30 Resonance Cavities
15 resonance tube with piston
. 16 horizontal resonance tube
. 40 Hemholtz resonators
.74 variable hoot tubes
32 Air Column Instruments
10 organ pipes
20 organ pipes with holes
.25 open and closed end pipes
.30 slide whistle
.40 demonstration trumpe
45 PVC instruments
40 Resonance in Plates, Bars, Solids
. 10 xylophone
.11 rectangular bar oscillations
.12 high frequency metal bars
. 15 musical sticks
. 16 musical nails
33 thick Chladni plate
35 flaming table
.45 bubble membrane modes
.50 musical goblet
.65 bull roarer
46 Tuning Forks
. 16 tuning fork
.22 adjustable tuning fork
3E SOUND PRODUCTION
10 Audio Systems
10 audio cart - complete audio system
20 Loudspeakers
20 crossover network for speakers
80 Digital Systems
.10 CD with holes
THERMODYNAMICS
4A THERMAL PROPERTIES OF MATTER
10 Thermometry
.15 mercury thermometer
. 20 Galileo's thermometer
.50 cholesteric liquid crystals

20 Liquid Expansion

30 maximum density of water
30 Solid Expansion
.11 thermostat model
. 15 wire coil thermostat - Zig's model
.40 hopping discs
.50 expansion of quartz and glass
.80 heat rubber bands
40 Properties of Materials at Low
Temperatures
.20 mercury hammer
35 cool rubber band
.40 viscous alcohol
4B HEAT AND THE FIRST LAW
10 Heat Capacity and Specific Heat
. 15 water and oil in a hot plate
.30 melting wax
. 60 Clement's and Desormes' experiment
.70 elastic properties of gases
20 Convection
.20 two chimney convection box
.25 convection chimney with vane
. 30 convection chimney with confetti
.40 convection currents projected
.50 Bernard cell
30 Conduction
. 12 conduction - melting wax
20 painted rods
.25 four rods - heat conduction
.30 copper and stainless tubes
.35 toilet seats
50 heat propagation in a copper rod
40 Radiation
. 30 Leslie's cube
.40 two can radiation
.50 selective absorption and transmission
.60 black and white thermometers
50 Heat Transfer Application

30 Leidenfrost effect
.35 finger in hot oil
.40 reverse Leidenfrost
60 greenhouse effect
60 Mechanical Equivalent of Heat
. 11 invert tube of lead
15 hammer on lead
20 copper barrel crank
50 bow and stick
.70 cork popper
70 Adiabatic Processes
.25 pop the cork cooling
4C CHANGE OF STATE
20 Phase Changes: Liquid-Solid
.10 supercooled wate
55 heat of solution
60 heat of crystallization
30 Phase Changes: Liquid-Gas
15 boiling at reduced pressure
.25 geyser
.30 helium and CO2 balloons in liquid N2
. 35 liquid nitrogen in a balloon
31 Cooling by Evaporation
.20 freezing by evaporation
32 Dew Point and Humidity
. 10 sling psychrometer
40 condensation nuclei
33 Vapor Pressure
10 vapor pressure in barometer
.20 addition of vapor pressures
.30 vapor pressure curve for water
40 Sublimation
15 blow up balloon with CO 2
45 Phase Changes: Solid - Solid
. 10 phase change in iron
30 polymorphism

50 Critical Point
20 critical opalescence
. 40 triple point of water cell
4D KINETIC THEORY
10 Brownian Motion
. 20 Brownian motion simulator
.30 colloidal suspension
40 Dow spheres suspension
20 Mean Free Path
.20 mean free path and pressure
.30 mean free path pin board
30 Kinetic Motion
.11 big kinetic motion apparatus
21 equipartition of energy simulator
22 pressure vs. column simulator
.23 free expansion simulation
.24 temperature increase simulation
.40 glass beads
60 flame tube viscosity
40 Molecular Dimensions
. 10 steric and oleic acid films
50 Diffusion and Osmosis
.20 diffusion through porcelain
45 bromine diffusion
50 bromine cryophorus
60 diffusion in liquids - CuSO4
80 osmosis simulator
4E GAS LAW
10 Constant Pressure
.11 thermal expansion of air
20 Constant Temperature
.15 syringe and pressure gauge
30 Boyle's law with tap pressure
.40 balloon in a vacuum
30 Constant Volume

5A ELECTROSTATICS
10 Producing Static Charge
15 triboelectric series
.30 electret
.35 equal and opposite charges
.37 electrostatic rod and cloth
. 40 mercury-glass charging wand
.50 cyrogenic pyroelectricity
.55 heating and cooling tourmaline
20 Coulomb's Law
. 28 beer can pith balls
.30 mylar balloon electroscope
.32 electrostatic spheres on air table
22 Electrostatic Meters
.25 soft drink can electrosope
. 50 Kelvin electrostatic voltmeter
.70 electrometer
80 electric field mill
30 Conductors and Insulators
.15 acrylic and aluminum bars
40 Induced Charge
.15 electroscope charging by induction
.25 paper sticks on board
.60 electrostatic generator principles
50 Electrostatic Machines
. 15 Toepler-Holtz machine
.31 Van de Graaff principles

50 Franklin's electrostatic machines
5B ELECTRIC FIELDS AND POTENTIAL
10 Electric Field
.26 electrified strings
.30 electric chimes
.70 rubber sheet field model
20 Gauss' Law
. 15 Faraday's ice pail on electroscope
. 31 electroscope in a cage/Wimshurst
30 Electrostatic Potential
. 20 charged ovoid
5C CAPACITANCE
10 Capacitors
.21 battery and separable capacitor
.30 dependence of capacitance on area
. 35 rotary capacitor
20 Dielectric
.17 helium dielectric
.20 force on a dielectric
.25 attraction of charged plates
.35 bound charge
. 60 displacement current
30 Energy Stored in a Capacitor
. 10 Leyden jar and Wimshurst
.15 exploding capacitor
.35 lifting weight with a capacitor
. 40 series/parallel Leyden jars
.42 series/parallel capacitors
. 50 Marx and Cockroft-Walton
. 60 residual charge
5D RESISTANCE
10 Resistance Characteristics
. 50 current model with Wimshurst

20 Resistivity and Temperature
.15 flame and liquid nitrogen
.50 thermistors
30 Conduction in Solutions
. 13 salt water string
. 20 migration of ions
. 30 pickle glow
40 Conduction in Gases
. 20 conduction of gaseous ions
.30 ionization by radioactivity
.40 conduction from a hot wire
.42 thermionic emisson
.50 neon bulb
.80 x-ray ionization
5E ELECTROMOTIVE FORCE \& CURRENT

30 Plating

. 10 copper flashing of iron
40 silver coulomb meter
40 Cells and Batteries
.20 voltaic cell
.75 weak and good battery
50 Thermoelectricity
. 60 Peltier effect
60 Piezoelectricity
.25 piezoelectric gun
.30 stress vs. voltage
. 40 piezoelectric speaker
5 D DC CIRCUITS
10 Ohm's Law
.15 water Ohm's law analog
.20 potential drop along a wire
.25 potential drop with Wimshurst
15 Power and Energy
.10 electrical equivalent of heat
.30 fuse with 30 V lamp
.40 voltage drops in house wires
.45 IR2 losses

20 Circuit Analysis

. 20 superposition of current
25 reciprocity
30 potentiometer
. 40 Wheatstone bridge
. 45 light bulb Wheatstone bridge
.51 light bulb board - 12 V
.55 series and parallel resistors
. 60 equivalent resistance
30 RC Circuits
.15 RC time constant on galvanometer
.50 series and parallel capacitors
60 neon relaxation oscillator
40 Instruments
.10 sensitivity and resistivity of a
aalvanometer
. 20 galvanometer as an ammeter and
voltmeter
. 21 loading by voltmeter
5G MAGNETIC MATERIALS
10 Magnets
.15 lodestone
. 16 lodestone suspended
.30 Which is a magnet?
. 50 lowest energy configuration of magnets
20 Magnet Domains \& Magnetization
.45 induced magnetic poles
.60 magnetization by current
. 61 magnetization by contact
62 demagnitization by hammering
.71 electromagnet
.72 large electromagnet
.73 magnetically suspended globe .75 retentivity
30 Paramagnetism and Diamagnetism
. 15 pull the sample
. 20 paramagnetism of liquid oxygen

40 Hysteresis
.50 hysteresis waste heat
45 Magnetostriction and Magnetores
. 10 magnetorestrictive resonance
. 30 magnetorestriction of nickel wire
70 magnetoresistance
50 Temperature and Magnetism
. 15 Curie nickel
20 thermomagnetic motor
.25 dysprosium in liquid nitrogen
5H MAGNETIC FIELDS AND FORCES
10 Magnetic Fields
.50 area of contact
55 gap and field strength
. 60 shunting magnetic flux
. 61 magnetic shielding
65 magnetic screening
15 Fields and Currents
13 right hand rule
. 15 Biot-Savart law animation
.20 parallel wires and iron filings
.25 anti-parallel wires and iron filings
20 Forces on Magnets
15 snap the lines of force
.23 centrally levitating magnets
.24 linearly levitating magnets
.30 inverse square law
.35 inverse square law balance
40 inverse fourth law - dipoles
.50 inverse seventh law - magnet/iron
25 Magnet/Electromagnet Interaction
. 10 magnet in a coil
20 jumping magnet
.25 force on a solenoid core
30 Force on Moving Charges
.15 bending an electron beam
.25 magnetic mirror
. 30 rotating plasma
.50 electromagnetic pump
.55 ion motor
40 Force on Current in Wires
.23 filament and magnet with AC/DC
.25 dancing spiral
.35 jumping wire coil
36 long wire in field
70 Ampere's motor
50 Torques on Coils
. 20 force on a current loop
25 short and long coils in field
35 dipole loop around long wire
45 spinning coil over magnet
5J INDUCTANCE
10 Self Inductance
30 back EMF - spark
5K ELECTROMAGNETIC INDUCTION
10 Induced Currents and Forces
16 tape head model
. 21 10/20/40 coils with magnet
.40 induction coils with core
. 48 current coupled pendula
65 jumping rope
.70 What does a voltmeter measure?
20 Eddy Currents
. 15 Eddy damped pendulum
.20 falling aluminum sheet
42 Arago's disk
.50 rotating ball
65 electromagnetic can breaker
30 Transformers
. 13 salt water string
.30 vertical transformer
.35 light underwater
.40 weld a nail
. 60 reaction of a secondary on primary
40 Motors and Generators
. 10 DC motor
. 15 Faraday motor
.45 coupled motor/generator
.83 bicycle generator
.85 generator slowed by load
5L AC CIRCUITS
10 Impedance
.20 capacitive impedance
. 30 capacitive reactance
20 LCR Circuits - AC
. 18 driven LRC circuit
5M SEMICONDUCTORS AND TUBES

10 Semiconductors

.50 diode
. 71 brillouin/compass array
.90 transistor amplifier
20 Tubes
.10 glow discharge
. 20 special purpose discharge tubes
5N ELECTROMAGNETIC RADIATION
10 Transmission Lines and Antennas
.10 model transmission line
. 15 HV line model
. 20 model transmission line - phases
. 55 microwave standing waves
20 Tesla Coil
. 40 Tesla Coil
30 Electromagnetic Spectrum
. 50 IR camera and remote control device
. 52 IR control devices

OPTICS

6A GEOMETRICAL OPTICS
01 Speed of Light
20 speed of light - two path
30 speed of light - rotating mirror
02 Straight Line Propagation
. 10 light in a vacuum
.15 straight line propagation - shadows .35 chalk dust
10 Reflection From Flat Surfaces
. 11 optical disk with flat mirror
. 18 microwave reflection
. 22 aluminum foil reflection
.25 ripple tank reflection
.31 large corner cube
.37 parity reversal in a mirror
. 65 half silvered mirror box
20 Reflection from Curved Surfaces
. 11 optical disc with curved mirrors
.20 spherical abberation in a mirror
.35 optic mirage
.41 projected filament with mirror
.60 energy at a focal point
40 Refractive Index
. 40 variable index of refraction tank
.45 mirage
.50 oil, water, laser
. 60 Schlieren image
. 70 short beer
42 Refraction at Flat Surfaces
. 11 optical disk with glass block
. 21 Nakamara refraction tank
.30 refraction model - rolling
.35 ripple tank refraction
.43 light in a tank
.47 acrylic/lead glass refraction .50 minimum angle of deviation .51 three prism stack
.55 paraffin prism and microwaves
44 Total Internal Reflection
11 optical disk with prism, semicircle
. 25 Snell's wheel
. 30 ripple tank total internal reflection
.41 optical path in fibers
.42 steal the signal
.45 water stream light pipe
. 55 black ball turns silver
46 Rainbow
. 20 rainbow model
.30 optical disc with spherical lens
60 Thin Lens
. 11 optical disk with thin lens
.16 ripple tank concave lens
31 projected arrow with lens
.35 lens magnification
.45 position of virtual image
.60 paraffin lens and microwaves
61 Pinhole
10 pinhole projection
65 Thick Lens
. 15 optical disc - circular glass plate
.31 off axis distortion
.35 astigmatism and distortion
.52 fillable air lens
. 70 Frensel lens
70 Optical Instruments
35 projector model
6B PHOTOMETRY
10 Luminosity
.20 inverse square law with photometer
.35 grease spot photometer
. 40 Rumford shadow photometer
.50 frosted globe - surface brightness
. 55 frosted globes
30 Radiation Pressure
.10 radiometer - quartz fiber
40 Blackbodies
.25 carbon block
.26 carbon rod
40 X-Y spectrum recorder
. 41 IR spectrum on galvanometer
. 45 IR camera and projected spectrum
.50 IR camera and soldering iron
.55 project spectrum and change
temperature
6C DIFFRACTION
10 Diffraction Through One Slit
. 12 Cornell plate - single slit
. 20 two finger slit
. 30 slit on photodiode array
.50 microwave diffraction
20 Diffraction Around Objects
.22 shadow of a needle
. 40 zone plate lens
6D INTERFERENCE
10 Interference From Two Sources
.05 interference model
. 11 Cornell plate - two slit
. 15 double slit on $X-Y$ recorder
.17 double slit on photo diode array
.20 microwave two slit interference
.25 microwave two source interference
35 ripple tank incoherence
20 Gratings
.56 regular and irregular patterns
.59 random multiple gratings

30 Thin Films
60 interference filters
40 Interferometers
.15 interference fringes with audio
6F COLOR
10 Synthesis and Analysis of Color
.25 spinning color disc
30 recombining the spectrum
. 33 purity of the spectrum 45 complementary shadow
75 colors in spectral light
30 Dispersion
.10 dispersion curve of a prism

40 Scattering

20 optical ceramics scattering
50 microwave scattering
6H POLARIZATION
10 Dichroic Polarization
. 40 polaroids cut at 45 degrees
20 Polarization by Reflection
15 microwave Brewster's angle
. 30 Brewster's cone
30 Circular Polarization
. 70 microwave optical rotation 80 Faraday rotation
35 Birefringence
.15 calcite and Polaroid on overhead
.17 plexiglass birefringence
.45 half wave plate
53 butterfly, etc
. 65 LCD element between polaroids
50 Polarization by Scattering
30 depolarization by diffuse reflection 90 Haidinger's brush
6J THE EYE
10 The Eye
.30 blind spot
40 inversion of image of retina
80 resolving power of the eye
81 resolving power with TV
11 Physiology
. 10 retinal fatigue - color disc
.20 visual fatigue
30 persistence of vision
.50 impossible triangles
70 color blindness
6Q MODERN OPTICS
10 Holography
.20 in class holograms
20 Physical Optics
.10 Abbe demonstrations
MODERN PHYSICS
7A QUANTUM EFFECTS
10 Photoelectrics Effects
12 photoelectric charging
15 discovery of the photoelectric effect
. 35 photoelectric threshold
.40 solar cells
.50 photo conduction vs. thermopile
60 carrier recombination and lifetime
15 Millikan Oil Drop
10 Millikan oil drop
20 Millikan oil drop model
50 Wave Mechanics
.30 vibrating soap film
.50 complementary rule
. 90 Mermin's Bell theorem boxes
55 Particle/Wave Duality
10 wave/particle sound analogy
15 wave/particle model with dice
.20 single photon interference
60 X-ray and Electron Diffraction
20 diffraction model
.30 electron "Poisson spot"
.40 field emission electron microscope
.60 ripple tank Bragg diffraction
.90 x-ray diffraction
.95 sample x-ray tube
70 Condensed Matter
. 10 Josephson junction analoo .20 Josephson effect simple demo
. 30 F-center diffusion
7B ATOMIC PHYSICS
10 Spectra
11 flame salts
. 15 line spectra with large grating
.20 project spectral lines
11 Absorption
.25 flame absorption projected
. 30 mercury vapor shadow
.40 filtered spectrum
.60 band absorption spectra
13 Resonsance Radiation
. 05 triboluminescence
. 20 sodium vapor beam
. 40 UV spectrum by fluorescence 55 luminescence
20 Fine splitting
. 15 Zeeman - sodium flame in magnet
.25 Stern-Gerlach crystal model
. 45 Mossbauer model
30 Ionization Potential
.10 ionization potential of mercury
40 excited states model
35 Electron Properties
. 10 discharge at low pressures
. 40 Maltese cross
.50 paddle wheel
.75 plasma tube
7D NUCLEAR PHYSICS
10 Radioactivity
.20 half life with isotope generato
.25 radon in the air
.30 contamination by neutron source
.45 electrical analog of decay
.50 dice on the overhead
.55 coin toss half life
.80 cosmic rays
20 Nuclear Reactions
. 15 match chain reaction
20 dominoes chain reaction
30 Particle Detectors
. 05 Ludlum Detectors
. 10 nixie Geiger counter
.15 thermal neutron detector
.25 spark chamber
40 NMR
. 10 NMR gyro model
50 Models of the Nucleus
. 20 Rutherford scattering animation
30 Thompson model
.46 mass defect
7E ELEMENTARY PARTICLES
10 Misc.
. 20 fundamental particles software
7F RELATIVITY
10 Special Relativity
10 Lorentz tranformation machine
.20 flow ripple tank - twin source
.25 foam rubber roller
. 66 Majestic clockwork

ASTRONOMY

8A PLANETARY ASTRONOMY
05 Historical Astronomy
10 Solar System Mechanics . 35 local zenith
20 Earth - Moon Mechanics
.70 pinhead earth
30 Views from Earth
. 10 horizon astronomy model
. 20 Cinhelium
35 Views from Earth - 2
40 Planetary Properties
. 10 globes
50 Planetary Properties - 2
60 Planetary Properties - 3
70 Planetary Properties - 4
80 Planetary Properties - 5 . 20 comet orbit
8B STELLAR ASTRONOMY

10 The Sun

20 Stellar Spectra
30 Stellar Evolution
. 10 stellar magnitude simulator
.40 variable star simulation
.65 pulsar model
.70 pulsar recording
.95 forward and backward scattering
40 Black Holes
.20 black hole surface
50 Stellar Miscellaneous
8C COSMOLOGY
10 Models of the Universe
.35 inflating balloon
.37 expanding universe on white board
.40 bubble universe
.50 galaxy model
20 Gravitational Effects
. 10 Klein bottle
20 Moebius strip
. 30 saddle shape
8D MISCELLANEOUS
10 Miscellaneous
8E ASTRONOMY TEACHING

TECHNIOUES

30 Astronomy Teaching Techniques EQUIPMENT
9A SUPPORT SYSTEMS
10 Blackboard Tools
.10 compass
. 12 protractor
. 31 angle templates
. 35 sine wave templates
20 Audio
.10 wireless microphone
. 11 multiple wireless microphones
.15 cord microphone
. 16 multiple cord microphones
20 CD player
.30 audio cassette
.40 phonograph
50 reel to reel
30 Slide Projectors
.05 mobile screen
.1035 mm projector
. 11 two 35 mm projectors
. 1535 mm to go
. 20 lantern projector
34 Film Projectors
$.10 \quad 16 \mathrm{~mm}$ projector
. 20 film loop projector
.30 super 8 projector
.358 mm projector
.40 film strip projector
36 Overhead Projectors
10 overhead projector
.15 two overhead projectors
. 30 write on film rolls

38 Video \& Computer Projection
. 10 TV table (color)
. 11 TV table (B\&W)
.15 tripod TV (color)
.16 tripod TV (B\&W)
17 tripod TV (IR)
20 video projector
. 21 LCD panel
.22 color LCD panel
.25 classroom monitors
.26 monitor on cart
.30 video disc
40 VHS tape deck
45 3/4" tape deck
50 IBM clone
. 65 Mac
9B ELECTRONIC
60 Light Sources
10 eosin mister

