PIRA DEMONSTRATION BIBLIOGRAPHY

AAPT SUMMER MEETING Washington DC July-2018

LECTURE DEMONSTRATIONS WORKSHOP

LEADERS

Cliff Bettis - University of Nebraska-Lincoln Vacek Miglus - Wesleyan University Sam Sampere - Syracuse University Dale Stille - University of Iowa Keith Warren - North Carolina State University Stephen Irons - Yale University Tom Senior - Lake Forest College

ADVISORS

David Maiullo - Rutgers University David Sturm - University of Maine

PIRA HOMEPAGE

http://www.pira-online.org

UNIVERSITY OF MICHIGAN PIRA 200

http://webapps.lsa.umich.edu/physics/demolab/Content/FeaturedDemos.aspx

RE BIE	DICATION FERENCES BLIOGRAPHY FORMAT RA 200	i ii iii iv
	CHANICS	
	Measurements Basic Units	1
-	Error and Accuracy	
	Coordinate Systems	
	Vectors	
-	Math Topics	
	Scaling	
1C	Motion In One Dimension	4
20.	Uniform Acceleration	
30.	Measuring g	
1D	Motion In Two Dimensions	9
10.	Displacement in Two Dimensions	
15.	Velocity, Position, and Acceleration	
40.	Motion of the Center of Mass	
	Central Forces	
	Deformation by Central Forces	
	Centrifugal Escape	
	Projectile Motion	40
	Relative Motion Moving Reference Frames	19
20.	Rotating Reference Frames	
30.	Coriolis Effect	
	Newton's First Law	22
	Measuring Inertia	
-	Inertia of Rest	
	Inertia of Motion	0 5
10.	Newton's Second Law Force, Mass, and Acceleration	25
	Accelerated Reference Frames	
	Complex Systems	~~
	Newton's Third Law Action and Reaction	29
	Recoil	
		30
	Statics Of Ridgid Bodies Finding Center of Gravity	30
	Exceeding Center of Gravity	
	Stable, Unstable, and Neutral Equilibrium	
	Resolution of Forces	
40.	Static Torque	
1K	Applications Of Newton's Laws	37
	Dynamic Torque	
20.	Friction	
30.	Pressure	
	Gravity	41
	Universal Gravitational Constant	
-	Orbits	
	Work And Energy Work	43

20. Simple Machines

30.	Non-Conservative Forces	
40.	Conservation of Energy	
50.	Mechanical Power	
1N	Linear Momentum And Collisions	49
10.	Impulse and Thrust	
	Conservation of Linear Momentum	
	Mass and Momentum Transfer	
	Rockets	
	Collisions in One Dimension	
-	Collisions in Two Dimensions	67
	Rotational Dynamics	57
-	Rotational Energy	
	Transfer of Angular Momentum	
	Conservation of Angular Momentum	
	Gyros	
	Rotational Stability	
	Properties Of Matter	68
	Hooke's Law	••
20.	Tensile and Compressive Stress	
	Shear Stress	
40.	Coefficient of Restitution	
50.	Crystal Structure	
FL	UID MECHANICS	
	Surface Tension	71
	Force of Surface Tension	
-	Minimal Surface	
20.	Capillary Action	
20. 30.	Capillary Action Surface Tension Propulsion	74
20. 30. 2B	Capillary Action Surface Tension Propulsion Statics Of Fluids	74
20. 30. 2B 20.	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure	74
20. 30. 2B 20. 30.	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure	74
20. 30. 2B 20. 30. 35.	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure	74
 20. 30. 2B 20. 30. 35. 40. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy	74
 20. 30. 2B 20. 30. 35. 40. 60. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps	
 20. 30. 2B 20. 30. 35. 40. 60. 2C 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy	74 83
 20. 30. 2B 20. 30. 35. 40. 60. 2C 10. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate	
 20. 30. 2B 20. 30. 35. 40. 60. 2C 10. 20. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids	
 20. 30. 2B 20. 30. 35. 40. 60. 2C 10. 20. 30. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids	
 20. 30. 20. 30. 35. 40. 60. 20. 10. 20. 30. 30. 40. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity	
 20. 30. 2B 20. 30. 35. 40. 60. 20. 10. 20. 30. 40. 50. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow	
 20. 30. 2B 20. 30. 35. 40. 60. 20. 30. 40. 50. 60. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids	
 20. 30. 2B 20. 30. 35. 40. 60. 2C 10. 20. 30. 40. 50. 60. OS 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids	83
 20. 30. 2B 20. 30. 35. 40. 60. 20. 30. 40. 20. 30. 40. 50. 60. OS 3A 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids	
 20. 30. 2B 20. 30. 35. 40. 60. 20. 10. 20. 30. 40. 50. 60. OS 3A 10. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids SCILLATIONS AND WAVES Oscillations Pendula	83
 20. 30. 2B 20. 30. 35. 40. 60. 20. 20. 30. 40. 50. 60. OS 3A 10. 15. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids CILLATIONS AND WAVES Oscillations Pendula Physical Pendula	83
 20. 30. 2B 20. 30. 35. 40. 60. 20. 20. 30. 40. 50. 60. OS 3A 10. 15. 20. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids CILLATIONS AND WAVES Oscillations Pendula Physical Pendula Springs and Oscillators	83
 20. 30. 2B 20. 30. 35. 40. 60. 20. 20. 30. 40. 50. 60. OS 3A 10. 15. 20. 40. 40. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids CILLATIONS AND WAVES Oscillations Pendula Physical Pendula Springs and Oscillators Simple Harmonic Motion	83
 20. 30. 2B 20. 30. 35. 40. 60. 20. 30. 40. 50. 60. OS 3A 10. 15. 20. 40. 50. 50. 	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids CILLATIONS AND WAVES Oscillations Pendula Physical Pendula Springs and Oscillators Simple Harmonic Motion Damped Oscillators	83
20. 30. 2 B 20. 35. 40. 60. 20. 30. 40. 50. 60. OS 3 A 10. 15. 20. 40. 50. 60.	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids CILLATIONS AND WAVES Oscillations Pendula Physical Pendula Springs and Oscillators Simple Harmonic Motion Damped Oscillators Driven Mechanical Resonance	83
20. 30. 2 B 20. 30. 35. 40. 60. 2C 10. 20. 30. 40. 50. 60. OS 3A 10. 15. 20. 40. 50. 60. 70.	Capillary Action Surface Tension Propulsion Statics Of Fluids Static Pressure Atmospheric Pressure Measuring Pressure Density and Buoyancy Siphons, Fountains, Pumps Dynamics Of Fluids Flow Rate Forces in Moving Fluids Viscosity Turbulent and Streamline Flow Vorticies Non-Newtonian Fluids CILLATIONS AND WAVES Oscillations Pendula Physical Pendula Springs and Oscillators Simple Harmonic Motion Damped Oscillators	83

95. Non-Linear Systems

INDEX

3B Wave Motion	
SD Wave WOUDI	102
10. Transverse Pulses and Wave	
20. Longitudinal Pulses and Waves	
22. Standing Waves	
 Impedance and Dispersion Compound Waves 	
30. Wave Properties of Sound	
33. Phase and Group Velocity	
35. Reflection and Refraction (Sound)	
39. Transfer of Energy in Waves	
40. Doppler Effect	
45. Shock Waves	
50. Interference and Diffraction	
55. Interference and Diffraction of Sound	
60. Beats	
70. Coupled Resonators	
3C Acoustics 10. The Ear	117
20. Pitch	
30. Intensity and Attenuation	
40. Architectural Acoustics	
50. Wave Analysis and Synthesis	
55. Music Perception and the Voice	
3D Instruments	122
20. Resonance in Strings	
22. Stringed Instruments	
30. Resonance Cavities	
32. Air Column Instruments	
40. Resonance in Plates, Bars, Solids	
46. Tuning Forks	
50. Electronic Instruments	400
3E Sound Reproduction	128
20. Loudspeakers 30. Microphones	
 Microphones Amplifiers 	
60. Recorders	
THERMODYNAMICS	
THERMODYNAMICS 4A Thermal Properties Of Matter	130
THERMODYNAMICS 4A Thermal Properties Of Matter 10. Thermometry	130
4A Thermal Properties Of Matter	130
4A Thermal Properties Of Matter 10. Thermometry	130
4A Thermal Properties Of Matter10. Thermometry20. Liquid Expansion	130
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 	
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 	130 133
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 4B Heat And The First Law 	
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 4B Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 	
 Harmal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 40. Radiation 	
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 4B Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 40. Radiation 50. Heat Transfer Applications 	
 Harmal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 40. Radiation 50. Heat Transfer Applications 60. Mechanical Equivalent of Heat 	
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 4B Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 40. Radiation 50. Heat Transfer Applications 60. Mechanical Equivalent of Heat 70. Adiabatic Processes 	133
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 4B Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 40. Radiation 50. Heat Transfer Applications 60. Mechanical Equivalent of Heat 70. Adiabatic Processes 4C Change Of State 	
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 4B Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 40. Radiation 50. Heat Transfer Applications 60. Mechanical Equivalent of Heat 70. Adiabatic Processes 4C Change Of State 10. PVT Surfaces 	133
 4A Thermal Properties Of Matter 10. Thermometry 20. Liquid Expansion 30. Solid Expansion 40. Properties of Materials at Low Temperatures 50. Liquid Helium 4B Heat And The First Law 10. Heat Capacity and Specific Heat 20. Convection 30. Conduction 40. Radiation 50. Heat Transfer Applications 60. Mechanical Equivalent of Heat 70. Adiabatic Processes 4C Change Of State 	133

31.	Cooling by Evaporation	
32.	Dew Point and Humidity	
33.	Vapor Pressure	
	Sublimation	
	Phase Changes: Solid-Solid	
50.	Critical Point	
	Kinetic Theory	147
-	Brownian Motion	
	Mean Free Path	
	Kinetic Motion Molecular Dimensions	
	Diffusion and Osmosis	
		151
	Gas Law Constant Pressure	131
-	Constant Temperature	
	Constant Volume	
	Entropy And The Second Law	153
	Entropy	
	Heat Cycles	
EL	ECTRICITY AND MAGNETISM	
	Electrostatics	156
	Producing Static Charge	
-	Coulomb's Law	
	Electrostatic Meters Conductors and Insulators	
	Induced Charge	
	Electrostatic Machines	
	Electric Fields and Potential	
		161
10.	Electric Field	161
-		161
20.	Electric Field	161
20. 30.	Electric Field Gauss' Law	161 166
20. 30. 5C	Electric Field Gauss' Law Electrostatic Potential	
20. 30. 5C 10. 20.	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric	
20. 30. 5C 10. 20.	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors	166
 20. 30. 5C 10. 20. 30. 5D 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance	
 20. 30. 5C 10. 20. 30. 5D 10. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics	166
 20. 30. 5C 10. 20. 30. 5D 10. 20. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature	166
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions	166
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases	166 169
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 5E 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current	166
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 5E 20. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis	166 169
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 5E 20. 30. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current	166 169
20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 5E 20. 30. 40.	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating	166 169
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 50. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries	166 169
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 50. 60. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries Thermoelectricity	166 169
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 50. 60. 5F 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries Thermoelectricity Piezoelectricity	166 169 172
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 5E 20. 30. 40. 5E 20. 30. 40. 5E 10. 15. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries Thermoelectricity Piezoelectricity Piezoelectricity DC Circuits Ohm's Law Power and Energy	166 169 172
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 5E 20. 30. 40. 50. 60. 5F 10. 15. 20. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries Thermoelectricity Piezoelectricity Piezoelectricity D C Circuits Ohm's Law Power and Energy Circuit Analysis	166 169 172
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 5E 20. 30. 40. 50. 60. 5F 10. 15. 20. 30. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries Thermoelectricity Piezoelectricity Piezoelectricity D C Circuits Ohm's Law Power and Energy Circuit Analysis RC Circuits	166 169 172
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 50. 60. 5F 10. 20. 30. 40. 50. 60. 5F 10. 15. 20. 30. 40. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries Thermoelectricity Piezoelectricity Piezoelectricity Piezoelectricity Piezoelectricity D C Circuits Ohm's Law Power and Energy Circuit Analysis RC Circuits Instruments	166 169 172 175
 20. 30. 5C 10. 20. 30. 5D 10. 20. 30. 40. 50. 60. 5F 10. 10. 20. 30. 40. 5F 30. 40. 5G 40. 	Electric Field Gauss' Law Electrostatic Potential Capacitance Capacitors Dielectric Energy Stored in a Capacitor Resistance Resistance Characteristics Resistivity and Temperature Conduction in Solutions Conduction in Gases Electromotive Force And Current Electrolysis Plating Cells and Batteries Thermoelectricity Piezoelectricity Piezoelectricity D C Circuits Ohm's Law Power and Energy Circuit Analysis RC Circuits	166 169 172

20. Magnetic Domains and Magnetization

30.	Paramagnetism and Diamagnetism	
40.	Hysteresis	
	Magnetostriction and Magnetores	
	Temperature and Magnetism	
	Magnetic Fields And Forces	184
	Magnetic Fields	
-	Fields and Currents	
	Forces on Magnets	
	Magnet/Electromagnet Interaction	
	Force on Moving Charges Force on Current in Wires	
-	Torques on Coils	
		192
	Inductance Self Inductance	192
-	LR Circuits	
-	RLC Circuits - DC	
	Electromagnetic Induction	193
	Induced Currents and Forces	150
	Eddy Currents	
	Transformers	
	Motors and Generators	
51	AC Circuits	201
	Impedance	
	RLC Circuits - AC	
30.	Filters and Rectifiers	
5M	Semiconductors And Tubes	203
10.	Semiconductors	
20.	Tubes	
5N	Electromagnetic Radiation	205
	Electromagnetic Radiation Transmission Lines and Antennas	205
10.		205
10. 20.	Transmission Lines and Antennas	205
10. 20.	Transmission Lines and Antennas Tesla Coil	205
10. 20. 30.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum	
10. 20. 30. OP 6A	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics	205 209
10. 20. 30. OP 6A 01.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light	
10. 20. 30. OP 6A 01. 02.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation	
10. 20. 30. OF 6A 01. 02. 10.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces	
10. 20. 30. OF 6A 01. 02. 10. 20.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces	
10. 20. 30. OF 6A 01. 02. 10. 20. 40.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Reflective Index	
10. 20. 30. OP 6A 01. 02. 10. 20. 40. 42.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum PTICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces	
 10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum PTICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection	
10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 46.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow	
 10. 20. 30. OF 6A 01. 02. 10. 20. 40. 40. 42. 44. 46. 60. 	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens	
 10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 46. 60. 61. 	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole	
 10. 20. 30. OF 6A 01. 02. 10. 20. 40. 40. 42. 44. 46. 60. 61. 65. 	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens	
 10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 46. 60. 61. 65. 70. 	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum PTICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments	209
 10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 46. 60. 61. 65. 70. 6B 	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments Photometry	
10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 46. 65. 70. 6 B 10.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum PTICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments	209
10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 65. 70. 65. 70. 6B 10. 30.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum PTICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments Photometry Luminosity	209
 10. 20. 30. OF 6A 01. 02. 10. 20. 40. 41. 46. 61. 65. 70. 6B 10. 30. 40. 	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments Photometry Luminosity Radiation Pressure Blackbodies	209
10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 46. 61. 65. 70. 6 B 10. 30. 40. 40. 6	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum PTICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments Photometry Luminosity Radiation Pressure	209
10. 20. 30. OF 6A 01. 02. 10. 20. 40. 42. 44. 46. 60. 61. 65. 70. 6B 10. 30. 40. 6C	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments Photometry Luminosity Radiation Pressure Blackbodies Diffraction	209
10. 20. 30. OFF 6A 01. 02. 10. 20. 40. 42. 44. 46. 60. 61. 65. 70. 6B 10. 30. 40. 6C 10. 20.	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments Photometry Luminosity Radiation Pressure Blackbodies Diffraction Diffraction Through One Slit	209
10. 20. 30. 30. 0FF 6A 01. 02. 10. 20. 40. 42. 44. 46. 60. 61. 65. 70. 6B 10. 30. 40. 6C 10. 20. 6D	Transmission Lines and Antennas Tesla Coil Electromagnetic Spectrum TICS Geometrical Optics Speed of Light Straight Line Propagation Reflection from Flat Surfaces Reflection from Curved Surfaces Refractive Index Refraction from Flat Surfaces Total Internal Reflection Rainbow Thin Lens Pinhole Thick Lens Optical Instruments Photometry Luminosity Radiation Pressure Blackbodies Diffraction Diffraction Around Objects	209 222 224

15. Interference of Polarized Light	
20. Gratings	
30. Thin Films	
40. Interferometers	
6F Color	233
10. Synthesis and Analysis of Color	
30. Dispersion	
40. Scattering	
6H Polarization	235
10. Dichroic Polarization	
20. Polarization by Reflection	
30. Circular Polarization	
35. Birefringence	
50. Polarization by Scattering	
6J The Eye	239
10. The Eye	
11. Physiology	
6Q Modern Optics	241
10. Holography	
20. Physical Optics	
MODERN PHYSICS	0.40
7A Quantum Effects	243
10. Photoelectric Effect	
15. Millikan Oil Drop	
20. Compton Effect	
50. Wave Mechanics	
 55. Particle/Wave Duality 60. X-ray and Electron Diffraction 	
OU. A-ray and Electron Dimaction	
70. Condensed Matter	247
70. Condensed Matter 7B Atomic Physics	247
70. Condensed Matter7B Atomic Physics10. Spectra	247
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 	247
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 	247
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 	247
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 	247
 Condensed Matter 7B Atomic Physics Spectra Absorption Resonance Radiation Fine Splitting Ionization Potential Electron Properties 	247
 Condensed Matter 7B Atomic Physics Spectra Absorption Resonance Radiation Fine Splitting Ionization Potential Electron Properties Atomic Models 	
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 	247 252
 Condensed Matter 7B Atomic Physics Spectra Absorption Resonance Radiation Fine Splitting Ionization Potential Electron Properties Atomic Models 	
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 	
 Condensed Matter 7B Atomic Physics Spectra Absorption Resonance Radiation Fine Splitting Ionization Potential Electron Properties Atomic Models 7D Nuclear Physics Radioactivity Nuclear Reactions 	
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 	
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 	
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 	252
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 	252
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 	252
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 7F Relativity 	252
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 7F Relativity 10. Special Relativity 20. General Relativity 	252
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 7F Relativity 10. Special Relativity 20. General Relativity 	252 257 257
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 7F Relativity 10. Special Relativity 20. General Relativity 8A Planetary Astronomy 	252
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 7F Relativity 10. Special Relativity 20. General Relativity 20. General Astronomy 05. Historical Astronomy 	252 257 257
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 7F Relativity 10. Special Relativity 20. General Relativity 20. Historical Astronomy 10. Solar System Mechanics 	252 257 257
 70. Condensed Matter 7B Atomic Physics 10. Spectra 11. Absorption 13. Resonance Radiation 20. Fine Splitting 30. Ionization Potential 35. Electron Properties 50. Atomic Models 7D Nuclear Physics 10. Radioactivity 20. Nuclear Reactions 30. Particle Detectors 40. NMR 50. Models of the Nucleus 7E Elementary Particles 10. Miscellaneous 7F Relativity 10. Special Relativity 20. General Relativity 20. General Astronomy 05. Historical Astronomy 	252 257 257

35. Views from Earth - 2	
40. Planetary Properties = Globes, Hemispheres & Maps	
50. Planetary Properties - 2 = The Planets	
60. Planetary Properties - 3 = Planetoids, Minor Objects	
70. Planetary Properties - 4 = Planetary Characteristics	
80. Planetary Properties - 5 = Comets and the Search for Life	
PD Steller Astronomy	265
8B Stellar Astronomy 10. The Sun	205
20. Stellar Spectra	
30. Stellar Evolution	
40. Black Holes	
50. Stellar Miscellaneous	
8C Cosmology	268
10. Models of the Universe	200
20. Gravitational Effects	
8D Miscellaneous	270
10. Miscellaneous Astronomy	210
20. Telescopes	
30. Astronomical Instruments	
8E Astronomy Teaching Techniques	270
30. Techniques and Projects	
EQUIPMENT	272
9A Support Systems 10. Blackboard Tools	212
20. Audio	
30. Slide Projectors	
34. Film Projectors	
 36. Overhead Projectors 38. Video and Computer Projection 	
40. Photography	
50. X-Y, Chart Recorders	
60. Buildings	
65. Museums	
70. Resource Books	
73. Unclassified Demonstrations	
75. Philosophy	
80. Films	
85. Computer Programs	278
9B Electronic 10. Timers	210
15. Position and Velocity Detectors	
17. Sources of Sound	
18. Sound Detectors	
20. Circuits/Components/Inst.	
30. Function Generators	
37. Oscilloscopes	
40. Advanced Instruments	
50. Power Supplies	
60. Light Sources	
61. Light Paths Made Visible	
62. Lasers	
65. Microwave Apparatus	
90. Computer Interface	
9C Mechanical	286
	200

INDEX

- 10. Motors
- 20. Pumps
- 25. Vacuum
- 30. Air Support
- 35. Ripple Tank
- 40. Other

PIRA 1000 Appendix

290

Dedicated to the Memory of Phillip Johnson

This volume is dedicated to Phil Johnson whose life brought this work to fruition.

It was Phil's vision that the demonstrations used in the physics classroom could be cataloged, given a universal number code thus eliminating a lot of confusion from school to school. He also saw the value and need for a reference that professionals in the field could pickup and find any number of demonstration and the corresponding references to the literature on the subject. This makes it possible to expand and enhance the demonstrations facility at any school using this volume.

I remember the first meeting at the University of Texas Austin, where he was a tireless and demanding taskmaster. Keeping us on course and focused could be a challenge. Demonstrations that were new to any number of us would lead us off into extraneous discussions very easily, but Phil with a firm hand would get us back on track. Phil could play just as easily as any of us and really enjoyed an evening of conviviality, the discussion more often than not wandered back to demos and how to improve them. Talking shop is easy to do when you love your job, and Phil loved demos!

Phil was also the quintessential Big Demo man. His demonstration show at the American Association of Physics Teachers at the University of Minnesota is a legend. It was my first show and I learned why bother crushing a 5 gallon can when you can crush a 55 gallon drum with stunning effect. Or was it the monkey shoot that was performed with a live professor dropped from a 25 to 30 foot scaffold into a pole vaulters foam safety pit.

Those of us who knew Phil well will find it hard to forget that quiet smile and gentle man who found it easy to laugh. A man whose focus brought a new professionalism to the world of lecture demonstrations. A man who by the strength of his character willed this bibliography to life.

Zigmund J. Peacock University of Utah

PIRA DEMONSTRATION BIBLIOGRAPHY

This Demonstration Bibliography consists of entries from:

Demonstration Experiments in Physics	by Richard Manliffe Sutton
A Demonstration Handbook for Physics	by G.D. Freier and F. J. Anderson
Physics Demonstration Experiments at William Jewell College	by Wallace A. Hilton
Physics Demonstration Experiments	by Harry F. Meiners
The Dick & Rae Physics Demo Notebook, Vol. 1 & Vol. 2	by Richard B. Minnix & D. Rae Carpenter, Jr.
The University of Minnesota Handbook	(UMN)
The American Journal of Physics	(AJP)
The Physics Teacher	(TPT)
The Video Encyclopedia of Physics Demonstrations	(DISC)
Physics Demonstrations, A Sourcebook for Teachers in Physic	s by Julien Clinton Sprott
A Demo A Day, A Year of Physics Demonstrations	by Borislaw Bilash II & David Maiullo
Turning the World Inside Out	by Robert Ehrlich
Why Toast Lands Jelly-Side Down	by Robert Ehrlich

Each source has a unique numbering format. This unique format is used to identify the source of each entry in the Bibliography. Examples of the unique numbering format for each reference are:

Sut, M - 1	Sutton
F&A, Ma - 1	Freier and Anderson
Hil, M - 1d	Hilton
Mei, 8 - 2.8	Meiners
D&R, M - 108	Dick & Rae
UMN, 1A12.01	University of Minnesota Handbook
AJP 52(1), 85	American Journal of Physics
TPT 15(5), 300	The Physics Teacher
Disc 01 - 01	The Video Encyclopedia of Physics
Sprott, 1.1	Sprott
Bil&Mai, p3	Bilash II & Maiullo
Ehrlich 1, p. 3	Ehrlich - Turning the World Inside Out
Ehrlich 2, p. 22	Ehrlich - Why Toast Lands Jelly-Side Down

How to use the Physics Demonstration Bibliography

This Demonstration Bibliography contains about 12,000 entries including all of Sutton, Freier & Anderson, Meiners, Hilton, Dick and Rae, The University of Minnesota Demonstration Handbook, The American Journal of Physics (AJP), The Video Encyclopedia of Physics Demonstrations, articles from The Physics Teacher (TPT), Sprott, and Bilash II & Maiullo.

The on-line version of this Bibliography may be found at the University of Colorado at Boulder. The URL is: http://physicslearning.colorado.edu/Bib Excel and PDF versions can be found at: http://www.pira-online.org in the "Resources" section under . the DCS tab.

Information in the main body of this bibliography is listed in four columns:

Reference	Demonstration Name	PIRA DCS number	Abstract
Example:			
F&A, Mb-16	Monkey and Hunter	1D60.30	A compressed air gun shoots at a tin can.

Each reference has a unique numbering format. This unique format is used in the bibliography as a means of identifying the source and entry of each reference. Some references have a similar format, so an author prefix has been added to the entries. A "1" or a "2" has been added to the author prefix when that author has more than one book listed as a reference.

A list of formats for the reference column in this book is:

Sut, M - 1	Sutton
F&A, Ma - 1	Freier & Anderson
Hil, M - 1d	Hilton
Mei, 8 - 2.8	Meiners
D&R, M - 108	Dick and Rae
UMN, 1A12.01	University of Minnesota Handbook
AJP 52(1), 85	American Journal of Physics
TPT 15(5), 300	The Physics Teacher
Disc 01 - 01	The Video Encyclopedia of Physics Demonstrations
Sprott, 1.1	Julien Clinton Sprott
Bil&Mai, p3	Bilash II & Maiullo
Ehrlich 1, p. 3	Ehrlich - Turning the World Inside Out
Ehrlich 2, p. 22	Ehrlich - Why Toast Lands Jelly-Side Down

The "demonstration" name listed in the bibliography is either the name listed on the reference or, if none is given, a simple descriptive name. In cases where there are several common names for a demonstration, the committee has chosen a preferred name.

The "abstract" is very brief. It is not intended to be a summary of the reference. One sentence is, in general, sufficient to describe the unique characteristics, if any, of the item.

Each demonstration is listed in only one location, even if it is commonly used to illustrate several concepts. The committee has tried to determine the most fundamental use for any demonstration and included reference pointers at other common locations of demonstration use.

The PIRA bibliography is also a dynamic reference. The bibliography changes and expands as new technologies, demonstrations, education standards, and references emerge. An example of this would be when a demonstration moves out of the PIRA 200, 500, or 1000. In this case the reference that has moved out of the PIRA 200, PIRA 500, or PIRA 1000, is given the designation "PIRA 200 - Old", "PIRA 500 - Old", or "PIRA 1000 - Old".

The PIRA Bibliography Committee approves to all changes and additions to the Bibliography.

1A10.20 1A10.35 1A40.10 1A50.10 1A60.10 1C10.05 1C10.20 1C20.10 1D40.10 1D50.10 1D50.40 1D60.10 1D60.20 1D60.30 1E10.10 1E10.20 1F20.10 1F20.30 1F30.10 1G10.40 1H10.10 1J11.20 1J20.11 1J30.10 1J30.25 1J40.10	Standards of Mass Meter Stick Vectors Radian Powers of Ten Ultrasonic Ranger and Student PASCO Dynamics Carts Penny and Feather PASCO Free Fall Throw Objects Ball on a String Pail of Water, Pail of Nails Howitzer and Tunnel Simultaneous Fall Monkey and Hunter Bulldozer on Moving Sheet Frames of Reference Film Inertia Ball Tablecloth Pull Persistence of Motion Accelerating Air / Dynamics Cart Atwood's Machine Push Me Pull Me Carts Map of State Tower of Lire Bowling Ball Stability Balance the Cone Suspended Block Rope and Three Students Grip Bar
1J40.20 1K10.20 1K10.30	Torque Beam Ladder Against a Wall Walking the Spool
1K20.10 1K20.30 1L10.10	Friction Blocks - Surface Materials Static vs. Sliding Friction Cavendish Balance Video
1L20.10 1M10.20 1M20.10	Gravitational Wells Pile Driver Pulleys
1M40.10 1M40.15	Nose Basher Stopped Pendulum
1M40.20	Loop the Loop
1N10.20 1N20.20	Egg in a Sheet Spring Apart Carts
1N21.10	Carts and Medicine Ball
1N22.10	Fire Extinguisher Rocket
1N22.20	Water Rocket Collision Balls
1N30.10 1N40.24	Air Table Collisions
1Q10.10	Inertia Wands and Two Students
1Q10.30	Ring, Disk, and Sphere Race

Q10.10	Inertia Wands and Two Studen
Q10.30	Ring, Disk, and Sphere Race

1Q20.10	Adjustable Angular Momentum
1Q30.10	Passing the Wheel
1Q40.10	Rotating Stool and Masses
1Q40.22	Rotating Hoberman Sphere
1Q40.30	Rotating Stool and Wheel
1Q50.50	Precessing Gyro
1R10.10	Stretching a Spring
1R40.30	Happy and Sad Balls
2A10.20	Floating Metals
2B20.40	Pascal's Vases
2B30.10	Crush the Can
2B30.30	Magdeburg Hemispheres
2B35.30	Manometer
2B40.10	Weigh Submerged Block
2B40.20	Archimedes' Principle
2C10.10	Torricelli's Tank
2C20.15	Venturi Tubes
3A10.10 3A15.10 3A20.10 3A40.10 3A60.10 3A70.20 3B10.10 3B20.10 3B22.10 3B40.10 3B55.40 3B55.40 3B55.40 3B60.20 3C20.10 3C30.20 3D30.60 3D30.70 3D40.20 3D40.30	Simple Pendulum Physical Pendulum Mass on a Spring Cir. Motion vs. Mass on a Spring Tacoma Narrows Film / Video Coupled Pendula Pulse on a Rope Shive/Bell Labs Wave Model Hanging Slinky Melde's Apparatus Doppler Buzzer Moire Pattern Transparencies Speaker Bar Trombone Beat Forks Beats on Scope Range of Hearing DB Meter and Horn or Speaker Kund's Tube Hoot Tubes Singing Rod Chladni Plate Shattering Goblet
4A30.10	Bimetallic Strip
4A30.20	Ball and Ring
4A40.30	Smashing Rose and Tube
4B20.10	Convection Tube
4B30.21	Conduction Rods
4B40.10	Light the Match
4B50.25	Heating a Water Balloon
4B60.10	Dropping Lead Shot

4B70.20	Expansion Cloud Chamber
4C30.10	Boiling by Cooling
4C31.30	Drinking Bird
4D10.10	Brownian Motion Cell
4D20.10	Crookes' Radiometer
4D30.20	Molecular Motion Demonstrator
4E10.20	Balloon in LN2
4E30.10	Constant Volume Bulb
4F30.10	Stirling Engine
5A10.10 5A20.10 5A22.25 5A40.10 5A40.20 5A50.30 5B10.10 5B20.10 5B20.35 5C10.20 5C20.10 5C20.10 5C20.10 5C30.20 5C30.30 5D10.40 5D20.60 5D40.10 5E40.25 5E50.10 5F10.10 5F15.35 5F20.10 5F10.10 5F15.35 5F20.10 5F30.10 5G30.10 5G50.50 5G30.10 5G50.50 5H10.20 5H10.20 5H10.30 5H15.10 5H15.40	Rods and Fur Rods and Pivot Soft Drind Can Electroscope Charging by Induction Charge Propelled Cylinder Van de Graaff Generator Hair on End Electric Field Lines Faraday's Ice Pail Radio in a Cage Point and Ball with Van de Graaff Parallel Plate Capacitor Capacitor with Dielectrics Short a Capacitor Light the Bulb Resistance Model Wire Coil in LN2 Conduction in Glass Jacob's Ladder Lemon Battery Thermocouple Ohm's Law Fuse with Increasing Load Kirchhoff's Voltage Law Series and Parallel Circuits Capacitor and Light Bulb Break a Magnet Magnetic Domain Models Paramagnetism and Diamagnetism Curie Point Meissner Effect Oersted's Effect Magnet and Iron Filings
5H20.10	Magnets and Pivot
5H30.10	Cathode Ray Tube
5H40.10	Parallel Wires
5H40.15	Interacting Coils

5H40.30 5H50.10 5J20.20 5K10.20 5K10.30 5K20.10 5K20.25 5K20.26 5K30.20 5K40.40 5L20.20 5N10.80 5N20.10 5N30.10	Jumping Wire Model Galvanometer LR Time Constant on Scope Series orParallel Lamps w/Inductor Induction Coil and Magnet Mutual Induction Coils with Battery Pendulum in Big Electromagnet Magnets and Tubes Faraday Repulsion Coil Dissectible Transformer Motor / Generator RLC Resonance EM Vectors Tesla Coil / Induction Coil Projected Spectrum w/ Prism
6A01.10 6A20.10 6A40.30 6A42.20 6A44.10 6A44.40 6A60.30 6B10.15 6C10.10 6D10.10 6D20.10 6D30.10 6D30.20 6D40.10 6H40.10 6H10.20 6H40.10 6H30.10 6H30.40 6J10.10	Speed of Light Concave and Convex Mirrors Disappearing Beaker Big Plastic Refraction Tank Blackboard Optics Laser and Fiber Optics Projected Filament w/ Lens Inverse Square Model Single Slit and Laser Double Slits and Laser Number of Slits Newton's Rings Soap Film Interference Michelson Interferometer Sunset Polaroids on the Overhead Microwave Polarization Brewster's Angle Three Polariods Karo Syrup Eye Model Holograms
7A10.10	Discharging Zinc Plate
7A50.40	Vibrating Circular Wire
7A60.10	Electron Diffraction
7B10.10	Student Gratings and Line Sources
7D10.10	Geiger Counter and Samples
7D30.60	Diffusion Cloud Chamber
7F10.60	Lorentz Transformation/Time Dilation
8A10.10	Orrery
8A20.15	Phases of the Moon
8A30.30	Retrograde Motion Model
8A35.10	Celestial Sphere

- 8B10.60 Random Walk
- 8B40.30 Membrane Table / Black Hole
- 8C10.30 Expanding Universe

	MEASUREMENT	1A00.00	
	Basic Units	1A10.00	
PIRA 1000	basic unit set	1A10.10	
Hil, M-1a	standards of mass, etc	1A10.10	Show models of the fundamental units of mass and length and a stop clock for time.
Disc 01-01	basic unit set	1A10.10	Show a clock with a second sweep, meter and yard sticks, and kilogram and pound mass.
PIRA 200	standards of mass	1A10.20	Show students 1 lb, 1 kg, 1 slug masses.
UMN, 1A10.20	standards of mass	1A10.20	Show students 1 lb, 1 kg, 1 slug masses.
F&A, Ma-2	standards of mass	1A10.20	Show sets of calibrated weights.
Sut, M-1	table of masses	1A10.24	A table of masses covering the range from the universe to the electron.
Mei, 8-2.8	conservation of mass	1A10.28	Weigh a flask with Alka-Seltzer closed and open on a crude and accurate balance to aid in conservation of mass discussion.
AJP 28(2),167	TME and Glug	1A10.29	The Technische Mass Einheit ("metric slug") = 10 Glugs.
PIRA 500	standards of length	1A10.30	
UMN, 1A10.30	standards of length	1A10.30	Put out standard yard and meter.
F&A, Ma-1	standards of length	1A10.30	Standard meter and standard yard.
D&R, M-016	standard meter stick	1A10.30	A meter stick with painted 10 cm lengths for easy visibility.
AJP 34(5),419	Airy points of a meter bar	1A10.32	Support a rectangular bar at the specific points in order that the distance between engravings will not be altered by deflections due to the weight of the bar.
AJP 57(11),988	historical note	1A10.33	Very interesting history of the development of the meter.
AJP 52(7),607	the new meter	1A10.34	Wouldn't it be nice to start off six page article on the new meter with a concise definition of the new meter?
PIRA 200	meter stick	1A10.35	Set out a standard meter.
PIRA 1000	"1 nsec"	1A10.36	
UMN, 1A10.36	1 "nsec"	1A10.36	Cut a length of meter stick to equal the distance light travels in one nsec.
Bil&Mai, p12 PIRA 1000	significant digits body units	1A10.37 1A10.38	Modified meter sticks are used to teach about error and significant digits.
UMN, 1A10.38	body units	1A10.38	
D&R, M-020	body units	1A10.38	Identifying parts of the body that approximate metric units.
PIRA 500	clocks	1A10.40	
UMN, 1A10.40	clocks	1A10.40	Set out a timer with a one second sweep, an hour glass, a metronome, etc.
PIRA 1000	WWV signal	1A10.45	
UMN, 1A10.45	WWV signal	1A10.45	Listen to WWV and show the signal on an oscilloscope.
F&A, Ma-3a	WWV signal	1A10.45	Listen to WWV and display on an oscilloscope.
Hil, M-1d	WWV	1A10.45	Listen to WWV and show the signal on an oscilloscope.
AJP 55(4),378	WWV on your microcomputer	1A10.46	Use WWV to set the clock on your microcomputer and determine how fast it runs.
F&A, Ma-3b	Orrery	1A10.48	Use an Orrery to show sidereal time.
Hil, M-1e	Sidereal time	1A10.49	Two clocks on permanent display show Greenwich and Sidereal time.
PIRA 1000	one liter cube	1A10.50	
UMN, 1A10.50	one liter cube	1A10.50	A one liter wood cube has cm square rules on each face and removable one cm sq and one cm x one dm blocks.
Hil, M-20a.6	one liter cube	1A10.50	Picture of a one liter cube.
D&R, M-028	one liter volume	1A10.50	Show 1 liter liquid volume.
Bil&Mai, p 14	estimating volumes	1A10.52	Pinto beans and a 1 L bottle are used in an activity where students measure the size of one bean and then use that figure to estimate how many beans are in a full bottle.
PIRA 1000	mass, volume, and density	1A10.55	

Demonstration Bibligrqaphy			July 2015	Mechanics
UMN, 1A10.55 TPT 34(7), 448	mass, volume, and density volume relationship set	1A10.55 1A10.57	Compare wood and aluminum cubes, each with 10 cm Compare a 10 cm aluminum cube with a 10 cm sq x 4 mass). Compare a 10 cm aluminum cube with a 10 cm block (equal density). The relationship between the volumes of a cone, cylind	cm lead block (equal n sq x 4 cm aluminum
			rectangular prism, and sphere, all of equal diameter ar Or, take two cone type cups, cut one to half height, an small cups of water it takes to fill the uncut cup.	
PIRA 1000	Avogadro's number box	1A10.60		
UMN, 1A10.60	Avogadro's number box	1A10.60	A cube with sides of 28.2 cm has a volume of 22.4 L a	t STP.
UMN, 1A10.60	Avogadro's number box	1A10.60		
Hil, H-4a	Avogadro's number box	1A10.60	A 22.4 liter box to represent the volume of one mole at	STP.
D&R, H-450, M- 028	Avogadro's number box	1A10.60	A 22.4 liter box representing the volume of one mole a mole of common elements may also be displayed on t	
PIRA 1000	mole samples	1A10.65		
UMN, 1A10.65	mole samples	1A10.65	Show mole samples of carbon, iron, copper, zinc, etc.	
PIRA 1000	density samples	1A10.70		
UMN, 1A10.70	density samples	1A10.70	One kg samples of lead, aluminum, water, wood each bases. A one meter frame shows the size of approximation of the size of	
PIRA LOCAL	Larry's density samples	1A10.71	Pass around to the class some labeled uniform cylinde materials.	rs of different
	Error and Accuracy	1A20.00		
PIRA 1000	Gaussian collision board	1A20.10		
UMN, 1A20.10	Gaussian curve marble board	1A20.10		
Sut, A-47	Gaussian collision board	1A20.10	Balls roll down a nail board into parallel chutes forming similar to the distribution of molecular velocities.	a probability curve
D&R, M-042	Gaussian collision board	1A20.10	Steel balls roll down a peg board with parallel chutes. chutes should form a probability curve.	-
Disc 16-12	Gaussian curve	1A20.10	A commercial device for the overhead projector where through an array of nails into parallel chutes.	ball bearings roll
PIRA 1000	coin flip	1A20.20		
UMN, 1A20.20	coin flips	1A20.20		
PIRA 1000	dice	1A20.25		
UMN, 1A20.25	dice	1A20.25		
AJP 43(8),732	contact time measurement	1A20.31	Measure contact time of two hammers being struck tog generator is gated to a pulse counter while the hamme	ers are in contact.
Mei, 6-1	vernier calipers	1A20.41	Frequency of the pulse generator can be changed to v Use commercial large scale verniers to show how they large coordinate systems.	
Hil, M-1b	vernier calipers, etc	1A20.41	Demonstration versions of the micrometer and vernier	calipers.
Hil, M-1c	vernier scale, slide rule for overhead projector	1A20.42	A slide rule and vernier scale made of clear plastic for projector.	use on the overhead
PIRA 1000	weight judgment	1A20.50		
Sut, M-2	wood and brass blocks	1A20.50	A small heavy weight and a slightly lighter large wood around the class.	block are passed
D&R, M-052	weight judgement	1A20.50	Pass 35 mm film canisters with different masses inside them place in proper order from lightest to heaviest.	e to students and have
Mei, 6-2.5	lead ping pong ball and foam chunk	1A20.51	Students judge weight of a white lead filled ping pong l black foam.	call and a chunk of
Mei, 6-1.1	statistics on overhead projector	1A20.55	Transparent Lucite probability board for the overhead p details in the Appendix, p. 533.	projector. Construction
PIRA 1000	reaction time	1A20.60		
UMN, 1A20.60	reaction time	1A20.60	Cover 3/4 of a stop clock face. Push the stop button w	hen the hand shows.
F&A, Mb-1a	reaction time	1A20.60	A large stop clock is covered by a disc with one quadra clock as soon as you see the hand emerge.	ant cut out. Stop the
Mei, 6-2.6.1	reaction time	1A20.60	Same as Mb-1a.	
	Coordinate Systems	1A30.00		
PIRA 500	XYZ Axes	1A30.10		

Demonstratio	on Bibligrqaphy		July 2015 Mechanics
UMN, 1A30.10	XYZ Axes	1A30.10	
AJP 35(12),x	non-orthogonal frames	1A30.15	mounted on the vectors.
Mei, 13-8.1	Euler's angles	1A30.21	A model that demonstrates the orientation of an arbitrarily oriented set of
AJP 28(9),818	Euler's angles - MITAC gyro model	1A30.22	orthogonal axes with respect to another orthogonal set which is fixed. Use the MITAC gyro as a classroom model to illustrate Euler's angles.
PIRA 1000	polar coordinates	1A30.30	
UMN, 1A30.30	polar coordinates	1A30.30	Need a demo to go with the xyz axes.
PIRA 500	chalkboard globe	1A30.40	
UMN, 1A30.40	chalkboard globe	1A30.40	Draw coordinates on a 20" plain globe.
PIRA 1000	blackboard hemisphere	1A30.41	
UMN, 1A30.41	blackboard hemisphere	1A30.41	Half of a 20" dia. blackboard sphere.
	Vectors	1A40.00	
PIRA 200	components of a vector	1A40.10	Arrows define a three dimensional coordinate system. An arbitrary vector is viewed in the three planes.
UMN, 1A40.10	components of a vector	1A40.10	
Mei, 6-4.3	components of a vector	1A40.10	A three dimensional vector model on a large Lucite box. Diagrams.
D&R, S-025	components of a vector	1A40.10	Several three dimensional coordinate systems used to describe effects of motion in a moving frame. Use a meter stick to locate points relative to origin.
Disc 01-07	3-D vector components	1A40.10	Metal arrows define a three dimensional coordinate system. An arbitrary vector is viewed in the three planes.
Hil, M-10a	components of a vector	1A40.13	A Lucite frame for introducing vectors.
PIRA 1000	vector components animation	1A40.14	
Disc 01-04	vector components	1A40.14	Animation.
Sut, M-3	project components of a vector	1A40.15	A horizontal arrow is shadow projected onto two screens at 90 deg. facing the class.
PIRA 1000	folding rule	1A40.20	
UMN, 1A40.20	folding rule	1A40.20	A large version of the folding carpenter's rule of four 2' sections with painted arrows.
PIRA 1000	tinker toys	1A40.25	
UMN, 1A40.25	tinker toys	1A40.25	Put out a box of tinker toys that includes arrow tips.
F&A, Mb-2	tinker toys	1A40.25	A set of tinker toys is set out.
PIRA 1000	magnetic vector addition	1A40.30	
UMN, 1A40.30	magnetic vector addition	1A40.30	Megnetic arrows used to show yester addition
D&R, M-068	magnetic vector addition	1A40.30	Magnetic arrows used to show vector addition.
PIRA 1000 D&R, M-064	vector addition (parallelogram) vector parallelogram	1A40.31 1A40.31	A parallelogram arrangement used to show vector addition on the chalk board.
Disc 01-02	vector addition (parallelogram)	1A40.31	Animation.
PIRA 1000	vector addition (head to tail)	1A40.33	
Disc 01-03	vector addition (head to tail)	1A40.33	Animation.
PIRA 1000	Vernier Vector Addition II	1A40.35	
UMN, 1A40.35	Vernier Vector Addition II	1A40.35	Computer program.
PIRA 1000	resultant of vectors	1A40.40	
Mei, 6-4.4	resultant of vectors	1A40.40	Show the variation in the magnitude of the resultant of two vectors with a change in the angle between them on the overhead projector. Construction details in Appendix, p. 537.
Mei, 6-4.7	resultant of vectors	1A40.41	Vector addition using elastic vectors on an open framework.
Mei, 6-4.5	vector displacement	1A40.50	An overhead projector device uses two compass needles to show that a vector remains invariant when displaced. Diagram.
PIRA 1000	vector dot products	1A40.70	
Disc 01-05	vector dot products	1A40.70	Animation.
PIRA 1000	vector cross products	1A40.75	

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
Disc 01-06	vector cross product	1A40.75	Animation shows vectors superimposed on a right hand.
	Math Topics	1A50.00	
PIRA 200	radian disc	1A50.10	A flexible strip of plastic equal to the radius is bent around the edge of a circle.
UMN, 1A50.10	radian	1A50.10	
Hil, M-16a	radian	1A50.10	A string is used to mark off radii on the circumference of a large disc.
Disc 05-12	radian disc	1A50.10	A flexible strip of plastic equal to the radius is bent around the edge of a circle.
TPT, 37(4), 253	a nostalgic demonstration of the radian	1A50.10	remarkably similar to a Pac-Man.
AJP 51(8),760	sine, cosine, and circle linkage	1A50.30	orthogonally as the sine and cosine.
Mei, 6-1.2	binary counter	1A50.51	the Appendix, p. 533.
AJP 32(7),645	mechanical binary scaler	1A50.52	
AJP 47(4),379 AJP 46(10),1015	Dirac's strings models discrete linear transformation	1A50.60 1A50.60	degrees will not bring it back to the initial configuration.
AJP 34(4),359	sim. equations device	1A50.65	models a discrete linear transformation.
AJP 42(5),425	projection slide rule	1A50.70	Make a projection slide rule with front and back scales mounted side by side.
TPT 2(5),228	integers as sum of reciprocals	1A50.80	A general treatment of integer values of the sum of reciprocals applicable to parallel resistors, series capacitors, spherical mirrors, thin lenses, etc.
	Scaling	1A60.00	
PIRA 200	Powers of Ten	1A60.10	"Powers of Ten" is a film covering scales from the universe to sub-atomic.
UMN, 1A60.10	Powers of Ten	1A60.10	"Powers of Ten" is a visual trip covering scales from the universe to sub- atomic. It is available in film and videodisc versions.
D&R, M-024	Powers of 10	1A60.10	
PIRA 1000	scaling model for biological systems	1A60.20	
UMN, 1A60.20	two cows	1A60.20	
AJP 45(5),498	scaling model for biological systems	1A60.20	factor of 5 collapses.
AJP 50(1),72	scaling - zoological domain	1A60.22	characteristics.
PIRA 1000	2:1 scaling	1A60.30	
Disc 08-07	2:1 scaling	1A60.30	Masses placed in the center of the bridges are also scaled 2:1.
PIRA 1000	scaling cube	1A60.40	
UMN, 1A60.40	scaling cube	1A60.40	A large cube made up of 27 smaller ones is painted black on the outside. Knock the stack apart and show the increase in surface area by the preponderance of unpainted surfaces.
Disc 14-16	scaling cube	1A60.40	Cut a cube painted black into 27 smaller cubes. When dismantled, the unpainted surfaces show the increase in surface area.
	MOTION IN ONE	1C00.00	
	DIMENSION Velocity	1C10.00	
PIRA 200	ultrasonic detector and students	1C10.05	
UMN, 1C10.05	sonic ranger and students	1C10.05	
Bil&Mai, p 18	sonic ranger and students	1C10.05	A record player with multiple speeds is used to pull a dynamics cart. Record the motion of the cart with a motion sensor.
PIRA 200 - Old	bulldozer on moving sheet/2D	1C10.10	A bulldozer runs at constant speed on a moving paper to show how velocities add and subtract.

Demonstratio	n Bibligrqaphy		July 2015	Mechanics
UMN, 1C10.10	bulldozer on moving sheet	1C10.10	The bulldozer on a moving sheet moves in the same or of the moving sheet, not at a angle, to show addition and s velocities.	••
D&R, S-020	vehicle on a moving sheet	1C10.10	A battery powered vehicle runs at a constant speed on a show how velocities add and subtract.	moving paper to
Bil&Mai, p 25	vehicle on a moving sheet	1C10.10		•
Disc 01-09	bulldozer on moving sheet	1C10.10	Identical bulldozers run at constant speed, one on a mov how velocities add and subtract.	ving paper, to show
PIRA 200	PASCO dynamics cart	1C10.20		
PIRA 1000 - Old	PASCO dynamics cart	1C10.20		
UMN, 1C10.20	PASCO dynamics cart	1C10.20		
Hil, M-2a	measuring constant velocity	1C10.21	Time a toy truck with a stop clock as it is pulled across the velocity in front of a meter stick.	ne table at constant
Mei, 7-1.1	photographing uniform motion	1C10.22	Take an open shutter photo of a toy tractor moving a blir	nky.
PIRA 500	air track and glider	1C10.25		
UMN, 1C10.25	air track and glider	1C10.25		
Disc 01-08	constant velocity (airtrack)	1C10.25	Dots are superimposed on the screen every half second of the air glider.	to mark the position
Mei, 11-1.4	velocity - air track and glider	1C10.26	Measuring air track glider velocity: stopwatch and meter recorder, photo interrupt.	stick, spark
PIRA 1000	velocity - air track and glider	1C10.27		
UMN, 1C10.27	velocity - air track and glider	1C10.27	Level air track with the Pasco photogate timer system. L timers.	lse one or two
PIRA 1000	approaching instantaneous velocity	1C10.30		
UMN, 1C10.30	approaching instantaneous velocity	1C10.30	An air glider is given a reproducible velocity by a solenoi decreasing length interrupt a photo timer.	d kicker. Flags of
Mei, 7-1.16	approaching instantaneous velocity	1C10.30	A ball breaks two foils to start and stop a timer. Change approach instantaneous velocity.	spacing of gates to
F&A, Mb-10	strobed disc	1C10.32	Look at a fluorescent spot on a 1725 RPM disc with a st multiples of the frequency to demonstrate the limiting pro-	
Mei, 7-2.1	speed at a point	1C10.33	Take a picture of a light bulb pendulum with a strobed ca	
TPT 16(3),160	terminal velocity	1C10.51	A mechanical device rolls down an incline with a termina	
TPT 1(2),82	terminal velocity tube	1C10.55	A marble rolling down a tube of water at a slight incline r velocity allowing slow constant velocity to be measured.	
PIRA 1000	muzzle velocity	1C10.60		
AJP 44(7),711	muzzle velocity - foil	1C10.60	Graphite rods are broken to switch an oscillator in and o circuit.	ut of a counter
AJP 45(9),882	muzzle velocity - foil	1C10.60	Use the circuit in AJP 44(9),85 with the breaking foil met muzzle velocity.	hod of measuring
AJP 45(9),882	muzzle velocity - foil	1C10.60	Using the apparatus by Blackburn and Koenig, AJP 44,8 measure the muzzle velocity of a rifle.	55(1976), to
TPT 20(3),184	muzzle velocity - foil	1C10.60	The bullet passes through two aluminum foil strips. The an oscilloscope.	signal is shown on
F&A, Mb-21	muzzle velocity - foil	1C10.60	Bullet breaks two metal foils triggering a timer.	
Mei, 7-1.2	muzzle velocity - foil	1C10.60	Aluminum foil triggers 1 m apart start and stop an electro Construction details.	onic timer.
AJP 55(9),856	muzzle velocity - photogate timer	1C10.61	Measure the speed of a bullet with eight crisscrossing Lt detectors connected to an eight input OR gate.	ED beams with the
Mei, 7-1.19	muzzle velocity - photogate	1C10.61	Details of a photoelectric triggering circuit good to a few	microseconds.
AJP 47(5),426	time of flight	1C10.62		asurements for bullet
AJP 51(7),602	time of flight	1C10.62	conservation. Mechanical construction considerations a An apparatus measures the time of flight of the projectile Blackwood pendulum apparatus by timing signals from t Circuits are included.	e fired from the
D&R, M-162	time of flight	1C10.62		eased and stops
Sut, E-264	RC bullet timer	1C10.63	A capacitor is discharged to a ballistic galvanometer dur bullet passes between two gates. Diagrams and theory.	ing the time the
PIRA 1000	muzzle velocity - disc	1C10.65		
F&A, Mb-22	muzzle velocity - disk	1C10.65	An air gun is fired through two rotating cardboard discs s	separated by some
Mei, 7-1.3	muzzle velocity - disk	1C10.65	distance. Shooting a bullet through two rotation discs.	
, -			5 5 5	

Demonstratic	n bibligi qapity		July 2015 Mechanics
Sut, M-70 AJP 31(7),548	muzzle velocity - disk muzzle velocity - strobe photo	1C10.65 1C10.66	spinning wheel marked with a radial line. Measure the angle on the
			photograph.
Sut, M-71	low velocity	1C10.71	•
Sut, M-72	velocity table	1C10.72	A table of velocities ranging from continental drift to the speed of light.
	Uniform Acceleration	1C20.00	Drop a pappy and factbor in a glass tube, first full of air and then avecuated
PIRA 200	penny and feather	1C20.10	Drop a penny and feather in a glass tube, first full of air and then evacuated.
UMN, 1C20.10	penny and feather	1C20.10	Drop a penny and feather in a glass tube, first full of air and then evacuated.
Sut, M-79	penny and feather	1C20.10	
Hil, M-5a D&R, M-088	penny and feather penny and feather	1C20.10 1C20.10	
Dar, M-000	penny and reamen	1020.10	evacuated.
Sprott, 1.1	guinea and feather	1C20.10	In an evacuated tube objects fall at the same rate independent of their size, shape, and mass.
Bil&Mai, p 27	penny and feather	1C20.10	
Disc 01-14	guinea and feather	1C20.10	Metal and paper discs are placed in identical tubes.
UMN, 1C20.11	drop feather on book	1C20.11	
D&R, M-136	drop dollar bill on book	1C20.11	Drop a flat dollar bill and a book simultaneously. Then place bill on top of book and drop.
PIRA 1000	hammer and feather on the Moon	1C20.12	
PIRA 1000	drop lead and cork balls	1C20.15	
UMN, 1C20.15	cork and lead ball drop	1C20.15	
TPT 17(5),314	drop cork & lead balls	1C20.15	Hint on how to drop a heavy and light object simultaneously with one hand.
Sut, M-80	drop iron and wood balls	1C20.15	, , , , , , , , , , , , , , , , , , , ,
D&R, M-120	drop heavy and light balls	1C20.15	, , ,
Bil&Mai, p 33	drop heavy and light balls	1C20.15	Drop heavy and light balls from the same height and see if they hit the floor at the same time. Air resistance is a factor that must be considered in very light balls such as Ping Pong balls.
Ehrlich 1, p. 3	drop balls of different sizes	1C20.15	
PIRA 1000	drop ball and paper	1C20.16	
UMN, 1C20.16	drop ball and paper	1C20.16	Drop a ball and sheet of paper, then drop a ball and a wadded sheet of paper.
D&R, M-136	flat and crumpled dollar bills	1C20.16	
TPT 32(9), 537	quarters and cards	1C20.16	
AJP 30(9),656	heavy and light balls pedagogy	1C20.17	Try asking what height the heavy ball must be dropped from so it hits the
Ehrlich 1, p. 44	freefall and air resistance	1C20.18	floor at the same time as the light ball. Observe the effect of air resistance on objects of different size, shape, density, and orientation. Also, tape a coin to the center of a note card and then a coin to the middle of another card's short side edge. Hold both horizontally and then drop.
TPT 35(6), 364	freefall and air resistance	1C20.18	
TPT 25(8), 505	freefall and air resistance	1C20.18	
TPT 24(3), 153	freefall and air resistance	1C20.18	•
TPT 43(7), 432	freefall and air resistance	1C20.18	On the accuracy of computing the acceleration of free fall in air.
PIRA 500	equal time equal distance drop	1C20.20	-
UMN, 1C20.20	equal time equal distance drop	1C20.20	Climb a ladder and drop two long strings with balls - one with equal distance intervals and the other with equal time intervals.
TPT 16(4),233	equal time equal distance drop	1C20.20	String and Sticky Tape Series: directions for simple apparatus.
F&A, Mb-12	equal time equal distance drop	1C20.20	Drop a long string of balls with spacing of 1,4,9,16.
Mei, 7-1.12	equal time equal distance drop	1C20.20	
Sut, M-84	equal time equal distance drop	1C20.20	Drop a string with a series of lead balls attached.
D&R, M-094	equal time equal distance drop	1C20.20	Drop a long string of balls with spacing of 1,4,9,16,etc.
Bil&Mai, p 29	equal time equal distance drop	1C20.20	Metal nuts are tied to a string at strategic intervals. When held above a pizza
-			pan and released the nuts are heard to strike the pan at equal time intervals.

Demonstration Bibligrqaphy Disc 01-12 string and weights drop 1C20.20 Drop strings with weights. **PIRA 500** inclined air track 1C20.30 UMN, 1C20.30 inclined air track 1C20.30 Place risers under one end of an air track. Use photogate timers to measure the velocity at two points. Mei, 11-1.6 inclined air track 1C20.30 Timing on an inclined air track: spark recording, photoelectric, periodic impact. Mei, 7-1.5.1 inclined air track 1C20.30 Interrupted photocell times a glider at the top and bottom of an incline. Disc 01-11 Dots marking the position of the glider are superimposed on the screen as constant acceleration 1C20.30 the glider accelerates down an inclined air track 1C20.31 Hil. M-3e inclined air track Use a stop clock and meter stick with the inclined air track. AJP 45(10),1005 inclined air track 1C20.35 Data for graphs of acceleration, velocity, or displacement as a function of time is obtained from a glider on an inclined air track as it accelerates down and rebounds. Details for a timing device using two spring contacts. Hil, M-15e.2 inclined air track Record a glider on an inclined air track with strobe photography. 1C20.36 D&R, M-108 inclined rail and ball 1C20.37 Record positions of a ball at equal time intervals on an inclined channel with a strobe light. **PIRA 500** blinky track 1C20.40 UMN, 1C20.40 blinky track 1C20.40 Lights that flash every second are placed along an inclined and horizontal track such that they flash at the moment the ball passes. AJP 29(3),211 acceleration "v" track 1C20.40 Use a 1" x 1" extruded aluminum angle for an acceleration track raceway. AJP 47(3),287 blinky track 1C20.40 A ball rolls down a sloped track onto a flat track. A series of lights blinking every second is mounted on the track at intervals such that the ball passes as the light blinks. blinky track F&A, Mb-13 1C20.40 Lights that flash every second are spaced along an incline and horizontal track such that they are flashing at the moment the ball passes. Sut, M-77 blinky track 1C20.40 The original blinky track. **PIRA 1000** blinky track with graphs 1C20.41 UMN, 1C20.41 blinky track with graphs 1C20.41 Two sets of magnetic arrows are transferred from the blinky track to a magnetic blackboard. The arrows graphs show the position at blinks and the change in position at blinks. Disc 01-10 1C20.41 rolling ball on incline Additions to the blinky track: magnetic strips can be removed from the track showing all d's, delta d's, and delta v's. Place these strips vertically to show position, velocity, and acceleration vs time. Graphs are simulations on disc but real at U of Wash. F&A, Mb-11 blinky track - strobe photo 1C20.42 Use a strobe and camera to record a ball rolling down an incline and across a flat. Sut, M-82 ball on an incline 1C20.43 A ball is accelerated down an incline onto a horizontal track where the velocity is measured. Sut, M-83 ball on an incline with seconds 1C20.43 A seconds pendulum is released when the ball enters the horizontal track (Mpend 82) and is placed so it knocks the ball off the track. Sut, M-78 inclined wire 1C20.44 A taut inclined wire forms the incline. Hil, M-3d car on an inclined wire A long wire is stretched diagonally across the chalkboard with chalk marks at 1C20.44 every meter. A student times a low friction car as it accelerates to various marks. TPT 16(8),558 ball on an incline 1C20.45 A simple demonstration using a ball bearing rolling down the grove of a plastic meter stick. Analysis included. TPT 1(2),82 slow roller on incline 1C20.45 A solid wheel turning on a small axis rolls down an incline. The translational velocity is slow enough to make easy accurate measurements. ball on an incline 1C20.45 Rolling a ball down an incline starting at 1/4 the way up and all the way up. Mei, 7-1.6 ball on an incline Steel balls are rolled down the grove of an inclined plastic ruler. Ehrlich 1, p. 6 1C20.45 Mei, 7-1.5.2 car on an incline A car on an incline is timed from release until the end of a measured 1C20.46 distance. Sut, M-76 Duff's plane 1C20.50 A chalk ball oscillates as it rolls down a trough in a 2x6. Hil, M-3c Duff's plane 1C20.50 A ball leaves a trail as it oscillates back and forth while rolling down a chalk covered trough. Mei, 7-1.5.8 dynamometer 1C20.61 A simple dynamometer rides a cart on a track. Mei, 7-1.4 photographing acceleration 1C20.71 Take an open shutter strobe wheel photo of a small fan cart. 1C30.00 Measuring g **PIRA 200** free fall timer 1C30.10 A ball is timed as it drops .5m, 1m, 1.5m, or 2m. UMN, 1C30.10 free fall timer 1C30.10 A ball is timed as it drops .5m, 1m, 1.5m, or 2m. Ehrlich 2, p. 32 free fall timer 1C30.10 Drop objects and time their fall through a known distance with a stopwatch.

July 2015

Mechanics

Demonstratio	on Bibligrqaphy		July 2015 Mechanics
Mei, 7-1.17	dropping balls	1C30.11	A latching relay system for turning a standard timer on and off for the
		1000.11	dropping ball experiment. Use two independent measurements to eliminate the delay factor.
Mei, 7-1.18	dropping balls	1C30.12	Use a photo interrupt system to time a falling ball. Details in appendix to demo 10-2.18.
AJP 42(3),255	dropping balls - release	1C30.13	A clever device to replace the standard electromagnet release for timing a dropping ball.
AJP 44(9),855	dropping balls	1C30.13	
AJP 55(4),324 AJP 59(6),568	accurate release mechanism free fall timer - stopwatch mod.	1C30.13 1C30.14	,
PIRA 1000	little big ball dropper	1C30.15	
UMN, 1C30.15	big ball dropper	1C30.15	
Hil, M-3b	dropping balls	1C30.16	A ball is released by an electromagnet and a clock started. The catcher stops the clock and can be set at different heights.
Sut, M-87	Welch free fall apparatus	1C30.17	Describes an old Welch free fall apparatus.
PIRA 1000	big big ball dropper	1C30.20	
UMN, 1C30.20	tall big ball dropper	1C30.20	
Mei, 7-1.20	dropping balls	1C30.21	times. Photocell output is displayed on a scope.
TPT 12(2),115	induction method	1C30.22	induced voltage on an oscilloscope. Circuit included.
AJP 39(7),757	dropping balls in air	1C30.25	output is shown on an oscilloscope.
Sut, M-85	falling slab	1C30.30	intervals.
Mei, 7-1.7	ink jet marker	1C30.31	A rotating ink jet sprays a paper sleeve on a falling meter stick.
F&A, Mb-18	dropping balls - photo	1C30.33	
Mei, 7-1.14	dropping balls - photo	1C30.33	
PIRA LOCAL	picket fence and photogate	1C30.35	A calibrated picket fence is dropped through a photogate to measure "g".
PIRA 1000	falling drops	1C30.40	A fall an annual data ann an tar an data a baile an tar
AJP 47(6),542	mercury drops	1C30.40	A falling mercury drop generator and an electronic timing circuit conveniently and automatically generates a large number of data in a short period of time, yielding results with a high degree of precision.
TPT 4(2),77	falling drops	1C30.41	A strobe illuminates water dripping from a faucet at an uniform rate.
Bil&Mai, p 35	falling drops	1C30.41	
AJP 48(10),888	falling drops	1C30.42	A machine to make a stream of falling bubbles which are illuminated by a strobe light.
Mei, 7-1.15	falling drops	1C30.43	Steel balls are dropped at regular intervals and illuminated with a strobe. Diagrams and pictures.
AJP 33(10),824	synchrodropper	1C30.44	
TPT 28(2),108	"videostrobe" with falling drops	1C30.46	Use the 60 Hz refresh rate of a video monitor to strobe falling drops by adjusting the rate to 60 Hz and having the stream fall past the screen.
PIRA 1000	catch a meter stick	1C30.55	
UMN, 1C20.55	catch a meter sitck	1C30.55	Have one student drop a meter stick and use the distance it drops before another students catches it to determine the reaction time.
TPT 14(3),177	catch a dollar	1C30.55	Have a student try to catch a dollar starting with the fingers at the midpoint.
F&A, Mb-1b	catch a meter stick	1C30.55	reaction time.
Mei, 6-2.6.2	catch a meter stick	1C30.55	•
D&R, M-098	catch a dollar or meter stick	1C30.55	5
Sprott, 1.2	reaction time, falling meter stick	1C30.55	
Bil&Mai, p 34	catch a dollar or meter stick	1C30.55	Hold a dollar bill by the top and have a student hold their open fingers over the middle of the bill. Drop the bill and see if the student can catch it. Repeat with a meter stick and measure how far the stick falls before it is caught.
Disc 01-13	reaction time, falling meter stick	1C30.55	
TPT 16(9),656	rotating turntable	1C30.61	Drop a ball on a phonograph turntable. Get time from the range.
Mei, 7-1.13	rotating turntable	1C30.61	

PIRA 500

high road low road

Demonstratio	on Bibligrqaphy		July 2015 Mechanics
Sut, M-86	pendulum timed free fall	1C30.63	A pendulum released from the side hits a ball dropped from the height that gives a fall time equal to a quarter period of the pendulum.
AJP 55(1),59	many bounce method	1C30.66	Time a bouncing ball for many bounces and determine g using the coefficient of restitution.
	MOTION IN TWO	1D00.00	
	DIMENSIONS Displacement in Two Dimensions	1D10.00	
PIRA 1000	ball in a tube	1D10.10	
UMN, 1D10.10	ball in a tube	1D10.10	Start with a ball on a string at the bottom of a vertical tube. Hold the string while moving the tube horizontally.
F&A, Mb-3	ball in a tube	1D10.10	• •
Mei, 6-4.12	ball in a tube	1D10.10	
Mei, 6-4.8	ball in a tube	1D10.10	
Sut, M-73	ball in a tube	1D10.10	
Sut, M-74	ball in a tube	1D10.10	
Disc 02-07	velocity vector addition	1D10.10	The ball in a tube done horizontally on the table viewed from above with the camera.
TPT, 36(6),375	vector toy	1D10.11	Walking toy with bob on a string that, when placed over the edge of a table, pulls the toy forward. As the toy gets closer to the edge, the angle of the pull changes. At the edge of the table, there is no component of force pulling forward, the toy stops.
PIRA 1000	cycloid generator	1D10.20	
UMN, 1D10.20	cycloid generator	1D10.20	
F&A, Mb-4	cycloid generator	1D10.20	A hoop with a piece of chalk fastened to the circumference is rolled along the chalk tray.
D&R, S-020	cycloid generator	1D10.20	A hoop with a piece of chalk fastened to the circumference is rolled along the tray of a chalk board.
Disc 05-13	cycloid generator	1D10.20	Large and small cylinders are joined coaxially. A spot on the larger cylinder moves in a cycloid when the smaller cylinder is rolled on its circumference.
F&A, Mb-5	inversor	1D10.30	A mechanical device that transforms rotational motion into rectilinear motion.
F&A, Mb-6	rotation and relative translation	1D10.31	A three pronged spider in a six slotted wheel.
F&A, Mb-8	rotation and translation	1D10.32	Two blocks - one with slots and the other with pins.
PIRA 1000	mounted wheel	1D10.40	
UMN, 1D10.40	mounted wheel	1D10.40	A large disc marked with a radial line turns about its axis.
PIRA 1000	ball on the edge of a disc	1D10.50	•
UMN, 1D10.50	ball on the edge of a disc	1D10.50	A ping pong ball is stuck on the edge of a vertical rotating disc.
TPT 2(2),81	circular motion on the overhead projector	1D10.55	A device to turn a clear plastic disc at variable speed on the overhead projector.
Mei, 7-2.3	balls on a disc on the overhead projector	1D10.55	A motorized acrylic disc with three holes for steel balls rotates on an overhead projector.
Hil, M-4b	measuring angular velocity	1D10.60	Use an electronic strobe to measure the angular velocity of a fan blade or other rotating objects.
Mei, 12-2.1	disc on cart	1D10.70	A spinning disc mounted on a cart has a rectilinear pattern of dots. The center dot is stationary while the cart is stationary, a different dot appears stationary while moving the cart in a large circle, or while translating the cart along a track.
Mei, 12-2.2	spots on a globe	1D10.71	•
Mei, 12-2.3	spots on a globe	1D10.72	•
	Velocity, Position, and Acceleration	1D15.00	
ref.	showing acceleration	1D15.01	see 1G20.75
PIRA 1000	Hobbie film loop - AAPT	1D15.12	
UMN, 1D15.12	Hobbie films - AAPT	1D15.12	
PIRA 1000	kick a moving ball	1D15.15	
UMN, 1D15.15	kick a moving ball	1D15.15	Kick a moving soccer ball on the floor or hit a moving croquet ball on the lecture bench with a mallet.
	high road low road	1D15 20	

1D15.20

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
UMN, 1D15.20	high road low road	1D15.20	Two balls race - one down a slight incline and the other down the same
AJP 51(1),132	high road low road	1D15.20	incline but including a valley. Two objects start at the same velocity, one moves straight to the finish, the other traverses a valley. The problem: which wins?
D&R, M-418	high road low road	1D15.20	
Ehrlich 1, p. 65	high road low road	1D15.20	
PIRA 1000 UMN, 1D15.30	catching the train catching the train	1D15.30 1D15.30	A ball accelerating down an incline catches and passes a ball moving at
PIRA 1000	passing the train	1D15.35	constant velocity on a horizontal track.
UMN, 1D15.35	passing the train	1D15.35	velocity in the background. The moment the ball has the same velocity as the rope is strikingly obvious. Repeat with the rope at a different constant velocity.
AJP 55(5),407	several ball and incline demos	1D15.36	This McDermott article contains several ball on incline races to help distinguish the concepts of position, velocity, acceleration.
PIRA 1000 UMN, 1D15.40	Galileo's circle Galileo's circle	1D15.40 1D15.40	Several rods are mounted as cords of a large circle with one end of each rod
		1010.40	top center. Beads released simultaneously at the top all reach the ends the rods at the same time.
Sut, M-89	Galileo's circle	1D15.40	Small balls roll down guides that form chords of a large inclined circle. A single click marks simultaneous arrival.
Sut, M-88	Galileo's circle	1D15.40	Beads are released simultaneously to slide along cords of a large circle.
PIRA 1000 Disc 02-09	sliding weights on triangle sliding weights on triangle	1D15.41 1D15.41	Lengths and angles of a wire frame triangle are chosen so that beads sliding
			down the wires traverse each side in the same time.
Mei, 7-2.6	brachistochrone track	1D15.45	Three tracks - straight line, parabola, and cycloid are mounted together. Triggers at each end control a timer. Details.
PIRA 1000 UMN, 1D15.50	brachistochrone brachistochrone	1D15.50 1D15.50	Each end of a track forms a brachistochrone. Balls released at any height on
UMIN, 1D13.50	brachistochione	1015.50	the brachistochrones reach the middle at the same time.
Sut, M-93	brachistochrone	1D15.50	Two balls released on opposite sides of a cycloid always meet in the middle regardless of handicap. The ball on the cycloid always beats the ball on the incline.
AJP 53(6),519	brachistochrone is a tautochrone	1D15.51	, ,
TPT 28(8),537	brachistochrone	1D15.52	
AJP 53(5),490	cycloidal slide track	1D15.53	actual slide track in amusement parks.
AJP 50(12),1178 PIRA 1000	brachistochrone triple track	1D15.54 1D15.55	Solution to the brachistochrone problem.
UMN, 1D15.55	triple track	1D15.55	Balls roll down an incline, brachistochrone, and parabola. The ball on the brachistochrone wins.
	Motion of the Center of Mass	1D40.00	
PIRA 200	throw objects	1D40.10	A light disc contains a heavy slug that can be shifted from the center to side. Mark the center of mass.
UMN, 1D40.10	throw objects	1D40.10	Mount battery powered lights on styrofoam shapes and throw them in the air.
F&A, Mp-2	throw objects	1D40.10	to the side.
Mei, 14-2.3	throw objects	1D40.10	from the center of gravity.
Mei, 12-5.1	throw objects	1D40.10	marking the center of mass in the two cases.
Hil, M-18b.2	throw objects	1D40.10	Discs with movable and stationary center of mass and a "bulls eye" painted on each side, one off center.
Disc 03-21	center of mass disc	1D40.10	
Mei, 14-2.1	throw hammer	1D40.12	Mark the center of gravity of a hammer with a white spot. Throw it in the air and attach it to a hand drill to show it rotating smoothly.
Mei, 9-2.1	throw objects	1D40.13	• •
PIRA 1000	loaded bolas	1D40.15	
UMN, 1D40.15	loaded bolas	1D40.15	Some Phil Johnson humor. "This was in the Physics Teacher but I haven't got to it and I've never done it so I can't describe it well at this time". See the other 1D40.15 entries for a description.
TPT 30(3), 180	bola	1D40.15	· · · · · · · · · · · · · · · · · · ·

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
TPT 48(4), 222	bola	1D40.15	An analysis of bola motion and a simplified model bola.
PIRA 500	spinning block	1D40.20	
UMN, 1D40.20	spinning block	1D40.20	A large block of wood with magic markers located at and away from the center of mass. Place the block on a large sheet of paper and hit off center
			with a hammer.
F&A, Mp-17	spinning block	1D40.20	A large wood block has two holes for felt tipped pens, one on the center of mass. Put the block on paper and hit it down the paper.
D&R, M-670	spinning block	1D40.20	A 2X4 about 30 cm long has 3 holes drilled on the center line of the long axis. The center hole is at the center of mass with the other two equally spaced outward toward the ends of the block. Insert 3 different color marker pens, place the block at the end of a strip of long paper, and kick at the center of mass for parallel lines. Kick again near one end to produce one straight line plus two epicycloids. In both cases the center of mass is a
AJP 33(10),xiii	air supported dumbell	1D40.21	straight line. Two dry ice pucks on the ends of a bar form a dumbbell that rides on a sheet of plate glass. Use a cue stick to hit it on and off the center of mass.
Mei, 10-2.10	spinning block	1D40.21	Use a pool cue to hit a dumbbell double dry ice puck on or off the center of mass. Also shoot a .22 into a gas supported block on or off the center of mass.
PIRA 1000	air table center of mass	1D40.22	
Disc 03-27	air table center of mass	1D40.22	5 5
AJP 31(4),299	photographing the center of mass	1D40.25	Make an open lens photo of a system of two masses connected by a rod and the center of mass will be apparent.
AJP 58(5),495	photographing center of motion	1D40.25	Photographing the center of velocity of a variety of rigid bodies.
Mei, 10-3.2	spinning block	1D40.25	Strobed photo is taken of a irregular object translating and rotating on a air
Mei, 12-4.4	throw the dumbell	1D40.30	table. A dumbbell with unequal masses is thrown without rotation when the force is applied at the center of mass.
AJP 30(6),471	throw the dumbell	1D40.31	Stick unequal size corks in knitting needle, place a cord under at the center of mass, and jerk it into the air.
PIRA 1000	Earth-Moon system	1D40.35	
TPT 28(6),425	Earth-Moon system	1D40.35	An Earth-Moon system hanging from a string is used to demonstrate the Earth's wobble.
F&A, Mp-8	Earth-Moon system	1D40.35	Two unequal masses are fastened to the ends of a rigid bar. Spin the system about holes drilled in the bar at and off the center of mass.
F&A, Mp-18	Earth-Moon system	1D40.35	Pucks of different mass are held together by a string while spinning on the air table.
Sut, M-169	Earth-Moon system	1D40.35	
PIRA 1000	air track pendulum glider	1D40.50	
UMN, 1D40.50	air track pendulum glider	1D40.50	A double pendulum hangs from an air track glider with a mounted spot marking the center of mass. Set the system in oscillation and the spot will remain still or translate smoothly.
F&A, Mp-1	air track pendulum glider	1D40.50	
Mei, 9-2.3	air track pendulum glider	1D40.50	
Mei, 11-1.2	air track pendulum glider	1D40.50	marker placed on the pendulum at the center of mass is stationary as the
Sut, M-125	momentum pendulum	1D40.51	system oscillates. A pendulum support is free to move on rollers as the pendulum swings back and forth.
D&R, M-486	momentum pendulum	1D40.51	A pendulum support is free to move on rollers as the pendulum swings back and forth. Also can be done by standing on a roller cart and swing your hips side to side.
TPT 2(1),33	momentum pendulum car	1D40.52	
PIRA 1000	air track inchworm	1D40.55	
UMN, 1D40.55	air track inchworm	1D40.55	A leaf spring couples two air track gliders.
Mei, 11-1.3	air track inchworm	1D40.55	The center of mass of two gliders coupled with leaf springs is marked with a light or flag. Show oscillation about the center of mass or constant velocity of c of m.
Mei, 9-2.2	air track inchworm	1D40.55	Two gliders on a track are coupled with a leaf spring and elastic. A light is mounted on the elastic at the center of mass.
Sut, M-126	momentum cars	1D40.56	Two cars are attached together by a elastic band fastened to a motorized eccentric on one car. The point of no motion can be indicated by a pointer and changed by weighting one car.

Demonstration Bibligrqaphy July 2015 **Mechanics** Mei, 9-4.22 rotor on a cart 1D40.58 Balls of equal or unequal mass can be screwed on the ends of a rod rotating horizontally about its center. The assembly is mounted on a cart on a track. The cart oscillates if the balls are of unequal mass. AJP 53(10).1002 satellite oscillation 1D40.60 Discussion of the LDEF satellite (30'x14'dia.) as an example where the distinction between the center of mass and center of gravity is important. AJP 34(2),166 two circle roller 1D40.70 Two disks, partially interlocking at right angles, roll with a wobble but with a constant height center of mass. TPT 28(2),122 non-round rollers 1D40.71 Two types of weird rollers: one in which the center of mass remains at a uniform distance from the surface as it wobbles down an incline, and two which although non round have a constant diameter. 1D50.00 **Central Forces PIRA 200** ball on a string 1D50.10 Tie a lightweight ball to a string and twirl around in a vertical circle. UMN, 1D50.10 ball on a string 1D50.10 Tie a whiffle ball to a sting and twirl around in a vertical circle. D&R, M-198 ball on a string 1D50.10 Tie a lightweight ball to a string and whirl in horizontal or vertical circle. **PIRA 1000** arrow on a disc 1D50.15 UMN, 1D50.15 arrow on a disk 1D50.15 Mount an arrow tangentially on the edge of a rotating disk. 1D50.20 **PIRA 1000** whirligig UMN, 1D50.20 1D50.20 A large ball and a small ball fastened to opposite ends of a string which is whirligig threaded through a handle. AJP 29(3),212 centripetal force apparatus Use a glass tube for the holder and rubber stoppers for the masses. 1D50.20 F&A, Mm-2 whirligig 1D50.20 A large and small ball are on opposite sides of a string threaded through a handle. Sut, M-138 whirligig 1D50.20 Two balls - 1 kg, 100 g - are attached to the ends of a 1 m string passing through a small hollow tube. Twirl a ball around your head. A string with a rubber ball on one end passes through a plastic or copper D&R, M-198, M-1D50.20 whirligig 742, & S-075 sleeve and weights are attached to a loop at the other end. Ehrlich 1, p. 72 whirligig 1D50.20 A twirling weight connected to a hanging weight through a tube is used to show angular momentum conservation. Disc 05-17 ball on cord 1D50.20 A string with a rubber ball on one end passes through a plastic sleeve and weights are attached to a loop at the other end. **PIRA 500** 1D50.25 conical pendulum 1D50.25 UMN, 1D50.25 conical pendulum A ceiling mounted bowling ball pendulum is used as a conical pendulum. AJP 30(3),221 conical pendulum 1D50.25 Apparatus Drawings Project No. 25: Construction of a low friction conical pendulum. Mei, 8-5.3 conical pendulum 1D50.25 The front axle of a bike is used for a whirligig / conical pendulum support. Sut, M-160 conical pendulum 1D50.25 A ball on a cord is rotated mechanically at a steady slow speed. Ehrlich 1, p. 74 conical pendulum 1D50.25 A conical pendulum makes a particular angle with the vertical related to its length and period. Make cones out of cardboard or transparency film to verify. **PIRA 1000** plane on a string 1D50.26 Disc 05-19 plane on string 1D50.26 A model plane flies around on a string defining a conical pendulum. Motorized triple bifilar coaxial conical pendula are used to demonstrate Mei, 8-5.9 conical pendulum 1D50.27 critical period. conical pendulum The main bearing of a conical pendulum is from a bicycle wheel axle. See AJP 31(1),58 1D50.28 also under whrilygig (AJP 30,221) Hil, M-19L 1D50.28 The front wheel axle of a bike is used as a good bearing for a conical conical pendulum pendulum where the string tension is set by a counterweight. See AJP 31(1).58. Swing a conical pendulum so it will strike a peg directly under the support on TPT 1(2),81 conical pendulum game 1D50.29 some swing other than the first. D&R, M-784 conical pendulum game 1D50.29 Swing a conical pendulum so that it will miss a bottle as it swings away but hit the bottle on it's return. 1D50.29 conical pendulum ride Steel nuts are attached by string to the circumference of an empty wire Bil&Mai, p 136 spool. Place the spool on a phonograph turntable set to its highest speed. Observe the deflection. This is a model of a carnival swing ride. **PIRA 1000** carnival ride model 1D50.30 UMN, 1D50.30 canival ride model 1D50.30 A toy person is held on a vertical card at the edge of a turntable when the turntable is spun fast enough. Bil&Mai, p 138 carnival ride model - Downy ball 1D50.30 A Downy ball is tied to a string. Pull the stopper of the ball outward until it locks into position. Swing the ball slowly increasing the tangential velocity until a "pop" sound is heard indicating that the stopper has been released. Ehrlich 1, p. 73 carnival ride model -1D50.30 An inexpensive accelerometer is tied to a string. It beeps at a preset value accelerometer when the correct rotation rate is achieved. Disc 05-20 roundup 1D50.30 A toy person stands on the inside wall of a rotating cylinder.

D&R, M-370carnival ride variation - carry a ball1D50.33A ball is placed in a Styrofoam cup or flower pot with no bottom and rotates around the inside at a constant height when the pot is swifted at the right frequency.TPT 24(5),295carnival ride variation - carry a ball1D50.33A ball is placed in a Styrofoam cup or flower pot with no bottom and rotates around the inside at a constant height when the pot is swifted at the right frequency.TPT 24(5),295carnival ride variation - carry a ball1D50.33A ball is placed in a Styrofoam cup or flower pot with no bottom and rotates around the inside at a constant height when the pot is swifted at the right frequency.Ehrlich 1, p. 91carnival ride variation - ball in a cup1D50.33A small ball in a platest cup can be made to revolve faster and faster or even climb the walls by shaking the cup at the right frequency.Mei, 8-5.4swinging up a weight1D50.40Swing a bucket of water in a vertical circle over your head.PIRA 200pail of water1D50.40Swing a bucket of water in a vertical circle over your head.UMN, 1D50.40pail of water1D50.40Swing a bucket of water in a vertical circle.Sut, M-154pail of water1D50.40Swing a bucket of water or a platorm supported by a three point suspension is rotated horizontally or vertically right around in a vertical circle.D&R, M-362pail of water1D50.40A plastic glass of water on a platorm supported by a three or four point suspension is rotated horizontally or vertically right around in a vertical circle.Bl&Mail, p 130pail of water1D50.40A plastic glass of water on a platorm. </th
TPT 24(5),295carnival ride variation - carry a ball1D50.33A ball is placed in a Styroforma cup or flower pot with no bottom and rotates around the inside at a constant height when the pot is switted at the right frequency. An inverted wine glass whose middle is slightly larger than its mouth will also work. Switt the glass and the ball will rotate about the inside and climb to the center of the glass. Continue switting the glass and you can carry the ball anywhere desired.Ehrlich 1, p. 91carnival ride variation - ball in a cup1D50.33A small ball in a plastic cup can be made to revolve faster and faster or even climb the walls by shaking the cup at the right frequency.Mei, 8-5.4swinging up a weight1D50.40Swing a bucket of water in a vertical circle over your head.PIRA 200pail of water1D50.40Swing a bucket of water in a vertical circle over your head.PIRA 201pail of water1D50.40Swing a bucket of water in a vertical circle over your head.PIRA 202pail of water1D50.40A pail of water is whirled around in a vertical circle.Str, M154pail of water1D50.40A pail of water is whirled around in a vertical circle.B&R, M362pail of water1D50.40A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.Sprott, 1.7pail of water1D50.40A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.Sprott, 1.7pail of water1D50.40A pla
Ehrlich 1, p. 91carnival ride variation - ball in a cp1D50.33A small ball in a plastic cup can be made to revolve faster and faster or even climb the walls by shaking the cup at the right frequency.Mei, 8-5.4swinging up a weight1D50.37An arrangement whereby a swinging 500 g weight picks up a 1000 g weight.PIRA 200pail of water1D50.40Swing a bucket of water in a vertical circle over your head.UMN, 1D50.40pail of water1D50.40Swing a bucket of water in a vertical circle.Sut, M-54pail of water1D50.40A pail of water vour bead.Pak, Mb-29pail of water1D50.40A pail of water vour head.D&R, M-354pail of water1D50.40A pail of water vour head.D&R, M-354pail of water1D50.40A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.Sprott, 1.7pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A bucket full of water is avertical circle.Disc, 5-21whirling bucket of water1D50.40A plastic glass of water on a platform.Disc, 5-21whirling bucket of water1D50.45DISC, 76penny on a coat hanger1D50.45JUMN, 1D50.45penny on a coathanger1D50.45VIMN, 1D50.45penny on the coathanger1D50.45
Mei, 8-5.4swinging up a weight1D50.37An arrangement whereby a swinging 500 g weight picks up a 1000 g weight.PIRA 200 UMN, 1D50.40pail of water pail of water, pail of nails1D50.40Swing a bucket of water in a vertical circle over your head.F&A, Mb-29 Sut, M-154 D&R, M-354pail of water pail of water1D50.40Swing a bucket of water is whirled around in a vertical circle.B&R, M-354 D&R, M-354pail of water1D50.40A pail of water over your head.D&R, M-362pail of water1D50.40Place a test tube with outer over your head.D&R, M-362 Districtpail of water1D50.40Place a test tube with mouth facing inward on the rim of a vertical bicycle wheel. Fill with water and spin wheel. Measure rpm when water starts to fall out of test tube to verify "g".D&R, M-362 Districtpail of water1D50.40A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.Sprott, 1.7 Bill&Mai, p 130 Districtpail of water1D50.40A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertical without spilling. CAUTION: Do not hit your leg or anything else when swinging the platform.Christophice Disc 05-21 DISC 45penny on a coathanger1D50.40A plaid water in a vertical circle.Disc 05-21 DISC 45whirling bucket of water penny on a coathanger1D50.45A plan water in a vertical circle.DISC 45 DISC 45penny on a coathanger1D50.4
UMN, 1D50.40pail of water, pail of nails1D50.40Swing a bucket of water in a vertical circle over your head. If nails are used, they can be heard dropping away from the bottom of the can.F&A, Mb-29pail of water1D50.40A pail of water is whirled around in a vertical circle.Sut, M-154pail of water1D50.40Swing a bucket of water over your head.D&R, M-354pail of water1D50.40Place a test tube with mouth facing inward on the rim of a vertical bicycle wheel. Fill with water and spin wheel. Measure rpm when water starts to fall out of test tube to verify "g".D&R, M-362pail of water1D50.40A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.Sprott, 1.7pail of water1D50.40A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg or anything else when swinging the platform.Ehrlich 1, p. 76pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.45Place a penny on an eoathangerUMN, 1D50.45penny on the coathanger1D50.45VI, M-155penny on the coathanger1D50.45VI, M-155penny on the coathanger1D50.45Hil, M-16b.3penny on the coathanger1D50.45AR, M-362penny on the coathanger1D50.45Hil, M-16b.3penny on a coathanger1D50.45
Sut, M-154 D&R, M-354pail of water1D50.40Swing a bucket of water over your head.D&R, M-354 D&R, M-362pail of water1D50.40Place a test tube with mouth facing inward on the rim of a vertical bicycle wheel. Fill with water and spin wheel. Measure rpm when water starts to fall out of test tube to verify "g".D&R, M-362 D&R, M-362pail of water1D50.40A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.Sprott, 1.7 Bil&Mai, p 130pail of water1D50.40A blastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertical circle.Ehrlich 1, p. 76 PIRA 1000 UMN, 1D50.45pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21 VMN, 1D50.45whirling bucket of water penny on a coathanger1D50.45Rotate a bucket of water in a vertical circle. How slow can you go before your head gets wet.Disc 05-21 VMN, 1D50.45penny on the coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger.AJP 40(5),776 Penny on the coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger.TPT 15(1),46 Penny on the coathanger1D50.45The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.Hil, M-16b.3 PAR, M-362penny on the coathanger1D50.45Place a coin on the coat hanger
D&R, M-354pail of water1D50.40Place a test tube with mouth facing inward on the rim of a vertical bicycle wheel. Fill with water and spin wheel. Measure rpm when water starts to fall out of test tube to verify "g".D&R, M-362pail of water1D50.40A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg when swinging the platform.Sprott, 1.7pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg or anything else when swinging the platform.Ehrlich 1, p. 76pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle.PIRA 1000 UMN, 1D50.45penny on a coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger.TPT 15(1).46penny on the coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger.Sut, M-155penny on the coathanger1D50.45The wire coat hanger and the penny doesn't fly off.Sut, M-16b.3penny on the coathanger1D50.45The wire coat hanger is whirled about the vertical plane by the hook withou
baselingwheel. Fill with water and spin wheel. Measure rpm when water starts to fall out of test tube to verify "g".D&R, M-362pail of water1D50.40A plastic glass of water on a platform supported by a three point suspension is rotated horizontally or vertically without spilling. CAUTION : Do not hit your leg when swinging the platform.Sprott, 1.7pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg or anything else when swinging the platform.Ehrlich 1, p. 76pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle. How slow can you go before your head gets wet.JP A1000penny on a coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger.TPT 15(1),46penny on the coathanger1D50.45Place a penny on an elongated on the hook of a coat hanger. The coat hanger is twirled around your finger and the penny doesn't fly off.Sut, M-155penny on the coathanger1D50.45The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.Hil, M-16b.3penny on a coathanger1D50.45Place a coin on the coat hanger and rotate.Diso.45Place a penny on the coathanger and rotate.1D50.45
Sprott, 1.7pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg or anything else when swinging the platform.Ehrlich 1, p. 76pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle.PIRA 1000penny on a coat hanger1D50.45Rotate a bucket of water in a vertical circle.PIRA 1000penny on a coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger.AJP 40(5),776penny on the coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger.TPT 15(1),46penny on the coathanger1D50.45The wire coat hanger is twirled around your finger and the penny doesn't fly off.Sut, M-155penny on the coathanger1D50.45The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.Hil, M-16b.3penny on a coathanger1D50.45Place a coin on the coat hanger and rotate it about the finger.D&R, M-362penny on a coathanger1D50.45Place a coin on the coat hanger and rotate.
Sprott, 1.7pail of water1D50.40A bucket full of water is swung in a vertical circle.Bil&Mai, p 130pail of water1D50.40A plastic glass of water on a platform supported by a three or four point suspension is rotated horizontally or vertically without spilling. CAUTION: Do not hit your leg or anything else when swinging the platform.Ehrlich 1, p. 76pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle.PIRA 1000penny on a coat hanger1D50.45UMN, 1D50.45penny on a coathanger1D50.45AJP 40(5),776penny on the coathanger1D50.45FPT 15(1),46penny on the coathanger1D50.45Sut, M-155penny on the coathanger1D50.45Hil, M-16b.3penny on the coathanger1D50.45Place a penny on a coathanger1D50.45Disc 4, M-362penny on a coathanger1D50.45Place a penny on the coathanger1D50.45Balance a penny on the hook of a coat hanger.The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.
Ehrlich 1, p. 76pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle.PIRA 1000penny on a coat hanger1D50.45UMN, 1D50.45penny on a coathanger1D50.45AJP 40(5),776penny on the coathanger1D50.45PTT 15(1),46penny on the coathanger1D50.45Sut, M-155penny on the coathanger1D50.45Hil, M-16b.3penny on the coathanger1D50.45D&R, M-362penny on a coathanger1D50.45
Ehrlich 1, p. 76pail of water1D50.40A pail of water is whirled around in a vertical circle. How slow can you go before your head gets wet.Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle.PIRA 1000penny on a coat hanger1D50.45UMN, 1D50.45penny on a coathanger1D50.45AJP 40(5),776penny on the coathanger1D50.45PTT 15(1),46penny on the coathanger1D50.45Sut, M-155penny on the coathanger1D50.45Hil, M-16b.3penny on the coathanger1D50.45D&R, M-362penny on a coathanger1D50.45
Disc 05-21whirling bucket of water1D50.40Rotate a bucket of water in a vertical circle.PIRA 1000penny on a coat hanger1D50.45UMN, 1D50.45penny on a coathanger1D50.45AJP 40(5),776penny on the coathanger1D50.45PTT 15(1),46penny on the coathanger1D50.45Sut, M-155penny on the coathanger1D50.45Hil, M-16b.3penny on the coathanger1D50.45D&R, M-362penny on a coathanger1D50.45
UMN, 1D50.45 AJP 40(5),776penny on a coathanger penny on the coathanger1D50.45Place a penny on an elongated coat hanger and rotate around your finger. 1D50.45TPT 15(1),46penny on the coathanger1D50.45Place a penny on an elongated coat hanger. Tb50.45The coat hanger. twirled around your finger and the penny doesn't fly off.Sut, M-155penny on the coathanger1D50.45The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.Hil, M-16b.3 D&R, M-362penny on a coathanger1D50.45Place a coin on the coat hanger and rotate it about the finger. 1D50.45
AJP 40(5),776 TPT 15(1),46penny on the coathanger1D50.45 1D50.45Place a penny on an elongated coat hanger and rotate around your finger. A penny is balanced on the hook of a coat hanger. The coat hanger is twirled around your finger and the penny doesn't fly off.Sut, M-155penny on the coathanger1D50.45The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.Hil, M-16b.3penny on a coathanger1D50.45Place a coin on the coat hanger and rotate it about the finger.D&R, M-362penny on a coathanger1D50.45Balance a penny on the hook of a coathanger and rotate.
TPT 15(1),46penny on the coathanger1D50.45A penny is balanced on the hook of a coat hanger. The coat hanger is twirled around your finger and the penny doesn't fly off.Sut, M-155penny on the coathanger1D50.45The wire coat hanger is whirled about the vertical plane by the hook without dislodging the dime on the middle of the lower bar.Hil, M-16b.3penny on the coathanger1D50.45Place a coin on the coat hanger and rotate it about the finger.D&R, M-362penny on a coathanger1D50.45Balance a penny on the hook of a coathanger and rotate.
Hil, M-16b.3penny on the coathanger1D50.45Place a coin on the coat hanger and rotate it about the finger.D&R, M-362penny on a coathanger1D50.45Balance a penny on the hook of a coathanger and rotate.
D&R, M-362 penny on a coathanger 1D50.45 Balance a penny on the hook of a coathanger and rotate.
Disc 05-18 coin on coat hanger 1D50.45 A coin is placed on the flat of the hook of an elongated coat hanger and
twirled around.
PIRA 1000 balls on a propeller 1D50.48
UMN, 1D50.48 balls on a propeller 1D50.48 Balls sit in cups mounted on a swinging arm at .5 and 1.0 m. Calculate the period necessary to keep the ball in the outer cup and swing it around in time to a metronome.
PIRA 1000 Welch centripetal force 1D50.50
UMN, 1D50.50 Welch centripetal force 1D50.50 The angular velocity and mass needed to stretch a spring a certain distance are compared.
AJP 28(6),561 Welch centripetal force review 1D50.50 Uses no motor, self contained static force measurement.
AJP 71(2), 185Welch centripetal force1D50.50The center of mass correction for the usual centripital force apparatus.F&A, Mm-1Welch centripetal force1D50.50The angular velocity and mass needed to stretch a spring a certain distance are compared.
AJP 34(10),981 Welch centripetal force 1D50.51 Two modifications to the apparatus.
AJP 43(5),466 Welch centripetal force 1D50.51 A modification to improve the Sargent-Welch 9030 centripetal force apparatus.
AJP 34(8),708 Welch centripetal force 1D50.51 Improvements to the Welch centripetal force apparatus.
AJP 28(4),377 variable centripetal force 1D50.53 A new design for the apparatus that allows any two of the three variables of mass, angular velocity, and distance to be kept constant.
TPT 21(3),188 Cenco centripetal force 1D50.53 A relay starts the counter and clock so three hands are not needed when using the Cenco 74470 apparatus.
Hil, M-16eCenco centripetal force1D50.53Lab apparatus used as a demonstration.
AJP 45(5),496 Cenco centripetal force 1D50.54 Replace the screw adjustment for the fixed end of the spring with a movable plate.

Demonstratio	on Bibligrqaphy		July 2015 Mechanics
			·
TPT 18(6),466 TPT 33(3), 173	hand rotator ball on a hoop	1D50.55	Two 2000 g spring balances are mounted on a rotator. Equal masses are attached to each and readings are taken at some rotational velocity. A ball on a hoop that is inserted into a hand drill. The ball moves up from the
TPT 33(5), 262	ball on a hoop	1D50.57	bottom of the hoop to a position that depends on the angular velocity.
			angular velocity that must be achieved before the ball will start to move up from the bottom of the hoop.
AJP 68(3), 271	balls in a hoop	1D50.57	A grooved track or V shaped aluminum channel is made into a circular track of about 20 cm in radius. Place two balls in the track and rotate it about its vertical axis. The balls will rise to positions that depend on the angular velocity. An offset axis of rotation may also be explored.
AJP 73(4), 366	balls in a hoop	1D50.57	A grooved circular track with one inch ball bearings in it is rotated about its vertical axis. First and second order phase transistions can be demonstrated.
PIRA 1000	banked track	1D50.60	
UMN, 1D50.60	banked track	1D50.60	Need Demo.
Sut, M-144	banked track	1D50.60	where it revolves in a horizontal plane.
Sut, M-145	ball in a megaphone	1D50.62	end.
TPT 11(3),173	banked track	1D50.65	A turntable can be rotated at various angular frequencies. Objects can be placed at different radii. A small platform can be attached which will swing out to the correct slope for any angular velocity. A device for measuring force is also shown.
Sut, M-156	puzzle	1D50.69	Two balls in a box must be caught in end pockets simultaneously.
PIRA 1000	rolling chain	1D50.70	
UMN, 1D50.70	rolling chain	1D50.70	bench as a rigid hoop.
F&A, Mm-3	rolling chain	1D50.70	A flexible chain is spun on a motorized pulley. When it is released, it maintains rigidity as it rolls down the lecture bench.
Sut, M-139	rolling chain	1D50.70	A loop of chain is brought up to speed on a motorized disc and when released rolls down the lecture bench over obstacles.
Hil, M-16c.2	rolling chain	1D50.70	A loop of chain spun on a wheel and forced off remains rigid for some time.
D&R, M-366	rolling chain	1D50.70	A loop of chain is spun up on a disc in a drill and released to roll across the floor as a rigid hoop.
Sprott, 1.14	rolling chain	1D50.70	A loop of chain is spun up on a disc and then released. The chain retains its circular shape as it rolls across the lecture bench or over objects in its path.
Disc 05-24	spinning chain Deformation by Central Forces	1D50.70 1D52.00	Spin a flexible chain rapidly enough that it acts as a solid object.
PIRA 500	flattening Earth	1D52.10	
UMN, 1D52.10	flattening Earth	1D52.10	
F&A, Mm-4b	flattening Earth	1D52.10	
D&R, S-370	flattening Earth	1D52.10	
Bil&Mai, p 142	flattening Earth		A variable speed hand drill spins flexible hoops on a steel shaft. The hoops flatten when spun.
Disc 05-22 Sut, M-147	centrifuge hoops flattening Earth	1D52.10 1D52.11	Spin deformable balls. A clay/glycerin ball will burst, a sponge rubber ball will
Mei, 8-5.2	empty jug by swirling	1D52.17	deform greatly. A jug will empty faster when swirled.
PIRA 1000	water parabola	1D52.20	A Disciples fact is clearly a start of the October 1. Start of the Start
UMN, 1D52.20	water parabola	1D52.20	parabola.
TPT 12(8),502	water parabola	1D52.20	parabolic shape is clearly seen.
F&A, Mm-8	water parabola	1D52.20	•
Mei, 8-5.5	water parabola	1D52.20	A small self strobed rotating Plexiglas container is used to project the water parabola.
Sut, M-142	water parabola	1D52.20	A glass cylinder half filled with colored water is spun on a rotating table.
Ehrlich 1, p. 66	water parabola	1D52.20	A paraboloid shape is made when a clear container of water is rotated on a phonograph turntable.
Disc 13-17	paraboloid of revolution	1D52.20	A cylindrical container with some water is rotated at a constant speed.
PIRA 1000	rotating water troughs	1D52.21	

	011 9		
Disc 13-18	rotation water troughs	1D52.21	Two water containers are mounted on a rotating table. A rectangular container mounted radially shows half a parabola, and another formed in an
Mei, 8-5.1	rotating manometer	1D52.23	arc of constant radius stays level. Tubing constructed in an "E" shape on its back is partly filled with water and rotated.
Sut, M-150	rotating manometer	1D52.24	
Sut, M-143 PIRA 1000	project mercury parabola balls in water centrifuge	1D52.26 1D52.30	Spin a dish of mercury and image a light bulb on the ceiling.
	•		
UMN, 1D52.30	balls in water centrifuge	1D52.30	•
AJP 30(5),385	balls in water centrifuge	1D52.30	Wood balls in two curved tubes, air and water filled, are rotated.
TPT 1(1),35	balls in water centrifuge	1D52.30	Spin a bent glass tube filled with water that contains two wood or steel balls.
Sut, M-153	balls in water centrifuge	1D52.30	Spin a bent glass tube filled with water containing cork and aluminum balls.
Hil, M-16d.3	balls in water centrifuge	1D52.30	A glass bowl containing water, a steel ball, a cork ball is spun.
Hil, M-16d.1	corks in water centrifuge	1D52.30	
	5	1D52.31	
F&A, FI-7	inertial pressure gradient		A bubble in a tube goes to the center when whirled in a horizontal circle.
Mei, 8-3.5	centrifuge	1D52.31	A long thin tube containing a wood plug is rotated horizontal while either filled with water or empty.
Mei, 8-3.6	balls in water centrifuge	1D52.31	A long thin tube containing a brass ball, ping pong ball, and water is rotated.
AJP 53(9),915	cork and ball rotating in water	1D52.33	One cork is tied to the bottom, one ball is tied to the top of two cylinders full of water at the ends of a rotating bar.
Hil, M-16c.1	rotating corks in water	1D52.33	Corks tied to the bottom of two jars full of water are first translated on a cart
			and then put on a pivot and rotated about the center.
Bil&Mai, p 132	rotating floats in water	1D52.33	Fishing floats tied to the bottom of two jars full of water are attached to a
			large plywood circle with Velcro. Place this assembly on a Lazy-Susan,
			rotate, and observe the floats.
A ID 56(11) 1046	oor picture	1052.24	•
AJP 56(11),1046	car picture	1D52.34	A picture taken from inside a car of a candle, CO2 balloon, H2 balloon as the
			car is driven in uniform circular motion.
PIRA 1000	water and mercury centrifuge	1D52.35	
F&A, Mm-4a	mercury/water centrifuge	1D52.35	A globe with water and mercury on a hand crank rotator.
			•
Sut, M-159	mercury/water centrifuge	1D52.35	A spherical glass bowl is spun and mercury forms a equatorial band with water above and below.
Disc 05-23	water and mercury centrifuge	1D52.35	Water and mercury spin in a glass sphere.
Sut, M-152	centrifuge	1D52.36	Diagram for building a projection cell centrifuge.
	0		
F&A, Mm-7	centrifuge	1D52.37	A hand cranked test tube centrifuge.
Sut, M-148	the full skirt	1D52.38	Spin a doll with a full skirt or kilt. Cheap thrills.
PIRA 1000	rotating candle	1D52.40	
UMN, 1D52.40	rotating candle	1D52.40	A candle is placed on a turntable and covered with a large Plexiglas
0			hemisphere.
	notation a condition	4050.40	•
AJP 37(4),456	rotating candle		Make the rotating candle out of meter sticks and candles.
F&A, FI-4	central pressure gradients	1D52.40	A candle rotates in a chimney on a turntable.
Mei, 10-2.5	rotating candle	1D52.40	A lighted candle in a chimney goes around on a dry ice puck string attached by a string to a pivot.
Sut M 144	rotating candle	1D52.40	
Sut, M-141		1052.40	A lighted candle in a chimney lamp on a rotating table will point to the center.
Hil, M-16d.2	rotating candle	1D52.40	Lighted candles in chimneys are rotated about the center of mass.
Mei, 8-5.6	geotropsim	1D52.45	Grow corn or wheat on a rotating turntable two weeks before class.
	•	1D52.50	eren een er miedt en a retating tantable the neeke belere oldet.
PIRA 1000	paper saw		
UMN, 1D52.50	paper saw	1D52.50	
Sut, M-140	paper saw	1D52.50	Typewriter paper will cut through other paper, Bristol board will cut through wood when spun at high speeds.
Sut, M-149	rubber wheel	1D52.60	A sponge rubber wheel with one spoke cut is rotated at high speed and viewed under stroboscopic light.
PIRA 1000	rotating rubber wheel	1D52.61	
Disc 05-25	rotating rubber wheel	1D52.61	A rubber wheel stretches to a larger radius when spun.
AJP 52(4),335	wobbling Christmas tree toy	1D52.70	A Lagrangian-effective potential solution explaining the behavior of this toy.
TPT 3(4),173	centripetal-centrifugal discussion	1D52.90	A final (?) note on the topic from the editor.
		1D55.00	
	Centrifugal Escape		
PIRA 500	broken ring	1D55.10	
UMN, 1D55.10	broken ring	1D55.10	A ball is rolled around the inside of a large open metal hoop. Students predict
	-		where the ball will go when it reaches the opening.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
Bil&Mai, p 128	broken ring	1D55.10	Roll a ball around a circular hoop with a gap. Ask student to predict the path
, p			of the ball when it exits the hoop.
Ehrlich 2, p. 22	broken ring	1D55.10	A ball is rolled around the inside of a plastic circular ring with a gap. The ball goes off on a tangent when it hits the gap.
Disc 05-14	circle with gap	1D55.10	
PIRA 1000	the big omega	1D55.11	
UMN, 1D55.11	the big omega	1D55.11	A large wood circle with a gap is used with a bocce ball.
PIRA 500	release ball on a string	1D55.15	
Sut, M-137	cut the string	1D55.15	Cut the string while swinging a ball overhead.
Sprott, 1.8	revolving ball and cut string	1D55.15	A ball swung overhead at the end of a string is cut lose and it moves tangent to the circle.
Bil&Mai, p 126	release ball on a string	1D55.15	Swing a ball on a string in a vertical plane while facing the audience. Release the string when the ball is in the 3 or 9 o'clock position. Attach a rubber band to the string and observe the stretch of the rubber band vs. the velocity of the ball.
F&A, Mb-31a	slingshot	1D55.16	•
PIRA 1000	grinding wheel	1D55.20	
UMN, 1D55.20	grinding wheel	1D55.20	Watch the path of sparks flying off a grinding wheel.
F&A, Mb-31b	grinding wheel	1D55.20	
Mei, 7-2.2	grinding wheel	1D55.20	Sparks fly off a grinding wheel.
PIRA 1000	spinning disc with water	1D55.23	
Disc 05-16	spinning disc with water	1D55.23	Red drops fly off a spinning disc leaving traces tangent to the disc.
PIRA 1000	falling off the merry-go-round	1D55.30	
UMN, 1D55.30	falling off the merry-go-round	1D55.30	Large turntable with different surfaces.
F&A, Mm-6	falling off the merry-go-round	1D55.30	A turntable is rotated until objects slide or tip over.
D&R, M-340	falling off the merry-go-round	1D55.30	A turntable is rotated until objects slide off. Try the object at a different
			radius and same rotation speed.
Bil&Mai, p 134	falling off the merry-go-round	1D55.30	
			radius and the same rotation speed. An old record player will also work.
Ehrlich 1, p. 78	falling off the merry-go-round	1D55.30	A turntable is rotated until a row of pennies start to slide off.
Disc 05-15	rotating disc with erasers	1D55.30	Place erasers on a disc at various radii and rotate until they fly off.
UMN, 1D55.31	falling off the merry-go-round	1D55.31	Line up quarters radially on a rotating platform and spin at varying rates.
TPT 28(9),586	train wrecks	1D55.33	Pictures of train wrecks at curves and some calculations.
Sut, M-151	air pump	1D55.50	Three mutually perpendicular discs are rotated about the intersection of two and air is drawn in the poles and expelled at the equator.
	Projectile Motion	1D60.00	
PIRA 1000	ball to throw	1D60.05	
UMN, 1D60.05	ball to throw	1D60.05	Provide a large nerf ball, tennis ball, soft ball, or whatever ball is requested.
PIRA 200	howitzer and tunnel	1D60.10	A ball fired vertically from cart moving horizontally falls back into the muzzle.
UMN, 1D60.10	howitzer and tunnel	1D60.10	A spring loaded gun on a cart shoots a ball vertically and after the cart passes through a tunnel the ball lands in the barrel.
AJP 41(4),580	howitzer and tunnel on air track	1D60.10	
TPT 12(3),177	howitzer and tunnel	1D60.10	
11 1 12(0),111		1000.10	small projectile (1/2" dia.) 10-15 ft.
F&A, Mb-24	howitzer and tunnel	1D60.10	
Mei, 10-2.2	howitzer and tunnel	1D60.10	
Mei, 7-2.16	howitzer and tunnel	1D60.10	
Mei, 7-2.15	howitzer and tunnel	1D60.10	
Sut, M-99	howitzer and tunnel	1D60.10	
Hil, M-6b	howitzer and tunnel		A steel ball projected upward from a moving car returns into the barrel.
D&R, M-182	howitzer and tunnel	1D60.10	when it comes out of the tunnel.
Sprott, 1.3	vertical gun on car	1D60.10	A car rolling across the table fires a projectile straight upward and subsequently catches it.
Bil&Mai, p 49	howitzer and tunnel	1D60.10	Use a commercial spring cart or a spring popper toy on a battery powered car.
Disc 02-03	vertical gun on car	1D60.10	A ball is shot up from a moving cart and falls back into the barrel.
Bil&Mai, p 47	ball or toy and Rollerblades	1D60.12	
PIRA 1000	howitzer and tunnel on incline	1D60.15	······································

UMN, 1D60.15	howitzer and tunnel on incline	1D60.15	Prop up one end of the howitzer and tunnel track and start the cart from either end.
AJP 42(4),326	howitzer and tunnel on incline	1D60.15	
AJP 43(8),732	howitzer and tunnel inclined	1D60.15	.
AJP 44(8),783	howitzer and tunnel on incline	1D60.15	1 5 5
			relative to the incline, but not always above the cart relative to the horizontal.
PIRA 1000	vertical gun on accelerated car	1D60.16	
Disc 02-04	vertical gun on accelerated car	1D60.16	Two cases: vertical gun on a car on an incline, and on a car accelerated by a
			mass on a string.
PIRA 200	simultaneous fall	1D60.20	Two balls simultaneously dropped and projected horizontally hit the floor
UMN, 1D60.20	simultaneous fall	1D60.20	together. Device to drop one billiard ball and shoot another out.
F&A, Mb-14	simultaneous fall	1D60.20	A spring loaded device drops one ball and projects the other horizontally.
Sut, M-91	simultaneous fall	1D60.20	Two apparatuses are described for dropping one ball and projecting another.
		1000.00	
Hil, M-13b D&R, M-158	simultaneous fall simultaneous fall	1D60.20 1D60.20	One ball is projected horizontally as another is dropped. Two apparatuses are shown for dropping one ball and projecting another.
Dart, M 100		1000.20	
Bil&Mai, p 40	simultaneous fall	1D60.20	Dice in different positions are flicked off a table with a ruler. They strike the
Disc 02-01	shooter/dropper	1D60.20	floor at the same time. Drop one ball and simultaneously project another horizontally.
TPT 15(8),485	simultaneous fall	1D60.20	Instructor rolls a superball off the hand while walking at a constant velocity.
TPT 46(9),553	simultaneous fall	1D60.21	A simultaneous fall apparatus made from a broken meter stick and some
AJP 31(3),215	simultaneous fall	1D60.22	blocks. Roll a steel ball down an incline where it hits another, momentum exchange
A01 01(0),210		1000.22	knocks the one out, and the other drops through a slot.
PIRA 200	monkey and hunter	1D60.30	A gun shoots at a target, released when the gun is fired. The ball hits the
			target in midair.
UMN, 1D60.30	monkey and hunter	1D60.30	Light beam aiming, air pressure propelled, microswitch to electromagnet release version of monkey and hunter.
AJP 36(4),367	monkey and hunter	1D60.30	Use a large bore air gun and wood "shell" projectile which is caught in a net.
	,		
F&A, Mb-16	monkey and hunter	1D60.30	A compressed air gun shoots at a tin can.
Hil, M-13a D&R, M-170	monkey and hunter monkey and hunter	1D60.30 1D60.30	Shoot the tin can monkey with a blowgun and an electromagnet release. Blow a ball through a metal tube. Trip wire at muzzle opens an
Dart, W-170	monkey and numer	1000.50	electromagnet which drops the monkey.
Sprott, 1.4	monkey and hunter	1D60.30	A projectile fired at a falling target hits the target.
Disc 02-02	monkey gun	1D60.30	The apparatus consists of a blow gun with dowel projectile and
TPT 15(7),368	monkey and hunter on incline	1D60.31	electromagnetic release. A simple and effective version using rolling balls on an inclined table.
Ehrlich 1, p. 4	monkey and hunter on incline	1D60.31	A simple and encentre version using rolling balls on an inclined table. Works
<i>.</i> .	,		regardless of the slope of the incline.
AJP 43(6),561	monkey and hunter	1D60.32	
AJP 43(6),562	monkey and hunter	1D60.32	
TPT 13(5),308	monkey and hunter	1D60.32	varying the muzzle velocity. Using the simultaneous fall device to shoot the monkey.
TPT 20(4),260	monkey and hunter	1D60.32	Shoot the monkey using a rubber band propelled pencil.
TPT 10(4),216	monkey and hunter	1D60.32	Using a 0.5 L India rubber bulb as a substitute for lungs.
Mei, 7-2.11	monkey and hunter string release	1D60.32	A simple string release dart gun monkey and hunter.
Sut, M-92	monkey and hunter	1D60.32	A bore sighted blowgun with electromagnetic release.
AJP 31(3),212 TPT 10(5),263	monkey and hunter monkey and hunter	1D60.33 1D60.33	Shoot a Christmas tree bulb weighted with a little water. Cut out a pop can and cover the hole with paper.
Ehrlich 2, p. 30	monkey and hunter	1D60.34	The classic "Monkey and Hunter" demonstration done using a transparency
			on the overhead projector.
AJP 38(9),1160	monkey and hunter	1D60.34	A magnetic switch and solenoid release.
AJP 50(5),470	monkey and hunter	1D60.34	A simple switch using infrared optics and a single IC and transistor to release the magnet.
TPT 19(8),563	monkey and hunter	1D60.34	Bore sighting is used to aim the gun, an optoelectronic device is used to
(-//			trigger the release. Circuit details are available from the author.
TPT 9(5),282	monkey and hunter	1D60.34	A photo resistor is used as a switch.
TPT 2(7),336	monkey and hunter	1D60.34	Use the PSSC cart spring to launch the projectile. Also a simple magnet
TPT 5(6),272	monkey and hunter	1D60.34	switch. Plotting projectile motion using the overhead projector, strobe photography,
- (-);			and an optoelectronic circuit for triggering the monkey drop.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
A ID 52(10) 027	monkoy and huntor	1060.35	Viewed from the free menkey frame, the bullet meyes uniformly. Placing the
AJP 53(10),937	monkey and hunter	1D60.35	hunter below the monkey can mislead students.
TPT 2(5),277	monkey and hunter	1D60.35	
AJP 43(6),562	monkey and hunter	1D60.36	Investigates the effect of the method of air entry and switch friction on the accuracy of the shot.
TPT 13(5),298	monkey and hunter	1D60.38	Sound activated electronic flash produces photographic record of the distance the target falls.
PIRA 500	range of a gun	1D60.40	5
UMN, 1D60.40	range of a gun	1D60.40	An air powered cannon (5 psi) shoots a 5 cm dia x 10 cm projectile to better
			than 1% accuracy.
TPT 14(3),168	range of a gun	1D60.40	Using the Blackwood ballistic pendulum gun, students are asked to calculate the angle necessary for them to be hit.
Sut, M-95	range of a gun	1D60.40	Shoot at 45, then calculate 30 or 60 and place the target.
D&R, M-166	range gun	1D60.40	Fire a spring gun at various angles. Simulate a strobe photo of the trajectory with a meter stick and weights hanging from strings.
Bil&Mai, p 45	range of a gun	1D60.40	
Disc 02-06	range gun	1D60.40	Fire a spring loaded gun at various angles.
Mei, 7-2.18	range of a gun	1D60.42	Impact point of a slingshot projectile is predicted from the drawing force and
·			drawing distance.
TPT 15(7),432	range of a gun	1D60.43	5
TPT 14(4),245	range of a gun	1D60.44	(No.75425). Calculate muzzle velocity and examine the range at various
TDT 11/6) 262	rongo of a gun	1060.45	angles.
TPT 11(6),362	range of a gun	1D60.45	Using a toy dart gun and a ball bearing weighted dart, the author gives a concise description for obtaining muzzle velocity used to predict the range at
AJP 29(2),x	range of a gun - gun	1D60.46	various angles. A toy spring-loaded gun is surprisingly precise.
AJP 31(2),89	simple spring gun	1D60.46	A spring gun shoots a 3/4" steel ball 12 m/sec with 2% accuracy.
TPT 22(3),185	range of a gun - gun	1D60.46	On using the Blackwood Pendulum gun as a device for finding the range of a
			projectile
TPT 28(7),477	projectile launcher	1D60.46	Making a string and sticky tape launcher out of bamboo.
Mei, 7-2.19	range of a gun - gun	1D60.46	A golf ball fired from a spring powered gun. Construction details in appendix, p. 548.
Mei, 7-2.20	range of a gun - gun	1D60.46	A spring gun for a 3/4" steel ball. Construction details.
AJP 30(12),851	range of a projected ball	1D60.47	Apparatus Drawings Project No. 32: Plans for a inclined tube for launching a ball.
PIRA 1000	parabolic path through rings	1D60.50	
UMN, 1D60.50	parabolic path through rings	1D60.50	Same as TPT 22(6),402 except the ball is shot with a spring loaded gun.
TPT 22(6),402	parabolic trajectory	1D60.50	Four launching ramps are mounted to a large magnetic surfaced coordinate system. Magnet based metal hoops can be repositioned easily so the ball
			passes through all the hoops. Looks very nice.
TPT 2(7),336	parabolic path through rings	1D60.50	A ball launched off a ramp will pass through a set of rings.
Mei, 7-2.13	parabolic trajectory	1D60.50	Parabolic Lucite templates coincide with path of steel balls projected horizontally.
Mei, 7-2.7	parabolic trajectory	1D60.50	Throw a piece of chalk so it follows a parabolic path drawn on the board.
PIRA 1000	parabolic trajectory on incline	1D60.55	
AJP 52(4),299	projectile range on an inclined plane	1D60.55	An old, simple, elegant (no calculus) solution.
TPT 2(6),278	parabolic trajectories on the overhead projector	1D60.55	Ink dipped balls are rolled down an incline onto a tilted stage on an overhead projector.
F&A, Mb-20	parabolic trajectory on incline	1D60.55	A tennis ball covered with chalk dust is rolled across a tilted blackboard.
Mei, 7-2.8	parabolic trajectory on incline	1D60.55	Inked balls are rolled on a transparent tray on the overhead projector. Also Compton effect and Rutherford scattering.
Sut, M-96	parabolic trajectory on incline	1D60.55	Fire a ball up an incline and trace the trajectory as it rolls on carbon paper.
Ehrlich 1, p. 8	parabolic trajectory on incline	1D60.55	Steel balls leave a trail of dots when rolled on an inclined table that is
Ehrlich 2, p. 87	parabolic trajectory on incline	1D60.55	vibrating. Use carbon paper. Balls are rolled across a tilted overhead projector. The ball follows a predictable parabolic trajectory.
Disc 02-05	air table parabolas	1D60.55	
AJP 28(9),805	parabolic trajectory	1D60.56	A ball launched off a ramp strikes a vertical carbon paper moved repeatedly
			away and laterally by equal amounts. Unexpectedly, not dependent on g.
Bil&Mai, p 41	parabolic trajectory	1D60.56	Two tables are place a short distance apart. Hit a small block on one table
•			with a larger block and see if it is possible for the small block to jump the gap
			and land on the second table.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
Mei, 7-2.14	parabolic trajectory	1D60.56	Inexpensive apparatus for plotting parabolic trajectory by repeatedly hitting a
TPT 16(1),33	parabolic trajectory	1D60.58	carbon paper. A strobe picture is taken of the projectile motion of a golf ball. A method of analysis suited for a HS class is presented.
Hil, M-4a	photographing parabolic trajectories	1D60.58	Photograph a bouncing ping pong ball through a motorized slotted disc.
AJP 43(11),936 Mei, 7-2.17	falling body simulator parabolic trajectory	1D60.59 1D60.59	An analog computer simulator for falling bodies projected horizontally. Use an analog computer to calculate trajectories.
PIRA 1000 UMN, 1D60.60	parabolic trajectory parabolic trajectory	1D60.60 1D60.60	A pivoted bar with several pendula of length proportional to the square of the
AJP 47(12),1097			distance point from the pivot.
F&A, Mb-17	parabolic trajectory parabolic trajectory	1D60.60 1D60.60	Uses the balls hanging from a stick device at the blackboard. A pivoted bar has pendula of length proportional to the square of the distance from the pivot point.
Sut, M-90	parabolic trajectory	1D60.60	A stream of water matches the position of balls of lengths 1,4,9,16, at all angles of elevation.
AJP 31(1),42	parabolic trajectory - water stream	1D60.61	Apparatus Drawings Project No.33: The adjustable water nozzle has an arm extending in the direction of the nozzle with hanging arrows at intervals along the arm. Adjust the water pressure so the stream matches the arrow heads.
PIRA 1000	water stream trajectory	1D60.65	
UMN, 1D60.65	water trough trajectory	1D60.65	Hook a nozzle to the house water through an additional regulator to reduce pressure fluctuations. Shoot at varying angles into a water trough.
F&A, Mb-19	parabolic trajectory	1D60.65	A hose aimed with a protractor demonstrates range.
F&A, Mb-23	spitting trajectory	1D60.65	A pulser spits out regularly spaced water drops which are viewed with a strobe. A horizontal mirror shows uniform velocity and a vertical mirror shows acceleration.
Mei, 7-2.9	parabolic trajectory	1D60.65	Project light down a horizontally discharged water stream to make the path visible.
Sut, M-255	spitting trajectory	1D60.65	
Hil, M-13d Bil&Mai, p 43	spitting trajectory water stream trajectory	1D60.65 1D60.65	A horizontally projected water jet illuminated with a strobe. A steady stream of water is shot from a tube with an eye dropper nozzle. Adjust the angle for maximum range.
AJP 42(8),706 Mei, 7-2.10	water drop stream water drop stream	1D60.68 1D60.68	Design for a water drop generator based on a speaker driven diaphragm.
Mei, 7-2.12	dropping the bomb	1D60.70	A mechanism to drop a bomb in slow motion from a model airplane.
F&A, Mb-15 AJP 49(5),483	juggling projectiles with analog computer	1D60.71 1D60.90	Juggling higher trajectories requires slower hand motion. A simple analog computer is used to generate voltages representing the various parameters which are displayed on an oscilloscope.
		1E00.00	
	RELATIVE MOTION Moving Reference Frames	1E10.00	
PIRA 200	crossing the river	1E10.10	
PIRA 500 - Old UMN, 1E10.10	crossing the river crossing the river	1E10.10 1E10.10	Pull a sheet of wrapping paper along the lecture bench while a toy wind up
AJP 48(10),887	crossing the river	1E10.10	tractor crosses the paper.
Mei, 6-4.10	crossing the river	1E10.10	trace the paths.
Sut, M-75	crossing the river	1E10.10	,
Bil&Mai, p 38	crossing the river	1E10.10	table. A constant velocity toy moves across a moving paper river. Vector addition.
Disc 02-08	bulldozer on moving sheet (2D)	1E10.10	The bulldozer moves across a sheet moving at half the speed of the bulldozer or at the same speed.
AJP 35(2),xix TPT 19(1),44	toy tractor drive moving blackboard	1E10.11 1E10.15	On using toy tractors in kinematics demonstrations. Using a large movable reference frame on wheels and a walking student, equations of relative speed can be deduced by non science majors.
PIRA 200	Frames of Reference film	1E10.20	
PIRA 500 - Old UMN, 1E10.20	Frames of Reference film Frames of Reference film	1E10.20 1E10.20	The classic film available on video disc permits use of selective parts.

Mei, 6-4.1	photographing relative velocity
Mei, 7-3.1	Galilean relativity
F&A, Mb-30	stick on the caterpiller
Ehrlich 2, p. 64	stick on a wheel
AJP 34(1),xviii	inertial reference frames
Mei, 7-3.2	inertial reference frames

PIRA 500 UMN, 1E20.10	Rotating Reference Frames Foucault pendulum Foucault pendulum	1E2 1E2 1E2
AJP 29(9),646 F&A, Mz-6 Sut, M-208 Hil, M-19e	Foucault pendulum Foucault pendulum Foucault pendulum Foucault pendulum	1E2 1E2 1E2 1E2
AJP, 75 (10), 888	Foucault pendulum	1E2
AJP 76 (2), 188	Foucault pendulum	1E2
AJP 78 (11), 1188	Foucault pendulum	1E2
Disc 06-13 AJP 46(4),438 AJP 49(11),1004	Foucault pendulum short Foucault pendulum short Foucault pendulum	1E2 1E2 1E2
AJP 54(8),759 AJP 46(5),419	Foucault pendulum short, continuous Foucault pendulum	1E2 1E2
TPT 21(7),477 TPT 19(6),421	Foucault pendulum Foucault pendulum	1E2 1E2
TPT 28(6),362	time lapse Foucault cycle	1E2
AJP 46(4),436 TPT 19(2),134	Foucault pendulum Foucault pendulum	1E2 1E2
Mei, 13-4.4 AJP 34(7),615	Foucault pendulum Foucault pendulum drive	1E2 1E2
Mei, 13-4.3	Foucault pendulum	1E2
Sut, M-207 TPT 35(4), 199	Foucault pendulum Spirograph	1E2 1E2
TPT 35(3), 182	Foucault's pendulum as a	1E2
TPT 12(2), 89 AJP 38(2),173	Spirograph electronic Spirograph Foucault pendulum - Onnes experiment	1E2 1E2
TPT 28(5),264	general and historical article	1E2
PIRA 1000 UMN, 1E20.20 TPT 20(2) 116	Foucault pendulum model Foucault pendulum model	1E2 1E2

TPT 20(2),116

F&A, Mz-7

July 2015

velocities.

			Velocities.
	Galilean relativity	1E10.23	A Polaroid camera and blinky, each on a cart pushed by a toy caterpillar, show the various cases of relative motion.
	stick on the caterpiller	1E10.31	A small stick placed on the top tread of a toy caterpillar moves twice as fast
	stick on a wheel	1E10.31	as the toy. A ruler placed on the top of a rolling wheel or soda can moves twice as fast as the wheel or can.
	inertial reference frames	1E10.41	Two X-Y axes, one on a moving cart, and "cord" vectors are painted with fluorescent paint and viewed in black light.
	inertial reference frames	1E10.41	More Phil Johnson humor. "Complicated. Look it up". The description would read: A complicated mechanical apparatus to show two X-Y axes systems, one stationary and one on a moving cart. "Cord" vectors are painted with fluorescent paint and viewed in black light as the cart is moved at constant velocity.
	Rotating Reference Frames	1E20.00	
	Foucault pendulum	1E20.10	
	Foucault pendulum	1E20.10	A ceiling mounted pendulum swings freely. The change in path is noted at the end of the class period.
	Foucault pendulum	1E20.10	Suspension for a large (120# - 36') non driven Foucault pendulum.
	Foucault pendulum	1E20.10	A large pendulum hung from the ceiling swings for an hour.
	Foucault pendulum	1E20.10	Optical arrangement for projecting the Foucault pendulum motion.
	Foucault pendulum	1E20.10	Permanent corridor demonstration as described in Scientific American, vol 210, Feb. 64, 132-9.
;	Foucault pendulum	1E20.10	A thorough explanation of the Foucault pendulum utilizing underlying geometry on a level suitable for students not familiar with calculus.
	Foucault pendulum	1E20.10	A driving mechanism for a Foucault pendulum. Mechanism and electronic circuit are described.
B	Foucault pendulum	1E20.10	The changing plane of oscillation of a Foucault pendulum is calculated without using complicated equations or assumptions.
	Foucault pendulum	1E20.10	Look at the plane of swing at six ten minute intervals.
	short Foucault pendulum	1E20.11	Pictures and a circuit diagram for a well done short Foucault pendulum.
	short Foucault pendulum	1E20.11	A 70 cm pendulum with a method of nullifying the precession due to ellipicity.
	Foucault pendulum	1E20.11	A Foucault pendulum driver for limited space exhibits.
	short, continuous Foucault	1E20.11	Modification of the AJP 46,384 (1978) pendulum to make it portable so it can
	pendulum		be moved into lecture rooms for demonstration.
	Foucault pendulum	1E20.11	Plans for a very short (50 cm) Foucault pendulum.
	Foucault pendulum	1E20.11	Several novel features that can be incorporated in the design of a short Foucault pendulum to make construction and operation relatively simple.
	time lapse Foucault cycle	1E20.12	The author will provide a videotape of a complete time lapsed cycle of the Foucault pendulum filmed at the Center of Science and Industry in Columbus for preview and copying.
	Foucault pendulum	1E20.13	A 2 meter Foucault pendulum with a Charron ring drive.
	Foucault pendulum	1E20.14	The support wire for a 2.8 meter Foucault pendulum is lengthened by heating at the end of each swing.
	Foucault pendulum	1E20.14	Foucault pendulum drive mechanisms.
	Foucault pendulum drive	1E20.15	An electromagnet is placed below the equilibrium position of the bob. Circuit for the drive is given.
	Foucault pendulum	1E20.16	An optical projection system to show the deflection of a Foucault pendulum after 100 oscillations.
	Foucault pendulum	1E20.16	General text about the Foucault pendulum.
	Spirograph	1E20.17	A "Spirograph" toy used to generate a picture of the motion of a Foucault pendulum.
	Foucault's pendulum as a Spirograph	1E20.17	How a Foucault sand pendulum creates the same patterns as a "Spirograph" toy.
	electronic Spirograph	1E20.17	An electronic circuit that shows "Spirograph" patterns on an oscilloscope.
	Foucault pendulum - Onnes experiment	1E20.19	A review of Onnes' analysis that led to the first properly functioning Foucault pendulum. More stuff.
	general and historical article	1E20.19	Some discussion of a current murder novel, some history of Foucault's work, etc.
	Foucault pendulum model	1E20.20	
	Foucault pendulum model	1E20.20	A pendulum is mounted on a rotating turntable.
	Foucault pendulum model, etc	1E20.20	Build a simple model of the Foucault pendulum and demonstrate the Coriolis effect by the curved trace method.
	Foucault pendulum model	1E20.20	A simple pendulum supported above the center of a turntable.

1E10.22 Toy bulldozers, blinkies, and a camera give a photographic record of relative

Sut, M-209	Foucault pendulum model	1E20.20	A simple pendulum hanging from a rotating platform.
Hil, M-19d	Foucault pendulum model	1E20.20	Picture of a nice Foucault pendulum model.
D&R, S-035	Foucault pendulum model	1E20.20	A pendulum is mounted on a clear acrylic rotating platform. Commercial
			model.
Mei, 8-5.7	rotating frame	1E20.21	A monkey puppet sits on a rotating reference frame to help the student
	-		visualize a non-inertial frame.
Mei, 13-4.1	Foucault pendulum model	1E20.22	Sit on a rotating chair with a table on your lab. A pendulum releasing ink
,	·		marks a clear pattern on the paper.
AJP 55(1),67	geometric model	1E20.26	A geometrical model helps correct some common misconceptions about the
	5		plane of oscillation of the Foucault pendulum.
TPT 18(6),459	Foucault pendulum	1E20.27	Excellent diagram explaining the variation of rotation of the Foucault
	·		pendulum with latitude
AJP 46(7),725	Foucault pendulum precession	1E20.28	Derivation of the Foucault pendulum period shows that no correction factor is
()) -			needed for (1 m) lengths. Contradicts C.L.Strong, Sci.Am. 210,136 (1964).
PIRA 1000	Foucault pendulum latitude model	1E20.30	
UMN, 1E20.30	Foucault pendulum latitude model		See AJP 47(4),365.
AJP 47(4),365	Foucault pendulum latitude model		A vibrating elastic steel wire pendulum demonstrates how the rotation of the
	· · · · · · · · · · · · · · · · · · ·		plane of oscillation depends on the latitude.
AJP 37(11),1126	Foucault pendulum latitude model	1E20.35	A ball on rod pendulum set at 45 degrees latitude can be driven by a
	· · · · · · · · · · · · · · · · · · ·		solenoid inside the globe.
Mei, 13-4.2	Foucault pendulum model	1E20.35	An electromagnet inside a globe drives a small pendulum at a selected
Moi, 10 4.2		1220.00	latitude. Construction details p.592.
AJP 57(3),247	Theory and two demonstrations	1E20.40	The concept of a locally inertial frame is used to study motion in accelerated
//01/07(0),247	meery and two demonstrations	1220.40	frames. Two demonstrations are presented.
PIRA 1000	rotating room	1E20.50	names. Two demonstrations are presented.
AJP 43(7),567	rotating room	1E20.50	Design for a rotating room that seats four at a table, and has four possible
AJI 43(7),507	Totating room	1220.00	speeds.
AJP 58(7),668	motion room	1E20.50	A rotating motion room that holds four students.
TPT 20(2),102	catch on a rotating platform	1E20.50	Students try to play catch on a large rotating system. Other possibilities for
11 1 20(2),102	catch on a rotating platonn	1220.00	the apparatus are discussed.
AJP 39(10),1129	rotating coordinate frame	1E20.51	Experiments performed on a rotating frame are projected onto a screen
AJF 39(10),1129	visualizer	1220.01	
	visualizei		through a rotating dove prism. Centrifugal force, coriolis force, angular
	Carialia Effect	4 = 20.00	acceleration, cyclones and anticyclones, Foucault pendulum, etc.
	Coriolis Effect	1E30.00	
PIRA 1000	draw the Coriolis curve - vertical	1E30.10	Manuata antation distantiantly, drive a page of a part of constant, alogity in
AJP 34(1),xvii	draw the Coriolis curve - vertical	1E30.10	Mount a rotating disk vertically, drive a pen on a cart at constant velocity in
	draw the Coriolis curve	1E30.11	front of the disk. The speeds of the disk and cart are variable.
		1630.11	
PIRA 1000			Disco a nastav based sizela en a transfella marca a maria marken severa in a
UMN, 1E30.11	draw the Coriolis curve	1E30.11	Place a poster board circle on a turntable move a magic marker across in a
UMN, 1E30.11	draw the Coriolis curve	1E30.11	straight line.
UMN, 1E30.11 F&A, Mb-28	draw the Coriolis curve draw the curve	1E30.11 1E30.11	straight line. Move a magic marker in a straight line across a rotating disc.
UMN, 1E30.11	draw the Coriolis curve	1E30.11	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6	draw the Coriolis curve draw the curve draw the curve	1E30.11 1E30.11 1E30.11	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter	1E30.11 1E30.11 1E30.11 1E30.12	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis	1E30.11 1E30.11 1E30.11 1E30.12 1E30.12	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency	1E30.11 1E30.11 1E30.12 1E30.12 1E30.12 1E30.13	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency	1E30.11 1E30.11 1E30.12 1E30.12 1E30.12 1E30.13 1E30.13	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency	1E30.11 1E30.11 1E30.12 1E30.12 1E30.12 1E30.13	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency	1E30.11 1E30.11 1E30.12 1E30.12 1E30.12 1E30.13 1E30.13	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine	1E30.11 1E30.11 1E30.12 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis machine Coriolis spark trace	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.14	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20 F&A, Mb-25	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20 1E30.20	straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20 F&A, Mb-25	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning. A clamped dart gun is fired by an instructor sitting on a revolving chair into a
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20 F&A, Mb-25 Mei, 12-6.1	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20 1E30.20 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning. A clamped dart gun is fired by an instructor sitting on a revolving chair into a target board.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20 F&A, Mb-25 Mei, 12-6.1	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20 1E30.20 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning. A clamped dart gun is fired by an instructor sitting on a revolving chair into a target board.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20 F&A, Mb-25 Mei, 12-6.1 Mei, 12-6.2	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20 1E30.20 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning. A clamped dart gun is fired by an instructor sitting on a revolving chair into a target board. A spring gun at the center of a rotating table fires into a target at the edge.
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20 F&A, Mb-25 Mei, 12-6.1 Mei, 12-6.2	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20 1E30.20 1E30.20	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning. A clamped dart gun is fired by an instructor sitting on a revolving chair into a target board. A spring gun at the center of a rotating table fires into a target at the edge. Go to a merry-go-round and walk on it. You will feel a very strange "force". A ball on a string is threaded through the pole of a spinning globe. Pull on the
UMN, 1E30.11 F&A, Mb-28 Mei, 12-6.6 AJP 50(11),967 AJP 50(4),381 PIRA 1000 UMN, 1E30.13 AJP 46(7),759 TPT 2(7),336 PIRA 1000 UMN, 1E30.20 F&A, Mb-25 Mei, 12-6.1 Mei, 12-6.2 TPT 18(6),458	draw the Coriolis curve draw the curve draw the curve Coriolis ink drop letter Coriolis overhead transparency Coriolis overhead transparency Coriolis machine Coriolis spark trace Coriolis gun Coriolis gun Coriolis gun Coriolis gun Coriolis gun	1E30.11 1E30.11 1E30.12 1E30.12 1E30.13 1E30.13 1E30.13 1E30.14 1E30.20 1E30.20 1E30.20 1E30.20 1E30.20 1E30.21	 straight line. Move a magic marker in a straight line across a rotating disc. A cart on a track with a marker passes in front of and draws on a large disc that can be rotated. AJP 50(4),381 should have referenced AJP 27(6),429. Turn a nearly vertical sheet as a drop of ink is running down it. Same as AJP 46(7),759. A clear plastic disk is placed over a inertial reference frame marked with a constant velocity path. Draw marks on the plastic disk while turning through equal angles. The PSSC air puck is used to give a spark trace on a rotating table. Same as Mb-25. A spring loaded gun at the center of a 4' disc is shot at a target first at rest and then while spinning. A clamped dart gun is fired by an instructor sitting on a revolving chair into a target board. A spring gun at the center of a rotating table fires into a target at the edge. Go to a merry-go-round and walk on it. You will feel a very strange "force".

July 2015

Mechanics

AJP 55(11),1010	Coriolis dish and TV	1E30.26	A ball oscillates in a spherical dish at rest, and follows various curved paths when the dish is rotated at different speeds. A TV camera is mounted to the rotating frame. More
AJP 41(2),247	Coriolis rotating platform and TV	1E30.27	rotating frame. More. A puck is launched on a rotating platform and the motion is followed with a TV
PIRA 1000	Coriolis ball on turntable	1E30.28	
Ehrlich 1, p. 80	Coriolis ball on turntable	1E30.28	Roll a ball across a rotating turntable that has been covered with carbon
		1200.20	paper.
Disc 06-14	Coriolis effect	1E30.28	Roll a ball across a slowly rotating turntable.
TPT, 37(4), 244	Coriolis-effect demonstration on		
111, 37(4), 244		1E30.29	Use an overhead and plastic rotating platform to illustrate Coriolis force to a
FOA A # 00	an overhead projector	1	large lecture.
F&A, Mb-26	leaky bucket on turntable	1E30.30	A can with a hole is mounted above a rotating table. As the table turns, the
			stream of water is deflected.
D&R, S-040	Toricelli column on turntable	1E30.30	A Toricelli column with only one hole open is filled and mounted on a rotating
			platform. As the table turns the stream of water is deflected.
Mei, 12-6.5	drop ball on turntable	1E30.32	A mass falls on a disc first while it is rotating and then when it is stationary.
			Difference in point of impact is noted.
Mei, 12-6.3	Coriolis trajectory	1E30.33	A ball describing an arc is released first in a stationary coordination system
			and then in a rotating system.
AJP 33(8),iii	Coriolis water table	1E30.34	A flat board rotates in a horizontal plane with a flexible tube full of flowing
			water running lengthwise. The tube deflects upon rotation.
TPT 3(4),171	Coriolis water table	1E30.34	A flexible rubber tube with water flowing in it is stretched across a disc which
		1200.01	can be rotated. The tube deflects when rotated.
Mei, 12-6.4	Coriolis water table	1E30.34	A flexible rubber tube with water flowing in it is stretched across a disc which
Mei, 12-0.4		1230.34	can be rotated. The tube deflects.
A ID 50(4) 201	rotating water flow table	1E30.35	
AJP 58(4),381	rotating water flow table	1230.35	Food coloring used to mark flow is introduced at the edges of a circular
			rotating tank with a center drain hole. A rotating overhead TV camera allows
		1	motion in the rotating frame to be viewed.
TPT 10(9),532	Coriolis	1E30.36	A pan of water on a turntable has a recirculating pump with an inlet and exit
			of opposite sides of the pan. Floats above these areas rotate in opposite
			directions as the pan of water is spun.
PIRA 1000	rotating TV camera	1E30.50	
UMN, 1E30.50	rotation table with tv	1E30.50	
Mei, 12-6.7	rotating TV camera	1E30.51	A TV camera is rotated in front of an oscilloscope displaying a slow ellipse.
Mei, 12-6.7	rotating TV camera	1E30.51	A TV camera is rotated in front of an oscilloscope displaying a slow ellipse. Vary the camera rotation.
Mei, 12-6.7 Mei, 12-6.8	rotating TV camera vacuum cleaner	1E30.51 1E30.61	
	-		Vary the camera rotation.
	-		Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM
	-		Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate
	-	1E30.61	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power.
Mei, 12-6.8	vacuum cleaner	1E30.61	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is
Mei, 12-6.8	vacuum cleaner spinning dancer - Coriolis analysis	1E30.61 1E30.71	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power.
Mei, 12-6.8	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW	1E30.61 1E30.71 1F00.00	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is
Mei, 12-6.8 AJP 38(3),390	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia	1E30.61 1E30.71 1F00.00 1F10.00	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is
Mei, 12-6.8 AJP 38(3),390 PIRA 1000	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.10	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance - leaf spring	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance - leaf spring	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, Mz-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.11	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, MZ-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5 AJP 29(6),vi	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.12 1F10.13	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart. Measure the period of a commercially available (?) inertia balance by using a
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, MZ-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5 AJP 29(6),vi	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.13 1F10.13	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, MZ-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5 AJP 29(6),vi TPT 11(5),312 PIRA 1000	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.13 1F10.13 1F10.20	 Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart. Measure the period of a commercially available (?) inertia balance by using a stroboscope.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, MZ-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5 AJP 29(6),vi TPT 11(5),312 PIRA 1000 UMN, 1F10.20	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.13 1F10.20 1F10.20	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart. Measure the period of a commercially available (?) inertia balance by using a stroboscope.
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, MZ-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5 AJP 29(6),vi TPT 11(5),312 PIRA 1000	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.13 1F10.13 1F10.20	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart. Measure the period of a commercially available (?) inertia balance by using a stroboscope. Hit hanging 2"x4"x10" blocks of wood and steel with a hammer. Two large cylinders are suspended, one wood (3Kg) and one iron (50Kg).
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, MZ-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5 AJP 29(6),vi TPT 11(5),312 PIRA 1000 UMN, 1F10.20	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.13 1F10.20 1F10.20	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart. Measure the period of a commercially available (?) inertia balance by using a stroboscope. Hit hanging 2"x4"x10" blocks of wood and steel with a hammer. Two large cylinders are suspended, one wood (3Kg) and one iron (50Kg). Students compare displacements when struck by a hammer or just push the
Mei, 12-6.8 AJP 38(3),390 PIRA 1000 UMN, 1F10.10 F&A, MZ-2 Sut, M-106 PIRA 1000 Mei, 8-2.7 Bil&Mai, p 52 Disc 08-24 Mei, 8-2.5 AJP 29(6),vi TPT 11(5),312 PIRA 1000 UMN, 1F10.20	vacuum cleaner spinning dancer - Coriolis analysis NEWTON'S FIRST LAW Measuring Inertia inertia balance inertia balance inertia balance inertia balance - leaf spring inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance inertia balance	1E30.61 1E30.71 1F00.00 1F10.00 1F10.10 1F10.10 1F10.11 1F10.11 1F10.11 1F10.13 1F10.20 1F10.20	Vary the camera rotation. Cover the exhaust of an old vacuum: the current decreases as the RPM increases. Demonstrates transformation of vectors from a moving coordinate system to a rest frame. In one frame the torque does no work, in the other with open exhaust torque is responsible for the entire power. The spinning dancer, usually treated as an angular momentum problem, is used as a coriolis example. A torsion pendulum has cups that can be loaded with various masses. A light torsion pendulum can be loaded with various masses. Torsion pendulum as an inertia balance. A horizontal leaf spring as an inertial balance. Attach the inertia balance to the edge of a table with a clamp. Time the swings, add mass and time again. Place masses on a platform supported by horizontal leaf springs. A puck between two springs rolling on Dylite beads is timed with several different masses. Publication of an unfinished demonstration, but up front about it. Shows circuit diagram for a indicator for a horizontal Roberval type balance on an acceleration cart. Measure the period of a commercially available (?) inertia balance by using a stroboscope. Hit hanging 2"x4"x10" blocks of wood and steel with a hammer. Two large cylinders are suspended, one wood (3Kg) and one iron (50Kg).

Demonstration Bibligrqaphy						
UMN, 1F10.25	foam rocks					
Disc 02-14 Mei, 8-2.6	foam rock judging inertial mass					
PIRA 200 UMN, 1F20.10	Inertia of Rest inertia ball inertia balls					
F&A, Mc-2	inertia balls					
Sut, M-100 D&R, M-250 Sprott, 1.5	inertial ball inertia ball inertia balls					
Ehrlich 1, p. 30 AJP 72(7), 860 Disc 02-13	inertia balls inertia ball inertia ball					
PIRA 1000 UMN, 1F20.11 Bil&Mai, p 56	bowling ball inertia balls bowling ball inertia balls bowling ball inertia balls					
Hil, M-6d	inertia balls					
D&R, M-242 PIRA 1000 Mei, 8-1.2	toilet paper inertia block inertia block					
UMN, 1F20.16	inertia block					
F&A, Mc-3	inertia block					
Sut, M-101	inertia block					
D&R, M-258	inertia block					
AJP 46(7),710	inertia balls - analysis					
PIRA 1000 UMN, 1F20.20 F&A, Mc-1 D&R, M-254 Mei, 8-2.4	smash your hand smash your hand smash your hand smash your hand smash your hand, etc.					

PIRA 1000

Hil, M-6e Ehrlich 1, p. 30

PIRA 1000

AJP 56(9),806

TPT 14(2),119

Sut, M-102

PIRA 200

PIRA 500 - Old

UMN, 1F20.30

TPT 15(4),242

smash the block

smash the block

vibrograph

tablecloth pull

tablecloth pull

tablecloth pull

the tablecloth pull

UMN, 1F20.22

July 2015

		-		
IVI	ec	na	n	cs

Throw a form rock at some students. 1F10.25 Hit a real rock and then a foam rock with a heavy mallet. 1F10.30 A blindfolded volunteer compares a mass on a string with a mass on a roller cart. 1F20.00 1F20.10 Break the string on the top or bottom of a suspended mass. 1F20.10 Two heavy iron balls are hung separately between lengths of string. Pull on one and jerk on the other. Two steel balls are suspended by strings with identical strings tied from their 1F20.10 bottoms. Give a quick jerk to one and pull the other slowly. 1F20.10 Break the string on the top or bottom of a suspended mass. 1F20.10 Break the string on the top or bottom of a suspended mass. 1F20.10 Pull on a string attached to the bottom of a heavy ball that is suspended by an identical string until one of the strings breaks. 1F20.10 Break the string on the bottom or top of a suspended mass. 1F20.10 Quantitative analysis of how the strings break in this demonstration. 1F20.10 A mass is suspended between two cords. Pull slowly or jerk on the lower cord. 1F20.11 1F20.11 Replace the standard 6 cm balls with bowling balls for increased visibility. 1F20.11 Attach a string to a bowling ball. Pull slowly and lift the ball off the floor. Jerk and the string breaks. 1F20.12 One mass is hung from a string and another mass hung below it. Jerk the lower mass to break one of the strings. 1F20.14 Toilet paper unrolls if pulled slowly, but breaks if pulled or jerked. 1F20.15 A 50 lb mass is mounted on rollers. A thread will pull it but a rope can be 1F20.15 broken with a jerk. 1F20.16 Tie a loop of 7/16" braided cotton cord through a hole in a 2"x4"x10" steel block. Pull and jerk with a hammer. A length of rope is tied to a 10 lb. block. A pull with a hammer will move the 1F20.16 block but a jerk will break the rope. 1F20.16 A rope is attached between a heavy iron ball and a hammer head. A fast swing of the hammer takes up the slack and breaks the rope without moving the ball. 1F20.16 Hang a 20 to 30 kg object with a rope. With a 3/4 inch dowel rod 1 meter long the object can be easily deflected if pushed gently but the rod will break if swung at the object. For the more advanced reader. The system may be treated as a forced 1F20.18 harmonic oscillator and the classical results of the demonstration are verified analytically. Surprises emerge. 1F20.20 1F20.20 Place a lead block on your hand and hit it with a hammer. 1F20.20 Hit a 10 lb. brick with a hammer while it rests on your hand. 1F20.20 Place a 1/4 inch thick steel plate on your hand and hit it with a hammer. 1F20.21 Hit a 10 lb block on the hand or a 50 lb brick on the stomach with a hammer. Pound nails into a 50-75 lb wood block placed on a student's head. hit the nail on the head 1F20.22 hit the nail on the head 1F20.22 Place a physics book, then a 6"x6" block of wood on a student's head and drive a nail into the block. 1F20.22 hit the nail on the "head" Drive a nail into a large block of wood placed on a student's head. hit the stake on your chest A very heavy steel stake is placed against your chest and hit with a hammer. 1F20.22 No pain or damage results. 1F20.25 smash block on bed of nails 1F20.25 An analysis of smashing a block on a volunteer sandwiched between two nail beds. Safety issues are discussed. 1F20.25 A bed of nails is placed on the chest before smashing the block with a sledge. 1F20.26 An optical lever arrangement for magnifying small displacements of a large mass when the table is hit with a hammer. 1F20.30 1F20.30 1F20.30

1F10.25 Hit a real rock (granite) then a foam rock (looks like granite) with a hammer.

1F20.30 Pictures and a few hints.

Domonotiuno			
F&A, Mc-4b	tablecloth pull	1F20.30	Pull the tablecloth out from under a place setting.
D&R, M-524	tablecloth pull	1F20.30	Pull the tablecloth out from under a place setting.
Sprott, 1.6	tablecloth pull	1F20.30	Quickly pull a cloth out from under a beaker filled with water.
	•	1F20.30	
Bil&Mai, p 54	tablecloth pull		Pull a tablecloth from beneath a table setting.
Bil&Mai, p 73	tablecloth pull	1F20.30	A detailed analysis of the tablecloth pull demo.
Disc 02-15	tablecloth pull	1F20.30	Pull a low friction tablecloth from under a place setting.
PIRA 1000	inertia cylinder	1F20.33	
UMN, 1F20.33	inertia cylinder	1F20.33	Stand a 3/4" x 6" aluminum cylinder on a sheet of paper. Jerk the paper out from under the cylinder.
F&A, Mc-4a	inertia cylinder	1F20.33	Jerk a sheet of paper out from under a thin steel cylinder.
D&R, M-222	dollar bill and coke bottles	1F20.33	Jerk a dollar bill from between two coke bottles stacked mouth to mouth.
Bil&Mai, p 54	dollar bill and coke bottles	1F20.33	Jerk a dollar bill from between two coke bottles stacked mouth to mouth.
PIRA 1000	coin/card snap	1F20.34	
Mei, 8-2.3	card/coin snap	1F20.34	Snap a card out from under a tall object, e.g., a shipping tag from under a
			balanced claw hammer.
Sut, M-104	card/coin snap	1F20.34	Several inertia tricks.
Hil, M-6a	card/coin snap	1F20.34	Snap a piece of cardboard from under a steel ball.
D&R, M-226	card/coin snap	1F20.34	Snap a card from under a steel ball.
	•		
Ehrlich 1, p. 21	coin/card snap	1F20.34	Shoot a penny at the bottom of a stack of pennies knocking the bottom penny out without disturbing the rest of the stack.
PIRA 500	eggs and pizza pan	1F20.35	
UMN, 1F20.35	eggs and pizza pan	1F20.35	Set a pizza pan on three 2I beakers full of water, stand paper cylinders with
- ,	33 4 1 4 4		eggs at the tops above the beakers, knock out the pizza pan.
Mei, 8-2.2	blocks and broomstick	1F20.35	Egg on a spool, on a pie tin, on a beaker of water. Flex broom and knock out
	DIOCKS and DIOOTTSUCK	11 20.55	
B B B B B B B B B B			pie tin.
D&R, M-234	eggs and pizza pan	1F20.35	Set a pizza pan on a glass of water. Set an egg on pan above the glass. Snap the pizza pan with a broomstick and the egg fall into the glass.
Diag 02 16	age and pizza pan	1 5 2 0 2 5	
Disc 02-16	eggs and pizza pan	1F20.35	Place a pizza pan on three beakers, place cardboard tubes on the pan
			directly above the beakers, and eggs on the tubes. Knock out the pizza pan.
PIRA 1000	pen and embroidery hoop	1F20.36	
UMN, 1F20.36	pen and embroidery hoop	1F20.36	
D&R, M-230	pen and embroidery hoop	1F20.36	Balance an embroidery hoop on the mouth of a soft drink bottle, and then
	1		balance a pen on the embroidery hoop. Snap hoop sideways and pen will fall
			into bottle.
Ehuliah (m. 0)		4 500 00	
Ehrlich 1, p. 21	pennies on your arm	1F20.38	Place a row of 10 to 20 pennies on your forearm. Quickly swing your arm
			forward and catch all the pennies in midair.
PIRA 1000	stick on wine glasses	1F20.40	
UMN, 1F20.40	stick on wine glasses	1F20.40	Stick needles in the ends of a 3/4" sq x 4' clear pine bar. Place the needles
	-		on wine glasses full of water and break the stick with an iron bar.
			5
AJP, 65(6), 505-	transverse bending and the	1F20.40	A nice explanation and guide to breaking the broomstick balanced on two
. ,	÷	11 20.40	
510	breaking broomstick demo		wine glasses. This setup describes how to use force probes to measure and
			analyse the forces involved.
D&R, M-250	stick on wine glasses	1F20.40	Wooden rod with pins in each end is placed on wine glasses full of water.
			Break the stick with an iron bar.
Mei, 8-2.1	inertia stick	1F20.40	A long stick is horizontally supported from rings of filter paper at each end.
			Break the filter paper with a pull on the middle of the stick or the stick with a
			jerk.
PIRA 1000	shifted air track inertia	1F20.50	Jour
			Our sector sinter shares and solar Marca the sinter shares design and since the
UMN, 1F20.50	shifted air track inertia	1F20.50	Support an air track on wheels. Move the air track under an air glider.
Disc 02-12	shifted air track inertia	1F20.50	Move the air track under an air track glider.
F&A, Mc-5	loose hammer head	1F20.60	A hammer handle may be tightened by pounding on the far end of the
			handle.
Sut, M-105	inertia cart	1F20.61	A cart has a pivoting arm with different masses but the same volume at the
			ends. The greater mass lags behind as the cart is accelerated.
Moi 912	atring of woights	1520.62	
Mei, 8-1.3	string of weights	1F20.62	A string of weights connected by springs shows uneven deformation when
			jerked.
Sut, M-288	inertia of liquids	1F20.64	There are two horizontal glass tubes, one with a cork cylinder and the other
			with a lead cylinder. Strike the stopper at one end of the glass tubes with a
			hammer and watch the direction of the cylinders.
	Inertia of Motion	1F30.00	•
PIRA 200	persistence of motion (air track)	1F30.10	A single glider on the air track.
UMN, 1F30.10	persistence of motion (air track)	1F30.10	A single glider on the air track.
F&A, Me-2	air table puck	1F30.11	Air table with a puck.
	· ·		
F&A, Me-1	CO2 block	1F30.13	A large piece of dry ice on a flat formica top wetted with alcohol.

Demonstratio	on Bibligrqaphy		July 2015 Mechanics
PIRA 1000	water hammer	1F30.21	
TPT 2(4),178	water hammer	1F30.21	Some water in an evacuated test tube clicks when the water hits the end of the tube.
Sut, M-290	water hammer	1F30.21	Shut off the sink faucet and a water hammer may be heard. A small tube evacuated with some water shows the effect nicely.
Hil, M-6c	water hammer	1F30.21	A tube is evacuated except for some water. When the tube is stopped suddenly, the water strikes the end of the tube with a click.
Disc 13-14	water hammer	1F30.21	Evacuate a glass tube containing water.
PIRA 1000	car on cart on cart	1F30.21	L'acuale à glass lube containing water.
			A small car as a skatchaard as a large roller cart hits a stap layed with the
UMN, 1F30.30	car on cart on cart	1F30.30	A small car on a skateboard on a large roller cart hits a stop level with the roller cart and the skateboard and car continue to move at constant velocity.
Mei, 8-1.5	cart on a cart	1F30.30	A smaller roller cart is placed on a larger one. when the larger is stopped, the smaller continues.
Bil&Mai, p 16	dynamics cart on a cart	1F30.30	A dynamics track is placed on a rolling table. A dynamics cart is placed on the track. Ask what happens to the cart when the table is pushed. Many
			situations are possible.
Bil&Mai, p 80	dynamics cart on a cart	1F30.30	Place a dynamics track on a rolling table, and then a dynamics cart on the track. What happens to the dynamics cart when the table is moved across the room.
PIRA 1000	nail by hand	1F30.40	
UMN, 1F30.40	nail by hand	1F30.40	Follow the directions in TPT 18(1),50.
TPT 18(1),50	hand pile driver	1F30.40	Drive a nail into wood with your bare hands.
PIRA 1000	pencil and plywood	1F30.50	Drive a fian into wood with your bare fiands.
UMN, 1F30.50	pencil and plywood	1F30.50	Place a pencil in a brass tube hooked to a fire extinguisher. Fire the pencil
			into a 1/2" plywood board.
Disc 02-17	pencil and plywood NEWTON'S SECOND	1F30.50 1G00.00	Use a CO2 extinguisher to fire a pencil through a 1/2" plywood.
	LAW Force, Mass, and Acceleration	1G10.00	
Ehrlich 2, p. 23	net force	1G10.05	Estimating the net force on a book as you move it in several types of motion.
Ehrlich 2, p. 25	net force	1G10.05	Use a simple force indicator made from index cards to observe the connection between force and acceleration.
PIRA 200	accelerating air / Dynamics cart	1G10.10	
PIRA 500 - Old	glider, mass, and pulley on air track	1G10.10	
F&A, Md-2	acceleration air glider	1G10.10	Air track glider pulled by a falling weight.
Mei, 7-1.5.7	acceleration air glider	1G10.10	Accelerate a glider on a track with a mass on a string over a pulley.
Hil, M-7b	glider, mass, and pulley	1G10.10	An air track glider is timed while pulled by a mass on a string over a pulley.
Bil&Mai, p 20	dynamics cart, mass, and pulley		A mass over a pulley pulls a dynamics cart down a track. Record the motion of the cart with a motion sensor.
Disc 01-15	string and weight acceleration (air)		Three cases of an air glider pulled by a falling weight.
PIRA 1000	constant mass acceleration system	1G10.11	
UMN, 1G10.11	constant mass acceleration system	1G10.11	A glider on the air track is accelerated by a mass on a string over a pulley and final velocity timed photoelectrically. Keep the mass of the system constant by transferring from the glider to the pan.
Mei, 11-1.5	acceleration air glider	1G10.11	Air glider with a string over a pulley to a mass. Vary mass on both glider and hanger.
Mei, 10-2.1	acceleration air glider on incline	1G10.12	A glider is timed as it floats up an incline pulled by a string to a weight over a pulley.
AJP 50(2),185	acceleration air glider on incline	1G10.13	An air track glider is accelerated up an inclined track by the string, pulley and mass system. A newton scale is included on the glider to measure the tension in the string directly. An electromagnet release and photogate timer at a fixed distance are used to derive acceleration.
TPT 17(1),45	acceleration glider accelerometer	1G10.14	An elegant pendulum accelerometer designed for the air track. Reflected laser beam is directed to a scale at one end of the track.
PIRA 1000 UMN, 1G10.15	roller cart and bungee loop roller cart and bungee loop	1G10.15 1G10.15	A student standing on a large roller cart is pulled by another student with a loop of bungee cord. Pulling so that the bungee cord maintains a constant length gives a slow acceleration to the cart.

PIRA 1000 Disc 01-17	Strang gage acceleration with spring (airtrack)	1G10.16 1G10.16	An air track glider is pulled by a small spring hand held at constant extension.
AJP 52(3),268	constant force generators	1G10.17	A note that picks some nits about the hanging mass, mentions the "Neg'ator" spring.
AJP 57(6),543	battery propeller force generator	1G10.18	
AJP 51(4),344	constant force generator	1G10.19	A constant force generator for the air track based on the induction of eddy currents. It is easy to handle and can be self-made.
PIRA 1000	accelerated car	1G10.20	
Hil, M-7a	acceleration car	1G10.20	Time the acceleration of a toy truck as it is pulled across the table by a mass
,			on a string over a pulley.
AJP 29(5),294	acceleration car and track	1G10.21	
Mei, 8-1.1	acceleration car	1G10.21	
Sut, M-108	acceleration car	1G10.21	•
Hil, M-3a	acceleration car, mass & pulley	1G10.21	
PIRA 1000	accelerated instructor	1G10.22	
UMN, 1G10.22	accelerated instructor	1G10.22	
Mei, 8-1.6	acceleration car photo	1G10.24	Take a strobed photo of a light on a car pulled by a weight on a string over a
			pulley.
PIRA 1000	acceleration block	1G10.25	
UMN, 1G10.25	acceleration block	1G10.25	Accelerate a block of wood across the table by a mass on a string over a
0			pulley.
Mei, 8-1.7	acceleration car	1G10.26	
PIRA 1000	mass on a scale	1G10.30	
F&A, Mf-1	weight of a mass	1G10.30	Suspend a mass from a spring balance and then cut the string.
Hil, M-8a	mass on a scale	1G10.30	Hang a mass on a spring scale to show reaction of the scale to mg.
Ehrlich 1, p. 29	mass on a scale	1G10.30	Hang a mass on a spring scale. Moving the scale up and down will give readings that permit a quantitative test of Newton's second law.
PIRA 200	Atwood's machine	1G10.40	Two equal masses are hung from a light pulley. A small percentage of one mass is moved to the other side.
UMN, 1G10.40	Atwood's machine	1G10.40	Place 1 kg on each side of a light pulley on good bearings. Add 2 g to one side.
F&A, Ms-7	Atwood's machine	1G10.40	Three skeletonized aluminum pulleys are mounted together on good bearings. Many combinations of weights may be tried.
Sut, M-110	Atwood's machine	1G10.40	mass is moved to the other side.
Hil, M-7c	Atwood's machine	1G10.40	· · · · · · · · · · · · · · · · · · ·
D&R, M-278	Atwood's machine	1G10.40	Atwood's machine made of two pulleys for string separation. Spring scales hang from the ends of the string to monitor tension during acceleration.
Disc 01-16	Atwood's machine	1G10.40	The small weight is removed after a period of acceleration and the resulting constant velocity is measured.
TPT, 37(2), 82	another look at Atwood's machine	1G10.40	Using Atwood's machine, compare acceleration determined from
,,			experimental data with the numbers theoretically derived from Newton's law.
AJP 71(7), 715	variable mass Atwood's machine	1G10.40	Sand flowing from a bottle makes for a variable mass Atwood's machine.
Sut, M-111	Atwood's machine	1G10.42	Hang the weights from spring balances on each side.
AJP 37(4),451	Atwood's machine	1G10.44	
Mei, 11-2.1	Atwood's machine	1G10.44	Atwood's machine using an air bearing and spark timer.
Ehrlich 2, p. 58	Atwood's machine - high friction	1G10.45	
	-		smooth horizontal rod or cylinder.
TPT 11(9),539	Atwood's machine problem	1G10.45	description would read: An entertaining four step Atwood's machine problem
TDT 40/0\ 602	Morin's machine	1010 45	of unknown origin is solved by applying Newton's second law.
TPT 18(8),603 AJP 58(6),573		1G10.45 1G10.51	
().	auto acceleration	1G10.51 1G10.52	On using automotive magazine test results to study kinematic relations.
TPT 12(8),491	car time trials	1G10.52	Use student's cars to do time trials in the school parking lot.
	Accelerated Reference Frames	1920.00	
PIRA 1000	candle in a bottle	1G20.10	

201101101101101	in Bibligi qapiry	•	
UMN, 1G20.10	candle in a bottle	1G20.10	Drop a candle burning in a large flask.
TPT 1(1),34	candle in a bottle	1G20.10	Drop, toss up, and throw a bottle containing a lighted candle.
F&A, FI-3	gravitational pressure in circulation		Drop a Plexiglas container with a lighted candle.
raa, ri-5	gravitational pressure in circulation	1620.10	Diop à Flexigias container with a lighted candle.
	hattle and sendle	1000 10	There is a with a lighted and the interthe air
F&A, FI-2	bottle and candle		Throw a jug with a lighted candle into the air.
Mei, 8-3.7	candle in a bottle	1G20.10	A lighted candle in a glass chimney in a large container will burn for a long
			time unless dropped.
Sut, M-98	candle in a bottle	1G20.10	A candle in a dropped chimney goes out after 2-3 meters due to absence of
,			convection currents.
Disc 01-19	candle in dropped jar	1G20.10	
		1G20.10	
AJP 32(1),61	falling candle doesn't work	1620.11	Hey, when these guys tried it they could drop the bottle 25 feet and the
			candle only went out upon deceleration.
AJP 34(2),172	elevator paradox	1G20.13	A large hydrometer flask in a beaker of water remains at its equilibrium
			position as the beaker is moved up and down.
AJP 30(12),929	four demos	1G20.14	Four demos: Drop a weight on a spring balance, drop a cup with weights on
			rubber bands, drop a candle in a bottle, drop or throw a tube of water
			•
			containing a rising cork.
PIRA 1000	ball in a thrown tube	1G20.20	
UMN, 1G20.20	ball in a thrown tube	1G20.20	Invert and throw a 4' Plexiglas tube full of water that contains a cork. The
			rising cork will remain stationary during the throw.
TPT 1(1),34	ball in a thrown tube	1G20.20	Throw or drop long water filled tube containing a cork. Also try a rubber
		1020.20	stopper or air bubble.
	6 H	1000.00	••
F&A, FI-6	falling bubble	1G20.20	A rising bubble in a jar remains stationary while the jar is thrown.
Mei, 8-3.4	ball in a thrown tube	1G20.20	A long thin tube with an air bubble is tossed across the room.
D&R, M-102, S-	bubble in a thrown tube	1G20.20	A bubble in a water filled tube ceases to rise when tossed in the air.
215			
TPT 1(1),34	modified falling tube	1G20.21	Couple a lead weight and cork with a spring and put the assembly in a tube
11 1 1(1),54	modified failing tube	1020.21	
			of water so the cork just floats. Drop the tube and the cork sinks.
Mei, 8-3.3	ball in a falling tube	1G20.21	A cork remains submerged in a falling jar of water. Diagram of a mousetrap
			mechanism.
Sut, M-97	ball in a falling tube	1G20.22	A ball and tube are dropped simultaneously from the ceiling. The ball strikes
	-		the bottom of the tube after hitting the floor.
PIRA 1000	leaky pail drop	1G20.30	
			Dunch vertical halos near the bettern of a Styreform our When you fill it
D&R, M-188, S-	leaky pail drop	1G20.30	Punch vertical holes near the bottom of a Styrofoam cup. When you fill it
055			with water and drop it no water will run out.
Ehrlich 2, p. 183	leaky pail drop	1G20.30	Drop a water filled cup with two holes near the bottom of it. The water does
			not run out of the cup when it is in free fall.
TPT 1(1),34	leaky pail drop	1G20.30	Punch a hole in the bottom of a can and fill it with water. When you drop it,
11 1 1(1),01		1020.00	no water will run out.
		1000.00	
AJP 31(5),391	drop pail with holes	1G20.30	First drop a can with several vertical holes to show no flow in free fall, then
			rig up a pulley system to accelerate the pail greater than g (shown), and the
			top hole will issue the longest stream of water.
TPT 12(6),366	pop the balloon	1G20.33	This device pops a balloon if it is not in free fall. Toss it to a student to give
			them a real bang.
Mei, 8-3.1	vaniahing waight	1020.24	•
IVIEI, 6-3. I	vanishing weight	1G20.34	A strip of paper pulled from between two weights will tear except when
			dropped.
F&A, Mf-2	vanishing weight	1G20.36	Weights compress the tube of an air whistle until in free fall when the whistle
			blows.
F&A, FI-5	Einstein's birthday present	1G20.38	A ball attached to a tube by a weak rubber band is pulled to the tube in free
		.020.00	fall.
	Finatain's hirthday propost	1G20.38	
D&R, M-188	Einstein's birthday present	1620.38	Weights are attached to the bottom of a cup by weak rubber bands. Drape
			the weights over the edge of the cup and drop. They will jump inside during
			freefall.
PIRA 500	cup and weights	1G20.40	
UMN, 1G20.40	cup and weights	1G20.40	Hang 1 kg weights from heavy rubber bands extending from the center over
51111, 1020.40			the edge of a styrofoam bucket. Drop the thing.
	aun 9 uusiakta	4000 40	
TPT 21(8),521	cup & weights	1G20.40	Further discussion of the R. D. Edge article describing dropping a styrofoam
			cup with weights suspended over the edge by rubber bands.
TPT 1(1),34	vanishing weight - dropping things	1G20.41	1) Drop a mass on a spring scale, 2) Drop an object with a second object
			hanging by a rubber band, 3) stretch a rubber band over the edge of a
			container and drop.
Mai 0.040	voniching weight	1000 40	
Mei, 8-3.13	vanishing weight		A parcel scale is dropped with a bag of sand on the platform.
TPT 16(6),391	elevators	1G20.43	A battery powered circuit is constructed in a box causes a light to glow while
			a spring scale is unloaded. The light will glow while a loaded spring scale is
			in free fall.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
TPT 1(1),35	drop a mass on a spring	1G20.44	Drop a frame with an oscillating mass on a spring and the mass will be pulled up but stop oscillating.
PIRA 1000 UMN, 1G20.45	dropped Slinky dropped Slinky	1G20.45 1G20.45	Hold one end of a Slinky high in the air so the other end is not touching the ground and is clearly visible. Let go of the top end and watch as the lower end remains in place untill the whole spring has contracted to its minimum
Disc 01-18	dropped Slinky	1G20.45	length. Note that the top end of the Slinky falls faster than "g". Hold a Slinky so some of it extends downward, then drop it to show the contraction.
Mei, 8-3.11	vanishing weight	1G20.46	
TPT 1(1),34	dropping pendulum	1G20.47	
AJP 48(4),310	falling frame shoot	1G20.55	A falling cage is equipped with two guns lined up with holes in two sheets and a net to catch the ball. The balls don't go through the holes unless the cage is in free fall.
Sut, M-103	elevators	1G20.60	, , , , , , , , , , , , , , , , , , , ,
D&R, M-106	elevators	1G20.60	
TPT 11(6),351	elevators	1G20.61	
Mei, 8-3.12	elevators	1G20.62	A rope over a ceiling mounted pulley has a weight on one side and a spring scale and lighter weight on the other side.
Mei, 8-3.15	elevators	1G20.63	An apparatus to quantitatively demonstrate the forces acting on a passenger
Ehrlich 2, p. 28	deep knee bends	1G20.63	standing on a spring scale in an elevator. Diagrams. Do deep knee bends on a bathroom scale as a simple test of Newton's second law.
AJP 33(8),xi	elevator	1G20.64	
PIRA 500	local vertical with acceleration	1G20.70	
UMN, 1G20.70	accelerometer on tilted air track	1G20.70	The water surface of a liquid accelerometer on a tilted air track remains parallel to the angle of the air track during acceleration.
TPT 28(8),546	showing acceleration	1G20.70	Put a cart on an incline, mount a liquid accelerometer on the cart and mark the reference at rest, give the cart a push up the incline and observe the
Mei, 8-3.8	accelerometer	1G20.70	accelerometer as the car goes up, stops, and comes back down. A Lucite box containing colored glycerine mounted on a cart is rolled down an incline or given a push up an incline.
Disc 02-11	local vertical with acceleration	1G20.70	Place a liquid accelerometer on an air track glider on an inclined air track
AJP 31(4),302	helium balloon accelerometer	1G20.75	
Mei, 8-3.10	accelerometer	1G20.75	A balloon filled with air is suspended from the top and a helium balloon from the bottom of a clear box mounted on wheels.
PIRA 1000	suspended ball accelerometers	1G20.76	
TPT 2(4),176	float accelerometer	1G20.76	A float in a glass of water on an accelerating cart. Also, moving in uniform circular motion.
Mei, 8-3.2	accelerometer	1G20.76	Two flasks full of water, one has a cork ball, the other has a heavier than water ball.
Mei, 8-3.9	accelerometer	1G20.76	
D&R, F-200, M- 116	linear accelerometer	1G20.76	
D&R, F-200, M-	suspended ball accelerometers	1G20.76	Two jars full of water, one has a light ball suspended from the bottom, one
350 Ehrlich 1, p. 31	float accelerometer	1G20.76	has a heavy ball suspended from the top. Rotate on a turntable. A fishing float or a Ping Pong ball is anchored to the bottom of a water filled
Disc 13-16	accelerometers	1G20.76	jar. Move the jar suddenly and observe the motion of the float. Two jars of water, one has a light ball suspended from the bottom, the other
			has a heavy ball suspended from the top.
Mei, 8-5.8	accelerometer	1G20.79	
Ehrlich 2, p. 48	accelerometer	1G20.79	A simple accelerometer for use on the overhead projector made from a clear box, small washer, and a 1 inch ball bearing.
Ehrlich 2, p. 50	accelerometer	1G20.79	•
Ehrlich 2, p. 52	accelerometer	1G20.79	A ruler hangs over the end of a table like a diving board. Place a penny on the end of the ruler and pluck it. When you hear the penny clatter, the
Ehrlich 2, p. 57	accelerometer	1G20.79	acceleration has exceeded 1 g. A 1000 g accelerometer. Drop steel balls onto a piece of soft wood and determine the acceleration during impact by measuring the depth of the dents.

		-	
PIRA 1000	cart and elastic band	1G20.80	
UMN, 1G20.80	cart and elastic band	1G20.80	Place an accelerometer (cork on a string in a clear water filled box) on a cart
			and attach a strong rubber band to one end. Push the cart down the bench
			while holding the rubber band.
PIRA 1000	acceleration pendulum cart	1G20.85	5
UMN, 1G20.85	acceleration pendulum cart		Push a skateboard across the lecture bench so an attached pendulum is
			displaced at a constant angle.
AJP 34(9),825	accelerometer	1G20.87	
TPT 21(3),184	accelerometer	1G20.87	
1F121(3),104	acceleronneter	1920.07	
Cut M 200	a a a a la ramatar	1000.00	accelerometer.
Sut, M-289	accelerometer	1G20.88	A discussion of "U" tube manometers for use as accelerometers.
	Complex Systems	1G30.00	-
AJP 38(4),541	Poggendorff's experiment	1G30.11	The reaction on an Atwood's pulley hanging from a scale is twice the
			harmonic mean of the suspended weights.
Mei, 8-1.4	tension in Atwood's machine	1G30.11	Hang an Atwood's machine from a spring scale and take readings in both
			static and dynamic cases.
Sut, M-112	double Atwood's machine problem	1G30.12	The mass on one side of the Atwood's machine is replaced with another
			Atwood's machine.
PIRA 1000	mass on spring, on balance	1G30.20	
UMN, 1G30.20	mass on spring, on balance	1G30.20	A mass on a spring oscillates on one side of a tared balance.
Sut, M-114	mass on a spring, on balance	1G30.20	A large ball on a stretched spring is tared on a platform balance. The string is
			burned and the motion observed.
Hil, M-8c	acceleration on a balance	1G30.20	Burn the string extending a mass on a spring on a tared platform balance.
Mei, 8-3.14	weigh a yo-yo	1G30.25	A yo-yo is hung from one side of a balanced critically damped platform scale.
Mei, 0-3.14	weight a yo-yo	1630.25	A yo-yo is hung from one side of a balanced childany damped platform scale.
	have a shalaraa	4000.00	
PIRA 1000	hourglass on a balance	1G30.30	
UMN, 1G30.30	hourglass on a balance	1G30.30	An hourglass runs down on a tared, critically damped balance.
F&A, Mp-19	acceleration of center of mass	1G30.30	
			deflection is noted as the sand starts, continues, and stops falling.
Mei, 9-4.10	acceleration of center of mass	1G30.30	An hourglass full of lead shot is tared on a critically damped platform
			balance. The resultant force is observed as the lead shot starts, continues,
			and stops falling.
Sut, M-116	hourglass on a balance	1G30.30	An hourglass on one side of a equal arm balance.
Ehrlich 2, p. 38	hourglass on a scale	1G30.30	A demonstration equivalent to the weight of an hourglass. The weight of
	5		water flowing from one bottle to another shows an increased scale reading
			while the water flows.
Mei, 9-4.13	acceleration of center of mass	1G30.31	An apparatus to show transient and steady state conditions in the hourglass
		1000.01	problem.
AJP 53(8),787	the hourglass problem	1630 32	Careful analysis and demonstration shows that the center of mass is actually
AJI 33(0),707	the hourgiass problem	1000.02	accelerating upwards during most of the process.
	appalaration of contar of mass	1000.00	
Hil, M-8d	acceleration of center of mass	1630.33	A funnel full of water is placed on a tared platform balance and the water is
o			then released and runs into a beaker.
Sut, M-115	reaction balance	1G30.34	One mass on an equal arm balance is supported by pulleys at the end and
			fulcrum. The balance is in equilibrium if the string holding the mass is held
			fast or pulled in uniform motion. Look it up.
Mei, 9-4.12	acceleration of center of mass	1G30.35	A ball is dropped in a tall cylinder filled with oil while the entire assembly is on
			a balance. A hollow iron ball may be released from an electromagnet on the
			bottom and float to the top.
	NEWTON'S THIRD LAW	1H00.00	
	Action and Reaction	1H10.00	
ref.	action and reaction	1H10.01	see 1N22. section.
Ehrlich 2, p. 27	pick yourself up	1H10.05	Show that you can not "pick yourself up by your bootstraps" unless an
Ennion 2, p. 27	plok youroon up	11110.00	outside force can give you an upward acceleration.
PIRA 200	push me pull me carts	1H10.10	Two people stand on roller carts and both pull on a rope or push with a long
FINA 200	pusit the pull the carts	11110.10	stick.
	which was will use south	4140.40	
UMN, 1H10.10	push me pull me carts	1H10.10	
	www.ender.t	41140.10	substituted to allow pushing.
F&A, Mg-5b	rope and carts	1H10.10	People on two identical roller carts pull each other with a long rope.
D&R, M-554	push me pull me carts	1H10.10	Two people on roller carts push off each other with outstretched hands.
Bil&Mai, p 115	push me pull me Rollerblades	1H10.10	Students put on Rollerblades, hold their palms out to each other and push
			with equal force. Repeat with only one student pushing, a heavy student
			pushing a lighter student, two students pushing one student, etc.
Sut, M-118	rope and carts	1H10.11	All the things you can do standing and running on carts with and without
			ropes.
Mei, 8-1.9	ropo and carts	1H10.12	•
Wei, 0-1.3	rope and carts	11110.12	orand on a barr holding a tope passing over a paney to a weight blightly less
Mei, 0-1.9	Tope and carts	11110.12	than static friction, then pull the rope.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
PIRA 1000	reaction air gliders	1H10.15	
	0		Durn a string holding a compressed apring between two sir gliders
Disc 02-18	reaction gliders Newton's sailboat	1H10.15	Burn a string holding a compressed spring between two air gliders.
PIRA 1000 UMN, 1H10.20	Newton's sailboat	1H10.20 1H10.20	
TPT 10(4),208	Newton's sailboat	1H10.20	51
			cases are demonstrated: 1) sail attached, fan not attached; 2) both sail and fan attached; 3) fan attached, no sail.
D&R, M-324	fan cart with sail	1H10.20	A sail is placed in front of a battery powered fan on a cart.
Disc 02-21	fan car with sail	1H10.20	1 31
TPT 10(9),448	Newton's sailboat	1H10.21	A balloon provides an air source on one cart, a sail is mounted on another cart. Hold each stationary in turn.
PIRA 1000	helicopter rotor	1H10.25	
Ehrlich 2, p. 109	helicopter rotor	1H10.25	A propeller on a stick can generate enough lift to rise vertically when twirled.
Disc 02-25	helicopter rotor	1H10.25	A symmetric propeller deflects air down, causing upward lift.
Sut, M-122	cannon car	1H10.30	A small brass cannon mounted on one car fires a bullet into a wood block on
			another of equal mass. A string tying the carts together will result in no motion.
Bil&Mai, p 6	bend a wall	1H10.35	A laser and a mirror on a rolling arm are used to measure the movement of a wall.
Bil&Mai, p 117	bend a wall	1H10.35	Attach a mirror to a wall and position a laser beam to bounce off the mirror and onto the ceiling. Push on the wall near the mirror and watch the beam on the ceiling move. A student on Rollerblades can also push on the wall.
	Recoil	1H11.00	
ref.	recoil	1H11.01	see 1N20. and 1N21. sections.
PIRA 500	floor cart and medicine ball	1H11.10	
UMN, 1H11.10	floor cart and medicine ball	1H11.10	Stand on a roller cart and throw a medicine ball or styrofoam ball.
F&A, Mg-5c	floor cart and medicine ball	1H11.10	•
D&R, M-300, M-	floor cart and medicine ball	1H11.10	
312, M-324, S- 330			floor. Also do with people on two carts passing the ball between them with carts either locked together or independent.
Bil&Mai, p 119	Rollerblades and medicine ball	1H11.10	
PIRA 1000	stool on conveyor	1H11.11	
Mei, 8-1.10	stool on a conveyor	1H11.11	Throw a ball while on a stool mounted on a conveyor.
Bil&Mai, p 67	person and skateboard	1H11.15	A student stands on the edge of a skateboard. As the student steps off the skateboard, the skateboard travels backward and away from the student at great velocity.
PIRA 200 - Old	tennis ball cannon	1H11.20	A cannon on wheels shoots a tennis ball.
UMN, 1H11.20	tennis ball cannon	1H11.20	
D&R, M-562	tennis ball cannon	1H11.20	A tennis ball cannon constructed from tin cans or PVC.
PIRA 1000	liquid nitrogen cannon	1H11.30	
UMN, 1H11.30	liquid nitrogen cannon	1H11.30	A liquid nitrogen powered cannon on wheels shoots heavy and light stoppers.
F & A, Hk-11	liquid nitrogen cannon	1H11.30	A cork is shot out of a liquid nitrogen cannon.
F&A, Mi-2	dry ice cannon	1H11.30	CO2 provides the pressure to blow a cork out of a cannon on wheels.
Sut, H-115	liquid air gun	1H11.30	Liquid air in a bent test tube shoots a cork when the escape valve is closed.
Sprott, 2.11	liquid nitrogen cannon	1H11.30	The rapid evaporation of liquid nitrogen exerts enough pressure to blow a cork stopper from a steel cylinder that has been sealed on one end.
Mei, 9-4.17	ballistic gun	1H11.40	
Mei, 9-4.21	open cannon	1H11.41	
Mei, 9-4.20	bent gun	1H11.44	
Ehrlich 1, p. 34	bent straw	1H11.44	A bent straw recoils like a lawn sprinkler when air is blown through it. The author states that no recoil is observed when air is sucked into the bent straw. This statement is retracted in his second book "Why Toast Lands
Ehrlich 2, p. 34	bent straw	1H11.44	Jelly Side Down", p. 71. See 1Q40.85. A bent straw recoils like a lawn sprinkler when you blow through it. No recoil is observed if you place the straw in a plastic sandwich bag.

8.4		I	:	
IVI	ec	na	nı	CS

	STATICS OF RIGID BODIES	1J00.00	
	Finding Center of Gravity	1J10.00	
TPT 22(8),535	center of mass	1J10.09	Many examples of simple center of mass demonstrations.
D&R, M-662	find the center of mass	1J10.09	With a rotational motion, toss an ellipse in the air with a bulls-eye at the center of mass. Also toss a baton with the same rotational motion and
Bil&Mai, p 159	find the center of mass	1J10.09	observe it's center of mass. Toss a cardboard disc with an offset center of mass into the air with rotational motion. Bulls-eyes are drawn at the center of the disc, and at the
Ehrlich 2, p. 66	center of mass	1J10.09	center of mass of the disc. Roll a magnetic marble toward another magnetic marble to make a glancing collision. The two marbles rotate about their center of mass when they stick together.
PIRA 200	map of state	1J10.10	Suspend a map of the state from holes drilled at large cities to find the "center of the state".
UMN, 1J10.10	map of state	1J10.10	Sandwich of a map of the state between two Plexiglas sheets and suspend from holes drilled at large cities to find the "center of the state".
F&A, Mp-7	map of Minnesota	1J10.10	A Plexiglas map of the state is suspended from several points.
D&R, M-466	map of state	1J10.10	A map of a state is suspended from several points to find the "center of the state".
AJP 36(1),x	find the center of gravity	1J10.11	Use a chalk line on the plumb bob and snap it to make a quick vertical line.
PIRA 1000	irregular object center of mass	1J10.12	
Sut, M-32	hanging shapes	1J10.12	Use the plumb bob method to find the center of gravity of various geometric shapes.
Sut, M-31	hanging board	1J10.12	Suspend an irregular board from several points and use a plumb bob to find the center of gravity.
D&R, M-466	hanging board	1J10.12	Hang an irregular board from several points and find the center of gravity with a plumb bob.
Bil&Mai, p 148	irregular object center of mass	1J10.12	Hang an irregular board, banana, or coat hanger from several points and find the center of gravity with a plumb bob. The banana and coat hanger will need to be taped to a sheet of heavy paper to do the demonstration.
Disc 03-20	irregular object center of mass	1J10.12	Suspend an irregular object from several points and find the center of mass with a plumb bob.
F&A, Mp-13	hanging potato	1J10.15	Hang a potato from several positions and stick a pin in at the bottom in each case. All pins point to the center of gravity.
PIRA 1000	loaded beam - moving scales	1J10.20	
UMN, 1J10.20	loaded beam - moving scales	1J10.20	Slide the scales together under a loaded beam noting the scale readings of the moving and stationary scales.
TPT 10(8),469	loaded beam - moving scales	1J10.20	Instead of moving the masses on the beam, move the scales under the beam. Same as bringing your fingers together under the meter stick.
PIRA 500	center of gravity of a broom	1J10.25	
UMN, 1J10.25 F&A, Mp-15	center of gravity of a broom center of gravity of a broom	1J10.25 1J10.25	Bring your fingers together under a broom the find the center of gravity. Find the center of gravity of a broom, hang a kg mass somewhere on the broom, find the new center of gravity, calculate the weight of the broom by
PIRA 1000	balance beam and bat	1J10.26	equating torques.
UMN, 1J10.26	balance beam and bat	1J10.26	
PIRA 500	meter stick on fingers	1J10.30	
UMN, 1J10.30	meter stick on fingers	1J10.30	Slide your fingers together under a meter stick and they meet at the center of gravity. Add a baseball hat to one end and repeat.
Sut, M-50	friction and pressure	1J10.30	Slide your fingers under the meter stick to find the center of mass.
D&R, M-478	meter stick on fingers	1J10.30	Put a finger from each hand under the ends of a meter stick. Bring fingers together to find center of mass of stick.
Bil&Mai, p 150	meter stick on fingers	1J10.30	Slide your fingers together under a pipe and they meet at the center of gravity. Spin the pipe about this point to show this is the center of mass.
Ehrlich 1, p. 49	meter stick on fingers	1J10.30	Slide your fingers together under a meter stick and they will meet at the center of mass.
Disc 04-15	meter stick on fingers Exceeding Center of Gravity	1J10.30 1J11.00	Slide your fingers under a meter stick to find the center of mass.
PIRA 500	leaning tower of Pisa	1J11.10	
UMN, 1J11.10	leaning tower of Pisa	1J11.10	Add a top to a slanted cylinder and it falls down. Also hang a plumb bob from the center of mass in each case.
F&A, Mp-9	leaning tower of Pisa	1J11.10	A model of the tower constructed in sections. Adding the top will cause it to tip over.
Sut, M-34	leaning tower of Pisa	1J11.10	Add on to the leaning tower and it falls down.

		-	
Hil, M-18b.1 AJP, 75 (4), 367	leaning tower of Pisa leaning tower of Pisa	1J11.10 1J11.10	The leaning tower of Pisa. Physics explanation with picture of an antique leaning tower of Pisa demo.
PIRA 1000 AJP 34(9),822	toppling cylinders falling cylinders	1J11.11 1J11.11	A tube, weighted at the bottom, falls when a cap is added. An upright cylinder, containing two balls, falls when a weighted cap is removed.
Disc 03-26	toppling cylinders	1J11.11	The standard leaning two balls, tails when a weighted cap is removed. The standard leaning tower and an upright cylinder that topples when the cap is removed. It has two balls in the tube.
PIRA 1000	tipping block on incline	1J11.15	
UMN, 1J11.15	tipping block on incline	1J11.15	Raise an incline plane until a block tips over.
TPT 16(7),506	tipping block on incline	1J11.15	A very clever modification of the leaning tower of Pisa demonstration.
F&A, Mp-14	tipping block on incline	1J11.15	A block is placed on an incline and the incline is raised until the block tips.
Bil&Mai, p 152	tipping block on incline	1J11.15	A block is placed on an incline plane and the incline is raised until the block tips.
PIRA 200	leaning tower of Lire	1J11.20	Stack blocks stairstep fashion until the top block sticks out beyond any part of the bottom block.
UMN, 1J11.20	leaning tower of Lire	1J11.20	Use 6"x6"x2' wood blocks and have a student sit under the stack as it is built.
AJP 23(4),240	leaning tower of lire	1J11.20	A note discussing the derivation of the harmonic series describing the leaning tower of Lire.
TPT 18(9),672	leaning tower of Lire	1J11.20	Use the center of mass of a composite object to support a block beyond the edge of the lecture bench. This article emphasizes a lab approach. Ref. AJP 23,240 (1955).
D&R, M-490	leaning tower of Lire	1J11.20	Stack meter sticks stairstep fashion until the top one sticks out beyond any part of the bottom one.
F&A, Mp-11	leaning tower of Lire	1J11.20	Stack blocks until the top block sticks out beyond any part of the bottom block.
Sprott, 1.17	leaning tower of Lire	1J11.20	A stack of cards illustrates the static equilibrium of a rigid body while showing an impressive overhang.
Ehrlich 1, p. 38	leaning tower of Lire	1J11.20	Stack meter sticks stairstep fashion until the top meter stick protrudes out beyond any part of the bottom meter stick.
AJP 73(12), 1107	stacking blocks	1J11.21	Three different ways to stack blocks to give the maximum amount of overhang with a given amount of blocks.
AJP 41(5),715	cantilevered books	1J11.21	The number of books necessary to overhang 2,3,4, etc lengths.
Sut, M-287	instability in flotation	1J11.30	A device to raise the center of mass in a boat until the boat flips. Diagram.
Ehrlich 1, p. 39	instability in flotation	1J11.30	Place 20 pennies in a Styrofoam cup and close with a lid. Float this cup in
			some water and see how many pennies you can place on top of the lid, thereby raising the center of mass, before the cup turns over.
PIRA 1000	male and female center of gravity	1J11.40	
TPT 21(1),42	people tasks, etc.	1J11.40	Pictures of three center of mass objects and several person based center of mass tasks e.g., stand on your toes facing the wall, etc.
TPT 17(4),254	your center of gravity	1J11.40	Two methods for measuring the center of gravity of a person are shown.
Mei, 14-3.7	male & female center of gravity	1J11.40	Stand with right shoulder and foot against the wall and raise your left foot. Stand with your heels against the floor and try to touch your toes.
D&R, M-500, M- 504	human center of gravity	1J11.40	4 human center of gravity examples.
Bil&Mai, p 152	human center of gravity	1J11.40	A student places their toes behind a piece of tape and is asked to pick up an object on the floor 1 meter in front of them without moving their feet. Repeat the demonstration with the students heels up against a wall.
Ehrlich 2, p. 43	human center of gravity	1J11.40	Stand with your back and heels against a wall and keep your feet flat on the floor. You can not bend and pick up an object on the floor in front of you.
	Stable, Unstab., and Neut. Equilibrium	1J20.00	
PIRA 200	bowling ball stability	1J20.10	
PIRA 500 - Old	bowling ball stability	1J20.10	
UMN, 1J20.10	bowling ball stability	1J20.10	A bowling ball is placed in, on, and along side a large Plexiglas hemisphere.
PIRA 200	balance the cone	1J20.11	
PIRA 1000 - Old	balance the cone	1J20.11	
UMN, 1J20.11	balance the cone	1J20.11	
F&A, Mq-2	balance the cone	1J20.11	A cone can show stable, unstable, and neutral equilibrium; a sphere shows
			only neutral equilibrium.
Sut, M-39	balance the cone	1J20.11	A large cone shows stable, unstable, and neutral equilibrium.
Disc 03-19	stability	1J20.11	Balance a cone, show a block is stable and a sphere is neutral.
PIRA 1000	wood block stability	1J20.12	

Demonstratio	on Bibligrqaphy		July 2015 Mechanics
UMN, 1J20.12	wood block stability	1J20.12	A block and support have marks that show whether the center of gravity has moved up or down when the block is displaced.
PIRA 1000	block on the cylinder	1J20.15	
UMN, 1J20.15	block on the cylinder	1J20.15	A rectangular block of wood is placed on a cylinder first with the width less than the radius (stable) and then with the width greater (unstable).
AJP 51(7),636	block on the cylinder	1J20.15	An "elementary" discussion of the oscillatory properties of the block on the cylinder.
F&A, Mq-1	block on the cylinder	1J20.15	A thin block on a cylinder is stable, a thick one is not.
Sut, M-40	catenary surface	1J20.16	A large block is always in stable equilibrium anywhere along this catenary surface.
PIRA 1000	block on curved surfaces	1J20.17	
UMN, 1J20.17	block on curved surfaces	1J20.17	A block is placed on a catenary surface, a circle, and a parabola.
PIRA 1000	fork, spoon, and match	1J20.20	
UMN, 1J20.20	fork, spoon, and match	1J20.20	Place a spoon and match in the tines of a fork and balance the assembly on the edge of a glass.
TPT 10(8),464	fork, spoon, and match	1J20.20	Picture of the fork, spoon, and match balanced on the edge of a glass.
F&A, Mp-5	fork, spoon, and match	1J20.20	Stick two forks and a match together and balance on a glass while pouring out the water.
Mei, 14-3.8	fork, spoon, and match	1J20.20	Two forks and a match can be balanced on the edge of a glass while the water is poured out.
D&R, M-474	fork, spoon, and match	1J20.20	A fork, spoon, and match assembly are balanced on the edge of a glass.
PIRA 1000	nine nails on one	1J20.25	
UMN, 1J20.25	nine nails on one	1J20.25	A technique to balance ten landscape spikes on the head of a single upright spike.
D&R, M-458	fourteen nail on one	1J20.25	A technique to balance 14 large nails on the head of a single upright nail.
PIRA 500	sky hook	1J20.30	
TPT 14(8),499	sky hook	1J20.30	A complete solution to the hanging belt problem.
TPT 15(4),241	hanging belt	1J20.30	Shows a "belt hook" for the hanging belt.
D&R, M-470, M- 474	sky hook	1J20.30	The hanging belt and a hammer sky hook.
PIRA 1000	spoon on nose	1J20.32	
UMN, 1J20.32	spoon on nose	1J20.32	Hang a spoon on your nose. Most effective with giant food service spoons.
PIRA 1000	horse and rider	1J20.35	
F&A, Mp-4	horse and rider	1J20.35	A horse has an attached weight to lower the center of mass.
Sut, M-33	horse and rider	1J20.35	Stable equilibrium of a center of gravity object.
Hil, M-18a.2	horse and rider	1J20.35	A horse has a weight attached to lower the center of mass.
D&R, M-462, M- 482	horse and rider	1J20.35	Stable equilibrium of a center of gravity object.
Sut, M-36	balancing man	1J20.40	Stable equilibrium of a center of gravity object.
Sut, M-38	balancing man	1J20.40	Stable equilibrium of a center of gravity object.
Bil&Mai, p 154	balancing man	1J20.40	A center of gravity toy is constructed from a solid rubber figure, wire, and tennis balls.
PIRA 500	tightrope walking	1J20.45	
AJP 50(5),471	tightrope walking	1J20.45	Design of a 10' long "low wire" and description of the physical feats possible.
F&A, Mp-6	tightrope walking	1J20.45	A toy unicycle rider carrying a balancing pole travels along a string.
Disc 03-23	clown on rope	1J20.45	A toy clown rides a unicycle on a wire.
PIRA 1000	tightrope walking model	1J20.46	
UMN, 1J20.46	tightrope walking model	1J20.46	A model of a tightrope walker shows the center of mass moves up with tipping.
F&A, Mp-12	balancing a stool	1J20.50	Wires form a support at the center of gravity of a lab stool.
Mei, 14-2.2	balancing a stool	1J20.50	Construct a stool so that wires crossed diagonally will intersect at the center of gravity. The stool can be oriented in any direction.
PIRA 1000	chair on a pedestal	1J20.51	
Disc 03-22	chair on pedestal	1J20.51	Hide heavy weights in the ends of a chair's legs so it will balance on a vertical rod placed under the seat.
PIRA 1000	broom stand	1J20.55	
Disc 04-19	broom stand	1J20.55	Spread the bristles and a straw broom will stand upright.
PIRA 500	wine butler	1J20.60	· •
UMN, 1J20.60	wine butler	1J20.60	Stick the neck of a wine bottle through a hole in a slanted board and the whole thing stand up.
TPT 14(1),39	glass on coin, etc	1J20.65	Pictures show the hanging belt, pin on the point of a needle, and a jar balanced on its edge.
D&R, M-472	balancing soda can	1J20.65	Partially fill a soda can with water and balance on its indented bottom edge.

Demonstratio	n Bibligrqaphy		July 2015	Mechanics
PIRA 1000	double cone	1J20.70		
UMN, 1J11.50	double cone	1J20.70	As a double cone moves up an set of inclined rails, its c lowers.	center of gravity
TPT 16(1),46	rolling uphill	1J20.70	A simple version of a ball rolling up a "v".	
F&A, Mr-1	double cone	1J20.70	A double cone rolls up an inclined "v" track.	
Sut, M-37	double cone	1J20.70	Double cone and rails.	
Hil, M-18a.3	double cone	1J20.70	A double cone rolls up an inclined "v" track.	
D&R, M-482	double cone	1J20.70	As a double cone moves up a set of inclined rail it's cen	ter of gravity lowers.
Disc 03-24	double cone on incline	1J20.70	The double cone appears to roll uphill.	
	Resolution of Forces	1J30.00		
PIRA 200	suspended block	1J30.10	Forces parallel and perpendicular to the plane will supprise when the plane is removed.	ort the car midair
UMN, 1J30.10	suspended block	1J30.10	A 3-4-5 triangle holding a block. Add counterweights an	d remove the incline.
F&A, Mj-2	suspended block	1J30.10	The components of force of a block on an inclined plane weights. The plane is then removed.	e are countered by
Mei, 14-3.3	suspended block	1J30.10	A 5-6-7 suspended block system is used to show the pu as long as the angle remains constant.	ulleys can be moved
Sut, M-18	suspended block	1J30.10	Forces parallel and perpendicular to the plane will supplane is removed.	ort the car when the
D&R, M-272	suspended block	1J30.10	Forces parallel and perpendicular to the inclined plane with midair when the inclined plane is removed.	will suspend a cart in
Disc 04-03	load on removable incline	1J30.10	Place a cart on a removable 30 degree incline.	
PIRA 1000	normal force	1J30.15	A block on an incline has an arrow mounted from the as	inter of moon
UMN, 1J30.15	normal force	1J30.15	A block on an incline has an arrow mounted from the ce perpendicular to the surface with "N" on the arrowhead hanging from the center of mass with a "g" on the arrow	and another arrow
Bil&Mai, p 69	normal force meter	1J30.15	Use two bathroom scales as normal force meters.	incau.
Bil&Mai, p 60	normal force	1J30.15	Books or masses are placed on a rolling cart. Draw Fre	e Body Diagrams of
Bildiviai, p 00	normanorce	1330.13	the cart rolling across a flat floor and then rolling on an i	
TPT, 36(9), 556	demonstrating normal forces with a kitchen scale	1J30.16	A simple and less expensive way of demonstrating norm	nal forces.
Sut, M-9	hanging the plank	1J30.18	A heavy plank is suspended from three spring scales in configurations: series, parallel, and a combination.	several
PIRA 500	tension in a string	1J30.20		
UMN, 1J30.20	tension in a string	1J30.20	The weight of a mass hung from a single spring scale is weight shown on a spring scale between two masses or	
F&A, MI-1	tension in a string	1J30.20	A spring scale is suspended between strings running ov weights.	ver pulleys to equal
D&R, M-264	tension in a string	1J30.20	Stretch a string over two pulleys and attach a spring sca end. Pull down with another spring scale in the middle readings. Tension readings in the outer scales should r	and compare the
TPT 9(7),387	tension in a string	1J30.21	A clever story.	
Sut, M-10	tension in a spring	1J30.22	Two students pull against each other through one and the scales.	hen two spring
Ehrlich 1, p. 34	tension in a spring	1J30.22	Pull on two spring scales connected together to show th value.	ney will read the same
Sut, M-8	tension in springs	1J30.23	Masses are hung at the ends of a series of spring scale	
Bil&Mai, p 58	tension in springs	1J30.23	Masses are hung from springs scales connected in seri	es and parallel.
PIRA 200	rope and three students	1J30.25	Two large strong students pull on the ends of a rope and pushes down in the middle.	d a small student
UMN, 1J30.25	rope and three students	1J30.25	Two large strong students pull on the ends of a rope an pushes down in the middle of the rope.	d a small student
TPT 9(3),148	rope and three students	1J30.25	Two football players stretch a 10 m rope while a small p middle to the floor.	person pushes the
D&R, M-268	rope and three students	1J30.25	Two large students pull on the ends of a rope and a smatter the rope in the middle pulling the large students togethe	
Bil&Mai, p 63	rope and three students	1J30.25	Two large strong students pull on the ends of a rope an deflects the rope in the middle pulling the large students	d a small student
Ehrlich 1, p. 22	chain and three students	1J30.25	A chain with demonstration scales on each end and a 1 middle. No matter how hard you pull on the scales you chain completely horizontal.	0 pound weight in the
Disc 04-02	clothesline	1J30.25	Hang a 5 newton weight from a line and pull on one enc spring scale.	of the line with a
PIRA 1000	rope and three weights	1J30.26		

Demonstratio	n Bibligrqaphy		July 2015	Mechanics
UMN, 1J30.26	rope and three weights	1J30.26	Suspend a rope over two pulleys with masses on	the ends and hang another
		4 100 07	mass from the center. Measure the deflection.	
PIRA 1000 UMN, 1J30.27	deflect a rope deflect a rope	1J30.27 1J30.27	Stretch a rope in a frame with a 100 newton scale	measuring the tension
01111, 1000.27		1000.27	Pull down with a 20 newton scale.	incusting the tension.
PIRA 1000	break wire with hinge	1J30.30		
UMN, 1J30.30	break wire with hinge	1J30.30	Suspend a 5 kg mass from a length of wire. Breal	•
F&A, Mj-3	breaking wire hinge	1J30.30	placing the same mass on the back of a large hin Pushing down on a slightly bent hinge will break the	
i di i, inj o	Sicalling with hinge	1000.00	ends.	
Sut, M-16	breaking wire hinge	1J30.30	Press down on a hinge to break a rope.	
Sut, M-5	pull the pendulum	1J30.35	A long heavy pendulum is displaced with a spring	scale.
PIRA 1000 UMN, 1J30.40	horizontal boom booms	1J30.40 1J30.40	A spring scale measures the tension in the suppo	rting rope at various loads
01111, 1000.40	500113	1000.40	and boom angles.	ting tope at various loads
Disc 04-08	horizontal boom	1J30.40	The tension in the wire is measured with a spring	scale for two different
			boom structures.	
PIRA 500 UMN, 1J30.50	blackboard force table blackboard force table	1J30.50 1J30.50	Scales and masses are hung in front of a large m	ovable whiteboard
F&A, Mj-1	blackboard force table	1J30.50	A weight is hung on a string suspended between	
Sut, M-13	blackboard force table	1J30.50	The standard blackboard force table.	the opining codicol
Sut, M-11	blackboard force table	1J30.50	A mass is hung from the center of a cord attached	d to two spring scales. Start
0	black a sulface of the	4 100 50	with the strings vertical, increase the angle.	
Sut, M-12 D&R, M-072	blackboard force table force table	1J30.50 1J30.50	A force table in the vertical plane A horizontal force table.	
Bil&Mai, p 22	blackboard force table	1J30.50	A 5 pound exercise plate and several spring scale	es are used on a marker
			board to record three lines of force and their magi	
Ehrlich 1, p. 23	force table	1J30.50	A force table suitable for use on an overhead proj	
Disc 04-01	force board	1J30.50	This looks like a magnetic vertical force board. A	circle is marked with angles
AJP 36(6),559	vertical force table	1J30.51	every 10 degrees. A vertical force table that permits a continuous rai	nge of angles.
Sut, M-14	blackboard force table	1J30.51	A removable frame that sets on the chalk tray.	
Sut, M-4	blackboard force table	1J30.51	A framework for doing the force table in the vertic	al plane.
AJP 41(9),1115	force table on overhead projector	1J30.52	A Plexiglas force table for the overhead projector.	
TPT 10(4),217	force table on overhead projector	1J30.52	Make a large sketch of the angles using the overh	nead projector.
Hil, M-10c	standard force table, etc.	1J30.53	The standard force table, three dimensional force	table and torque
		1000.00	apparatus.	table, and torque
Mei, 6-4.11	force table	1J30.54	Three scales and a ring to show forces add by pa	rallel construction. Not the
		4 100 55	usual.	
PIRA 1000 UMN, 1J30.55	human force table human force table	1J30.55 1J30.55	Sit on a chair that hangs from a chain attached to	load calls on each and
AJP 46(7),774	human force table	1J30.55	Hang from a large gallows frame on ropes attached	
AJP 51(6),571	bosun chair force table	1J30.55	Sit on a chair suspended from two supports equip	
			commercial load cells.	
TPT 20(3),176	blackboard force table - rubber band	1J30.57	Calibrate rubber bands for force vs. length, predic hung in a noncolinear configuration.	t the mass of an object
TPT 13(4),246	blackboard force table - rubber	1J30.57	A simple substitute for scales is a calibrated set of	f rubber bands.
- () / -	band			
Sut, M-15	blackboard force table - springs	1J30.57	Use screen door springs in place of spring balance	es.
PIRA 1000	sail against the wind	1J30.60	Cat a mainsail on a sort as it mayor toward and a	way from a fan
UMN, 1J30.60 AJP 40(8),1172	sail against the wind sail against the wind	1J30.60 1J30.60	Set a mainsail on a cart so it moves toward and a Use a large fan to blow at an air track glider with a	,
AJP 40(4),626	sail against the wind	1J30.60	A sail is mounted on an air track glider. A table fa	
AJP 28(3),259	sail and the wind	1J30.60	Apparatus Drawings Project No.4: A sailboat rides	s in an air trough which
		4 100 05	serves as a keel. Set the angle of the sail with res	spect to the wind.
Disc 02-10 AJP 49(3),282	sailing upwind (airtrack) sail a trike against the wind	1J30.60 1J30.61	Use a skateboard cart with a foam core sail. A wind driven tricycle moves against the wind.	
AJP 49(3),282 AJP 46(10),1004	sail against the wind	1J30.61 1J30.64	A wind driven theycle moves against the wind. A wind driven boat accelerates against the wind.	Description and Analvsis.
Sut, M-6	sailboat and wind	1J30.64	A cork stopper boat with a keel and removable sa	
F&A, Mo-9	floating cork	1J30.65	A stick is hung by a thread at one end with the oth floating on water.	her attached to a cork
Sut, M-29	floating cork	1J30.65	A stick is hung by a thread at one end with the oth	ner attached to a cork
·	~		floating on water.	

Demonstratio	n Bibligrqaphy		July 2015 Mechanics	
PIRA 1000	sand in a tube	1J30.70		
UMN, 1J30.70	sand in a tube	1J30.70	Place a tissue on the bottom of an open glass tube, fill with a few inches of sand, and push down on the top of the sand with a rod.	
Sut, M-7	sand in a tube	1J30.70	A couple of inches of sand held in a tube by tissue paper will support about 50 lbs.	:
D&R, F-070	rice in a tube	1J30.70	Fill a small mouth jar with rice. Plunge in a screwdriver and lift the jar. Also a couple of inches of rice held in a tube by tissue paper will resist any effort to push it through the tissue paper.	
PIRA 1000	stand on an egg	1J30.75		
UMN, 1J30.75	stand on an egg	1J30.75	Three eggs in a triangle pattern in foam depressions between two plates wi support a person.	11
D&R, M-837	stand on an egg	1J30.75	Stand or put masses on an egg in a holder that keeps the pressure in one direction. Egg will withstand 80 to 120 lbs with no trouble.	
Disc 04-21	egg crusher	1J30.75	A raw egg can be squeezed between two hard foam rubber pads with a force of over 150 lbs.	ce
Sut, M-19	rolling wedge	1J30.80	A light roller lifts a heavy weight as it rolls inside an inclined hinge.	
AJP 59(5),472	inverse catenary	1J30.90	A string of helium balloons tied at each end forms an inverse catenary.	
AJP 40(2),354	catenary analog computer	1J30.91	Model the catenary on a simple analog computer.	
	Static Torque	1J40.00		
PIRA 200	grip bar	1J40.10	A thin rod mounted perpendicular to a broom handle holds a 1 Kg mass on sliding collar.	а
UMN, 1J40.10	grip bar	1J40.10	Use wrist strength to lift a 1 kg mass at the end of a rod attached to a broor handle.	n
F&A, Mo-5	grip bar	1J40.10	Use wrist strength to try to lift 1 kg at the end of a rod attached perpendicularly to a handle.	
Mei, 14-3.1	grip bar	1J40.10	A thin rod mounted perpendicular to a broom handle holds a 1 Kg mass on sliding collar.	а
D&R, M-614	grip bar	1J40.10	A student grips a croquet mallet with a hand on each side of the head. Weights are mounted at different distances on the crossbar (handle).	
Bil&Mai, p 146	grip bar	1J40.10	Make a grip bar with 1 inch PVC pipe. Have a student try to hold the bar in horizontal position as you slide a 1 Kg mass away from the handle.	а
Disc 04-10	torque bar	1J40.10	Use wrist strength to lift a weight suspended at various distances from the handle.	
Ehrlich 2, p. 36	weight of a pendulum	1M40.12	Swing a mass attached to a large demonstration spring scale by a 1 meter string.	
PIRA 1000	torque wrench	1J40.15		
TPT 15(2),115	torque wrench	1J40.15	Modify a Sears torque wrench so weights can be hung at different distances	s.
Disc 04-12	torque wrench	1J40.15	A torque wrench is used to break aluminum and steel bolts.	
PIRA 1000	different length wrenches	1J40.16		
UMN, 1J40.16	different length wrenches	1J40.16		
PIRA 200	meter stick balance	1J40.20	Hang weights from a beam that pivots in the center on a knife edge.	
UMN, 1J40.20	torque beam	1J40.20	Hang weights from a beam that pivots in the center on a knife edge.	
F&A, Mo-1	torque beam	1J40.20	Weights are hung from a horizontal bar pivoted on a knife edge.	
Sut, M-27	torque beam	1J40.20	Weights are hung from a meter stick suspended on a knife edge.	
Hil, M-18a.1	torque beam	1J40.20	Weights on a meter stick supported at the center.	
Ehrlich 1, p. 48	torque beam	1J40.20	Balance a ruler with pennies on it to show torques about its center.	
Ehrlich 1, p. 83	torque beam	1J40.20	A 6 foot long beam is balanced on a knife edge. Pennies are place on one arm of the beam. The angular acceleration is proportional to the applied	
			torque.	
Disc 04-14	balancing meter stick	1J40.20	Use a meter stick, suspended at the center, as a torque balance.	
PIRA 1000	hinge board	1J40.21		
Disc 04-11	hinge board	1J40.21	Use a spring scale to lift a hinged board from various points along the board	d.
TPT, 36(7), 438	torque rack demonstration	1J40.22	Illuminating discussion of torque using a counter-intuitive, yet simple, chalk board set-up.	
TPT 11(7),427	torque beam	1J40.23	Put a quarter (5 g) on the end of a meter stick and extend it over the edge of the lecture bench until it is just about to tip over.	of
PIRA 1000	walking the plank	1J40.24	· ·	
UMN, 1J40.24	walking the plank	1J40.24	Place a 50 lb block on one end of a long 2x6 and hang the other end off the lecture bench. Walk out as far as you can.	÷
Ehrlich 2, p. 75	toast lands jelly side down	1J40.24	A variation of the "walking the plank" demonstration in which the toast with jelly on one side is slowly pushed out over the edge of a table and allowed t fall off. Complete analysis as to why it always seems to fall on the floor with	
PIRA 1000	torque wheel	1J40.25	the jelly side down.	

Demonstratio	on Bibligrqaphy	J	luly 2015 Mechanics
F&A, Mo-2	torque disc	1J40.25	Weights can be hung from many points on a vertical disc pivoted at the center.
Sut, M-28	torque disc	1J40.25	Various weights are hung from a board that can rotate freely in the vertical plane.
Disc 04-13	torque wheel	1J40.25	Use a wheel with coaxial pulleys of 5, 10, 15, and 20 cm to show static equilibrium of combinations of weights at various radii.
Mei, 12-4.8	torque disc	1J40.26	An apparatus to show the proportionality between torsional deflection and applied torque.
Mei, 14-3.5	torque disc	1J40.26	Twist a shaft by applying coplanar forces to a disc.
PIRA 1000	torque double wheel	1J40.27	
PIRA 1000	opening a door	1J40.30	
UMN, 1J40.30	opening door	1J40.30	
PIRA 1000	opening a trapdoor	1J40.32	
UMN, 1J40.32	opening trapdoor	1J40.32	
PIRA 500	loaded beam	1J40.40	
UMN, 1J40.40	loaded beam	1J40.40	Move a weight along a 2X4 on two platform scales.
F&A, Mo-7	loaded beam	1J40.40	Large masses can be placed on a board resting on two platform balances.
Mei, 14-3.6	loaded beam	1J40.40	A model bridge is placed on two platform scales and a loaded toy truck driven across.
Sut, M-23	loaded beam	1J40.40	A heavy truck is moved across a board supported on two platform scales.
Disc 04-16	bridge and truck	1J40.40	A plank rests on two spring scales forming a bridge. Move a toy truck across
Sut, M-26	loaded beam	1J40.41	Support the loaded beam with spring scales instead of platform balances.
PIRA 1000	Galileo lever	1J40.45	
JMN, 1J40.45	Galileo lever	1J40.45	Same as Sutton device.
Sut, M-22	Galileo lever	1J40.45	A simple device to demonstrate the law of moments.
Sut, M-21	Galileo lever	1J40.45	A simple device to show the law of moments.
PIRA 500	Roberval balance	1J40.50	•
JMN, 1J40.50	Roberval balance	1J40.50	Large Roberval balance.
FPT 22(2),121	Roberval balance	1J40.50	A reminder and picture of the Roberval balance. Reaction to TPT 21, 494 (1983).
=&A, Mo-6	Roberval balance	1J40.50	A large model of the Roberval or platform balance.
Disc 04-17	Roberval balance	1J40.50	Neutral equilibrium is maintained at any position on the platform.
Vlei, 12-4.9	Roberval balance	1J40.51	A version of the Roberval balance where a rigid assembly has upper and lower arms on one side.
Sut, M-42	balances	1J40.55	The equal-arm analytical balance and weigh bridge.
Sut, M-41	balances	1J40.56	The steelyard. The steelyard is a graduated metal bar with a fulcrum near one end. Hang an unknown weight from the shorter arm. A sliding weight is moved along the longer arm until equilibrium is achieved. The arm is graduated to directly read the value of the unknown weight.
PIRA 1000	suspended ladder	1J40.60	-
JMN, 1J40.60	suspended ladder	1J40.60	
/lei, 14-3.4	suspended ladder	1J40.60	Model of a ladder suspended from two pairs of cords inside an aluminum frame.
PIRA 1000	hanging gate	1J40.65	
JMN, 1J40.65	hanging gate	1J40.65	A gate initially hangs on hinges, then add cords and remove the hinges leaving the gate suspended in mid air.
FPT 12(8),503	hanging gate	1J40.65	Construction and use of a model of the swinging gate.
PIRA 1000	crane boom	1J40.70	
JMN, 1J40.70	crane boom	1J40.70	
PIRA 1000	arm model	1J40.75	
JMN, 1J40.75	arm model	1J40.75	Place a spring scale on a skeleton in the place of the biceps muscle and hang a weight from the hand.
Disc 04-09	arm model	1J40.75	Use an arm model simulating both biceps and triceps muscles to throw a ball.
	APPLICATIONS OF NEWTON'S LAWS	1K00.00	
	Dynamic Torque	1K10.00	
	tipping block	1K10.10	
		41/40 40	Pull with a spring scale at various angles on the edge of a block.
PIRA 500 UMN, 1K10.10	tipping block	1K10.10	
UMN, 1K10.10 F&A, Mo-4	tipping block	1K10.10	A large wooden block is tipped over with a spring scale.
UMN, 1K10.10			

Demonstratio			July 2015 Mechanics
UMN, 1K10.11	tipping blocks	1K10.11	Same as TPT 22(8),538.
TPT 22(8),538	tipping block	1K10.11	Show the force necessary to tip over trapezoidal and weighted rectangular
			blocks. The students are surprised to discover the force needed is not related
			to the position of the center of mass.
PIRA 200	ladder against a wall	1K10.20	Set a model ladder against a box and move a weight up a rung at a time.
UMN, 1K10.20	ladder against a wall	1K10.20	A model ladder is set against a box and a weight moved up a rung at a time.
F&A, Mo-8	forces on a ladder	1K10.20	A small model ladder is placed against a box.
Ehrlich 2, p. 60	ladder against a wall	1K10.20	A plastic ruler, clay, and vertical notebook pad used to do the ladder against
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			a wall demonstration.
Disc 04-18	ladder forces	1K10.20	A real ladder leans against the wall. Animation shows the forces as the
			ladder moves.
PIRA 1000	forces on a ladder - full scale	1K10.25	
UMN, 1K10.25	forces on a ladder - full scale	1K10.25	Mount a set of wheels at the top of a ladder, place some shoes at the bottom
Sut, M-30	forces on a ladder - full scale	1K10.25	to decrease friction and climb the ladder until you fall down. Wheels are attached to the top of a ladder and the bottom slides on the floor.
Sut, 10-50	Torces on a ladder - Tuli Scale	11(10.25	Climb up the ladder and fall down.
PIRA 200	walking the spool	1K10.30	Pull at various angles on the cord wrapped around the hub of a spool to
			move the spool forward or back.
UMN, 1K10.30	walking the spool	1K10.30	
			make the spool move forward or back.
F&A, Mo-3	walking the spool	1K10.30	Pull on a cord wrapped around the axle of a large spool. The spool can be
			made to go forward or backward depending on the angle.
Sut, M-24	walking the spool	1K10.30	A string is pulled off the inner axis of a spool at different angles, changing the
	welling the encel	11/10 20	direction the spool rolls.
Hil, M-10d	walking the spool	1K10.30	A string wound around the center of a spool is pulled at different angles causing the spool to change directions. Diagram and analysis. See TPT
			2(3),139.
D&R, M-618	walking the spool	1K10.30	A string is pulled off the inner axis of a spool at different angles changing the
	3		direction the spool rolls.
Sprott, 1.15	walking the spool	1K10.30	A wooden spool can be made to move in different directions by pulling at
			different angles on the string attached to the hub.
Ehrlich 2, p. 65	walking the spool	1K10.30	A spool can be made to move either backward or forward by pulling at
Dia 200.07		41/40.00	different angles on the string attached to the hub.
Disc 06-07 Mei, 12-5.3	spool with wrapped ribbon walking the spool x three	1K10.30 1K10.31	The sides of the spool are made of clear Plexiglas. Three rolling spools where the outer discs ride on rails and the center section
Wei, 12-5.5	waiking the spool x thee	11(10.51	with the string is larger, smaller, and the same size as the outer discs
			allowing one to always pull horizontally.
PIRA 1000	pull the bike pedal	1K10.40	
UMN, 1K10.40	pull the bike pedal	1K10.40	Lock the front wheel, remove the brake, add training wheels, and pull
			backwards on the pedal in the down position.
Mei, 12-4.3	pull the bike pedal	1K10.40	Pulling backward on a pedal (in the down position) of a brakeless bike will
			cause the bike to go back unless the length of the pedal crank is increased.
Sut, M-25	pull the bike pedal	11/10/10	Pull backward on a pedal at its lowest point and the bike will move backward.
Sut, 101-25	puil the bike pedal	11(10.40	Fuil backward off a pedal at its lowest point and the bike will move backward.
PIRA 1000	traction force roller	1K10.41	
UMN, 1K10.41	traction force roller	1K10.41	Pull on a string wrapped around the circumference of a cylinder on a roller
			cart. Pull on a yoke attached to the axle of the same cylinder on the roller
			cart.
AJP 34(3),xxix	traction force roller	1K10.41	
			circumference or by a yoke attached to the axle.
F&A, Ms-6	traction force roller	1K10.41	A large pulley can be drawn by either pulling on the axle or on a string
			wrapped around the perimeter. Try each case while the pulley is resting on a roller cart.
PIRA 1000	extended traction force	1K10.42	
UMN, 1K10.42	extended traction force	1K10.42	Pull on a string wrapped around the circumference of a cylinder placed on an
2, 1110.72			air track glider.
TPT 28(9),600	extended traction force	1K10.42	A string wound around a cylinder, hoop, and spool is pulled while the objects
			are on a roller cart and the reaction force direction is surprising.
PIRA 1000	rolling uphill	1K10.50	
UMN, 1K10.50	rolling uphill	1K10.50	A disc with a nonuniform mass distribution is placed on an incline so it rolls
	an Black and E.B.	41/40 50	uphill.
F&A, Mp-3	rolling uphill	1K10.50	A loaded disc is put on an inclined plane so it rolls uphill or rolls to the edge of the lecture bench and back.

Demonstration Bibligrqaphy July 2015 Sut, M-35 rolling uphill 1K10.50 A large wood disc weighted on one side will roll uphill or to the edge of a table and back. Ehrlich 1, p. 46 rolling uphill 1K10.50 A loaded Styrofoam disc or sphere can be made to roll uphill, downhill, or remain at rest on an incline. Disc 03-25 loaded disc

AJP 28(9),819

Sut, M-20

Mei, 10-2.8

AJP 28(1),76

TPT 5(3),138

Disc 03-04

weight dependence of friction

teaching couples

free vector

air jet couple

saw-horse on teter-totter

couples

1K10.50 A loaded disc can roll up an incline.

1K10.80 Start with two index fingers rotating a meter stick about the center of mass, use it to go into couples. Read it.

- A strong magnet on a counterbalanced cork always rotates about the center 1K10.81 of mass no matter where the magnet is placed.
- 1K10.82 An arrangement to apply equal forces to opposite sides of a pulley mounted on a dry ice supported steel bar.
- 1K10.83 Air from a balloon is released through two nozzles offset from the center of mass. The assembly is free to rotate on a block of dry ice.
- The Phil Johnson humor continues with "Good luck trying to demonstrate this 1K10.90 eter-

			totter but is able to bring it into equilibrium by applying a torque to a bar placed across his shoulders. Hint: See the article picture.
	Friction	1K20.00	
AJP 70(9), 890 PIRA 1000	friction washboard friction model	1K20.01 1K20.05	A guide to the literature on the fundamental orgins of friction.
UMN, 1K20.05	washboard friction model	1K20.05	
PIRA 200	friction blocks - surface material	1K20.10	Pull a block with four different surfaces with a spring scale.
UMN, 1K20.10	friction blocks - surface material	1K20.10	A set of blocks with different surfaces are pulled with a spring scale.
F&A, Mk-1	friction blocks	1K20.10	Pull blocks across the lecture bench with a spring scale.
D&R, M-340	friction blocks - surface material	1K20.10	A block with 4 different surfaces is pulled along a table with a spring scale.
AJP 72(10), 1335	friction blocks	1K20.10	Why this experiment gives inconsistent results and a look at some of the factors that contribute to those results.
AJP 75 (12), 1106	friction	1K20.10	A sequence designed for teaching about friction between solids using both experiments and models.
Bil&Mai, p 24	friction blocks	1K20.10	Attach a block to a spring scale with a string. Record the minimum force needed to pull the block with a constant velocity when the string is parallel to the table and then at different angles.
Bil&Mai, p 71	friction blocks - surface materials	1K20.10	Tread for a good tire and a bald tire are attached to different blocks. Drag the blocks across the floor and see which is harder to pull.
Ehrlich 1, p. 41	friction blocks	1K20.10	Pull bricks or blocks across the lecture bench with a spring scale.
Disc 03-05	surface dependence of friction	1K20.10	Place brass blocks on an incline with four surfaces: teflon, wood, sandpaper, and rubber.
Bil&Mai, p 75	tug of war	1K20.11	Observe the relative motion of two battery operated toy cars engaged in a tug of war with and without friction, or with one car having more friction than the other.
Mei, 8-4.9	friction blocks	1K20.12	Several ways to move a surface under a fixed block.
AJP 73(9), 812	friction blocks		A look at why the coefficient of friction might increase with an increase in sliding speed for certain materials.
AJP 33(2),161	sliding friction machine	1K20.13	A spring scale is attached to an object on a rotating table.
TPT 14(6),373	friction blocks	1K20.13	A device includes both sliding surface and mounted spring scale.
TPT 12(6),367	friction blocks	1K20.13	A block is constructed with an built-in apparatus to measure coefficient of friction directly.
Mei, 8-4.11	friction blocks	1K20.13	An apparatus pulls a block at a constant speed and measures the frictional force. Details in appendix, p.550.
Mei, 8-4.10	friction blocks	1K20.13	A block rests on a turntable and the string goes to a dynamometer.
Bil&Mai, p 96	friction blocks	1K20.13	A block rides on a pendulum platform. When the platform hits the edge of a table the block continues on for a short distance before being stopped by friction. Calculate the work done by friction.
Ehrlich 1, p. 42	friction blocks	1K20.13	Launch a sliding block with various initial velocities. Measure its stopping distance and calculate the coefficient of friction.
Ehrlich 1, p. 43	sliding cylinder	1K20.13	Slide cylinders with different height to diameter ratios so they come to a stop Only those cylinders with a ratio less than the reciprocal of the coefficient of kinetic friction will not tip.
TPT, 36(8), 464	measuring coefficient of friction of a low-friction cart	1K20.14	Use a sonic range probe to monitor the acceleration of a dynamic cart rolling up and down an inclined plane.
PIRA 500	weight dependence of friction	1K20.15	
UMN, 1K20.15	weight dependence of friction	1K20.15	Pull a friction block with a spring scale, add a second equal block to the first

and repeat.

1K20.15 Add mass to a board pulled along the table with a spring scale.

Mechanics

a tug the

stop.

July 2015

Mechanics

PIRA 500 area dependence of friction 1K20.20 Sut, M-49 friction block served and served served and served and served and served and served and	Domonotiation	i Bioligi qapity		
TPT 11(8),453 friction blocks 112.0 Two additional points relating to Geoffery Foxs "Stumpers" column TPT. 11. 288 (973). PIRA 500 area dependence of friction 112.02.0 Ancion block has a rectangular shape with one side twice as big as the other. One of the smaller sides is routed out to 15 the area. Stut. M-49 friction blocks 112.02.00 Ancion block has a rectangular shape with one side twice as big as the other. One of the smaller sides is routed out to 15 the area. Disc 03-03 area dependence of friction 122.02 friction block has a rectangular shape with one side twice as big as the other. One of the smaller sides is routed out to 15 the area. Disc 03-02 static vs. sliding friction 122.02 friction bick to show that static friction is greater than slidin friction with a spring scale and block to show that static friction to study the avalanches that occur in a plastic sandwich hag hall filled with and. PIRA 200 angle of repose 112.03 Show that static friction is greater than slidin friction is angle of repose FixA, Nik-4 angle of repose 112.03 An inclined plane is informating and plant ingle and plant. FixA, Nik-4 angle of repose 112.03 An inclined plane is informating and plant ingle and plant. FixA Nik-3 angle of repose 112.03 An inclined plane is infor	TPT 18(8),559	friction blocks	1K20.16	sliding on a second incline until it stops. The mass on the slider is varied to
PIRA 800 area dependence of friction 1K20.20 UMN, 1K20.20 area dependence of friction 1K20.20 Sut, M-49 friction block 1K20.20 Sut, M-49 friction block 1K20.20 Sut, M-49 friction block 1K20.20 Site 03-03 area dependence of friction 1K20.20 Site 03-03 area dependence of friction 1K20.20 Site 03-02 static vs. sliding friction 1K20.30 Disc 03-02 static vs. sliding friction 1K20.30 Site to cofficients of sliding and state friction to study the avalanches that occur in a plastic sandwich bag half filled with sand. PIRA 500 angle of repose 1K20.35 Angle of repose 1K20.35 An incline plane is lifted until a block begins to slide. Sprott, 1.9 angle of repose 1K20.35 Sprott, 1.9 angle of repose 1K20.35 Sprott, 1.9 angle of repose 1K20.35 Sprott, 1.9 angle of repose 1K20.37 Strott 4.25 angle of repose 1K20.37 Stroth 4.45 angle of repose	TPT 11(8),453	friction blocks	1K20.17	Two additional points relating to Geoffery Fox's "Stumpers" column TPT. 11,
UMN, 11/20.20 area dopendence of friction 11/20.20 A friction block has a rectangular shape with one sist by as the order. One of the smaller sides is routed out to 1/5 the area. Sut, M-49 friction blocks 11/20.20 Friction independent of area of contact - cut a block to form a prism whose cross section is an inregular polycon. Disc 03-03 area dependence of friction 11/20.20 2.81/2 is pulled along the bench top while resting on either the narrow or wide face. PIRA 200 static vs. sliding friction 11/20.30 Use a spring scale and block to show that static friction is greater than sliding friction with a spring scale and block. Ehrlich 2, p. 44 static vs. sliding friction 11/20.30 Show that static friction is queries of sliding and down the plane. UMN, 11/20.31 angle of repose 11/20.32 Use the coefficients of sliding and down the plane. UNN, 11/20.32 angle of repose 11/20.33 An incline plane is lifted unil a block begins to slide. UPN, 11/20.33 angle of repose 11/20.35 An incline plane is lifted unil a block begins to slide. UPN, 11/3 angle of repose 11/20.35 An incline plane is lifted unil a block begins to slide. Sport, 1.9 angle of repose 11/20.35 An incline plane is lifte	PIRA 500	area dependence of friction	1K20 20	
Other. One of the smaller sides is routed out to 15 the area.Sut. M-49fiction blocks1K2020Fiction independent of area of contact - cut a block to form a prism whose cross section is an irregular polygon.Disc 03-03area dependence of friction1K202.02X12 is pulled along the bench top while resting on either the narrow or wide face.Disc 03-02static vs. sliding friction1K203.0Show that static friction is greater than sliding friction .Disc 03-02static vs. sliding friction1K203.0Show that static friction to study the avalanches that occur in a plastic sandwich bag half filled with sand.PIRA 500angle of repose1K20.35An incline plane is lifted until a block begins to slide.PTT 17(9).593angle of repose1K20.35An incline plane is lifted until a block begins to slide.F&A, Mk-4angle of repose1K20.35Na incline plane is lifted until a block begins to slide.DSPR01, 19angle of repose1K20.35Na incline plane is lifted until a block begins to slide.DAW, M336angle of repose1K20.35Na incline plane is lifted until a block begins to slide.DAP 48(8).858tire friction1K20.37Na incline plane is lifted until a block begins to slide.AJP 48(6).858tire friction1K20.37No wither glase and glase glase and glase trace and glase.AJP 48(3).253tire fiction1K20.37No wither glase and glase		•		A friction block has a rectangular shape with one side twice as hig as the
Cross section san irregular polygon.Disc 03-03area dependence of friction1K20.202 X212 is pulled along the bench top while resting on either the narrow or wide face.PIRA 200static vs. sliding friction1K20.30Use a sping scale and block to show that static friction is greater than slidin friction.Disc 03-02static vs. sliding friction1K20.30Use the coefficients of sliding and static friction to study the avalanches that block.Ehrlich 2, p. 44static vs. sliding friction1K20.32Use the coefficients of sliding and down the plane.PIRA 500angle of repose1K20.35An incline plane is lifted until a block begins to slide.PIRA 500angle of repose1K20.35An inclined plane is repose is sliding up and down the plane.F&A, Mk-4angle of repose1K20.35An inclined plane is repose is slide.AMR 430angle of repose1K20.35An inclined plane is repose is slide.Spint, 1.9angle of repose1K20.35An inclined plane is repose is slide.AJP 46(8),858tire friction1K20.37Aniber eigen and slow thress, the approximate expression for sliding and any incline at a constant speed for a certain range of angles.AJP 46(8),858tire friction1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be addee easily.Hil, M-11aangle of repose1K20.36A plastic small parts drawer on a sanded aluminum surface allows weight to be asside angle and the slow an incline plane and blocks + an interesting towel on a glass tub deess all about friction of friction are wrong and the less said about friction of fric				other. One of the smaller sides is routed out to 1/5 the area.
Wide face. Wide face. PIRA 200 static vs. sliding friction 1K20.30 Use a spring scale and block to show that static friction is greater than sliding friction with a spring scale and block. Ehrlich 2, p. 44 static vs. sliding friction 1K20.32 Use the coefficients of sliding and static friction to study the avalanches that occur in a plastic sandwich bag half filled with sand. PIRA 500 angle of repose 1K20.35 An incline plane is lifted until a block bagins to slide. FAA, MK-4 angle of repose 1K20.35 An inclined plane is insed until a block bagins to slide. FAA, MK-4 angle of repose 1K20.35 An inclined plane is insed until a block bagins to slide. FAA, MK-4 angle of repose 1K20.35 An inclined plane is insed until a block bagins to slide. Spott, 1.9 angle of repose 1K20.35 An inclined plane is insed until a block bagins to slide. AJP 46(8),855 tire friction 1K20.35 Not whe effect or material on critical sliding ingein. AJP 48(3),253 tire friction 1K20.37 Not whe effect or material on critical sliding ingein. AJP 48(3),253 tire friction 1K20.37 Not whe effect or material on critical sliding ingein.				cross section is an irregular polygon.
Disc 03-02static vs. sliding friction1K20.30Ehrlich 2, p. 44static vs. sliding friction1K20.32Use the coefficients of sliding and static friction to study the avalanches that occur in a plastic sandwich bag half filled with sand.PIRA 500angle of repose1K20.32Use the coefficients of sliding and static friction to study the avalanches that occur in a plastic sandwich bag half filled with sand.PIRA 500angle of repose1K20.35An incline plane is lifted until a block begins to slide.TPT 17(9).993angle of repose1K20.35An incline plane is infici until a block begins to slide.D&R, M.36angle of repose1K20.35An incline plane is first until a block begins to slide.Sprott, 1.9angle of repose1K20.35An incline plane is first until a block begins to slide.Sprott, 1.9angle of repose1K20.35A vibrating electric razor will slide down an incline at a constant speed for a certain range of angles.AJP 46(8),858tire friction1K20.37The autromobile tire is a misleading axample of static and sliding friction.AJP 48(9),253angle of repose1K20.37Alpistic sandwich daw a developed from published tables.Mei, 8-4.3angle of repose1K20.37Jasitic sandig until a block was developed from published tables.Mei, 8-4.4angle of repose1K20.37Jasitic sandig of pose with oil and oil/water.Mei, 8-4.4angle of repose1K20.37Vign the incline plane for various friction directly.Mei, 8-4.4angle of repose1K20.37A note arguing that the main	Disc 03-03	area dependence of friction	1K20.20	
block.PIRA 500angle of repose1K20.32USe the coefficients of sliding and static friction to study the avalanches that occur in a plastic sandwich bag half filled with sand.PIRA 500angle of repose1K20.32UNN, 1K20.35angle of repose1K20.35An Incline plane is lifted until a block begins to slide.D&R, M340angle of repose1K20.35A Incline plane is lifted until a block begins to slide.BAR, M340angle of repose1K20.35An incline plane is infed until a block begins to slide.Sprot, 1.9angle of repose1K20.35Shritt, 1.9angle of repose1K20.35AJP 46(8).858tire friction1K20.37AJP 46(8).858tire friction1K20.37Hil, M-11aangle of repose1K20.37AJP 46(9).953angle of repose1K20.37Mei, 8-4.3angle of repose1K20.37Alp 53(9).910tire skid equation1K20.37Hil, M-11aangle of repose1K20.37AJP 53(9).910how ady fiction really behaves1K20.37Mei, 8-4.4angle of repose1K20.37Sut, M-48angle of repose1K20.37Mei, 8-4.4angle of repose1K20.37Mei, 8-4.4angle of repose1K20.37Mei, 8-4.8angle of repose1K20.37Mei, 8-4.4angle of repose1K20.37Mei, 8-4.8angle of repose1K20.37Mei, 8-4.4angle of repose1K20.37Mei, 8-4.5angle of repose <td>PIRA 200</td> <td>static vs. sliding friction</td> <td>1K20.30</td> <td>Use a spring scale and block to show that static friction is greater than sliding friction .</td>	PIRA 200	static vs. sliding friction	1K20.30	Use a spring scale and block to show that static friction is greater than sliding friction .
PIRA 500 angle of repose 1/20.35 UNN, 1/20.35 angle of repose 1/20.35 AIVA, 1/20.35 angle of repose 1/20.35 F&A, Mk-4 angle of repose 1/20.35 AIVA, 1/20.35 angle of repose 1/20.35 AIVA angle of repose 1/20.35 AIVA angle of repose 1/20.35 AIVA angle of repose 1/20.35 Sport, 1.9 angle of repose 1/20.35 AJP 46(8),858 tire friction 1/20.35 AJP 46(8),858 tire friction 1/20.37 AJP 46(3),253 tire friction 1/20.37 AJP 46(3),253 tire friction 1/20.37 AJP 46(3),253 angle of repose 1/20.37 AJP 46(3),253 angle of repose 1/20.37 AJP 46(3),253 tire friction angle of repose 1/20.37 All 4 8/3,253 angle of repose 1/20.37 Mei, 8-4.3 angle of repose 1/20.37 All 5 5(9)(910 how dry friction really behaves 1/20.37	Disc 03-02	static vs. sliding friction	1K20.30	Show that static friction is greater than sliding friction with a spring scale and block.
UNN, 1K20.35 TPT 17(9),593angle of repose1K20.35 1K20.35An incline plane is lifted until a block begins to slide. Sport, 1.9 angle of repose1K20.36F8A, Mk-4 D&R, M-36 Sport, 1.9 Entrich 2, p. 45 All Agle of repose constant velocity1K20.37 1K20.36An inclined plane is insted until a block begins to slide. Show the effect of material on citical sliding angle. Entrich 2, p. 45 angle of repose constant velocity1K20.36 1K20.36AJP 46(8),858 AJP 46(8),858 Hei, 8-4.3 AJP 46(8),858tire friction trie skid equation1K20.37 1K20.37The automobile tire is a misleading example of static and sliding friction. Certain range of angles. AJP 48(3),253Mei, 8-4.3 AJP 48(3),253angle of repose1K20.37 tire skid equation1K20.37 1K20.37Mei, 8-4.3 AJP 53(9),910angle of repose1K20.37 to we dy friction certificient as a function of speed was developed from published tables.Mei, 8-4.4 angle of repose1K20.37A plastic small parts drawer on a sanded aluminm surface allows weight to be added easily.Mei, 8-4.4 angle of repose1K20.38 to we dry friction really behaves1K20.38 to be added easily.Mei, 8-4.4 angle of repose1K20.39 to we dry friction really behaves1K20.39 to angle of repose tire of repose tracks angle of repose tracks angle of reposeFNICA.20frost and rear brakes1K20.30 to angle of repose1K20.39 to angle of repose tracks angle of repose tracksFNICA.20.40frost and rear brakes1K20.39 to angle of repose	Ehrlich 2, p. 44	static vs. sliding friction	1K20.32	Use the coefficients of sliding and static friction to study the avalanches that occur in a plastic sandwich bag half filled with sand.
TPT 17(9),593 angle of repose 1420.35 Using the familiar suspended incline block apparatus to examine normal and frictional forces in sliding up and down the plane. F8A, Mk-4 angle of repose 1420.35 An inclined plane is iralsed until a block begins to slide. DaR, M-36 angle of repose 1420.35 An inclined plane is iralsed until a block begins to slide. DaR, M-36 angle of repose 1420.35 Show the effect of material on critical sliding angle. Enrlich 2, p. 45 angle of repose 1420.37 Avibrating electric razor will slide down an incline at a constant speed for a cretiar range of angles. AJP 46(8),858 tire friction 1420.37 The automobile tire is a misleading example of static and sliding friction. AJP 48(3),253 tire skid equation 1420.37 Aplastic small parts drawer on a sanded aluminum surface allows weight to be addeed easily. Mei, 8-4.3 angle of repose 1420.37 A plastic small parts drawer on a sanded aluminum surface allows weight to be addeed easily. Hii, M-11a angle of repose 1420.37 Justics mall parts drawer on a sanded aluminum surface allows the less said about friction demos. AJP 53(9),910 how dry friction really behaves 1420.39 Giass - glass angle of repose with oil and oil/water. Sut, M-48 <td< td=""><td>PIRA 500</td><td>angle of repose</td><td>1K20.35</td><td></td></td<>	PIRA 500	angle of repose	1K20.35	
TPT 17(9),593 angle of repose 1420.35 Using the familiar suspended incline block apparatus to examine normal and frictional forces in sliding up and down the plane. F8A, Mk-4 angle of repose 1420.35 An inclined plane is iralsed until a block begins to slide. DaR, M-36 angle of repose 1420.35 An inclined plane is iralsed until a block begins to slide. DaR, M-36 angle of repose 1420.35 Show the effect of material on critical sliding angle. Enrlich 2, p. 45 angle of repose 1420.37 Avibrating electric razor will slide down an incline at a constant speed for a cretiar range of angles. AJP 46(8),858 tire friction 1420.37 The automobile tire is a misleading example of static and sliding friction. AJP 48(3),253 tire skid equation 1420.37 Aplastic small parts drawer on a sanded aluminum surface allows weight to be addeed easily. Mei, 8-4.3 angle of repose 1420.37 A plastic small parts drawer on a sanded aluminum surface allows weight to be addeed easily. Hii, M-11a angle of repose 1420.37 Justics mall parts drawer on a sanded aluminum surface allows the less said about friction demos. AJP 53(9),910 how dry friction really behaves 1420.39 Giass - glass angle of repose with oil and oil/water. Sut, M-48 <td< td=""><td>UMN, 1K20.35</td><td>angle of repose</td><td>1K20.35</td><td>An incline plane is lifted until a block begins to slide.</td></td<>	UMN, 1K20.35	angle of repose	1K20.35	An incline plane is lifted until a block begins to slide.
F8A, Mk-4 angle of repose 1K20.35 An inclined plane is raised until a block starts to slide. DAR, M-36 angle of repose 1K20.35 An inclined plane is raised until a block begins to slide. Sprott, 1.9 angle of repose 1K20.35 Show the effect of material on critical sliding angle. Ehrlich 2, p. 45 angle of repose - constant velocity 1K20.36 Vibrating electric razor will slide down an incline at a constant speed for a certain range of angles. AJP 46(8),858 tire friction 1K20.37 The automobile tire is a misleading example of static and sliding friction. AJP 46(8),858 tire friction 1K20.37 Molivated by being an expert witness, the approximate expression for sliding friction coefficient as a function of speed was developed from published tables. Mei, 8-4.3 angle of repose 1K20.37 A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily. Hii, M-11a angle of repose 1K20.38 A intometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly. Hei, 8-4.4 angle of repose 1K20.39 Glass - glass angle of repose with oil and oil/water. Sut, M-48 angle of repose 1K20.39 Glass - glass angle of repose with oil an oil/water. Sut, M-50	TPT 17(9).593			
D&R, M-336 angle of repose angle of repose 11/20.35 An inclined plane is lifted unit a block begins to slide. Sprott, 1,9 angle of repose 11/20.35 Show the effect of material on critical sliding angle. Ehrlich 2, p. 43 angle of repose - constant velocity 11/20.36 Avibrating electric razor will slide down an incline at a constant speed for a certain range of angles. AJP 46(8),858 tire friction 11/20.37 Motivated by being an expert witness, the approximate expression for sliding friction cefficient as a function of speed was developed from published tables. Mei, 8-4.3 angle of repose 11/20.37 A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily. Hii, M-11a angle of repose 11/20.37 Using the incline plane for valous friction dremos. AJP 53(9),910 how dry friction really behaves 11/20.37 Using the incline plane for valous friction dremos. Mei, 8-4.4 angle of repose 11/20.37 Using the incline draw and bout friction are wrong and the less said about friction the better. Sut, M-48 angle of repose 11/20.39 Glass - glass angle of repose with oil and oilwater. Sut, M-45 angle of repose 11/20.39 The standard inclined plane and blocks + an interesting towel on a glass tub dremo. E		2 .		frictional forces in sliding up and down the plane.
Sprott, 1.9angle of repose angle of repose angle of repose - constant velocity1K20.35Show the effect of material on critical sliding angle.AJP 46(8),858tire friction1K20.37The automobile tire is a misleading example of static and sliding friction.AJP 48(3),253tire skid equation1K20.37The automobile tire is a misleading example of static and sliding friction.AJP 48(3),253tire skid equation1K20.37The automobile tire is a misleading example of static and sliding friction.Mei, 8-4.3angle of repose1K20.37Aplastic small parts drawer on a sanded aluminum surface allows weight to be added easily.Mei, 8-4.8angle of repose1K20.37Vising the incline plane for various friction demos.AJP 53(9),910how dry friction really behaves1K20.38Nithometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.Mei, 8-4.4angle of repose1K20.39Glass - glass angle of repose with oil and oil/water.Sut, M-48angle of repose - magnetic matbles1K20.39A model car is rolled down an incline. The number of matbles that can stay magnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522front and rear brakes1K20.40A cristicad sown an incline with either front or rear wheels locked.UNN, 1K20.40front and rear brakes1K20.40A cristicad sown an incline with either front or rear wheels locked.UNN, 1K20.42 <td>F&A, Mk-4</td> <td>angle of repose</td> <td>1K20.35</td> <td>An inclined plane is raised until a block starts to slide.</td>	F&A, Mk-4	angle of repose	1K20.35	An inclined plane is raised until a block starts to slide.
Ehrlich 2, p. 45angle of repose - constant velocity1K20.36A vibrating electric razor will slide down an incline at a constant speed for a certain range of angles.AJP 46(8),858tire friction1K20.37The automobile tire is a misleading example of static and sliding friction.AJP 48(3),253tire skid equation1K20.37The automobile tire is a misleading example of static and sliding friction.Mei, 8-4.3angle of repose1K20.37Motivated by being an expert witness, the approximate expression for sliding friction coefficient as a function of speed was developed from published tables.Hil, M-11aangle of repose1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.Hil, M-11aangle of repose1K20.37Note arguing that the main rules of thumb about friction are wrong and the less said about friction directly.Mei, 8-4.8angle of repose1K20.38A tribometer with a meter slick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.Mei, 8-4.4angle of repose1K20.39Class - glass angle of repose with oil and oll/water.Sut, M-48angle of repose1K20.40The standard inclined plane and blocks + an interesting towel on a glass tub demo.Ehrlich 2, p. 54angle of repose nagnetic marbles1K20.40A model car is rolled down an incline. With either front or rear brakes locked.TPT 28(8),522front and rear brakes1K20.40A corstails for a model car in which pulling a pin applies front, rear, or bot sets of brakes to a car rolling down an incline.D&R, M-622front and rear brakes	D&R, M-336	angle of repose	1K20.35	An inclined plane is lifted until a block begins to slide.
AJP 46(8),858 AJP 48(3),253tire friction tire skid equation1K20.37 tire skid equationThe automobile tire is a misleading example of static and sliding friction. 	Sprott, 1.9	angle of repose	1K20.35	Show the effect of material on critical sliding angle.
AJP 48(3).253tire skid equation1K20.37Motivated by being an expert witness, the approximate expression for sliding friction coefficient as a function of speed was developed from published tables.Mei, 8-4.3angle of repose1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.Hil, M-11aangle of repose1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.Hil, M-11aangle of repose1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.Mei, 8-4.8angle of repose1K20.38A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.4angle of repose1K20.38A tribometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.Mei, 8-4.4angle of repose1K20.39The standard inclined plane and blocks + an interesting towel on a glass tub demo.Ehrlich 2, p. 54angle of repose - magnetic marbles1K20.40A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40A corol down an incline with either front or rear wheels locked.TPT 28(8),522front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7 <t< td=""><td>Ehrlich 2, p. 45</td><td>angle of repose - constant velocity</td><td>1K20.36</td><td></td></t<>	Ehrlich 2, p. 45	angle of repose - constant velocity	1K20.36	
Mei, 8-4.3angle of repose1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.Hil, M-11aangle of repose1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.AJP 53(9),910how dry friction really behaves1K20.37A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.8angle of repose1K20.38A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.4angle of repose1K20.38Glass - glass angle of repose with oil and oil/water.Sut, M-48angle of repose - magnetic marblesThe standard inclined plane and blocks + an interesting towel on a glass tub demo.Ehrlich 2, p. 54angle of repose - magnetic marbles1K20.39A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522front and rear brakes1K20.40A car sites down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car sites down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car sites down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A toy car sildes down an incline with either front or rear whee	AJP 46(8),858	tire friction	1K20.37	The automobile tire is a misleading example of static and sliding friction.
Mei, 8-4.3angle of repose1K20.37A plastic small parts drawer on a sanded aluminum surface allows weight to be added easily.Hil, M-11aangle of repose1K20.37L sing the incline plane for various friction demos.AJP 53(9),910how dry friction really behaves1K20.38A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.8angle of repose1K20.38A tribometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.Mei, 8-4.4angle of repose1K20.39Glass - glass angle of repose with oil and oil/water.Sut, M-48angle of repose - magnetic marbles1K20.39A row of marbles on an incline plane and blocks + an interesting towel on a glass tub demo.PIRA 500front and rear brakes1K20.40A model car is rolled down an incline.The number of marbles front, rear, or both sets of brakes to a car rolling down an incline.TPT 28(8),522front and rear brakes1K20.40A car sildes down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car sildes down an incline with either front or rear wheels locked.Mei, 8-4.5front and rear brakes1K20.40A car sildes down an incline with either front or rear wheels locked.D&R, M-53front and rear brakes1K20.40A car cills down an incline with either front or rear wheels locked.Mi, 8-4.7front and rear brakes1K20.40A toy car sildes down an incline with either front or rear wheels locked.D&	AJP 48(3),253	tire skid equation	1K20.37	
AJP 53(9),910how dry friction really behaves1K20.38A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.8angle of repose1K20.38A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.4angle of repose1K20.38A tribometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.Mei, 8-4.4angle of repose1K20.39Glass - glass angle of repose with oil and oil/water.Sut, M-48angle of repose1K20.39The standard inclined plane and blocks + an interesting towel on a glass tub demo.Ehrlich 2, p. 54angle of repose - magnetic marbles1K20.40The standard inclined plane and blocks + an interesting towel on a glass tub demo.PIRA 500front and rear brakes1K20.40A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car crolls down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A toy car slides down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40A toy car slides down an incline with	Mei, 8-4.3	angle of repose	1K20.37	A plastic small parts drawer on a sanded aluminum surface allows weight to
AJP 53(9),910how dry friction really behaves1K20.38A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.8angle of repose1K20.38A note arguing that the main rules of thumb about friction are wrong and the less said about friction the better.Mei, 8-4.4angle of repose1K20.38A tribometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.Mei, 8-4.4angle of repose1K20.39Glass - glass angle of repose with oil and oil/water.Sut, M-48angle of repose1K20.39The standard inclined plane and blocks + an interesting towel on a glass tub demo.Ehrlich 2, p. 54angle of repose - magnetic marbles1K20.40The standard inclined plane and blocks + an interesting towel on a glass tub demo.PIRA 500front and rear brakes1K20.40A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car crolls down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A toy car slides down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40A toy car slides down an incline with	Hil, M-11a	angle of repose	1K20.37	Using the incline plane for various friction demos.
Mei, 8-4.4angle of repose1K20.39Glass - glass angle of repose with oil and oil/water.Sut, M-48angle of repose1K20.39Glass - glass angle of repose with oil and oil/water.Ehrlich 2, p. 54angle of repose - magnetic marbles1K20.39A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522front and rear brakes1K20.40A construction details for a model car in which pulling a pin applies front, rear, or both sets of brakes to a car rolling down an incline.F&A, Mk-3front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car rolls down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40A car rolls down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40A toy car is modified so either the front or rear wheels locked.D&R, M-622front and rear brakes1K20.40A toy car is ides down an incline with either front or rear wheels locked.Disc 03-06stability of rolling car1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.F&A, Mk-2friction roller1K20.42A cyli		how dry friction really behaves	1K20.38	A note arguing that the main rules of thumb about friction are wrong and the
Sut, M-48angle of repose1K20.39The standard inclined plane and blocks + an interesting towel on a glass tub demo.Ehrlich 2, p. 54angle of repose - magnetic marbles1K20.39A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40UMN, 1K20.40front and rear brakes1K20.40TPT 28(8),522front and rear brakes1K20.40A row of brakes1K20.40A construction details for a model car in which pulling a pin applies front, rear, or both sets of brakes to a car rolling down an incline.F&A, Mk-3front and rear brakes1K20.40Mei, 8-4.7front and rear brakes1K20.40Sut, M-53front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40D&R, M-622front and rear breaks1K20.40Disc 03-06stability of rolling car1K20.42PIRA 1000friction roller1K20.42UMN, 1K20.36friction roller1K20.42VMN, 1K20.36friction roller1K20.42Mei, 8-4.5friction roller1K20.42Mei, 8-4.5friction roller1K20.42A cylinder in a yoke can be rolled or slid across the lecture bench with a spring scale.Scale.A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.	Mei, 8-4.8	angle of repose	1K20.38	A tribometer with a meter stick mounted vertically 1 m from the hinge gives a reading of coefficient of friction directly.
Ehrlich 2, p. 54 marblesangle of repose - magnetic marbles1K20.39A row of marbles on an incline. The number of marbles that can stay magnetically connected depends on the angle of the incline.PIRA 500 UMN, 1K20.40front and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522 Font and rear brakesfront and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522 Font and rear brakesfront and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Kei, 8-4.7 Sut, M-53front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Sut, M-53 Disc 03-06 UMN, 1K20.36front and rear brakes1K20.40A toy car slides down an incline with either front or rear wheels locked.UMN, 1K20.36 Disc 03-06 Friction rollerfriction roller1K20.40A toy car slides down an incline with either front or rear wheels locked.UMN, 1K20.36 Mei, 8-4.5friction roller1K20.42A toy car slides down an incline with either front or rear wheels locked.Mei, 8-4.5friction roller1K20.42A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.Mei, 8-4.5friction roller1K20.42A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.	Mei, 8-4.4	angle of repose	1K20.39	Glass - glass angle of repose with oil and oil/water.
marblesmagnetically connected depends on the angle of the incline.PIRA 500front and rear brakes1K20.40UMN, 1K20.40front and rear brakes1K20.40TPT 28(8),522front and rear brakes1K20.40Construction details for a model car in which pulling a pin applies front, rear, or both sets of brakes to a car rolling down an incline.F&A, Mk-3front and rear brakes1K20.40Mei, 8-4.7front and rear brakes1K20.40Sut, M-53front and rear brakes1K20.40D&R, M-622front and rear breaks1K20.40Disc 03-06stability of rolling car1K20.40PIRA 1000friction roller1K20.42UMN, 1K20.36friction roller1K20.42F&A, Mk-2friction roller1K20.42Mei, 8-4.5friction roller1K20.42A kar, S-4.5friction roller1K20.42A ka	Sut, M-48	angle of repose	1K20.39	The standard inclined plane and blocks + an interesting towel on a glass tube demo.
UMN, 1K20.40front and rear brakes1K20.40A model car is rolled down an incline with either front or rear brakes locked.TPT 28(8),522front and rear brakes1K20.40Construction details for a model car in which pulling a pin applies front, rear, or both sets of brakes to a car rolling down an incline.F&A, Mk-3front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car rolls down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40A car rolls down an incline with either front or rear wheels locked.D&R, M-622front and rear breaks1K20.40A toy car is modified so either the front or rear wheels locked.Disc 03-06stability of rolling car1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42A toy car slides down an incline with either front or rear wheels locked.F&A, Mk-2friction roller1K20.42A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.F&A, Mk-2friction roller1K20.42A cylindrical roller is pulled or slid across the lecture bench with a spring scale.Mei, 8-4.5friction roller1K20.42A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.				•
TPT 28(8),522front and rear brakes1K20.40Construction details for a model car in which pulling a pin applies front, rear, or both sets of brakes to a car rolling down an incline.F&A, Mk-3front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car rolls down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40A car rolls down an incline with either front or rear wheels locked.D&R, M-622front and rear brakes1K20.40A toy car is modified so either the front or rear wheels locked.D&R, M-622front and rear breaks1K20.40A toy car slides down an incline with either front or rear wheels locked.Disc 03-06stability of rolling car1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42A toy car slides down an incline with either front or rear wheels locked.F&A, Mk-2friction roller1K20.42A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.F&A, Mk-2friction roller1K20.42A cylindrical roller is pulled or slid across the lecture bench with a spring scale.Mei, 8-4.5friction roller1K20.42A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.	PIRA 500	front and rear brakes	1K20.40	
 results or both sets of brakes to a car rolling down an incline. F&A, Mk-3 front and rear brakes Mei, 8-4.7 front and rear brakes Sut, M-53 front and rear brakes D&R, M-622 front and rear breaks D&R, M-622 friction roller D&R, M-624 friction roller D&R, M-625 friction roller D&R, M-626 friction roller<	UMN, 1K20.40	front and rear brakes	1K20.40	A model car is rolled down an incline with either front or rear brakes locked.
F&A, Mk-3front and rear brakes1K20.40A car slides down an incline with either front or rear wheels locked.Mei, 8-4.7front and rear brakes1K20.40A car rolls down an incline with either front or rear wheels locked.Sut, M-53front and rear brakes1K20.40A toy car is modified so either the front or rear brakes can be locked. Slide down the incline plane for each case.D&R, M-622front and rear breaks1K20.40A toy car slides down an incline with either front or rear wheels locked.Disc 03-06stability of rolling car1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42A toy car slides down an incline with either front or rear wheels locked.UMN, 1K20.36friction roller1K20.42A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.F&A, Mk-2friction roller1K20.42A cylindrical roller is pulled or slid across the lecture bench with a spring scale.Mei, 8-4.5friction roller1K20.42A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.	TPT 28(8),522	front and rear brakes	1K20.40	Construction details for a model car in which pulling a pin applies front, rear, or both sets of brakes to a car rolling down an incline.
Sut, M-53front and rear brakes1K20.40A toy car is modified so either the front or rear brakes can be locked. Slide down the incline plane for each case.D&R, M-622front and rear breaks1K20.40A toy car slides down an incline with either front or rear wheels locked.Disc 03-06stability of rolling car1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42A toy car slides down an incline with either front or rear wheels locked.UMN, 1K20.36friction roller1K20.42A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.F&A, Mk-2friction roller1K20.42A cylindrical roller is pulled or slid across the lecture bench with a spring scale.Mei, 8-4.5friction roller1K20.42A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.	F&A, Mk-3	front and rear brakes	1K20.40	-
D&R, M-622front and rear breaks1K20.40A toy car slides down an incline with either front or rear wheels locked.Disc 03-06stability of rolling car1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42UMN, 1K20.36friction roller1K20.42F&A, Mk-2friction roller1K20.42Mei, 8-4.5friction roller1K20.42	Mei, 8-4.7	front and rear brakes	1K20.40	A car rolls down an incline with either front or rear wheels locked.
Disc 03-06stability of rolling car friction roller1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42UMN, 1K20.36friction roller1K20.42F&A, Mk-2friction roller1K20.42Mei, 8-4.5friction roller1K20.42	Sut, M-53	front and rear brakes	1K20.40	
Disc 03-06stability of rolling car friction roller1K20.40A toy car slides down an incline with either front or rear wheels locked.PIRA 1000friction roller1K20.42UMN, 1K20.36friction roller1K20.42F&A, Mk-2friction roller1K20.42Mei, 8-4.5friction roller1K20.42A cylinder is pulled along and perpendicular to its axis by a yoke with a spring scale.	D&R, M-622	front and rear breaks	1K20.40	
PIRA 1000 friction roller 1K20.42 UMN, 1K20.36 friction roller 1K20.42 F&A, Mk-2 friction roller 1K20.42 Mei, 8-4.5 friction roller 1K20.42	Disc 03-06	stability of rolling car	1K20.40	•
UMN, 1K20.36 friction roller 1K20.42 A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale. F&A, Mk-2 friction roller 1K20.42 A cylindrical roller is pulled or slid across the lecture bench with a spring scale. Mei, 8-4.5 friction roller 1K20.42 A cylindrical roller is pulled or slid across the lecture bench with a spring scale.		, ,		
F&A, Mk-2 friction roller 1K20.42 A cylindrical roller is pulled or slid across the lecture bench with a spring scale. Mei, 8-4.5 friction roller 1K20.42 A cylindrical roller is pulled along and perpendicular to its axis by a yoke with a spring scale.	UMN, 1K20.36	friction roller	1K20.42	A cylinder in a yoke can be rolled or locked and slid as it is pulled by a spring scale.
Mei, 8-4.5 friction roller 1K20.42 A cylinder is pulled along and perpendicular to its axis by a yoke with a sprin scale.	F&A, Mk-2	friction roller	1K20.42	A cylindrical roller is pulled or slid across the lecture bench with a spring
	Mei, 8-4.5	friction roller	1K20.42	A cylinder is pulled along and perpendicular to its axis by a yoke with a spring
rolling friction using easily acquired equipment and apparatus.	AJP, 75 (6), 571	rolling friction	1K20.42	A simple setup for measuring the rotational speed dependent coefficient of
PIRA 1000 frictional force rotator 1K20.45	PIRA 1000	frictional force rotator	1K20.45	
UMN, 1K20.45 frictional force rotator 1K20.45				

Demonstratio	n Bibligrqaphy		July 2015	Mechanics
AJP 50(7),631	frictional force rotator	1K20.45	This article shows how to rotate a friction vector to make given direction as small as desired. Everyday unconscion this method are presented along with some new demons	us applications of
AJP 51(9),804	cross friction	1K20.46	Push a block across the slope of an incline and the block straight line trajectory. Knock a coin across and it will mo but all stopping points will be in a straight line.	
TPT 3(1),23	squeaky chalk	1K20.55	You don't have to break chalk to eliminate squeaking, on friction and hold the chalk accordingly.	ly understand
Sut, M-51 TPT, 37(3), 184	angle of friction with pencil why does it work?	1K20.55 1K20.56	Tilt a pencil until it slides along the table. Friction and mass conspire to cause a counter-intuitive e and steel balls.	effect between rubber
Mei, 8-4.6	sliding chain	1K20.60	Hang a chain over the edge of the table until the weight of slide.	of the chain makes it
PIRA 1000 UMN, 1K20.70	falling flask capstan falling flask capstan	1K20.70 1K20.70	Attach a 4 liter r.b. flask at the other end of a ball on a st flask over a horizontal rod 4' high. Let go of the ball.	ring and drape the
AJP 59(10),951 TPT 28(6),390	falling keys capstan falling keys capstan	1K20.70 1K20.70	0 0	d when the string is
Ehrlich 2, p. 74	falling keys capstan	1K20.70	-	nold the matchbook
AJP 59(1),80	discussion of the capstan	1K20.71	Friction experiments with the cord wrapped around a cyli the donkey engine and capstan with a digression on sea	
AJP 49(11),1080	capstan on a force table	1K20.71	Tap a hole in the center of a force table and insert a bolt	
TPT 14(7),432	capstan	1K20.71	Theory of the capstan along with discussion of applicatio	
Sut, M-52	capstan	1K20.71	Show the frictional force vs. the number of turns around	
Sut, M-54	friction pendulum	1K20.74	A ball is suspended by a loop of string over a slowly turn wooden bar. A large amplitude results.	
TPT 17(6),386	going up a tree	1K20.76	The Phil Johnson humor continues with: "Very clever de it's hard to describe". A description would be: A string p straws attached to a piece of cardboard. Hang the middl nail in a wall. Hold both ends of the string taut, pull on ea alternately, and the cardboard will climb the string.	basses through 2 le of the string off a
Mei, 8-4.12	Snoek effect	1K20.80	The Phil Johnson humor continues with: "If you don't kne effect, don't ask me - I had to read up on it too". A descr tantalum wire torsion pendulum with electrically insulated constructed. Running a current from a variac into the wire oxygen diffusion, thus changing the amount of damping.	ription would be: A d ends is
AJP 37(6),665	WWII torpedo story	1K20.85	Friction caused dud torpedo in WWII.	
PIRA 1000 Disc 03-01	air track friction air track friction	1K20.90 1K20.90	Show there is little friction on an air track.	
TPT 11(6),362	teflon cookie sheet	1K20.95	Cut up a teflon coated cookie sheet for an inexpensive te	eflon surface.
Mei, 8-4.1	teflon pulley	1K20.95	Teflon sheet bent around corner replaces a pulley.	
Mei, 8-4.2	Dylite beads	1K20.95	Dylite beads on a rimmed glass surface (window pane) p surface.	provide a low friction
	Pressure	1K30.00		
PIRA 200 - Old	bed of nails bed of nails	1K30.10	Lie down on a bed of 16d nails on 1" centers. Lie down on a bed of 16d nails on 1" centers.	
UMN, 1K30.10 F&A, MI-2	bed of nails	1K30.10 1K30.10	The instructor lies on a large board with nails at 1" center	rs
D&R, F-035	bed of nails	1K30.10	Lie down on a bed of 16 penny nails on 2 cm centers.	
D&R, F-037	stand on balloons/light bulbs/cups	1K30.10	Inexpensive alternatives to the bed of nails using 24 ballo overturned table, standing on a board placed on three 25 triangular arrangement, or 24 plastic soft drink cups and	5 watt light bulbs in a
Disc 04-20 PIRA 1000	bed of nails pop the balloons	1K30.10 1K30.20	Break a block on the chest of a person lying on a bed of	nails.
UMN, 1K30.20	pop the balloons	1K30.20	A disc with points on one side can be placed on balloons or flats rest on the balloons.	so either the points
	GRAVITY Universal Gravitational Constant	1L00.00 1L10.00		
AJP 59(1),84	falling apple story	1L10.01	Quotes from the original accounts of the falling apple and	d Newton.

AJP 57(5),417	modified torsion balance	1L10.36	A very small suspension wire is used allowing the linear accelerations to be
A ID 51(10) 012	resonance Cavendish balance	11 10 44	measured directly.
AJP 51(10),913	resonance Cavendish balance	1L10.41	The Cavendish balance is driven into resonance by swinging the external mass. Suitable for corridor demonstration.
AJP 49(7),700	servo mechanism Cavendish balance	1L10.42	Abstract from the apparatus competition.
AJP 51(4),367	servo mechanism Cavendish	1L10.42	The torsion bar does not appreciably rotate. A simple electronic
	balance		servomechanism is used to maintain rotational equilibrium as an external mass is introduced. The resulting servo correction voltage is proportional to
			the torque introduced by gravity. This effect can be observed in tens of
	0		seconds.
AJP 54(11),1043	Cavendish balance compensation	1L10.43	Modify the Leybold Cavendish balance with a electromagnetic servosystem of damping that reduces the settling time to a few minutes.
	automatic recording Coverdich	11 10 15	
AJP 55(9),855	automatic recording Cavendish	1L10.45	The reflected laser light from the Cavendish balance falls on a two-element
AJP 55(9),855	automatic recording Cavendish	1L10.45	photodiode mounted on a strip chart recorder with appropriate electronics to
AJP 55(9),855 PIRA 1000	gravitational field model	1L10.45	•
	gravitational field model gravitational field model	1L10.50 1L10.50	photodiode mounted on a strip chart recorder with appropriate electronics to
PIRA 1000 UMN, 1L10.50	gravitational field model gravitational field model Orbits	1L10.50 1L10.50 1L20.00	photodiode mounted on a strip chart recorder with appropriate electronics to
PIRA 1000	gravitational field model gravitational field model	1L10.50 1L10.50	photodiode mounted on a strip chart recorder with appropriate electronics to
PIRA 1000 UMN, 1L10.50	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm	1L10.50 1L10.50 1L20.00	photodiode mounted on a strip chart recorder with appropriate electronics to
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10	photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S-	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10	photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10	On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10	On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10	On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 48 AJP 70(10), 1056	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational wells gravitational wells gravitational well - rubber diaphragm gravitational well - rubber diaphragm	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 48 AJP 70(10), 1056 Bil&Mai, p 364	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well - rubber diaphragm	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from a large embroidery hoop and Spandex.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 48 AJP 70(10), 1056 Bil&Mai, p 364 Ehrlich 1, p. 13	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells gravitational well - rubber diaphragm gravitational well - rubber diaphragm	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from an large embroidery hoop and Spandex. A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 48 AJP 70(10), 1056 Bil&Mai, p 364	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells gravitational well - rubber diaphragm gravitational well - rubber	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from an large embroidery hoop and Spandex. A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector. Making a Lucite 1/R surface for use on the overhead projector.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 48 AJP 70(10), 1056 Bil&Mai, p 364 Ehrlich 1, p. 13	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational wells gravitational well - rubber diaphragm gravitational well - rubber	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from an large embroidery hoop and Spandex. A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 48 AJP 70(10), 1056 Bil&Mai, p 364 Ehrlich 1, p. 13 Mei, 8-8.1	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells gravitational well - rubber diaphragm gravitational well on overhead projector gravitational well on overhead projector gravitational deflection on	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.12	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from a large embroidery hoop and Spandex. A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector. Making a Lucite 1/R surface for use on the overhead projector. See 8B40.35. Draw a straight line on an overhead transparency. Tape the transparency
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 1056 Bil&Mai, p 364 Ehrlich 1, p. 13 Mei, 8-8.1 ref.	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells gravitational well - rubber diaphragm gravitational well on overhead projector gravitational well on overhead projector	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.12 1L20.12	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from an large embroidery hoop and Spandex. A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector. Making a Lucite 1/R surface for use on the overhead projector. See 8B40.35.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 1056 Bil&Mai, p 364 Ehrlich 1, p. 13 Mei, 8-8.1 ref. Ehrlich 1, p. 14	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells gravitational well - rubber diaphragm gravitational well on overhead projector gravitational well on overhead projector gravitational deflection on overhead projector	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.12 1L20.12 1L20.12	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from an large embroidery hoop and Spandex. A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector. Making a Lucite 1/R surface for use on the overhead projector. See 8B40.35. Draw a straight line on an overhead transparency. Tape the transparency into the shape of a cone and note that the original straight line is now a curve. The massive object that causes the curved space-time distortion is assumed to lie at the apex of the cone.
PIRA 1000 UMN, 1L10.50 PIRA 200 PIRA 1000 - Old Mei, 8-8.2 D&R, M-822, S- 065, & S-075 AJP 70(1), 1056 Bil&Mai, p 364 Ehrlich 1, p. 13 Mei, 8-8.1 ref.	gravitational field model gravitational field model Orbits gravitational well - rubber diaphragm gravitational well - rubber diaphragm gravitational well gravitational wells gravitational well - rubber diaphragm gravitational well on overhead projector gravitational well on overhead projector gravitational deflection on	1L10.50 1L10.50 1L20.00 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.10 1L20.12 1L20.12	 photodiode mounted on a strip chart recorder with appropriate electronics to keep the spot centered on the diode. On making a rubber diaphragm type potential well. A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones. Measurement of the shape that results when a heavy ball is placed upon a flat rubber sheet. Also analyzes the orbits of marbles and coins as they roll across the surface. Additional comments on AJP 70(1), 48. A potential well made from a large embroidery hoop and Spandex. A potential well made from and embroidery hoop and clear plastic wrap for use on an overhead projector. Making a Lucite 1/R surface for use on the overhead projector. See 8B40.35. Draw a straight line on an overhead transparency. Tape the transparency into the shape of a cone and note that the original straight line is now a curve. The massive object that causes the curved space-time distortion is

		-	
Sut, M-131	elliptic motion	1L20.14	A ball rolling in a funnel or cone.
TPT 14(8),506	gravity surface	1L20.16	Using the Playskool Baby Drum Drop as a gravity surface.
Ehrlich 2, p. 66	orbits in a hemisphere	1L20.17	A steel ball bearing rolling in a transparent plastic hemisphere will precess in
Liincii 2, p. 00	orbits in a hernisphere	120.17	
		41.00.47	a predictable manner.
AJP 30(7),531	orbits in a wineglass	1L20.17	A properly shaped wine glass is used with ball bearings to show radius to
			orbit period, orbit decay, etc.
Mei, 15-1.16	orbits in a spherical cavity	1L20.18	Derivation of the period of a ball orbiting in a spherical cavity. Strobe
			photography verifies as a demo.
Mei, 8-8.3	rotating gravitational well	1L20.20	A ball placed in a rotating potential well demonstrates the path of a satellite.
	i eta ing grannanena nen		Use a variable speed motor to show escape velocity.
Chrlich 0 n 100	rotating gravitational wall	11 20 20	
Ehrlich 2, p. 133	rotating gravitational well	1L20.20	A ball placed in a rotating parabolic potential well can oscillate only up to a
			critical angular velocity.
Hil, M-17e	escape velocity	1L20.31	A Fake. Pour water into a can with a hole in it and then twirl around until
			"escape velocity" is reached. Show no water remains.
D&R, M-815	escape velocity	1L20.31	A spoof using a can with a hole in it that is twirled until " escape velocity" is
			reached.
Mei, 8-8.9	satellites	1L20.32	A very complex satellite simulator.
TPT 16(5),316	spin-orbit coupling	1L20.35	A spinning ball orbits in a watch glass with increasing radii until it escapes.
1F1 10(5),510	spin-orbit coupling	120.55	A spinning bail orbits in a watch glass with increasing radii until it escapes.
PIRA 1000	film "Motion of Attracting Bodies"	1L20.36	
UMN, 1L20.36	"Motion of Attracting Bodies" film	1L20.36	Meeks film, 6:30 min. Computer animated. Covers Newton's laws, Earth's
			gravity variations, satellite and binary orbits.
PIRA 1000	conic sections	1L20.40	
UMN, 1L20.40	conic sections	1L20.40	A dissectible cone is cut several ways to give a circle, ellipse, parabola, and
010111, 1220.40		120.40	
D: 07.04		41.00.40	hyperbola.
Disc 07-21	sections of a cone	1L20.40	The standard wood cone.
Hil, M-17b	drawing ellipses	1L20.45	The two nail and string method for ellipse drawing.
PIRA 1000	ellipse drawer	1L20.50	
UMN, 1L20.50	ellipse drawer	1L20.50	An aluminum bar with adjustable pegs and a loop of string for drawing the
,			ellipse.
D&R, S-400	ellipse drawing aids	1L20.50	A variety of acrylic ellipses with wooden handles for use on the chalk board.
Dart, 0 400		1220.00	A variety of activite enipses with wooden nandles for use on the chair board.
D : 07.00		41.00.54	
Disc 07-22	ellipse drawing board	1L20.51	The two nail and string method of drawing on paper.
AJP 44(4),348	orbit drawing machine	1L20.55	Design for orbit drawing machines for use on the overhead projector. A
			simple one draws elliptical orbits only, an elaborate one draws general
			Coulomb orbits.
Mei, 10-2.15	dry ice puck orbits	1L20.61	A dry ice puck on a large table is tethered through a hole in the center to a
11101, 10 2.10		1220.01	vacuum ping pong ball device under the table that gives an inverse square
M : 40 0 40		41.00.00	law force. Construction details p.573.
Mei, 10-2.16	dry ice puck Kepler's law	1L20.62	A dry ice puck has a magnet mounted vertically with a second one below the
			table which may be inverted to show both attraction and repulsion.
Hil, M-17c	dry ice puck Kepler's law	1L20.62	A strong magnet is placed under the air table and a magnetic puck with a
			light is photographed.
Hil, M-17d	air table Kepler's laws	1L20.62	With a strong magnet below the table, take strobe photos of a magnetic puck
,			to demonstrate equal areas. TPT 8(4),244.
Mai 10 2 17	dry ice puck Kepler's law	1L20.63	
Mei, 10-2.17			Motor at the center of the table with a special pulley arrangement.
AJP 34(11),1063	areal velocity conservation	1L20.64	Analyze a strobe photograph of one cylindrical magnet on dry ice
			approaching another and deflecting.
AJP 37(11)1134	fancy air puck Kepler's law	1L20.65	The puck has a variable thruster and is of variable mass. A Peaucellier
			linkage is used to apply central force.
AJP 29(8),549	"gravity" with magnetic field	1L20.66	Drop a ball near a magnetron magnet and watch it curve around about 150
	g,		degrees.
Ebrlich 2 n 64	airaular arhit many impacta	1L20.67	0
Ehrlich 2, p. 64	circular orbit - many impacts	120.07	A ball traveling in a straight line can be made to move in a circular orbit by
			delivering many impacts at right angles to its direction of motion with a pen.
Sut, M-130	inverse square law motion	1L20.69	Pointer to A-62, A-63. Very crude models of planetary motion.
PIRA 1000	film "Planetary Motion and	1L20.71	
*	Kepler's Laws"		
LIMNI 11 20 71	•	11 20 71	Maaka film 9:45 min. Computer Animated Shows orbits of the planets
UMN, 1L20.71	"Planetary Motion and Kepler's	1L20.71	Meeks film, 8:45 min. Computer Animated. Shows orbits of the planets,
	Laws"		covers Kepler's second and third laws.
	WORK AND ENERGY	1M00.00	
	Work	1M10.00	
PIRA 1000	shelf and block	1M10.10	
UMN, 1M10.10	shelf and block	1M10.10	Lift a block up and set it on a shelf.
Bil&Mai, p 78	shelf and block	1M10.10	
			בות מ טוטטג עף מוע שבו זו עף טון מ שופון טו מ נמטופ.
PIRA 1000	block on table	1M10.15	

July 2015

Demonstration Bibligrqaphy

	5 1 1 7	-	
UMN, 1M10.15	block on table	1M10.15	
PIRA 1000	carry a block	1M10.16	
UMN, 1M10.16	carry a block	1M10.16	Just carry a block around.
Bil&Mai, p 78	carry a block		Just carry a block around.
PIRA 200	pile driver		Drive a nail into a block of wood with a model pile driver.
UMN, 1M10.20	pile driver		A model pile driver pounds a nail into wood.
F&A, Mv-1	pile driver		A 10 lb block guided by side rails falls onto a nail in wood.
Sut, M-133	pile driver		Drive a nail into a block of wood with a model pile driver.
Bil&Mai, p 83	pile driver	1M10.20	
			disposal tube over the nail and drop a 1000 g. mass into the tube. Measure how far the nail is driven into the wood.
Disc 03-07	pile driver	11/10/20	
PIRA 1000	pile driver with pop cans	1M10.20 1M10.25	Drop a weight onto a hair in wood.
UMN, 1M10.25	pile driver with soda cans		Smash pop cans with a pile driver.
F&A, Mv-3	work to remove tape		Pull off a piece of tape stuck to the lecture bench.
	Simple Machines	1M20.00	
PIRA 1000	simple machine collection	1M20.01	
Disc 04-06	simple machines	1M20.01	A collection of simple machines is shown.
PIRA 200	pulleys	1M20.10	
PIRA 500 - Old	pulleys	1M20.10	
UMN, 1M20.10	pulleys	1M20.10	An assortment of large pulleys can be rigged several ways.
Sut, M-45	pulleys	1M20.10	Demonstrate what you have.
PIRA 1000	pulley advantage	1M20.11	
UMN, 1M20.11	pulley advantage	1M20.11	
			side. Repeat with a mass hanging from a single pulley in a loop of string.
Disc 04-04	pulley advantage	1M20.11	Hang a 10 newton weight on a string passing over a pulley and measure the
			force with a spring scale, then hang the weight from a free running pulley.
TDT 16(0) 645	pulleys	11/20 12	Dedegeony Cood diagram
TPT 16(9),645 PIRA 1000	pulleys pulley and scales	1M20.15	Pedagogy. Good diagram.
UMN, 1M20.15	pulley and scales		Same as encyclopedia disc 04-05.
Disc 04-05	pulley and scales		This is a counter intuitive demonstration. A frame containing a spring scale
0000400	pulley and soules	11120.10	and pulley hangs from another spring scale. Look it up.
PIRA 500	bosun's chair	1M20.20	
UMN, 1M20.20	bosun's chair		Use a single pulley to help the instructor go up.
AJP 44(9),882	bosun's chair	1M20.20	
			how to do this effectively.
Sut, M-46	bosun's chair	1M20.20	The instructor "lifts himself up by the bootstraps".
PIRA 1000	monkey and bananas	1M20.25	
UMN, 1M20.25	monkey and bananas	1M20.25	A wind up device and equal mass are placed at either ends of a string placed
			over a pulley.
AJP 33(4),348	monkey and bananas	1M20.25	A yo-yo and counterweight are suspended over a pulley. The counterweight
			and yo-yo rise and fall together.
AJP 33(8),662	monkey and the coconut	1M20.25	A steel yo-yo and steel counterweight suspended over two low friction
Ma: 10 5 4	olimbing monkov	11420.25	bearings.
Mei, 12-5.4	climbing monkey	11/120.25	A yo-yo and a counterweight are on opposite sides on a pulley. As the yo-yo
Hil, M-8e	climbing monkey	11/20 25	goes up and down, so does the counterweight. A steel yo-yo on one side of a pulley and a counterweight on the other. As
	climbing monkey	110120.25	the yo-yo goes up and down, so does the counterweight.
Sut, M-113	climbing monkey	1M20.26	Two equal masses are hung over a pulley, one of which is equipped with a
		1020.20	cord winding mechanism.
Sut, M-44	windlass	1M20.27	A model windlass is described.
F&A, Mb-7	climbing pirate	1M20.28	
Sut, M-47	fool's tackle		A diagram of the "fools tackle" is shown.
PIRA 500	incline plane	1M20.30	ů
UMN, 1M20.30	incline plane	1M20.30	
Mei, 6-3.1	screw and wedge	1M20.30	
			the relationship between a screw and a wedge. Diagram.
PIRA 1000	big screw as incline plane	1M20.35	
UMN, 1M20.35	big screw	1M20.35	3
			and incline.
TPT 33(1), 28	screw threads	1M20.36	
	lavera	41400.40	course thread vise vs. a fine thread vise.
PIRA 1000	levers	1M20.40	Show the three classes of lovers with a mass her nivet, and anying and
UMN, 1M20.40	levers	111/20.40	Show the three classes of levers with a mass, bar, pivot, and spring scale.

	5 1 1 7	-	
Sut, M-43	levers	1M20.40	The three classes of simple levers.
D&R, M-614	levers	1M20.40	A first class lever with movable pivot. Can also be used as a seesaw and
			brought in to balance with the appropriate mass/distance ratio's on each side
			of the pivot.
Disc 04-07	levers	1M20.40	A torque bar, spring scale, and pivot are used to illustrate the three classes
			of levers.
PIRA 1000	body levers	1M20.45	
TPT 16(6),403	body levers	1M20.45	Construction and use of a device representing body levers.
Hil, M-14c	wheel and axle	1M20.60	The PIC-Kit used for demonstrating simple machines.
Mei, 6-3.2	black box	1M20.99	Hide a mechanism in a box and try to deduce what is inside.
	Non-Conservative Forces	1M30.00	
PIRA 1000	air track collision/sliding mass	1M30.10	
UMN, 1M30.10	air track collision/sliding mass	1M30.10	An air glider with a mass that can be locked or free hits the end of the track.
F&A, Mw-1	air track collision/sliding mass	1M30.10	Compare the bounce of an air glider on an inclined air track with a mass that
			is attached tightly and loosely.
Sut, M-109	negative acceleration due to	1M30.15	A pendulum hits a tabletop, transferring a wood block rider to the tabletop.
	friction		Potential to kinetic energy is wasted in friction.
ref.	ref. friction blocks		see 1K20.16.
Hil, M-14e	the woodpecker	1M30.30	A toy bird slides down a rod giving up energy to friction and pecking. A "loose
			clamp" on the ringstand demo is also shown.
	Conservation of Energy	1M40.00	
PIRA 200	nose basher	1M40.10	A bowling ball pendulum is held against the nose and allowed to swing out
			and back.
UMN, 1M40.10	nose basher	1M40.10	
			swing.
TPT 22(6),384	nose basher, etc	1M40.10	5 1 1 1 1 1
E0 0 1 0			windows, collisions.
F&A, Mr-6	nose basher		A large pendulum bob is suspended from the ceiling. Do the nose basher.
Mei, 9-1.2	nose basher		Head against the blackboard, long pendulum.
Hil, M-14b	nose basher		Hold a bowling pendulum to the nose and let it go.
D&R, M-414	nose basher	11/140.10	Hold a bowling ball suspended from the ceiling against your nose and let it
Sprott 1 10	none bachar	11/10/10	swing out and back.
Sprott, 1.10	nose basher	11/140.10	A bowling ball is suspended from the ceiling with thin wire. Hold it against
Bil&Mai, p 89	nose basher	11/10/10	your nose and let is swing out and back. A bowling ball pendulum is held against the nose and allowed to swing out
Bilaiviai, p 09	nose basher	110140.10	and back.
Disc 03-14	nose basher / bb pendulum	1M/0 10	A bowling ball pendulum is held against the nose and allowed to swing out
DISC 03-14	nose basher / bb pendulum	11140.10	and back.
Mei, 9-1.7	recording pendulum motion	1M40 11	A complicated device uses a spark timer to record interchange of kinetic and
	recording periodicin meteri		potential energy in a swinging pendulum.
AJP 36(7),643	additional references	1M40.12	A letter noting that AJP 35(11),1094 has been published many times.
AJP 35(11),1094	weight of a pendulum		Suspend a pendulum from a double beam balance with a small block placed
/ 00 00(11),1001			under the opposite pan to keep the system level. Swing the pendulum so it
			just lifts a weight off the stopped pan.
Sut, M-17	swinging on the halyards	1M40.12	Swinging on the halyards to hoist a sail.
Sut, M-146	break a pendulum wire		Suspend a heavy bob on a weak wire. As the ball descends in its swing, the
	·		wire breaks.
Ehrlich 1, p. 76	accelerometer pendulum	1M40.12	An inexpensive accelerometer is the pendulum bob. When swung through
			an angle of 90 degrees the accelerometer shows 3 g's at the bottom of the
			swing.
AJP 41(9),1100	burn the pendulum wire	1M40.13	A Saran wrap pendulum support is burned to release the bob as it reaches
			the bottom of its swing. Measure the range of the bob.
PIRA 200	stopped pendulum	1M40.15	A pendulum started at the height of a reference line reaches the same height
			when a stop is inserted.
UMN, 1M40.15	stopped pendulum	1M40.15	A pendulum is started at the height of a reference line and returns to that
			height even when a stop is inserted.
F&A, Mr-3	stopped pendulum	1M40.15	A pendulum swing is started at the height of a reference line. A stop is
			inserted and the bob still returns to the same height.
D&R, M-414	stopped pendulum	1M40.15	A pendulum started at the height of a reference line reaches the same height
			when a stop is inserted.
AJP 71(11), 1115	stopped pendulum	1M40.15	The period of the interrupted pendulum is highly nonisochronous if the
			interruption is not located on the main verticals axis that contains the point of
			the suspension.
Bil&Mai, p 94	stopped pendulum	1M40.15	
			when a stop is inserted.

Ehrlich 2, p. 96	stopped pendulum	1M40.15	A pendulum started at a marked height reaches the same height when a nail
			or peg is inserted.
Disc 03-13	Galileo's pendulum	1M40.15	Intercept the string of a pendulum by a post at the bottom of the swing.
Sut, M-132	blackboard stopped pendulum	1M40.16	Do the stopped pendulum on the blackboard.
PIRA 200	loop the loop	1M40.20	A ball rolls down an incline and then around a vertical circle.
UMN, 1M40.20	loop the loop	1M40.20	A ball rolls down an incline and around a loop. Vary the initial height of the ball.
AJP 30(5),336	loop the loop	1M40.20	Apparatus Drawings Project No. 26: The vertical circle is made by flexing a
TDT 15(6) 269	loop the loop	11110 20	thin stainless steel strip in a framework of Plexiglas.
TPT 15(6),368	loop the loop	1M40.20	
F&A, Mm-5	loop the loop		.
Mei, 12-5.7	loop the loop		An apparatus to do the loop the loop quantitatively. Construction details in appendix, p.589.
Sut, M-157	loop the loop		A ball rolls down an incline and then around a vertical circle.
Hil, M-16b.2	loop the loop	1M40.20	Standard loop the loop.
D&R, M-422, M- 674	loop the loop	1M40.20	Ball rolls down an incline and then around a vertical circle. Also, Hot Wheels track.
Bil&Mai, p 140	loop the loop	1M40.20	A golf ball is rolled down a bookshelf track bent to form an incline and loop.
Disc 06-09	loop the loop	1M40 20	A rolling ball must be released at 2.7 times the radius of the loop.
AJP 42(2),103	water loop the loop		A water stream "loop the loop" demonstrates the effect of centripetal forces
			much more dramatically than when a ball is used.
Ehrlich 1, p. 57	loop the loop on an incline	1M40.22	A ball is rolled down a loop the loop track that is resting on a gently inclined flat plate. The ball completes the loop the loop only when released above a certain height.
	reverse less the less	11110 00	certain neight.
PIRA 1000	reverse loop the loop	1M40.23	The version and the last is placed as a part backed to a falling many that
UMN, 1M40.23	reverse loop the loop	1M40.23	The reverse loop-the-loop is placed on a cart hooked to a falling mass that produces an acceleration just large enough to make the ball go around backwards into the cup.
AJP 29(1),48	reverse loop-the-loop	1M40.23	With a little practice, one can pull a reverse loop-the-loop with a large and prolonged acceleration. Plans and procedures.
Mei, 12-5.5	reverse loop the loop	1M40.23	In the reverse loop-the-loop a ball rolls up an incline and around a loop into a cup as the whole apparatus is accelerated.
AJP 55(9),826	loop the loop with slipping analysis	1M40.24	Analysis of loop the loop, also dealing with slipping.
PIRA 1000	energy well track	1M40.25	
PIRA 1000 Ehrlich 1, p. 62	energy well track	1M40.25 1M40.25	
PIRA 1000 Ehrlich 1, p. 62	energy well track energy well trough	1M40.25 1M40.25	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to
			Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the
Ehrlich 1, p. 62 Disc 03-12	energy well trough energy well track	1M40.25 1M40.25	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000	energy well trough energy well track ball in a trough	1M40.25 1M40.25 1M40.30	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30	energy well trough energy well track ball in a trough ball in a track	1M40.25 1M40.25 1M40.30 1M40.30	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9	energy well trough energy well track ball in a trough ball in a track ball in a trough	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9	energy well trough energy well track ball in a trough ball in a track ball in a trough	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30 1M40.30	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track air track potential well	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30 1M40.30	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track air track potential well	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track air track potential well ball in curved tracks	1M40.25 1M40.25 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.31	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000 UMN, 1M40.33	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.32 1M40.33	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but different radii.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track adjustable track	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.33 1M40.33	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000 UMN, 1M40.33 F&A, Mr-2	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track adjustable track ball in a track	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.32 1M40.33 1M40.33 1M40.33	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but different radii.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000 UMN, 1M40.33 F&A, Mr-2 Disc 03-15	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track adjustable track ball in a track triple track energy conservation	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.31 1M40.33 1M40.33 1M40.33 1M40.33	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but different radii.
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000 UMN, 1M40.33 F&A, Mr-2 Disc 03-15 PIRA 1000	energy well trough energy well track ball in a trough ball in a trough ball in a trough ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track adjustable track ball in a track triple track energy conservation roller coaster	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.33 1M40.33 1M40.33 1M40.33 1M40.35	 Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but different radii. A large steel ball rolls on a bent angle track with differing slopes. Balls released from three tracks with identical initial angles rise to the same height independent of the angle of the second side of the "v". A ball rolls down a track with four horizontal sections of differing heights. The
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000 UMN, 1M40.33 F&A, Mr-2 Disc 03-15 PIRA 1000 UMN, 1M40.35	energy well trough energy well track ball in a trough ball in a track ball in a trough ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track adjustable track ball in a track triple track energy conservation roller coaster roller coaster	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.32 1M40.33 1M40.33 1M40.33 1M40.35 1M40.35	 Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but different radii. A large steel ball rolls on a bent angle track with differing slopes. Balls released from three tracks with identical initial angles rise to the same height independent of the angle of the second side of the "v". A ball rolls down a track with four horizontal sections of differing heights. The velocity is measured at each section. Optoelectrical detectors measure the speed of a ball at specific points on a
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000 UMN, 1M40.33 F&A, Mr-2 Disc 03-15 PIRA 1000 UMN, 1M40.35 AJP 59(3),283	energy well trough energy well track ball in a trough ball in a trough ball in a trough ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track adjustable track ball in a track triple track energy conservation roller coaster roller coaster experiment	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.31 1M40.33 1M40.33 1M40.33 1M40.35 1M40.35 1M40.35	 Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but different radii. A large steel ball rolls on a bent angle track with differing slopes. Balls released from three tracks with identical initial angles rise to the same height independent of the angle of the second side of the "v". A ball rolls down a track with four horizontal sections of differing heights. The velocity is measured at each section. Optoelectrical detectors measure the speed of a ball at specific points on a
Ehrlich 1, p. 62 Disc 03-12 PIRA 1000 UMN, 1M40.30 Mei, 7-1.5.9 Bil&Mai, p 91 Mei, 9-1.6 Mei, 11-1.7 Hil, M-14a PIRA 1000 UMN, 1M40.33 F&A, Mr-2 Disc 03-15 PIRA 1000 UMN, 1M40.35 AJP 59(3),283 PIRA 500	energy well trough energy well track ball in a trough ball in a trough ball in a track ball in a trough ball in a track deformed air track air track potential well ball in curved tracks triple track adjustable track ball in a track triple track energy conservation roller coaster roller coaster roller coaster experiment ballistic pendulum with .22	1M40.25 1M40.30 1M40.30 1M40.30 1M40.30 1M40.31 1M40.31 1M40.33 1M40.33 1M40.33 1M40.35 1M40.35 1M40.35 1M40.35	Make a one dimensional double well potential from flexible grooved rubber sheet to illustrate the conservation of energy. The transition from order to chaos may also be observed. A ball can escape the energy well when released from a point above the peak of the opposite side. A ball rolls in an angle iron bent into a "v" shape. Roller coaster car on a track runs down one track and up another of a different slope. A ball rolls in an angle iron bent into a "v" shape. Deform a 5 m air track into a parabola (1") at center and show oscillations both with the track leveled and with one end raised. Curve an air track into an arc of a vertical circle. Balls are rolled down a series of curved tracks of the same height but different radii. A large steel ball rolls on a bent angle track with differing slopes. Balls released from three tracks with identical initial angles rise to the same height independent of the angle of the second side of the "v". A ball rolls down a track with four horizontal sections of differing heights. The velocity is measured at each section. Optoelectrical detectors measure the speed of a ball at specific points on a roller coaster track. Could be adapted for lecture demonstration.

Mei, 9-5.15			•
	ballistic pendulum	1M40.40	Shoot a .22 straight up into a suspended block of wood.
Sut, M-124	ballistic pendulum	1M40.40	The standard rifle ballistic pendulum setup.
Hil, M-15a.3	ballistic pendulum	1M40.40	Fire a air-gun into a wood block with a paraffin center.
,			r në a an-guri mo a wood block with a paranin center.
PIRA 1000	Beck ballistic pendulum	1M40.41	
AJP 53(3),267	modify the ballistic pendulum	1M40.41	Ignoring rotational dynamics results in a large error. Convert to a rotational
			dynamics device with an additional metal sleeve.
AJP 36(12),1161	Beck ballistic pendulum	1M40.41	Comprehensive review of the Beck ballistic pendulum.
Hil, M-13c	ballistic pendulum	1M40.41	The commercial ballistic pendulum.
Disc 05-11	ballistic pendulum	1M40.41	The commercial swinging arm ballistic pendulum.
AJP 32(3),229	ballistic pendulum		A catapult/ballistic pendulum made of inexpensive materials.
AJP 40(3),430	bow and arrow ballistic pendulum		The relation between bending of the bow and the velocity of the arrow was
AJF 40(3),430	bow and arrow ballistic periodium	11040.45	•
			found to be linear.
TPT 17(6),393	bow and arrow ballistic pendulum	1M40.43	
			Includes slider.
Bil&Mai, p 81	bow and arrow ballistic pendulum	1M40.43	A bathroom scale is used to measure the force needed to draw a bow to
			certain positions. Graph the results and propose a method to determine how
			much work was done.
AJP 36(6),558	blow gun ballistic pendulum	1M40.45	
//01/00(0),000	Siow guil ballistic periodian	1111-0.40	the aiming point to the hit point on the target block.
	wentional halling in an abuluma	4140 47	
AJP 31(9),719	vertical ballistic pendulum	11/140.47	A ball is dropped into a box of sand suspended from a spring and the
			extension of the spring is measured.
AJP 38(4),532	trouble with the ballistic pendulum	1M40.49	An analysis of the error introduced with non-parallel ropes.
TPT 11(7),426	ballistic pendulum tutorial	1M40.49	Good tutorial on the ballistic pendulum.
PIRA 500	big yo-yo	1M40.50	
UMN, 1M40.50	big yo-yo		A large disc is hung from bifilar threads wrapped around a small axle.
AJP 41(11),1295	big yo-yo	11/140.50	A shop drawing of axles with three different radii used to make a big yo-yo
			out of a force table.
F&A, Ms-2	big yo-yo	1M40.50	A large (2') disc is suspended from a small axle so the string unwinds on the
			way down and rewinds on the way up.
Mei, 12-5.2	big yo-yo	1M40.50	Two large discs hung from bifilar thread wrapped around a small axle.
Sut, M-164	big yo-yo	1M40.50	A large yo-yo is made by suspending a large spool from two threads wrapped
, -			around opposite ends of the axle.
Hil, M-19b.2	big yo-yo	1M40 50	A picture of a commercial Maxwell's wheel.
			•
Ehrlich 1, p. 53	big yo-yo	1M40.50	
			very slowly. Can also be shown by running the wheel on its axle down
			inclined meter sticks.
Disc 06-08	Maxwell's yoyo	1M40.50	Release a large yo-yo and it will bottom out and wind up again.
D100 00 00			
TPT 28(2),92	cheap and simple yo-yos		Yo-yos made with cardboard sides and paper towel centers routinely gave
	cheap and simple yo-yos		Yo-yos made with cardboard sides and paper towel centers routinely gave time of fall within 1% of predicted
TPT 28(2),92		1M40.51	time of fall within 1% of predicted
	cheap and simple yo-yos swinging arm	1M40.51	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to
TPT 28(2),92 Mei, 9-5.11	swinging arm	1M40.51 1M40.55	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution.
TPT 28(2),92		1M40.51 1M40.55	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8	swinging arm spinner and pendulum	1M40.51 1M40.55 1M40.56	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle.
TPT 28(2),92 Mei, 9-5.11	swinging arm	1M40.51 1M40.55	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8	swinging arm spinner and pendulum	1M40.51 1M40.55 1M40.56	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8	swinging arm spinner and pendulum	1M40.51 1M40.55 1M40.56	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500	swinging arm spinner and pendulum Pany device height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60	swinging arm spinner and pendulum Pany device height of a ball height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500	swinging arm spinner and pendulum Pany device height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60	swinging arm spinner and pendulum Pany device height of a ball height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60	swinging arm spinner and pendulum Pany device height of a ball height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball height of a ball 1-D trampoline	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball height of a ball 1-D trampoline	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball height of a ball 1-D trampoline	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.61	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline x-squared spring energy	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.60	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline x-squared spring energy dependence	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.61 1M40.63	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline x-squared spring energy dependence x-squared spring energy	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.61	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline x-squared spring energy dependence	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.61 1M40.63	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline x-squared spring energy dependence x-squared spring energy	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.61 1M40.63	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61 PIRA 1000 Disc 03-10	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline x-squared spring energy dependence x-squared spring energy dependence	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.63 1M40.63	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches.
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61 PIRA 1000 Disc 03-10 PIRA 1000	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline 1-D trampoline	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.63 1M40.63 1M40.63	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches. Measure the height of recoil of an air track glider on an incline after compressing a spring to different lengths. Two identical dart guns, shoot a standard dart with one, and a dart with a
TPT 28(2),92 Mei, 9-5.11 F&A, Mt-8 Mei, 9-1.1 PIRA 500 UMN, 1M40.60 AJP 29(10),709 Mei, 9-1.4 PIRA 1000 UMN, 1M40.61 PIRA 1000 Disc 03-10 PIRA 1000	swinging arm spinner and pendulum Pany device height of a ball height of a ball height of a ball 1-D trampoline 1-D trampoline 1-D trampoline	1M40.51 1M40.55 1M40.56 1M40.57 1M40.60 1M40.60 1M40.60 1M40.61 1M40.63 1M40.63 1M40.63	time of fall within 1% of predicted A ball is dropped into a pivoting capturing arm from the height required to make it just complete one revolution. A ball suspended as a bifilar pendulum hits a ball of equal mass free to rotate in a horizontal circle. A complicated apparatus converts elastic potential energy (spring) into rotational potential energy and back. Same as AJP 29(10),709. Rotate a 15.3 in radius bar at 1, 2, or 3 rev/sec, a mechanism releases a ball at the end of the bar at the moment the ball is traveling vertically. The ball rises 1, 4, or 9 ft. A device to project a ball upward at different known velocities to show dependence of kinetic energy on the square of velocity. A horizontal string passes over a pulley down to a spring fixed at one end. Place a spitball at the center of the horizontal section and pull it down until the spring extends unit lengths. Compare the heights the spitball reaches.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
Bil&Mai, p 64	spring gun - dart gun	1M40.64	Two identical dart guns, shoot a standard dart with one, and a dart with a
Dilamai, p 04	spring gun - dan gun	110140.04	marble epoxied to the end with the other. Aim up, down, or horizontal, and ask which dart will reach the target first.
PIRA 1000	height of a spring launched ball	1M40.65	-
AJP 31(5),392	height of a spring-launched ball	1M40.65	A 3/4" steel ball is launched upward by a "stopped spring" (shown), from which the initial velocity is calculated.
Bil&Mai, p 87	height of a spring launched ball	1M40.65	Place a golf ball on a depressed spring and then release. The ball will be launched upward about 30 cm. Redo the demonstration with a Ping Pong ball which goes much higher.
Disc 03-08	spring ping pong gun	1M40.65	
PIRA 1000	mechanical jumping bean	1M40.66	
UMN, 1M40.66	mechanical jumping bean	1M40.66	Same as TPT 1(3),108.
TPT 1(3),108	mechanical jumping bean	1M40.66	A mailing tube jumps when a hidden mass moves upward under rubber band power.
Mei, 9-3.3	jumping tube	1M40.66	A spring loaded tube jumps two or three times its own height when triggered. Diagram.
PIRA 1000	spring jumper	1M40.67	
D&R, M-406	spring jumper	1M40.67	
Ehrlich 2, p. 89	spring jumper	1M40.67	and observe the spring launch the pen upward.
Disc 03-09	spring jumper	1M40.67	
AJP 53(11),1114	muzzle velocity - spring constant	1M40.68	muzzle velocity. (15% of the energy is lost.)
AJP 28(7),679	rachet for inelastic collisions	1M40.69	inelastic collision with the decrease in kinetic energy stored for later release
Ma: 0.4.0	des series de se	41440 74	by tripping the ratchet.
Mei, 9-1.8	dropping bar	1M40.71	Lift a horizontal bar suspended from two springs and drop it through a photocell to measure velocity. Examine the exchange between gravitational, elastic potential, and kinetic energy.
TPT 13(3),169	tension in wire when one mass swings	1M40.72	
TPT 52(2), 88	air track glider and springs	1M40.73	
Mei, 11-1.12	air track glider and falling mass	1M40.74	
PIRA 1000	obedient can	1M40.75	
Sprott, 1.11	obedient can, come-back can	1M40.75	A can rolls across a table, stops then comes back to where it started due to
			energy it stores winding an elastic band as the can rolls out.
Mei, 11-2.3f	air disc	1M40.76	rotational (disc) and translational (weight) kinetic energy with potential
AJP 53(10),962	push-me-pull-you sternwheeler	1M40.80	energy. Both upstream and downstream motion is possible in a system with a water
AJF 55(10),902	pusit-me-puit-you sternwheeler	110140.00	stream running between the rails and a waterwheel mounted on the rear axle of the cart.
Mei, 9-1.3	sloping cart	1M40.85	
PIRA 1000	rattleback	1M40.90	
UMN, 1M40.90	rattleback	1M40.90	
Ehrlich 1, p. 71	rattleback	1M40.90	A piece of carved wood will reverse its direction of spin only when spun in one direction.
TPT, 37(2), 80	curious Celts and riotous rattlebacks	1M40.90	The rattleback enigma further explored by making them out of plastic spoons.
PIRA 1000	high bounce paradox	1M40.91	
Bil&Mai, p 85	high bounce paradox	1M40.91	Flip a half racquetball inside out and drop on the floor. It bounces back higher than the height from which it was dropped.
Ehrlich 1, p. 63	high bounce paradox	1M40.91	Cut a rubber ball in half and flip inside out. Drop it from a low height and watch it bounce to a much higher height.
Disc 03-11	high bounce paradox	1M40.91	
F&A, Mp-10	acrobat	1M40.93	
TPT 39(8), 471	trebuchet	1M40.95	
			classical trebuchet to maximize projectile range.

TPT 32(8), 476 TPT 24(9), 556	trebuchet catapult		The trebuchet as an example of medieval energy conservation. Students chose between two catapult designs to launch eggs over a wall
TPT 47(9), 574	siege engines / onager	1M40.99	while maximizing distance beyond the wall. The classic onager siege engine and three improvements that can maximize projectile range.
PIRA 1000	Mechanical Power Prony brake	1M50.00 1M50.10	
UMN, 1M50.10	Prony brake	1M50.10	Turn a large hand cranked pulley with the belt fastened to two spring scales.
F&A, Mv-2	Prony brake	1M50.10	A belt fastened to two spring scales is strung under tension around a large hand cranked pulley.
Mei, 12-4.1	Prony brake	1M50.10	How to make a self adjusting Prony brake that provides constant torque.
Mei, 12-4.2	Prony brake	1M50.10	Each end of the belt for a Prony brake is attached to a spring scale.
Sut, M-135	Prony brake	1M50.10	Measuring your horsepower by Prony brake and running up stairs. Hints on making a human sized Prony brake.
Sut, M-134	Prony brake	1M50.10	Measuring delivered horsepower by turning a pulley under a stationary belt attached to spring scales at each end.
Bil&Mai, p 93	Prony brake - stairs	1M50.10	
Disc 03-18	Prony brake	1M50.10	
Sut, M-136	power bicycle	1M50.20	
ref.	ref. hand crank generator	1M50.30	see 5K40.80.
Mei, 9-3.7	rocket wheel	1M50.50	after effect of the first has been measured showing the power developed by a
	LINEAR MOMENTUM AND	1N00.00	rocket is a function of its velocity
	COLLISIONS		
	Impulse and Thrust	1N10.00	
PIRA 1000	collision time pendula	1N10.10	
UMN, 1N10.10	collision time pendula	1N10.10	An electronic timer measures the impact time as two pendula collide.
F&A, Mw-4	collision time pendula	1N10.10	Two metal wire bifilar pendula are suspended as part of a circuit to measure contact time on a counter.
Mei, 9-4.3	time of contact	1N10.11	A steel ball suspended from a conducting wire hits a vertical steel plate and the electrical signal gives time of contact.
AJP 43(8),733	fleeting event timer	1N10.12	
Mei, 9-4.4	contact time by oscillator	1N10.12	
Mei, 9-4.1	measuring impulse	1N10.13	
Mei, 9-4.2	measuring impulse by induction	1N10.14	·
PIRA 500	silicone ball on blackboard	1N10.15	
UMN, 1N10.15	silicone ball on blackboard	1N10.15	Throw a silicone ball at a dirty blackboard, measure the diameter of the mark, and place weights on the silicone ball until it is squashed to the same
AJP 51(5),474	ball on the blackboard	1N10.15	diameter. Compare the imprint of a sponge ball thrown against a dirty blackboard with
			the force required to get an equal size deformation and calculate the interaction time.
Sut, M-107	deform clay	1N10.16	Drop a 50 g mass on some softened clay, then add masses slowly to another blob of clay until the depression is equal.
PIRA 200	egg in a sheet	1N10.20	Throw an egg into a sheet held by two students.
UMN, 1N10.20	egg in a sheet	1N10.20	Throw an egg into a sheet held by two students.
D&R, M-516	egg in a sheet	1N10.20	Throw an egg into a sheet held by two students.
Bil&Mai, p 100	egg in a sheet	1N10.20	Throw an egg into a sheet held by two student. Make sure the bottom of the sheet Is pulled upward to form a pocket.
Ehrlich 1, p. 32	egg in a sheet	1N10.20	Throw an egg full force into a sheet held by two students.
Disc 05-09	egg in a sheet	1N10.20	Throw an egg at a sheet held by two people.
PIRA 500	drop egg in water	1N10.25	
UMN, 1N10.25	drop an egg in water	1N10.25	
D&R, M-520	drop an egg on foam	1N10.25	Drop an egg from a height of 1 meter onto the floor and then onto a thick
			piece of foam.
PIRA 500	pile driver with foam rubber	1N10.30	Prook a har of Diovigian supported on two blocks with a nile driver. Add form
UMN, 1N10.30	pile driver with foam rubber	1N10.30	Break a bar of Plexiglas supported on two blocks with a pile driver. Add foam to a second bar and it doesn't break.
Disc 05-10	piledriver with foam rubber	1N10.30	A pile driver breaks a plastic sheet supported at the sides. Add a piece of foam rubber and the plastic does not break.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
PIRA 1000	car crashes	1N10.35	
UMN, 1N10.35	car crashes	1N10.35	Roll a car down an incline to smash beer cans. Vary the bumpers to change
TPT 13(3),173	car crashes	1N10.35	the impulse. A cart rolls down an incline and smashes a beer can against a brick wall. Four interchangeable bumpers are used to vary the impulse.
AJP 41(11),1294	car saftey on the air track	1N10.36	Models of a person with a head, seat belt and a head rest are placed on an air track glider.
PIRA 1000	auto collision videodisc	1N10.40	all track glider.
UMN, 1N10.40	auto collision videodisc	1N10.40	Show segments of the video disc.
AJP 36(7),637	impulse on the air track	1N10.50	-
Mei, 9-4.14	impulse acceleration track	1N10.50	
AJP 51(9),783	karate blows	1N10.55	Not many physics instructors will be able to perform these demonstrations.
AJP 43(10),845	karate strikes	1N10.55	Analysis of karate strikes and description of breaking demonstrations.
Mei, 9-4.11	water stream impulse	1N10.56	
TPT 9(7),413	jet velocity by impulse	1N10.57	The impulse supplied by the counterweight equals the loss of horizontal momentum of a jet of water. The exit velocity of the water jet is then
Mei, 9-4.6	thrust with air carts	1N10.63	calculated and checked by measuring range. Two carts, one with an air nozzle, the other with a reversible hemispherical deflector can be connected by a spring to show forces internal and external to a system and the effects on thrust resistance and thrust reversal.
AJP 33(10),784	water jet thrust	1N10.64	Measure the vertical height of a water jet, collect water to determine the flow, and match the deflection of the nozzle by hanging weights with the flow turned off.
PIRA 1000	model rocket impulse	1N10.70	
TPT 13(7),435	model rocket impulse	1N10.70	Using solid fuel model rocket engines as an impulse generator, demonstrate the impulse-momentum theorem by measuring the final velocity.
TPT 18(4),315	model rocket thrust	1N10.71	A device provides a method of measuring the thrust of a model rocket engine and recording it on graph paper. Impulse is calculated. Clever.
Mei, 9-3.1	model rocket thrust	1N10.72	
Mei, 9-3.5	model rocket thrust	1N10.74	An apparatus designed to measure the thrust of a rocket is used to check the manufacturer's specifications.
Mei, 9-3.8	Dyna-Jet thrust	1N10.75	Thrust measurements are made on a pulse jet engine (Dyna-Jet).
PIRA 1000	fire extinguisher thrust	1N10.80	
TPT 12(8),488	fire extinguisher thrust	1N10.80	Measure the thrust of a fire extinguisher.
TPT 14(2),112	measuring impulse	1N10.81	Complete treatment of the fire extinguisher cart to get exhaust velocity and average thrust for a variable mass system.
Mei, 11-1.15	air glider rocket thrust	1N10.85	A device (diagram) measures thrust of a gas propelled air glider. Speed and acceleration are determined by strobe photography.
Mei, 9-3.4	thrust independent of medium	1N10.90	A rocket pendulum maintains the same angle of recoil in air or water showing thrust is independent of medium.
	Conservation of Linear Momentum	1N20.00	
PIRA 500	see-saw center of mass	1N20.10	
UMN, 1N20.10	see-saw center of mass	1N20.10	Two carts magnetically repel each other on a teeter-totter. Mass of cars can be varied.
AJP 33(1),xxv	see-saw center of mass	1N20.10	Magnet carts on a balanced board repel when a constraining string is burned. Also load carts unequally.
F&A, Md-3	magnetic reaction carts	1N20.10	which is burned.
F&A, Mp-16	see-saw center of mass	1N20.10	string is burned. Carts may be loaded unequally.
Mei, 9-2.4	see-saw center of mass	1N20.10	A string holding two carts with opposing horseshoe magnets is burned and they remain balanced on a board as they repel.
Hil, M-15c	see-saw center of mass	1N20.10	Two spring loaded carts repel each other on a balanced board.
Bil&Mai, p 156	see-saw center of mass	1N20.10	Two spring loaded carts repel each other on a balanced dynamics track.
Disc 02-26	see-saw reaction carts	1N20.10	Two spring loaded carts repel each other on a balanced board.
Ehrlich 1, p. 84	rolling ball on balance beam	1N20.11	A ball rolls in the groove on a balance beam. The ball exhibits oscillatory motion for only precisely determined initial conditions.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
TPT 10(9),531	rolling ball on air glider	1N20.12	A ball rolls down a small inclined plane mounted on an air trackglider. Watch the glider start and stop.
PIRA 1000	car on a rolling board	1N20.15	
UMN, 1N20.15	car on a rolling board	1N20.15	Start and stop a radio controlled car on a board on rollers.
Sut, M-123	car on a rolling board	1N20.15	A straight train track is mounted on a movable board. Changing the weighting of the train will change the relative velocities of the train and track. Use a circular track for conservation of angular momentum.
Ehrlich 2, p. 82	car on a rolling board	1N20.15	A spring wound toy car on a ruler which is placed on rollers.
Disc 02-20	car on rolling board	1N20.15	Use a radio-controlled car on the board on a series of rollers.
Mei, 6-4.9	car on the road		A drawing board rides on perpendicular sets of steel rods to give 2D freedom of motion. Set a toy wind up car on it.
AJP 33(10),857	train on an air track	1N20.17	An HO gauge train and 36" track mounted on a air glider.
PIRA 200	sprring apart air track gliders	1N20.20	
UMN, 1N20.20	spring apart air track glider		Two spring loaded gliders on the air track initially held together by a electromagnet repel and are timed photoelectrically.
F&A, Md-4	spring apart air track glider	1N20.20	
	opining apart an track glider	11120.20	an electromagnet.
Mei, 11-1.10	spring apart air track glider	1N20.20	
Bil&Mai, p 110	spring apart dynamics carts	1N20.20	A spring between two dynamics carts is triggered. Use carts of equal mass and then double the mass of one cart.
Disc 02-19	reaction gliders momentum	1N20.20	Burn a string holding a compressed spring between two unequal mass air
	conservation		gliders.
F&A, Md-1	old reaction carts	1N20.21	Two spring loaded carts on a track with light bulbs at the ends of the track to indicate simultaneous arrival.
Mei, 7-1.5.5	old reaction cars	1N20.21	Two spring loaded cars on a track fly apart. If they reach the ends at the same time, lights flash.
Mei, 9-5.16	repelling gliders	1N20.22	Two gliders with magnets set to repel are tied together with string on an air track. The gliders start at rest, the string is burned so that they fly apart, and a measured distance for each glider to traverse is timed.
D&R, M-554	repelling carts	1N20.22	Two carts, one spring loaded, are placed together. Starting at rest, the spring is triggered, the carts fly apart, and a measured distance for each cart
Ehrlich 1, p. 59	repelling balls	1N20.22	to traverse is timed. A variation with balls inside an embroidery hoop being driven apart by a sharp blow with the handle of a table knife. Where they collide is dependent
Ehrlich 2, p. 81	repelling balls	1N20.22	on their mass ratio. Two balls on a grooved ruler have a folded index card between them. When released the index card pushes the balls apart with recoil speeds having the
		4100.00	inverse ratio of their masses.
AJP 41(1),136	magnetic release	1N20.23	The magnetic release for the spring apart air track gliders.
Ehrlich 2, p. 35	recoiling magnets	1N20.24	
TDT 00/0\ 440		4100.04	When released they will fly apart into a symmetrical configuration.
TPT 28(2),112	recoiling magnets	1N20.24	Hold two small horseshoe magnets together on an overhead projector and observe the recoil.
PIRA 1000	elastic band reaction carts	1N20.25	Dull an art two parts of upper upl many attached with an electic band
UMN, 1N20.25	elastic band reaction carts	1N20.25	Pull apart two carts of unequal mass attached with an elastic band.
Sut, M-121	elastic band reaction cars	1N20.25	A stretched rubber band pulls two carts together with accelerations inversely proportional to their masses.
Mei, 9-4.16	exploding pendula	1N20.30	Two large pendula of unequal mass are held together compressing a spring. When the spring is released, two students mark the maxima.
Sut, M-120	reaction swings	1N20.31	Planks with bifilar supports may be used in place of reaction carts.
AJP 41(7),922	exploding basketballs	1N20.32	Explode a firecracker between a light and heavy basketball that are
			suspended near the ceiling. Details of the basketball holder are given.
Mei, 9-4.19	big bertha	1N20.32	A dry ice cannon is mounted on model railroad tracks. Average velocity of the recoiling cannon and projectile are timed.
D&R, M-550	big bertha	1N20.32	A test tube cannon is hung by bifilar supports. Add a small amount of water, stopper, and heat with a Bunsen burner. Average velocities of the recoiling test tube and stopper projectile or compared.
AJP 34(8),707	explosion	1N20.35	
AJP 35(4),359	explosion - comment about friction	1N20.35	The center of mass will move due to friction.
AJP 57(2),182	air track center of mass collision	1N20.60	An inelastic air track collision with a glider and a spring coupled glider system.
	Mass and Momentum Transfer	1N21.00	

PIRA 200 PIRA 500 - Old	floor carts and medicine ball floor carts and medicine ball	1N21.10 1N21.10	
UMN, 1N21.10 Sut, M-119	floor carts and medicine ball floor carts and medicine ball	1N21.10 1N21.10	Two people on roller carts throw a medicine ball to each other. Throw a medicine ball or baseball back and forth, throw several baseballs against the wall.
PIRA 1000	catapult from cart to cart	1N21.20	against the wait.
UMN, 1N21.20	catapult from cart to cart	1N21.20	Catapult a ball of equal mass as the cart into a catcher in the second cart.
Mei, 7-1.5.4	catapult from cart to cart	1N21.20	Two carts at rest on a track, one catapults a steel ball into the other, each is photoelectrically timed.
Mei, 9-4.5	thrust cars	1N21.25	Conservation of momentum of a thrust producing stream on water is shown by two carts on a track: one has a nozzle, the other a bucket to catch the water.
Mei, 9-4.7	thrust cars	1N21.26	How to pull the plug on a container of water on a cart to show conservation of momentum by reaction to discharging water stream.
PIRA 1000	ballistic air glider	1N21.30	
UMN, 1N21.30	ballistic air glider	1N21.30	Shoot a .22 into a wood block mounted on an air glider. Use a timer to determine the velocity.
AJP 34(3),xxx	ballistic air glider	1N21.30	Shoot a .22 into a block of wood on an air glider.
F&A, Mi-4	ballistic air glider	1N21.30	5
Mei, 7-1.5.6	ballistic air glider		A .22 rifle shoots a bullet into a glider on a track.
Mei, 11-1.11	ballistic air glider	1N21.30	Shoot a .22 into a block on an air glider.
PIRA 1000	drop sandbag on cart	1N21.40	
UMN, 1N21.40	drop sandbag on cart	1N21.40	Timers measure the velocity before and after the transfer.
TPT 19(5),326	drop weight on moving cart	1N21.40	Drop a weight on a moving cart, two people on roller carts push against each other.
Mei, 9-4.18	drop shot on cart	1N21.41	Lead shot is dropped from a hopper into a box on a moving cart. The initial velocity is reproducible and the final velocity is measured with a photogate.
PIRA 1000	vertical catapult from moving cart	1N21.45	
UMN, 1N21.45	vertical catapult from moving cart	1N21.45	Shoot a ball of equal mass from a moving cart into a catcher. Time to determine the velocity before and after the transfer.
F&A, Mg-5a	jump on the cart	1N21.50	Run at constant velocity and jump on a roller cart.
AJP 57(10),858	air track ball catcher	1N21.55	Shoot a stream of balls at a moving air glider until the glider stops.
	Rockets	1N22.00	
TPT 20(2),107	historical note	1N22.01	An article claims rockets will not work in space because there is nothing to push against.
PIRA 200	fire extinguisher wagon	1N22.10	Mount a fire extinguisher on a cart and take a ride.
UMN, 1N22.10	fire extinguisher rocket	1N22.10	Mount a fire extinguisher on a cart and take a ride.
D&R, M-566	fire extinguisher wagon	1N22.10	Mount a large fire extinguisher on a cart and take a ride. Directions for orifice modification of fire extinguisher.
Sprott, 1.13	fire extinguisher wagon	1N22.10	Mount the fire extinguisher to a cart or tricycle.
Disc 02-24	fire extinguisher wagon	1N22.10	Mount a fire extinguisher on a wagon with the hose attached to a half inch plumbing fitting directed to the rear.
PIRA 1000	rocket lift-off video	1N22.15	
UMN, 1N22.15	rocket video	1N22.15	Show video of a rocket or shuttle launch.
PIRA 200	water rocket	1N22.20	Pump a toy water rocket the same number of times, first with only air, and then with water.
UMN, 1N22.20	water rocket	1N22.20	Pump a toy water rocket the same number of times, first with only air, and then with water.
AJP 69(3), 223	water rocket	1N22.20	Analysis of a water rocket to determine the optimum amount of water to use to achieve maximum height.
AJP, 78 (3), 236	water rocket	1N22.20	A through analysis of the water rocket taking into account water vapor condensation, downward acceleration of water within the rocket, and transient water flow.
F&A, Mh-3	water rocket	1N22.20	A commercial water rocket is charged with air and then water.
D&R, M-558	water rocket	1N22.20	-
Bil&Mai, p 114	water rocket	1N22.20	ceiling. Pump a toy water rocket the same number of times, first with only air, and
Ehrlich 1, p. 33		1N22.20	then with water. A water rocket, rocket balloon, or balloon powered helicopter is used to
	water rocket		demonstrate Newton's second and third laws.
Disc 02-23	water rocket	1N22.20	Use a water rocket first with air only, and then with air and water.
Bil&Mai, p 2	altitude finder	1N22.21	•
Mei, 11-1.14	air track rocket	1N22.23	string, and weight. Air from a rubber balloon propels an air glider.

Demonstration Bibligrqaphy July 2015 Mechanics **PIRA 1000** balloon rocket 1N22.25 UMN, 1N22.25 balloon rocket 1N22.25 "Balloon rockets" are available at toy stores. Normal balloons follow more random paths. Bil&Mai, p 65 balloon rocket 1N22.25 Blow up an oblong balloon. Keeping the balloon sealed by pinching the nozzle, tape the balloon parallel to a straw. Put a string through the straw and attach the ends of the string to opposite walls of the classroom. When released the balloon should travel across the room on the string. **PIRA 1000** CO2 cartridge rocket 1N22.30 F&A, Mh-1 rocket car 1N22.30 A CO2 powered car accelerates across the lecture bench. rocket car - CO2 cartridge Cartridges of CO2 are used to propel small automobiles or projectiles. Mei, 9-3.2 1N22.30 TPT 12(1),50 rocket to the Moon 1N22.32 A nice setup of the CO2 rocket on a wire. F&A, Mh-2 rocket to the Moon 1N22.32 A small CO2 powered rocket rides a wire across the classroom. **PIRA 1000** rocket around the Moon 1N22.33 UMN, 1N22.33 rocket around the Moon 1N22.33 A CO2 cartridge in the back of a model plane propels it around in circles. Disc 02-22 CO2 rocket 1N22.33 A small CO2 cartridge rotates a counterbalanced bar. Pour 12 ml of alcohol into a plastic 5 gallon water jug or 20 L carboy. Rotate D&R, M-426 alcohol vapor rocket 1N22.35 the jug to distribute the alcohol evenly onto the jug walls. Drop a lighted match into the jug. The jug will bounce up and down on the table. Bil&Mai, p 112 alcohol vapor rocket 1N22.35 Pour 5 mL of alcohol into a 2 L plastic soda bottle. Swirl the alcohol around to vaporize the liquid and then pour out the excess alcohol. Use duct tape to secure the bottle to a straw mounted on a guideline stretched across the room. Securely insert a cork and then ignite the alcohol vapor with a piezo electric igniter. Sprott, 1.13 methanol rocket 1N22.35 Methanol powered rocket using 5 gal plastic water bottle. **PIRA 1000** ball bearing rocket cart 1N22.40 UMN, 1N22.40 ball bearing rocket cart 1N22.40 A cart is propelled down a track by 2 1/2" ball bearings rolling down a chute attached to the cart. A cart is propelled down a track by 1" ball bearings rolling down a chute. F&A, Mh-4 ball bearing rocket cart 1N22.40 Mei, 9-3.6 Fifteen large steel ball bearings fall through a chute to propel a cart. The last ball bearing rocket cart 1N22.40 ball moves in the same direction as the cart. F&A, Mh-5 reaction to a stream of water A nozzle reacts against a water jet. 1N22.51 Mei, 9-4.8 reaction to a stream of water 1N22.51 Several techniques on making the deflection due to the reaction to a stream of water more graphic. Mei, 9-4.9 reaction to a stream of water or air 1N22.51 With string, tie one end of a 3' rubber hose to a spring and turn on the air, then cut the string between the spring and the hose. reaction to a stream of water or air 1N22.51 A rubber hose connected to a source of compressed air dangles from a Sprott, 2.25 - fire hose instability support and flails about. AJP 57(10),943 computer plots of rocket motion 1N22.90 Data from a Smart-pulley Atwoods machine with a funnel on one side is used to generate speed, position, and acceleration graphs. AJP, 75 (5), 472 altitude measurements for model 1N22.90 A look at the ballistic time of flight equation for maximum altitude of vertically rocketrv launched rockets and why neglecting atmospheric drag makes almost no difference. Collisions in One Dimension 1N30.00 ref. coef. of restitution 1N30.01 see 1R40.xx. ref. **PIRA 200** collision balls Two balls or many balls on bifilar suspension. 1N30.10 UMN, 1N30.10 collision balls 1N30.10 Six billiard balls are mounted on bifilar supports. AJP 30(10),767 collision balls - croquet 1N30.10 Weigh the balls at the store to get nearly equal masses. Mei, 9-5.3 collision balls 1N30.10 Eleven billiard balls on bifilar suspension. Hil, M-15a.1 collision balls 1N30.10 Two balls, five balls, six balls on bifilar suspension. D&R. M-586 collision balls 1N30.10 5 ball on bifilar suspensions. collision balls 1N30.10 5 stainless steel balls on bifilar suspensions demonstrate the conservation of Sprott, 1.12 momentum and energy.

1N30.10	An executive toy style Newton's cradle is used to investigate coefficient of
	restitution.

1N30.10 Two balls of equal mass collide, then balls of various mass ratios are used. Collisions with a string of equal balls are also demonstrated.

1N30.10 How the collision ball experiment can be described by a series of spatially separated mass points and springs of a special type.

PIRA 1000bowling ball collision ballsUMN, 1N30.11bowling ball collision ballsSut, M-68collision ballsMei, 9-5.2collision ballsAJP 49(8),761collision balls theory

collision balls

colliding balls

AJP, 50 (11), 977 collision balls

Ehrlich 2, p. 93

Disc 05-01

1N30.11 A large frame holds seven bowling balls on quadfilar supports.

1N30.12 Two balls on bifilar suspension.

- 1N30.13 A two ball collision ball apparatus for the overhead projector.
- 1N30.14 In addition to conservation of momentum and energy, the system must be capable of dispersion-free propagation.

1N30.11

Demonstratio	n Bibligrqaphy	J	July 2015	Mechanics
AJP 50(11),977	collision balls theory	1N30.14	The collision balls are described as a series of spatially se	parated
AJP 72(12), 1508	collision balls theory	1N30.14	masspoints and springs with a force law exponent of 1.5. A look at the complicated movement of the balls at the firs beyond.	t collision and
TPT 35(7), 411	collision balls theory	1N30.14	How to teach about Newton's cradle using scientific explan	nation.
AJP 36(1),56	pitfalls in rolling ball collisions	1N30.15	5	
F&A, Mg-2	billiard balls	1N30.15	Do collision balls with billiard balls in a "v" track.	
Mei, 9-5.7	billiard balls		A set of grooved billiard balls run on steel edges.	-
Hil, M-15a.2 Hil, M-15b	billiard balls billiard balls	1N30.15 1N30.15	Roll a ball down an incline into a trough with five other balls Looks like a rolling bowling ball hits another.	5.
D&R, M-582	marbles	1N30.15		
Bil&Mai, p 105	steel balls	1N30.15		
Ehrlich 1, p. 57	colliding balls	1N30.15	Balls of the same and different masses colliding on a groo	ved plastic ruler.
Mei, 9-5.8	billiard balls	1N30.16	Duckpin balls slide on two taut parallel steel wires. Construappendix, p.566.	uction details in the
PIRA 1000	3:1 collision balls	1N30.20		
UMN, 1N30.20	collision balls - 3:1	1N30.20		
F&A, Mg-1	collision balls, 3:1		A set of identical steel balls on bifilar suspensions. Also or times the mass, insert wax for inelasticity.	ne ball can be three
Mei, 9-5.13	3:1 collision balls	1N30.20		
D&R, M-586, S- 320	3:1 collision balls	1N30.20	Two ball collisions of pendula with 3:1 mass ratio on bifilar	suspensions.
Sut, M-127	collision balls, 3:1	1N30.21	Two ball collisions of pendula on bifilar supports. Elastic, i mass ratio. ref.APT,3,36,1935.	nelastic, and 3:1
TPT 33(3), 169	collision balls, 3:1	1N30.21	The strange case of collisions between balls with masses i 3.	in the ratio of 1 to
Ehrlich 1, p. 51	collision balls	1N30.22	Two ball inelastic collisions of pendula with the same mass supports. The center of mass of the two balls after the col fourth the initial height of the first ball.	
AJP 41(4),574	time reversal invariance	1N30.23	-	
PIRA 500	impedance match collision balls	1N30.25		
UMN, 1N30.25	impedance match collision balls	1N30.25	A big ball hits a smaller ball in one frame, and a second fra of balls between the big and small balls.	ame holds a series
AJP 36(1),46	impedance match collision balls	1N30.25	Big ball hits a small ball with and without an intermediate s impedance matching balls.	eries of
Mei, 9-5.12	impedance match collision balls	1N30.25	First a large ball hits a small ball, then other various sized interposed to maximize energy transfer.	balls are
AJP 54(7),660	collision balls analysis	1N30.29	A simplified model of the collision balls that goes beyond c energy and momentum but is still within the scope of an in	
PIRA 1000	air track collision gliders	1N30.30		
UMN, 1N30.30	air track collision gliders	1N30.30	Two sets of air track gliders, one with springs and the othe elastic and inelastic collision.	r with velcro, give
AJP 33(10),784	air trough collisions	1N30.30	Elastic and inelastic collisions on the air trough. A circuit is beam gated oscillator for use with a scaler.	s given for a light
Disc 05-03	elastic and inelastic collisions	1N30.30	Air gliders have springs on one end and the post/clay on the	
AJP 42(8),707	air track collision tricks	1N30.31	Place a meter stick on two gliders and lift it up before one	
F&A, Mg-4	air track collision gliders	1N30.31	bumper, a simple spring release device momentarily held v Use a meter stick resting on top of two airtrack gliders to g velocities. After one hits the end bumper, you have equal	ive equal
Mei, 7-1.5.3	air track collision gliders	1N30.32	velocities. A moving glider runs into a stationary one and sticks. Pho before and after.	togate timing
PIRA 1000	equal and unequal mass air track collisions	1N30.33		
F&A, Mg-3	air track collision gliders	1N30.33	Air track gliders with bumper springs.	
Mei, 11-1.1	air track collision gliders	1N30.33		
Disc 05-02	equal and unequal mass collisions	1N30.33	Equal and unequal mass air gliders.	
AJP 33(10),784	air track collision gliders	1N30.34	Elastic and inelastic collisions on the air trough. A circuit is beam gated oscillator for use with a scaler.	s given for a light
TPT 10(7),416	hot wheels collisions	1N30.36	Uses Hot Wheels.	

Demonstration Bibligrqaphy July 2015 **Mechanics** TPT 11(1),51 inelastic collisions 1N30.41 A simple student experiment for elastic and inelastic collisions using PSSC collision carts. TPT 9(6),346 inelastic collisions 1N30.41 A simple student experiment for inelastic collisions using PSSC collision carts. AJP 33(6),vi inelastic collisions air glider clamp 1N30.43 Design of a simple rubber clamp for stopping Ealing air gliders. AJP 37(9),941 inelastic collisions with clay 1N30.43 Mount a plunger on one air track and a cylinder packed with modeling clay on the other. AJP 36(9),851 1N30.43 Mount velcro on air gliders with Swingline paper binders. inelastic collisons with velcro Use velcro instead of wax. TPT 10(8),478 inelastic collisions with velcro 1N30.43 Mei, 9-5.6 inelastic collisions Two latching carts that can be loaded come together with equal force. 1N30.43 Construction details in appendix, p. 565. F&A, Mi-1 velocity of a softball 1N30.45 A softball is thrown into a box (inelastic collision) and the velocity of the box is obtained from the recoil distance. Bil&Mai, p 120 velocity of a softball 1N30.45 A softball is thrown into a box (inelastic collision) and the velocity of the box is obtained from the recoil distance. Calculate the initial speed of the softball. AJP 54(7),658 slow inelastic collision 1N30.46 An unrolling thread slowly transfers momentum between air track gliders. 1N30.50 **PIRA 500** bouncing dart UMN, 1N30.50 the bouncing dart 1N30.50 Same as TPT 22(5),302. TPT 22(5),302 the bouncing dart A dart hits a block of wood with a thud (inelastic) but with the pointer 1N30.50 removed (elastic) knocks the block over showing greater impulse associated with elastic collisions. Bil&Mai, p 101 rebounding pendula balls 1N30.50 Two pendula, one made with a "happy ball", the other with an "unhappy" ball. The elastic pendulum will knock over a 2X4 block while the inelastic pendulum will not. Hint: use a bifilar arrangement. D&R, M-600 rebounding pendula balls 1N30.50 Two pendula, one made with a "Happy" ball, the other with an "Unhappy" ball. The elastic pendulum will knock over a 2X4 block while the inelastic pendulum will not. HINT: use a bifilar arrangement. Ehrlich 1, p. 27 rebounding pendula balls 1N30.50 A pendulum made from a Super Ball and another made from a lead or steel ball embedded in clay swing into an upright block of wood. Only the Super Ball pendulum will knock the block over. Mei. 9-5.10 ball - pendulum collisions 1N30.51 A small ball rolls down an incline and strikes a larger pendulum bob on either a putty covered side or a plain steel side. Ehrlich 2, p. 91 ball - pendulum collisions 1N30.51 Inelastic collisions are investigated using the executive toy style Newton's cradle and a piece of clay. TPT 5(5),124 pendulum - cart collisions 1N30.52 Two pendulums of equal height are released simultaneously from the same height so as to strike low friction carts. The pendulum bobs are of equal mass, one of steel and the other of clay. Greater momentum transfer during the elastic collision is observed. **PIRA 1000** elastic and inelastic model 1N30.55 Two carts collide with a wall. One cart stops dead due to suspended masses UMN, 1N30.55 elastic and inelastic model 1N30.55 on the inside oscillating with different frequencies. The cart with the masses oscillating at the same frequency will rebound. **PIRA 500** double ball drop 1N30.60 UMN, 1N30.60 double ball drop 1N30.60 Drop a softball on a basketball. TPT 21(7),466 dropping superballs 1N30.60 Analysis of dropping two stacked superballs. Application to "slingshot effect" of space probes on the grand tour. D&R, M-595 double ball drop 1N30.60 A plastic ball on top of a steel ball are dropped. Acrylic tube can be used as a guide. AJP 75 (11), 1009 double ball drop 1N30.60 The usual tennis ball on a basketball drop shows the tennis ball projected vertically at high speed. However, a mass - spring model of the impact as well as air track data show that the tennis ball should be projected at low speed. Measurements of the forces on each ball and the use of superballs are used to resolve this problem. Bil&Mai, p 103 double ball drop 1N30.60 A tennis ball is placed on top of a basketball and then this system is dropped. Ehrlich 1, p. 60 double ball drop 1N30.60 Stack a small Super Ball on top of a large Super Ball or a Super Ball on top of a basketball and drop them. Disc 05-05 high bounce 1N30.60 Drop a softball on a basketball (1:3) mass ratio. double ball drop AJP 55(2),183 1N30.61 Some analysis of the double ball drop. AJP 72(12), 1492 double ball drop 1N30.61 A billiard-theoretic approach to elementary one dimensional elastic collisions AJP 39(6),656 velocity amplification in collisions 1N30.62 The complete treatment: double object, double ball, multiple ball, analog computer circuit, linear and non-linear models. AJP 58(7),696 modified two ball drop 1N30.64 A double mass-spring collision on a guide rod allows more control than the double ball method.

Demonstratio	on Bibligrqaphy		July 2015	Mechanics
PIRA 1000	double air glider bounce	1N30.65		
UMN, 1N30.65	double air glider bounce	1N30.65	Let two air gliders accelerate down 30 cm of track and as the mass of the lead glider is increased.	measure the rebound
AJP 36(9),845	douple drop history	1N30.65	Brief theory of the double ball drop. Suggests trying a d collision on an inclined air track.	ouble air glider
AJP 42(1),54	colliding cylinders	1N30.70	One cylinder slides down a track and collides with anot track. Friction is factored in.	her on a horizontal
AJP 58(6),599	modified colliding cylinders	1N30.71	Modifications to AJP 42(1),54.	
Mei, 9-1.9	inelastic collisions photo	1N30.86	A strobed photo is made of the collision of two carts on	a table.
Hil, M-15e.1	air track collision photo	1N30.86	Record air track collisions with strobe photography.	
AJP 45(7),684	air track collision timer	1N30.87	Plans for an electronic device to be used for velocity re collision demonstrations. Gives readout before and after	
	Collisions in Two Dimensions	1N40.00		
PIRA 1000	shooting pool	1N40.10		
Mei, 9-5.1	shooting pool	1N40.10	A framework allows a billiard ball pendulum to strike an adjustable tee.	other on an
Mei, 6-4.6	orthogonal hammers	1N40.11	Identical hammers hung at right angles hit a ball.	
Mei, 9-5.9	shooting pool	1N40.12		ounted duckpin ball
TPT 2(6),278	shooting pool on the overhead	1N40.13	Ink coated balls roll down chutes onto a stage placed o projector.	n the overhead
AJP 31(3),197	shooting pool	1N40.14	A pool shooting box with a soapy glass surface and pla	ns for a ball shooter.
Ehrlich 2, p. 84	shooting pool - coins	1N40.15	Shoot one coin into a second stationary coin to make a the law of conservation of momentum in a two dimension Different size coins can be used.	•
AJP 29(9),636	shadow project collisions	1N40.16		to the floor. Much
AJP 30(7),530	photograph golf ball collisions	1N40.18	Suspend two golf balls from a ring that mounts on the c time lapse photo of the collision after one is pulled to the	
Mei, 9-5.14 PIRA 500 UMN, 1N40.20	photograph golf ball collisions air table collisions - equal mass air table collisions	1N40.18 1N40.20 1N40.20	The collision of two suspended golf balls is photograph	ed.
Bil&Mai, p 122	air puck collisions - Kick Dis	1N40.20	Use two Kick Dis self powered toy air pucks on the floo two dimensional collisions.	r or a large table to do
Disc 05-06	air table collisions (equal mass)	1N40.20	Vary the angle of impact between a moving and station drawn on the screen.	ary air puck. Lines are
PIRA 1000	air table collisions - unequal mass	1N40.21		
Hil, M-15d	air table collisions	1N40.21	Use dry ice pucks to do two dimensional collisions.	
Disc 05-07	air table collisions (unequal mass)	1N40.21	Elastic collisions with unequal air pucks.	
PIRA 1000	air table collisions - inelastic	1N40.22		
Disc 05-08	air table collisions (inelastic)	1N40.22	Inelastic collisions between equal and unequal mass ai	r pucks.
PIRA 200	air table collisions	1N40.24		
TPT 10(6),344	air table collisions by video	1N40.24	•	
Mei, 10-3.4	air table collisions	1N40.24	Use a spark timer to record collisions on an air table.	
Mei, 10-2.3	air puck collisions	1N40.24	The path left by liquid air pucks on a table sprinkled wit show the 90 degree scattering law for particles of equal neutron diffusion demo. Construction details in appendi	masses. Also a
Mei, 10-2.4	air table collisions	1N40.24	Dry ice pucks with spark timer recording.	
Hil, M-15f.1	air table collisions photo	1N40.24	Use strobe photography to record air table collisions.	
Ehrlich 1, p. 55	vibrating table collisions	1N40.24	Observe collisions of balls on a vibrating plate covered	with carbon paper.
AJP 56(5),473	lost momentum	1N40.25	The air pucks are modified so the line of force during th through the center of mass.	e collision passes
TPT 22(4),258	nine-ball on the overhead, etc	1N40.30	Collisions with an array of three by three balls on the ov Also a four-ball two-dimensional coupled pendula susp	
AJP 48(6),496	focusing collisions	1N40.40	Balls are suspended from one string and spaced at a d Depending on the angle the collision is initiated, the col	istance of 3r.
AJP 73(1), 28	super ball bouncing	1N40.60	focus or defocus. The bounce of balls and superballs in three dimensions with and without sliding, and the grip behavior of super-	. Looks at rebounds

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
AJP 37(10),1008	bouncing ball simulation	1N40.60	An analog computer (circuit given) shows the path of a bouncing ball on an
	-		oscilloscope.
AJP 72(7), 875 AJP 37(1),88	super ball bouncing super ball bouncing	1N40.60 1N40.60	The kinematics of a superball bouncing between two vertical surfaces. Analysis of the trajectory of a super ball from the floor to the underside of a
Adi 37(1),00	Super bail bouncing	114-0.00	table and back to the hand.
AJP 70(5), 482	super ball bouncing	1N40.60	Measuring the horizontal coefficient of restitution for a superball and a tennis ball.
AJP, 50 (9), 856	super ball bouncing	1N40.60	More experiments on the bouncing of a super ball.
AJP 52(7),619	computer collisions	1N40.90	A FORTRAN program for collisions on a Tektronix 4012 graphics terminal and Honeywell DPS8 computer.
	ROTATIONAL	1Q00.00	
	DYNAMICS		
	Moments of Inertia	1Q10.00	
PIRA 200	inertia wands and two students	1Q10.10	Students twirl equal mass wands, one with the mass at the ends and the
UMN, 1Q10.10	inertia wands and two students	1Q10.10	other with the mass at the middle. Give students equal mass wands to twirl, one with the mass at the ends and
		10/10.10	the other with the mass at the middle.
Mei, 12-3.3	inertia wands and two students	1Q10.10	Two apparently identical tubes, one with a mass concentration in the center, the other with a mass concentration at the ends.
Bil&Mai, p 162	inertia wand and two students	1Q10.10	Two students twirl equal mass wands made from 1 inch PVC pipe, one with
			the mass at the ends of the wand and the other with the mass in the middle
TPT 15(9),546	inertia wands	1Q10.11	of the wand. Weights taped to meter sticks are used as low cost and visually obvious
11 1 10(0),040			alternates to commercial apparatus.
Ehrlich 1, p. 87	inertia rotator	1Q10.12	Steel or lead weights are inserted into a hula hoop. The hula hoop can be
		1010.10	rotated most easily when the axis of rotation is closest to the weights.
AJP 43(6),563	inertia rotator and two students	1Q10.12	Students rotate a "T" from a disc mounted on the bottom while holding the device by a sleeve. Weights are mounted at different distances on the cross
			bar.
PIRA 1000	torsion pendulum inertia	1Q10.20	
TPT 21(7),456	torsion pendulum inertia	1Q10.20	The period of a torsion pendulum is used to determine moment of inertia.
			Tinker toys allow one to easily construct objects with the same mass but
			different moments of inertia. Many variations are presented.
Mei, 12-3.10	torsion pendulum inertia	1Q10.20	Objects are placed on a trifilar supported torsional pendulum.
Mei, 12-3.9	torsion pendulum inertia	1Q10.20	Objects are added symmetrically about the torsional pendulum axis.
Sut, M-167	torsion pendulum inertia	1Q10.20	Use the torsion pendulum to determine the moment of inertia.
Mei, 11-2.3c	air bearing inertia	1Q10.25	Determine the ellipsoids of inertia of a rectangular steel bar with the air
Ma: 11.0.0m	ain haaning in antia	4040.05	bearing supported rotating disc.
Mei, 11-2.3g	air bearing inertia	1Q10.25	A steel triangle is dropped on an air bearing supported rotating disc.
Mei, 11-2.3b PIRA 200	air bearing inertia ring, disc, and sphere	1Q10.25 1Q10.30	Various objects are placed on an air bearing supported rotating disc. A ring, disc, and sphere of the same diameter are rolled down an incline.
UMN, 1Q10.30	ring, disc, and sphere		A ring, disc, and sphere of the same diameter are rolled down an incline.
F&A, Ms-3	ring, disc, and sphere	1Q10.30	Rings, discs, and spheres are rolled down an incline.
D&R, M-678	ring, disc, and sphere	1Q10.30	Rings, discs, and spheres are rolled down an incline.
Sprott, 1.9	ring, disc, and sphere	1Q10.30	Roll cylinders, hollow spheres, balls, hoops, full cans of soda, etc. down an
			inclined plane.
Bil&Mai, p 164	ring, disc, and sphere	1Q10.30	A ring, disc, and sphere of the same diameter are rolled down an incline.
Ehrlich 1, p. 52	ring, disc, and sphere	1Q10.30	A ring, disc, and sphere are rolled down an incline.
PIRA 1000	rolling bodies on incline	1Q10.31	Diana dia mandra and a sinta dalar and a sinta dalar a sinta dalar dalar dalar dalar dalar dalar dalar dalar da
Disc 06-04	rolling bodies on incline	1Q10.31	Rings, discs, spheres, and weighted discs are rolled down an incline.
Hil, M-19c	ring, disc	1Q10.32	Disc and ring on the incline plane.
PIRA 500	all discs roll the same	1Q10.35	A pat of diago of different diameters are relied down on incline. Also use
UMN, 1Q10.35	all discs roll the same	1Q10.35	A set of discs of different diameters are rolled down an incline. Also use hoops and spheres.
AJP 73(10), 909	rolling can lab	1Q10.37	How a non-axisymmetric distribution of mass may give a faster rolling can.
TPT 18(8),600	coffee can lab	1Q10.37	Rolling an empty coffee can down an incline. A student lab with many tasks.
PIRA 500	racing discs	1Q10.40	
UMN, 1Q10.40	racing discs	1Q10.40	Two discs of identical mass, one weighted in the center and the other weighted at the rim, are rolled down an incline.
F&A, Ms-1	racing discs	1Q10.40	Two wooden discs of the same mass and diameter are loaded with lead to
	-		give different moments of inertia. Roll on an incline.

July 2015

Mechanics

	5 1 1 7	-	
Sut, M-161	racing discs	1Q10.40	Two equal mass discs are made to race down an incline, one with a lead core and the other with a lead rim. Both are made to roll up a second incline to show they had the same kinetic energy at the bottom.
F&A, Ms-4	moment of inertia spools	1Q10.41	,
PIRA 500	racing soups	1Q10.50	
TPT 16(8),553	racing soups	1Q10.50	Racing two soups first down an incline and then down and across the floor.
D&R, M-682	racing soups	1Q10.50	Betting is used to make the demonstration more exciting.
	2		other with mainly solid food.
Sut, M-162	winning ball	1Q10.51	Use mercury filled rollers for sure winners.
PIRA 1000	weary roller	1Q10.55	
Sut, M-163	weary roller	1Q10.55	Load a roller with fine dry sand or powdered tungsten.
Sut, M-60	viscosity		A raw egg in a torsion pendulum damps more quickly than a boiled egg due to internal friction. Also spinning eggs - angular momentum.
AJP 34(2),xv	moment of inertia of a ball	1Q10.65	An air spinner for a 2" bronze ball and a method of mapping out the three axes of moment of inertia.
TPT 20(1),50	errant pool balls	1Q10.66	Directions for making several different types of weird acting pool balls.
PIRA 1000	rigid and non-rigid rollers	1Q10.70	
F&A, Mz-3	rigid and non-rigid rotations	1Q10.70	Lead rings, the masses of a torsion pendulum, can be either locked or freed to show terms in Steiner's equation.
Mei, 12-3.6	rigid and non-rigid rotators	1Q10.70	Two lead rings are mounted as a torsion pendulum with rotational axes parallel to the pendulum. The period is measured with the rings freed and locked.
Mei, 12-3.5	rigid and non-rigid rotations	1Q10.70	Two masses on a horizontal bar fixed to a vertical shaft are spun by a falling weight. The masses can be locked or freed to rotate in the same plane as the vertical shaft.
Mei, 12-3.7	Steiner's theorem	1Q10.71	An adjustable double dumbbell on a rotating bar arrangement.
Mei, 12-3.11	parallel axis wheels		The period of a bicycle wheel suspended as a pendulum is measured with the wheel spinning and locked.
	Rotational Energy	1Q20.00	
PIRA 200	whirlybird (adjustable angular		A weight on a string wrapped around a wheel drives a radial rod with
	momentum)		adjustable weights.
UMN, 1Q20.10	adjustable angular momentum	1Q20.10	, .
F&A, Mr-5	adjustable angular momentum	1Q20.10	A weight wrapped around a wheel drives a radial bar with adjustable weights.
Mei, 12-4.5	adjustable angular momentum	1Q20.10	Hanging weights from three coaxial pulleys provides different applied torques to a radial bar with movable weights to provide adjustable moment of inertia.
Sut, M-166	adjustable amgular momentum	1Q20.10	Two equal masses are mounted on a radial bar fixed to a horizontal axle with a pulley.
D&R, M-650	adjustable angular momentum	1Q20.10	A weight on a string wrapped around a one of two pulleys drives radial bars with movable weights.
Disc 06-01	angular acceleration machine	1Q20.10	A weight over a pulley turns a bar with adjustable weights. On screen timer and protractor helps measurements.
Mei, 13-2.1 AJP 33(10),848	adjustable angular momentum adjustable angular momemtum	1Q20.12 1Q20.13	Hang various weights from the axle of a large wheel and time the fall. A horizontal bar mounted at its midpoint on a turntable has pegs for mounting weights at various distances, and is accelerated by a string to falling mass.
Mei, 11-2.3e	adjustable angular momentum	1Q20.14	•
PIRA 1000 Mei, 12-4.7	flywheel and drum with weight adjustable angular momentum	1Q20.15 1Q20.17	
			objects to show Newton's second law for angular motion.
PIRA 1000 UMN, 1Q20.20	angular acceleration wheel angular acceleration wheel	1Q20.20 1Q20.20	Measure the acceleration of a bike wheel with a mass on a string wrapped
Mei, 12-4.6	bike wheel angular acceleration	1Q20.20	around the axle. Measure the angular acceleration of a bike wheel due to the applied torque of a mass on a string wrapped around the axle.
Disc 06-02	bike wheel angular acceleration	1Q20.20	Use a spring scale to apply a constant torque to a bike wheel and measure the angular acceleration.
PIRA 1000	accelerate light and heavy pulleys	1Q20.25	แก่ง สารูนเลา ของอเงาสแบบ.
UMN, 1Q20.25	accelerate light and heavy pulleys	1Q20.25	

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
Hil, M-15f.2	angular acceleration	1Q20.26	Use strobe photography to record the motion of a large disc accelerated by a
Mei, 10-2.6	rotating dry ice puck	1Q20.27	mass on a string over a pulley. A dropping mass on a string wrapped around a massive dry ice puck gives
Mai 10.2.7	rotational dynamics	1Q20.28	both linear and angular acceleration.
Mei, 10-2.7	rotational dynamics	1020.20	masses hanging on opposite end of the table is stationary while a piece of
			masking tape is placed over one winding. Remove the tape and the puck spins and translates.
PIRA 500	rolling spool	1Q20.30	
UMN, 1Q20.30	rolling spool	1Q20.30	A spool rolled down an incline on its axle and takes off when it reaches the bottom and rolls on its rim.
TPT 10(4),210	rolling spool	1Q20.30	
F&A, Mr-4	rolling spool	1Q20.30	
Sut, M-165	rolling spool	1Q20.30	A spool rolls down a narrow incline on its axle. When it reaches the bottom,
Disc 06-05	spool on incline	1Q20.30	it rolls on the diameter of the outer discs. A spool rolls down an incline on its central radius.
Mei, 9-4.15	rolling spool	1Q20.31	Place the rolling spool demonstration on a low friction sheet to show
			conservation of linear momentum as the sheet moves backward when the roller hits bottom.
PIRA 1000	bike wheel on incline	1Q20.35	
UMN, 1Q20.35	bike wheel on incline	1Q20.35	A bike wheel rolls down an incline on its axle with the axle pinned to the wheel or free.
Disc 06-06	bike wheel on incline	1Q20.35	A bike wheel rolls down an incline on its axle. The wheel can be pinned to the axle.
Mei, 12-5.6	rolling up an incline	1Q20.41	
Mei, 17-3.2	start a wheel	1Q20.42	Use a large DC motor and a large wheel to show the angular acceleration of a rotating body with a constant driving torque. Picture. Diagram.
AJP 47(4),367	rolling pendulum	1Q20.44	
			effect of the rotational motion in rolling.
AJP 46(3),300	radius of gyration (Here?)	1Q20.46	Slide an air glider down an inclined instrumented air track, then add a wood track and roll a ball down the same incline.
D&R, M-684	rotational translation	1Q20.46	Two identical rolls of toilet paper. Drop one so it does not unroll
			simultaneously with dropping the other while continuing to hold onto the end so that it unrolls as it falls. One is the motion of a rigid body in free fall the
	and a three all three a lattices	4000 40	other is rotation about the center of mass while falling.
Ehrlich 2, p. 97	rotational translation	1Q20.46	Two identical rolls of toilet paper. Drop one so it does not unroll simultaneously with dropping the other while continuing to hold onto the end
			so that it unrolls as it falls. The rolls will hit the floor at the same time if their
AJP 28(4),405	spin a swing	1Q20.47	initial heights have a specific ration. Wind up two balls on strings from a common support with a slack connecting
7.01 20(1),100	opin a owing	razo. n	string between them. As they unwind, the angular velocity decreases until the
			connecting string becomes taut, then increases. Ref: AJP 27, 611 (1959)
PIRA 500	faster than "g"	1Q20.50	
UMN, 1Q20.50	faster than "g"	1Q20.50	
AJP 52(12),1142 AJP 74(1), 82	faster then gravity falling chimney	1Q20.50 1Q20.50	5,1,1
AJP 71(10), 1025	•	1Q20.50	Small scale toy models are used to reproduce the dynamics of the falling
F&A, My-6	falling chimney	1Q20.50	o
Sut, M-206	falling chimney	1Q20.50	
Hil, M-19k	falling chimney	1Q20.50	end of the stick. A ball on the end of a pivoting stick jumps into a cup. Includes TPT 3(7),323.
D&R, M-104	falling chimney	1Q20.50	A ball at the end of a hinged stick falls into a cup mounted on the stick.
Bil&Mai, p 157	falling chimney		A ball on the end of a pivoting stick jumps into a cup mounted on the stick.
Ehrlich 1, p. 82	faster than "g"	1Q20.50	A meter stick with a row of pennies on it falls while remaining supported at the 0 cm end. Only the pennies up to the 66 2/3 cm mark remain in contact with the meter stick.
Disc 06-11	hinged stick and ball	1Q20.50	
PIRA 1000	bowling ball faster than "g"	1Q20.51	

Demonstratio	ii bibligi qapity	Ŭ	Mary 2015 Micchanics
UMN, 1Q20.51	bowling ball faster than "g"	1Q20.51	A bowling ball at the end of ten foot ladder jumps into a five gallon pail.
AJP 41(8),1013	faster than "g" - add mass		Analysis of adding mass to the plank.
TPT 20(2),100	falling chimney	1Q20.52	Use of a triangular board to increase R/I for the board. Analysis included.
TPT 13(7),435	falling chimmey	1Q20.52	A mass can be added to the end of the bar to slow it down causing the ball to
			miss the cup.
Mei, 9-2.5	falling chimney	1Q20.53	Hinged beam falls with paint brushes at and off the center of mass record the
			motion of the two points.
AJP 56(8),736	"faster than g" revisited	1Q20.54	An analysis three cases, one in which the particle catches up with the rod.
	-		
TPT 3(7),323	free fall paradox	1Q20.54	Short derivation of the "faster than g" demonstration.
PIRA 1000	pennies on a meter stick	1Q20.55	-
UMN, 1Q20.55	pennies on a meter stick	1Q20.55	Line a meter stick with pennies and drop one end with the other hinged.
			Happens to fast to see well. Use with the video.
F&A, Mw-2	pennies on a meter stick	1Q20.55	A meter stick is loaded with pennies and held horizontally, then released at
			one end. Pennies on the first 2/3 stay with the stick.
Disc 06-10	penny drop stick	1Q20.55	A horizontal meter stick, hinged at one end, is loaded with pennies and
			released.
PIRA 1000	falling meter sticks - scaling	1Q20.60	
UMN, 1Q20.60	falling meter sticks - scaling	1Q20.60	Compare the rate of fall of one meter and two meter sticks.
	Transfer of Angular Momentum	1Q30.00	
	-		
PIRA 200	passing the wheel	1Q30.10	Pass a bicycle wheel back and forth to a person on a rotating stool.
UMN, 1Q30.10	passing the wheel	1Q30.10	A bicycle wheel is passed back and forth to a person on a rotating stool.
Sut, M-179	passing the wheel	1Q30.10	The lecturer on a rotating stool passes a spinning bike wheel back and forth
			to an assistant while turning it over.
PIRA 1000	pass bags o' rice	1Q30.15	
UMN, 1Q30.15	pass bags o' rice	1Q30.15	
PIRA 500	drop bags o' rice	1Q30.20	
UMN, 1Q30.20	bags o' rice	1Q30.20	A person on a rotating stool holds out 10 lb bags of rice and drops them.
PIRA 1000	satellite derotator	1Q30.25	
UMN, 1Q30.25	satellite derotator	1Q30.25	Same a disc 07-09.
Mei, 13-7.1	de-spin device	1Q30.25	Two heavy weights on cables are released from a vertically spinning disc to
			slow the system by conservation of angular momentum.
Mei, 13-7.2	de-spin device	1Q30.25	A mass flies out on a string satellite de-spin device with derivation of proper
			dimensions and weights.
Disc 07-09	satellite derotator	1Q30.25	Heavy weights fly off a rotating disc carrying away angular momentum.
PIRA 1000	catch the bag on the stool	1Q30.30	
UMN, 1Q30.30	catch the bag on the stool	1Q30.30	Sit on the rotating stool and catch a heavy ball at arms length.
F&A, Mt-7	catch the bag on the stool	1Q30.30	Throw or catch a bag of lead shot off axis while sitting on a rotating platform.
Sut, M-180	catch the ball on the stool	1Q30.30	Baseballs or billiard balls may be thrown or caught at an arm's length by a
			demonstrator on a rotating stool.
Mei, 11-2.3d	catch the ball on the stool	1Q30.31	Roll a ball down an incline and catch it off axis on the air bearing supported
			rotating disc.
TPT, 37(3), 169	demonstrating angular momentum	1Q30.32	Using a homemade set-up with smart pulleys, angular momentum
	conservation		conservation is explored quantitatively.
AJP 31(2),91	shoot ball at a shaft	1Q30.33	Shoot a steel ball at a catcher on the end of an arm that rotates.
AJP 33(8),iii	catch a ball on a rotating bar	1Q30.34	Roll a ball down an incline and catch it on the end of a modified Welch
			Centripetal Force Apparatus (No. 930) Similar to AJP 31,91 (1963).
Mei, 11-2.3a	drop disc on rotating disc	1Q30.40	A second disc is dropped on an air bearing supported rotating disc. Spark
			timer recording.
Ehrlich 1, p. 69	drop objects on a rotating disk	1Q30.40	A clay dumbbell is dropped onto a rotating casserole cover. Move the clay
			balls on the dumbbell closer together and drop again.
Ehrlich 1, p. 81	drop a jug on a rotating platform	1Q30.40	Swirl a jug of water and then place it on a turntable that can rotate. Loss of
			angular momentum of the water results in a gain of angular momentum of
			the turntable.
TPT 22(6),391	spinning funnel	1Q30.50	A funnel filled with sand spins faster as the sand runs out.
TPT 22(9),554	spinning funnel	1Q30.50	A letter about TPT 22(6),391, "Demonstrating conservation of angular
			momentum".
TPT 11(5),303	stick-propeller device	1Q30.90	The stick-propeller device appears to produce angular momentum from
			nowhere.
	Conservation of Angular	1Q40.00	
	Momentum		
PIRA 200	rotating stool and weights	1Q40.10	Spin on a rotating stool with a dumbell in each hand.
UMN, 1Q40.10	rotating stool and dumbells	1Q40.10	A person on a rotating stool moves dumbbells out and in.

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
F&A, Mt-2	rotating stool and dumbells	1Q40.10	Instructor stands on a rotating platform with a heavy dumbbell in each hand.
	5		,
Sut, M-176	rotating stool and dumbells		Extend and retract your arms while rotating on a stool.
Hil, M-19i	rotating stool and dumbells	1Q40.10	1 0
D&R, M-764	rotating stool and dumbbells	1Q40.10	A person sits on a rotating stool with dumbbells in outstretched hands, moving them in and then out.
Bil&Mai, p 166	rotating stool and dumbbells	1Q40.10	Make a rotating platform with a Lazy Susan and some plywood. A student spins on the rotating platform with a dumbbell in each hand.
Ehrlich 1, p. 67	rotating stool and weights	1Q40.10	
Disc 07-04	rotating stool with weights	1Q40.10	· · · · · · · · · · · · · · · · · · ·
AJP 45(7),636	big rotating stool and dumbells	1Q40.11	
AJP 30(7),528	rotating platform and dumbells	1Q40.12	Make a rotating platform out of two disks of 3/4" plywood and a large diameter thrust bearing.
Mei, 13-7.9	rotating stool	1Q40.13	Rotating platform made out of an auto front wheel bearing.
PIRA 500	rotating stool and long bar	1Q40.15	
UMN, 1Q40.15	rotating stool and long bar	1Q40.15	Sit on a rotating stool holding a long bar with masses at the ends. Rotate the bar one way and you turn the other way.
Disc 07-05	rotating stool and long bar	1Q40.15	Sit on the stool and hold a long bar with weights on the ends. Rotate the bar and you will move in the opposite sense.
F&A, Mt-3	rotating stool and bat	1Q40.16	Stand on a rotating platform and swing a bat.
Sut, M-172	rotating stool and bat	1Q40.16	o o
PIRA 500	squeezatron	1Q40.20	
UMN, 1Q40.20	squeezatron	1Q40.20	
AJP 33(4),345	rotating adjustable balls	1Q40.20	, , , , , , , , , , , , , , , , , , , ,
F&A, Mt-1 Mei, 13-7.13	squeezatron	1Q40.20 1Q40.20	
	squeezatron		rod.
Sut, M-177 Mei, 10-2.9	squeezatron dry ice puck rotators	1Q40.20 1Q40.21	A mechanical device for showing the pirouette effect. Two dry ice puck rotators: a) steel balls separate, b) they come together.
PIRA 200	rotating Hoberman sphere	1Q40.21 1Q40.22	
PIRA 1000	centrifugal governor	1Q40.23	
F&A, Mm-4c	governors	1Q40.23	A small governor is spun on a hand crank rotator.
Sut, M-158	Watt's regulator	1Q40.23	
Hil, M-16f	govenors	1Q40.23	
Disc 05-26	centrifugal governor	1Q40.23	A model of a governor.
PIRA 1000	pulling on the whirligig	1Q40.25	
UMN, 1Q40.25	pulling on the whirligig	1Q40.25	80
F&A, Ms-5	pulling on the whirligig	1Q40.25	tube. Set one ball twirling and pull on the other ball to change the radius.
Mei, 13-7.6	pulling on the whirligig	1Q40.25	5 5 5
Sut, M-186	pulling on the whirligig	1Q40.26	A ball on a string rolls on the lecture table. In one case the cord wraps itself around a vertical rod. In the other, the cord is pulled through a hole in the table.
PIRA 200	rotating stool and bicycle wheel	1Q40.30	
UMN, 1Q40.30	rotating stool and bicycle wheel	1Q40.30	
F&A, Mu-1	rotating stool and bicycle wheel	1Q40.30	
Sut, M-178	rotating stool and bicycle wheel	1Q40.30	
D&R, M-764	rotating stool and bicycle wheel	1Q40.30	
Sprott, 1.16	rotating stool and bicycle wheel	1Q40.30	
Disc 07-06	rotating stool and bicycle wheel	1Q40.30	•
AJP 35(3),286	stool, bicycle wheel, and friction	1Q40.31	
Hil, M-19f	rotating stool and bicycle wheel	1Q40.32	
Sut, M-175	drop the cat	1Q40.33	
D&R, M-800	drop the cat	1Q40.33	
TPT 11(7),415	skiing	1Q40.34	
x // -	-		momentum, turn yourself with the gyro.

July 2015 Mei, 13-7.7 skiing 1Q40.34 Stand on a rotating turntable with skis on to show the upper part of the body turning opposite the lower. **PIRA 1000** 1Q40.40 train on a circular track UMN. 1Q40.40 train on a circular track 1Q40.40 A HO gage train runs on a track mounted on a bike rim. F&A, Mt-4 angular momentum train 1Q40.40 A circular track on a rotating platform and a train have the same mass. The train and track move in opposite directions. Hil, M-8b angular momentum train 1Q40.40

- A train on a rotating platform. 1Q40.40 A wind up train rides on a track mounted on the rim of a horizontal bicycle wheel
- angular momentum train air table 1Q40.41 The circular track is mounted on a large air table puck.
 - 1Q40.42 Diagram. A balanced framework constrains a spinning wheel. As the wheel slows down, the framework begins to rotate.
 - 1Q40.43 Picture. Two angular momentum machines (M-166) are coupled by a spring. The spring is wound and both are released simultaneously to show opposite reactions.
 - 1Q40.44 An induction motor is mounted so both the frame and armature can rotate freely. No torgue is required to tilt the direction of axis of rotation unless either the frame or armature is constrained.
 - A motor is placed on a lazy susan with rotation axes aligned. Turn on the 1Q40.44 motor and observe the motor and lazy susan rotate in opposite directions. Repeat with motor shaft displaced from lazy susan axis.
 - 1Q40.44 A light portable fan is placed horizontally on the overhead projector. Turn on the fan and it will rotate in a direction that is opposite of the direction of blade rotation.
 - 1Q40.45
 - 1Q40.45 A battery driven turntable rotates noncoaxially on a frictionless turntable.
 - 1Q40.45 A horizontal rotating bicycle wheel is braked to a large frame and the combined assembly rotates slower.
 - 1Q40.50 1Q40.50 A small pendulum is suspended from the stem of a pocket watch placed on a small watch glass on a stand.
 - 1Q40.50 Suspend a pocket watch by its ring from a sharp edge.
 - 1Q40.50 Movement of a pocket watch balanced on an inverted watch glass is magnified with a laser and small mirror.
 - 1Q40.50 Use a laser to magnify the motion of a pocket watch.
 - 1040.52 You read this one. (If you aren't into Phil Johnson's humor it becomes: A simple mechanical system whose momentum is partly angular and partly linear).
 - 1Q40.53 A pie plate or disk suspended by three threads. At its center is attached a screw that allows a weight on ball bearings to descend and touch the plate. If the plate is rotated the proper number of turns before the weight is released, the whole system comes to a stop when the weight meets the plate.
 - 1Q40.53 A free system of two discs, one attached to a motor shaft and the other to the motor, is powered through slip rings. Show the discs rotate in opposite directions and come to rest at the same time.
 - 1Q40.54 Apparatus Drawings Project No.33: A dumbbell pivoting on its center of mass, on a counterweighted rod rotated about its center of mass, remains oriented in the original direction until friction prevails.
 - 1Q40.55 Pull on a twisted loop of string threaded through a large button to get the thing to oscillate.
 - 1Q40.55 A 6" wooden disc supported by a loop of string passing through two holes drilled 1/2" apart. Directions for showing constancy of axes.
 - 1Q40.57 The linear and angular momentum are recorded with strobed photography. The pucks have an arrow to indicate rotation.
 - 1Q40.59 One massive dry ice puck contains a motorized windlass that winds up a connecting string, the other has the string wound around it. One orbits, the other spins and when the come together they stop dead. 1Q40.60
 - 1Q40.60 Put "o" rings around a section of large PVC pipe to act as tires. Place on a sheet of paper and pull the paper out from under it.
 - 1Q40.60 A newspaper is pulled out from under a large sewer pipe with O ring tires. When the paper is all the way out, the pipe stops dead.
 - 1Q40.60 Pull a strip of paper horizontally from under a rubber ball. As soon as the ball is off the strip, it stops dead.

Mechanics

train on a circular track

frictional transfer of ang.

momemtum

coupled windmills

counter spinning

counter spinning

counter spinning

wheel and brake

wheel and brake

pocket watch

pocket watch

pocket watch

pocket watch

tail wags dog

various demos

various demos

buzz button

buzz button

colliding air pucks

sewer pipe pull

sewer pipe pull

sewer pipe pull

various demos

various demos - angular momentum conservation

orbital angular momentum

colliding spinning orbiting pucks

noncoaxial rotating disks

Disc 07-02

Sut, M-185

Sut, M-174

AJP 44(1),21

D&R, M-768

Ehrlich 2, p. 73

AJP 57(10),951

PIRA 1000

Disc 07-08

PIRA 1000

Mei, 13-7.8

Sut, M-173

Disc 07-03

Mei, 13-7.4

Mei, 13-7.3

Mei, 13-7.5

AJP 31(1),42

F&A, Mt-5

Sut, M-171

Mei, 10-3.3

Mei, 10-2.11

PIRA 1000

UMN, 1Q40.60

AJP 54(8),741

Mei, 13-7.10

D&R, M-772

AJP 41(1),137

Demonstratio	n Bibligrqaphy		July 2015	Mechanics
AJP 28(1),76	off-center flywheel	1Q40.63	A flat plate is free to rotate on a block of dry ice. The plate	rotates about its
AJP 53(8),735	double flywheel rotator	1Q40.65	center of mass when the flywheel at one end slows down. Two flywheels free to rotate about a vertical axis on a bar	which is also free
			to rotate about a vertical axis are coupled in various ways t "spin-spin" and "spin-orbit" coupling with and without dissip	
PIRA 1000	marbles and funnel	1Q40.70		
Disc 07-01	marbles and funnel	1Q40.70	The angular speed of marbles increases as they approach large funnel.	the bottom of a
PIRA 1000	Hero's engine	1Q40.80		
UMN, 1Q40.80	Hero's engine	1Q40.80		
AJP 46(7),773	Hero's engine	1Q40.80	Plans for a machine shop built Hero's engine.	
F&A, Hn-5	Hero's engine	1Q40.80	A model of Hero's engine.	
Mei, 13-7.11	Hero's engine	1Q40.80		
Sut, M-183	Hero's engine	1Q40.80	Cylindrical boiler pivots on a vertical axis with tangential pronozzles.	essure relief
Hil, H-5a.1	Hero's engine	1Q40.80	A suspended round bottom flask with two nozzles.	
Sprott, 2.5	Hero's engine	1Q40.80	A steam engine that spins when heated.	
Ehrlich 2, p. 69	Hero's engine	1Q40.80	A simple Hero's engine made from a soda can.	
Disc 15-07	Hero's engine	1Q40.80	The flask rotates on a horizontal axis.	
F&A, Mt-6	Hero's engine - sprinkler	1Q40.81	A lawn sprinkler.	
Sut, M-184	Hero's engine - sprinkler	1Q40.81	A gravity head of water is used to drive a Hero's engine de sprinkler).	vice (lawn
Sprott, 1.13	Hero's engine - sprinkler	1Q40.81	· ,	
PIRA 1000	air rotator with deflectors	1Q40.82		
Disc 06-03	air rotator with deflectors		Run an air sprinkler, then mount deflectors to reverse the	et.
Ehrlich 2, p. 71	the Feynman inverse sprinkler	1Q40.85		
AJP 57(7),654	the Feynman inverse sprinkler	1Q40.85		direction opposite
AJP 59(4),349	inverse sprinkler - kinematic study	1Q40.85		
AJP 58(4),352	the sprinkler problem	1Q40.85	A design for the sprinkler/inverse sprinkler and a lot of ana	lvsis.
Mei, 13-7.12	Hero's engine		Place an air jet Hero's engine in a bell jar and pump out so	
AJP 56(4),307	inverse sprinkler demonstration	1Q40.87		
AJP 54(9),798	inverse sprinkler - no rotation	1Q40.88		
AJP 55(6),488	inverse sprinkler	1Q40.88		
AJP 55(6),488	inverse sprinkler letter reply	1Q40.88	•	n thin air", not
	Gyros	1Q50.00		
AJP 43(4),365	elementary explanation		Precession explained using only Newton's laws.	
AJP 47(4),346	behavior of a real top		Analysis of the behavior of a real top with a round end spin with friction.	ining on a surface
AJP 45(11),1107	analysis	1Q50.01		
			calculus.	
AJP 29(8),550	elementary analysis comment	1Q50.01	Comment on AJP 28(9),808.	
AJP 57(5),428	explaining top nutation	1Q50.01	The stability of torque-free rotations and top nutation witho mathematics.	ut sophisticated
AJP 45(12),1194	physical explanation	1Q50.01		•••
AJP 28(9),808	elementary analysis	1Q50.01	rigid-body motion often tend to obscure what is happening. One approach to explaining the gyroscope in language far	
			student.	
TPT 20(1),34	physical explanation	1Q50.01	torques, etc. A train track displacement demo is presented	
TPT 18(3),210 PIRA 200 - Old	physical explanation precessing disc	1Q50.01 1Q50.10		center and touch a
UMN, 1Q50.10	precessing disc	1Q50.10	finger to the rim. A phonograph record (or aluminum disc) is spun on a nail a wood dowel. Have the class predict which way the record v	
AJP 28(5),504	cardboard precession	1Q50.10	touched with a finger.	
			finger to the rim.	

Demonstratio	n Bibligrqaphy		July 2015 Mechanics
F&A, Mu-7	precessing disc	1Q50.10	A 6" aluminum disc on a long axial rod is hand spun to show precession due
Mei, 13-5.14	phonograph record	1Q50.10	to gravitational torque. A wood bar spinning in a horizontal plane on a pivot is tapped and the plane
Hil, M-19h	phonograph record	1Q50.10	
PIRA 200 - Old	bicycle wheel gyro	1Q50.20	Place a finger on the disc to cause it to precess. Spin a bicycle wheel mounted on a long axle with adjustable counterbalance.
UMN, 1Q50.20	bicycle wheel gyro	1Q50.20	A small weighted bicycle wheel is mounted at the end of a long axle pivoted in the middle with an adjustable counterweight.
AJP 31(5),393	bicycle wheel gyro	1Q50.20	
TPT 21(5),332 F&A, Mu-2	bicycle wheel gyro bicycle wheel gyro	1Q50.20 1Q50.20	Spinning bike wheel mounted on an adjustable counterbalanced axle.
Mei, 13-5.2 Mei, 13-5.5	bicycle gyro bicycle wheel gyro	1Q50.20 1Q50.20	S S S
Hil, M-19g Disc 07-11	bicycle wheel gyro gyro with adjustable weights	1Q50.20 1Q50.20	
PIRA 1000 Sut, M-187	bike wheel on gimbals bicycle wheel gyro	1Q50.21 1Q50.21	A spinning bike wheel with two handles is supported by a loop of string around one of the handles. Counterweights may be applied.
Sprott, 1.16	bicycle wheel gyroscope	1Q50.21	A spinning bicycle wheel is attached to a wire and suspended from a support.
AJP 30(7),528	suspended bike wheel	1Q50.22	A ball at one end of a bike wheel axle is placed into a socket on a bearing for demonstrating precession and nutation on a large scale.
Mei, 13-5.1	bike wheel turnaround	1Q50.22	Posts from a rotating platform support both ends of the axle of a bike wheel. One post is hinged so the wheel can be supported from one end only as the platform rotates.
Sut, M-189	suspended bike wheel	1Q50.22	A bicycle wheel with handles is supported by loops of string tied to a crossbar that is hung by a single string. Push the ends of the handles horizontally in opposite directions.
D&R, M-706	suspended bike wheel	1Q50.22	A spinning bicycle wheel with handles is supported by a loop of string around one of the handles.
Disc 07-12	bike wheels on gimbals	1Q50.22	, , , , , , , , , , , , , , , , , , , ,
PIRA 1000 AJP 34(4),xvii	bike wheel presession path of a rim point	1Q50.23 1Q50.23	Photograph a flashing light attached to the rim of a spinning wheel during
Ehrlich 1, p. 77	suspended gyroscope	1Q50.23	forced precession. A spinning gyroscope is supported by a string at each end of the axle. Cut
Disc 07-10	bike wheel precession	1Q50.23	one string and observe the precession. A spinning bicycle wheel is supported by a rope at one end of a long axle.
PIRA 1000	walking the wheel	1Q50.24	
UMN, 1Q50.24	walking the wheel	1Q50.24	A spinning bicycle on a short axle dangles from a string held in the hand. Try to apply a torque that will bring the axle to a horizontal position.
F&A, Mu-14	walking the wheel	1Q50.24	
PIRA 500	double bike wheel gyro	1Q50.25	
UMN, 1Q50.25	double bike wheel gyro	1Q50.25	
AJP 41(1),131	double bike wheel gyro	1Q50.25	
TPT 22(5),324	double bike wheel gyro	1Q50.25	-
D&R, M-706	double bike wheel gyro	1Q50.25	
Disc 07-13	double bike wheel	1Q50.25	
AJP 46(11),1190	inverted bike	1Q50.26	
PIRA 1000	MITAC gyro	1Q50.30	
UMN, 1Q50.30	MITAC gyro	1Q50.30	

AJP 28(1),78	MITAC gyro	1Q50.30	Evaluation of the MITAC gyro. Paint the gimbals as suggested by AJP
			14,116 (1946).
F&A, Mu-10	MITAC gyro	1Q50.30	,
D&R, M-710	MITAC gyro	1Q50.30	5, 5
Disc 07-14	motorized gyroscope	1Q50.30	A motorized gyro in gimbals.
PIRA 1000	ride a gyro	1Q50.31	
UMN, 1Q50.31	ride a gyro	1Q50.31	Same as AJP 56(7),657.
AJP 56(7),657	a large gyro	1Q50.31	Make a gyro out of an auto wheel and tire. This is big enough to sit on.
PIRA 1000	gyro in gimbals	1Q50.35	
UMN, 1Q50.35	gyro in gimbals	1Q50.35	Push a cart with a gyro around the room.
Sut, M-170	gyro on turntable	1Q50.35	A gyro set in gimbals is carried around.
Disc 07-07	gyroscopic stability	1Q50.35	Move a gyro mounted on gimbals.
PIRA 1000	suitcase gyro	1Q50.40	<i></i>
UMN, 1Q50.40	suitcase gyro	1Q50.40	Spin up a flywheel hidden in a suitcase and have a student turn around with
			it.
AJP 34(12),1201	suitcase gyro	1Q50.40	A battery powered motor runs a flywheel in a suitcase.
F&A, Mu-4	suitcase gyro	1Q50.40	
F&A, Mu-8	feel of a gyro	1Q50.41	
Hil, M-19a	various gyros	1Q50.42	
Hil, M-19b.1	magnetic gyro	1Q50.43	
PIRA 500	air bearing gyro	1Q50.45	Two magnetic gyros.
UMN, 1Q50.45	air bearing gyro		A large air support for a bowling ball.
AJP 33(4),322	0.01		
AJF 33(4),322	air bearing gyro	1Q50.45	Shop drawings and construction hints for making a air bearing for a 4" diameter ball.
A ID 29(2) 150	air bearing auro	1050 45	
AJP 28(2),150	air bearing gyro	1Q50.45	
	ain haaning ay maa	4050 45	ball bearing. Designed for use lab.
AJP 32(9),xiii	air bearing gyros	1Q50.45	
			weight distribution produces precession. Also shows a 4" steel ball bearing
			air gyro.
TPT 11(6),361	air bearing gyro	1Q50.45	a b b
Mei, 11-2.2	air bearing gyro	1Q50.45	The air bearing gyro. Construction details in appendix, p. 587.
Mei, 13-5.3	air-bearing gyro	1Q50.45	A large air bearing gyro has a long horizontal shaft with arrow heads for
			visual emphasis.
Mei, 13-5.7	air bearing gyro	1Q50.45	Small mirrors on an air bearing gyro are used to demonstrate instantaneous
			axis of rotation, angular momentum vector, etc.
PIRA 200	precessing gyro	1Q50.50	
Sut, M-188	precession with quality gyro	1Q50.50	A high quality gyroscope with a counterweight is used to show the
			fundamental precession equation with fair precision.
Mei, 13-5.12	precession	1Q50.51	A model shows precessing axes.
F&A, Mu-6	instantaneous axis	1Q50.52	A bicycle wheel is pivoted at the center of mass and has a disc mounted
			above the wheel in a parallel plane. The instantaneous axis can be seen as
			the point of no motion on the upper disc.
Mei, 13-5.11	precession of the equinoxes	1Q50.53	
	F		causing precession.
AJP 44(7),702	precessing Earth model	1Q50.54	
UMN, 1Q50.55	wobbly Earth	1Q50.55	
Mei, 13-5.15	precessing ball		A ball placed on a rotating table precesses about the vertical axis with a
	processing bail	1000.00	period 7/2 of the table.
Mei, 13-5.8	Kollergang	1Q50.57	•
		1Q50.57	
Mei, 13-5.13	nutations	100.00	с с,
			bulb and lens on the top. Nutations of the gyro are shown by the moving spot
		4050 50	of light on the ceiling.
AJP 42(8),701	motorcycle as a gyro	1Q50.59	The handlebars are twisted (but not moved) in the direction opposite to the
			turn to lay the machine over.
F&A, Mu-9	tip a bike wheel	1Q50.59	A bike wheel on a front fork is hand spun and tipped to one side.
PIRA 1000	gyrocompass	1Q50.60	
F&A, Mu-5	gyro on turntable	1Q50.60	
			about the vertical axis and the gyro will flip as the table is reversed.
Mei, 13-5.6	2 degrees of freedom	1Q50.60	
Sut, M-192	gyrocompass	1Q50.60	
			change of direction will cause a spin flip.
Mei, 13-6.2	gyrocompass	1Q50.61	Shows the origin of the error of an uncorrected gyrocompass.
Sut, M-193	airplane turn indicator	1Q50.62	Diagram. Model of an airplane turn indicator in which the gyro precesses
			about the axis of the fuselage.
Mei, 13-6.1	gyrocompass	1Q50.63	A model of a gyrocompass for any latitude on the spinning Earth.
	stable gyros	1Q50.70	
PIRA 1000	Stubic gyrob	1000.10	

F&A, Mu-11	stable gyros	1Q50.70	A gyro on a ladder will become stable when spinning.
F&A, Mu-16	stable gyro car	1Q50.71	A spinning gyro mounted on a two wheel cart rides a stretched wire.
Sut, M-198	stable gyro	1Q50.71	A very clever gyro "rider" on a model bike.
Sut, M-200	stable gyro monorail car	1Q50.71	A monorail car stabilized by a gyro.
PIRA 1000	ship stabilizer	1Q50.72	
Sut, M-194	ship stabilizer		Model of a ship stabilizer.
Sut, M-196	ship stabilizer		A large boat model you can sit in with a motor driven gyroscope.
,	•		
Disc 07-18	ship stabilizer	1000.72	A motorized gyro is free to turn on a vertical axis when the ship model is rocked.
Sut, M-199	gyro on stilts	1Q50.73	A top-heavy gyro on stilts teeters about its position of unstable equilibrium.
F&A, Mu-15	trapeze gyros	1Q50.74	A gyro on a trapeze is stable only when spinning.
Mei, 13-5.4	trapeze gyros	1Q50.74	Gyro on a trapeze shows stability when there are two degrees of freedom.
Sut, M-197	trapeze gyros	1Q50.74	Gyro on a trapeze.
Mei, 13-5.10	ganged gyros	1Q50.75	Ganged gyros are spun in the same or opposite directions.
Sut, M-195	gyro damped pendulum	1Q50.76	Picture. Frictional torque can be applied to the precession axis to damp the motion of the pendulum.
Sut, M-201	gyro pendulum	1Q50.80	A gyroscope is hung from one end of its spin axle by a string and is swung as a pendulum.
F&A, Mu-13	Maxwell's gyro	1Q50.90	The extended shaft of a gyro supported at its center of mass will trace out complex contours.
Sut, M-191	Maxwell's gyro	1Q50.90	The spindle of a heavy spinning wheel pivoted at its center of gravity will follow an irregularly shaped object.
Sut, M-190	walking gyro	1Q50.90	An apparatus for walking a gyroscope along a cradle.
AJP 30(7),503	air bearing Maxwell's top	1Q50.95	
AJP 30(7),528	gyroscope accelerator	1Q50.99	air bearing cup with tangential air jets to provide torque. A six inch wheel from a child's wagon in a 1/4" drill is used to spin up a
AJF 30(7),320	gyroscope accelerator	100.99	gyroscope.
	Rotational Stability	1Q60.00	
PIRA 200 - Old	bicycle wheel top	1Q60.10	Extend the axle of a weighted bike wheel and terminate with a rubber ball.
UMN, 1Q60.10	bike wheel top	1Q60.10	Extend the axle of a weighted bike wheel and terminate with a rubber ball.
PIRA 1000	humming top	1Q60.15	
UMN, 1Q60.15	humming top	1Q60.15	The standard toy top that you pump up.
TPT 22(1),36	yo-yo top	1Q60.15	Description of an antique toy demonstrating various aspects of rigid body
11 1 22(1),30	yo-yo top	1000.15	rotational motion. Several pictures should make it possible to duplicate the thing.
F&A, Mu-3	old fashioned top	1Q60.16	0
Mei, 13-5.9	gyro gun	1Q60.18	
AJP 70(10), 1025		1Q60.25	
TDT 15(7) 120	Euler's disk	1060.25	
TPT 45(7), 430			Non calculus treatment of a spinning disk on a smooth surface. Understanding the spinning coin by looking at the standard treatment of top
AJP 40(10), 1543		1Q60.25	motion.
AJP 51(5), 449	spinning coin	1Q60.25	An analysis of "wobbling", exhibited by common objects (coins, bottles, plates, etc) when they are spun on horizontal, flat surfaces. The apparatus maintains "wobbling" motion of a metal cylinder, which can be observed in slow motion by means of stroboscopic illumination.
AJP 78(5), 467	spinning tubes - Wobbler	1Q60.25	Press the end of a short tube with your finger and then let it slip out. The tube will "wobble" with a stroboscopic rotation.
PIRA 500	tippe top	1Q60.30	·
UMN, 1Q60.30	tippe top	1Q60.30	The tippe top.
AJP 28(4),407	tippe top	1Q60.30	
AJP 68(9), 821	tippe top	1Q60.30	Aspects of motion for the tippe top and other tops with spherical pegs are examined.
AJP 70(8), 815	tippe top	1Q60.30	Geometric theory of rapidly spinning tops, tippe tops, and footballs.
TPT 16(5),322	tippe top		A brief review of the history of the tippe top problem.
F&A, Mu-17	tippe top		The tippe top flips when spun.
Mei, 13-3.1	tippe top	1Q60.30	
			inverted.
D&R, M-788	tippy top	1Q60.30	A tippy top or heavy class ring will undergo a 180 degree change of orientation when spun.
Ehrlich 2, p. 183	tippy top	1Q60.30	A tippy top is used to illustrate the two states of electron spin.
Disc 07-17	tippy top	1Q60.30	The tippe top flips.

Demonstration Bibligrqaphy July 2015 **Mechanics** AJP 45(1),12 tippe top analysis 1Q60.31 Physical arguments are presented which support the convention that the influence of sliding friction is the key to the understanding of the top's behavior. A rigorous analysis of the top's mechanics is offered, together with computer-generated solutions of the equations of motion. **PIRA 500** spinning football 1Q60.35 UMN, 1Q60.35 spinning football 1Q60.35 Spin a football and it raises up on end. AJP 40(9),1338 spinning football 1Q60.35 Spin a football on its side. spinning football Spin a football and it rises onto its pointed end. F&A, Mu-18 1Q60.35 F&A, Mu-19 spinning football 1Q60.35 An iron slug cut in the shape of a football is put on a magnetic stirrer. D&R, M-788 spinning football Spin a football or a panty hose container and they will rise up and spin on the 1Q60.35 pointed end. Disc 07-16 football spin 1Q60.35 Spin a football on its side and it will rise up on its end. AJP 72(6), 775 Examines the behavior of spinning eggs and the question of which end will spinning egg 1Q60.36 rise. 1Q60.36 Instead of hard and soft boiled eggs, fill L'Eggs with water, paraffin, or air. TPT 15(3),188 spinning L'Eggs Instructions and a little analysis are included. On a separate subject, a hint to use an egg instead of a ball in the floating ball demo. TPT 9(5),262 Try the spinning egg demo with eggs boiled for different lengths of time. spinning egg 1Q60.36 Positional stability of various shaped objects. Sut, M-202 spinning eggs, etc. 1Q60.36 D&R, M-646 spinning eggs or L'Eggs 1Q60.36 Spin raw and hard boiled eggs. L'Eggs containers may be filled with different substances or water for a more permanent alternative. **PIRA 1000** billiard ball ellipsoid 1Q60.37 UMN, 1Q60.37 billiard ball ellipsoid 1Q60.37 Same as AJP 44(11),1080. AJP 44(11),1080 billiard ball ellipsoid 1Q60.37 A billiard ball on an air bearing shows the spectacular motion of free rotating rigid and semirigid bodies moving near their inertial singularities. Or, the billiard ball on an air bearing acts goofy when you spin it in certain ways. F&A, Mu-12 billiard ball ellipsiod 1Q60.37 A billiard ball weighted with brass rods along orthogonal axes will show spin flip. 1Q60.40 **PIRA 1000** tossing the book UMN, 1Q60.40 tossing the book 1Q60.40 Throw a book or board up in the air spinning it about its three principle axes. tossing the book Directions of constructing blocks of inhomogeneous mass distribution for use AJP 46(5),575 1Q60.40 in demonstrating the intermediate-axis theorem. TPT 17(9),599 1Q60.40 A simple method of measuring the moments of inertia about the three axes tossing the book, etc before tossing the book. Also has a simple straw and paperclip inertia wand. F&A, Mu-20 tossing the book 1Q60.40 A board of unequal dimensions is tossed and spins about various axes. Mei, 12-3.2 tossing the book 1Q60.40 Toss a 8x4x1 block into the air. Disc 07-20 stable and unstable axes of 1Q60.40 Toss a rectangular board into the air. rotation **PIRA 1000** tossing the hammer 1Q60.45 UMN, 1Q60.45 tossing the hammer 1Q60.45 TPT 28(8),556 the hammer flip simplified 1Q60.46 An explanation of the hammer flip using only the concept of centrifugal force in a rotating reference frame. **PIRA 1000** 1Q60.50 spinning lariat, hoop, and disc F&A. Mu-21 spinning lariat, etc. 1Q60.50 A rod, hoop, and flexible chain are attached to a hand drill. A hand drill held vertically is used to rotate loops of rope or chain. Sut, M-168 spinning lariat 1Q60.50 Hil, M-16b.1 spinning lariat 1Q60.50 A loop of flexible chain is attached to a hand drill. **PIRA 1000** spinning rod and hoop 1Q60.51 UMN, 1Q60.51 1Q60.51 spinning lariat, hoop, and disc A hoop and disc suspended from the edge are spun with a hand drill until they reach stability. Disc 07-19 spinning rod and hoop of wire 1Q60.51 Spin a hoop and long rod with a drill. Mei, 12-3.4 1Q60.52 A bar is hung from one end by a string on a hand drill. When spun, the bar spinning lariat, bar will rise. Also spin a loop of chain. Mei, 12-3.1 spinning box A rectangular box rotated from a chain around any of the three principle axes 1Q60.53 will rotate about the axis of maximum rotational inertia. AJP 48(1),54 rotating vertical chain 1Q60.54 The five stable patterns observed in a vertical rotating chain are used to introduce Bessel's function. A variable speed motor drives a horizontal rod in a horizontal plane with F&A, Mz-8 spinning bifilar pendula 1Q60.56 bifilar pendula of different lengths attached. AJP 30(8),561 orbital stability 1Q60.70 Identical masses slide out on a horizontally rotating crossarm both attached to the same central hanging mass. Mei, 8-7.1 quadratic restoring force 1Q60.71 A leaf spring provides a quadratic restoring force to dumbbells rotating on a crossarm. Each angular velocity corresponds to only one stable orbit.

Demonstratio	on Bibligrqaphy		July 2015 Mechanics
AJP 58(1),80	rotational instability	1Q60.72	
Mei, 8-6.1	linear restoring force	1Q60.73	instability in a spring loaded dumbbell. Two dumbbells slide out as a crossarm rotates with a spring providing the restoring force. At the critical angular velocity the orbits are stable at any radius.
PIRA 1000	static/dynamic balance	1Q60.80	
UMN, 1Q60.80	static/dynamic balance	1Q60.80	Same as disc 07-15.
Disc 07-15	static/dynamic balance	1Q60.80	A rotating system suspended by springs shows both the difference between static and dynamic balance.
AJP 40(1),199	dynamic tire balancing	1Q60.81	Analysis of dynamically balanced wheels shows they must also be statically balanced.
D&R, M-720	dynamic tire balancing	1Q60.81	Using masses on a bicycle wheel to analyze tire balancing and mass placement.
Ehrlich 2, p. 72	Spin a penny	1Q60.85	Spin a new penny on a smooth hard surface. The slight weight imbalance favoring the heads side of the coin means it will come to rest tails side up more than 80 percent of the time.
AJP 42(2),100	Marion's dumbell	1Q60.90	
	PROPERTIES OF	1R00.00	
	MATTER Hooke's Law	1R10.00	
PIRA 200	stretching a spring	1R10.10	Add masses to a pan balance and measure the deflection with a cathetometer.
UMN, 1R10.10	stretching a spring	1R10.10	Add masses to a pan balance and measure the deflection with a cathetometer.
TPT 18(8),601	stretching a spring	1R10.10	Examining the force-displacement curve at small extensions.
D&R, M-438	stretching a spring	1R10.10	
Disc 08-01	Hooke's law	1R10.10	Add 10, 20, and 30 newtons to a large spring.
Ehrlich 2, p. 53	suspended Slinky	1R10.15	The spacing between turns of a Slinky suspended vertically under its own weight can be used to test Hooke's law.
PIRA 1000	strain gauge	1R10.20	
UMN, 1R10.20	strain gauge	1R10.20	A spring attached to a Pasco dynamic force transducer is pulled to various lengths. Display the resulting force on a voltmeter.
PIRA 1000	pull on a horizontal spring	1R10.25	
UMN, 1R10.25	pull on a horizontal spring	1R10.25	Pull on a horizontal spring with a spring scale.
PIRA 1000	springs in series and parallel	1R10.30	Pull on a spring, springs in series, and springs in parallel with a spring scale. Compare the force required to stretch each case 60 cm.
UMN, 1R10.30	springs in series and parallel	1R10.30	Hang a mass from a spring, 1/2 mass from two springs in series, and 2 masses from two springs in parallel.
	Tensile and Compressive Stres	s 1R20.00	
PIRA 200 - Old	breaking wire	1R20.10	Add weights to baling wire attached to the ceiling until the wire breaks.
UMN, 1R20.10	breaking wire	1R20.10	Add heavy masses to a thin copper wire until the wire breaks.
F&A, MA-10	breaking wire	1R20.10	Add weights to baling wire attached to the ceiling until the wire breaks.
Sut, M-63	breaking wire	1R20.10	Contains several hints about stretching wires.
PIRA 1000	elastic limits	1R20.11	5
Disc 08-04	elastic limits	1R20.11	Stretch springs of copper and brass. The copper spring remains extended.
AJP 28(4),404	breaking wire support	1R20.12	Drill a hole axially up a 1/4" eye hook and solder the wire in.
PIRA 1000	Young's modulus	1R20.15	
Disc 08-05	Young's modulus	1R20.15	Hang weights from a wire. Use a laser and mirror optical lever to display the deflection.
F&A, MA-11	Poisson's ratio	1R20.18	A rubber hose is stretched to show lateral contraction with increasing length.
PIRA 1000	bending beam	1R20.20	
UMN, 1R20.20	bending beam	1R20.20	Ten lbs. is hung from the center of a meter stick supported at the ends. Orient the meter stick on edge and then on the flat.
Mei, 18-1.5	rectangular bar under stress	1R20.20	A rectangular cross section bar is loaded in the middle while resting on narrow and broad faces.
Sut, M-66	bending the meter stick	1R20.20	Some techniques for making the amount of bending visible to the class.
Disc 08-06	bending beams	1R20.20	Hang weights at the ends of extended beams. Use beams of different lengths and cross sections.

	0119		-
PIRA 1000	sagging board	1R20.25	
UMN, 1R20.25	sagging board	1R20 25	Place the ends of a thin board on blocks, then add mass to the center.
TPT 28(6),416	aluminum/steel elasticity paradox	1R20.27	
			steel and aluminum do not.
Mei, 18-1.3	stretch a hole	1R20.31	Holes arranged in a circle in a rubber sheet deform into an ellipse when
			stretched.
0 / 14 07		1000.00	
Sut, M-67	deformation under stress	1R20.32	A pattern is painted on a sheet of rubber and deformed by pulling on
			opposite sides.
Mei, 18-1.7	stress on a brass ring	1R20.38	A strain gauge bridge is used to measure the forces required to deform a
	on oco on a prace mig		brass ring. Diagram. Construction details.
ref.	squeeze the flask	1R20.39	See 2B20.53 for a demo of stress and elasticity of a glass flask or bottle.
PIRA 1000	buckling tubes	1R20.40	
PIRA 1000	Bologna bottles	1R20.60	
	5		Corborundum and halagens hattlag
Hil, M-19j.2	bologna bottles	1R20.60	5
Disc 08-08	bologna bottle	1R20.60	Pound a nail with a Bologna bottle, then add a carborundum crystal to shatter
			the bottle.
PIRA 1000	Prince Rupert's drops	1R20.70	
F&A, MA-6	Prince Rupert's drops	1R20.70	Prince Rupert's drops.
Sut, H-26	Prince Rupert's drops	1R20.70	Drops of glass cooled quickly can be hit with a hammer but shatter when the
			tip is broken off.
Hil, M-19j.3	Prince Rupert's drops	1R20.70	Prince Rupert's drops.
111, 101-10).0			
	Shear Stress	1R30.00	
PIRA 1000	shear book	1R30.10	
UMN, 1R30.10	shear book	1R30.10	Use a thick book to show shear.
F&A, MA-8	shear book	1R30.10	Use a very thick book to demonstrate shear.
			•
Sut, M-65	shear block	1R30.10	Stacks of cards or a big book.
PIRA 500	foam block	1R30.20	
UMN, 1R30.20	foam block	1R30.20	Push on the top of a large foam block to show shear.
TPT 14(6),373	foam block	1R30.20	•
F&A, MA-9	foam block	1R30.20	A large sponge is used to show shear.
Sut, M-64	foam block	1R30.20	Use a rectangular block of rubber.
Bil&Mai, p 176	foam block	1R30.20	A large foam block with squares drawn on the side with a marker is used to
Dildivial, p 170	IDAITI DIOCK	1130.20	
			model a beam that is loaded in the middle. The top of the block shows
			compression while the bottom shows it is being stretched.
PIRA 500	spring cube	1R30.30	
UMN, 1R30.30	spring cube	1R30.30	A 3x3x3 cube of cork balls is held together with springs.
F&A, MA-1	spring cube	1R30.30	A cube of 27 cork balls fastened together with springs.
Mei, 18-1.5	plywood sheets	1R30.31	A stack of plywood sheets with springs at the corners is used to show shear,
			torsion, bending, etc. Diagram.
A ID 45(1) 45	about and atraca modulus	1020.25	
AJP 45(1),45	shear and stress modulus	1R30.35	Unsophisticated apparatus for measuring elastic constants of a thin flexible
			strip and rod.
PIRA 1000	torsion rod	1R30.40	
UMN, 1R30.40	torsion rod	1R30.40	
F&A, MA-12	modulus of rigidity		A rod is twisted by a mass hanging off the edge of a wheel.
F&A, MA-13	bending and twisting	1R30.40	Wind a copper strip around a rod and then remove the rod and pull the strip
			straight to show twisting.
Disc 08-03	torsion rod	1R30.40	Rods of various materials and diameters are twisted in a torsion lathe.
AJP 31(5),391	shear and twist in screw	1R30.45	Rule a thick walled vacuum tube with a grid, slit lengthwise, and dislocate
	dislocation		one unit.
	Coefficient of Restitution	1R40.00	
PIRA 500	bouncing balls	1R40.10	
	-		
UMN, 1R40.10	bouncing balls	1R40.10	Drop balls of different material on a tool steel plate.
AJP 68(11), 1025	dead and live balls	1R40.10	The coefficient of restitution for collisions of happy ball, unhappy balls, and
			tennis balls is examined and modeled.
F&A MAY 2	bouncing balls	1R40.10	
F&A, Mw-3	bouncing balls		Balls of various materials are bounced off plates of various materials.
Mei, 9-1.5	bouncing ball	1R40.10	Loss of mechanical energy in the coefficient of restitution.
Sut, M-69	bouncing balls	1R40.10	Drop balls on a glass plate.
D&R, M-595	bouncing balls	1R40.10	
Dury, W-000	Sourceing balls		·
			even flexible diaphragms.
Disc 05-04	coefficient of restitution	1R40.10	Drop glass, steel, rubber, brass, and lead balls onto a steel plate.
TPT 15(7),420	bouncing balls	1R40.11	An eight inch or larger reflecting telescope mirror blank provides a concave
· //	5		surface for bouncing balls.
Moi O E E	apofficiant of restitution	104044	
Mei, 9-5.5	coefficient of restitution	1R40.11	Drop a small ball bearing on a concave lens.

Demonstratio	n Bibligrqaphy		July 2015 Me	chanics
Hil, M-19j.1	coefficient of restitution	1R40.12		tube onto a
AJP 58(2),151	coef. of restitution in baseballs	1R40.13	steel surface. Analysis leading to a prediction of up to 15 foot difference in long to variation in coefficient of restitution.	I fly balls due
PIRA 200	dead and live balls	1R40.30		
UMN, 1R40.30	dead and live balls	1R40.30	•	
AJP 37(3),333	dead and live balls	1R40.30	•	
Mei, 9-5.4	dead ball	1R40.31		n powder.
	Crystal Structure	1R50.00		
F&A, MA-3	solid shapes	1R50.10		and a late
Hil, A-1e	solid models	1R50.15		
Mei, 40-1.17	sphere packing	1R50.16	structures. Diagram.	-
AJP 31(3),190	Moduledra crystal models	1R50.17	Tetrahedral and octahedral building blocks are used to construct variety of crystal shapes. Many pictures.	a large
AJP 39(5),545	elastic crystal models	1R50.18	Crystal models are built with a combination of compression and t springs.	ension
PIRA 1000	crystal models	1R50.20		
UMN, 1R50.20	crystal models	1R50.20		
AJP 68(10), 950	crystal models	1R50.20		
AJP 70(2), 187	crystal models	1R50.20	-	ka a 15th
	-		lattice type.	
Hil, A-1d	crystal lattice models	1R50.20		h tha said
Disc 16-15	crystal models	1R50.20	diamond.	
F&A, MA-4	ice model	1R50.21	How to make ball and stick water molecules that can be stuck to make ice.	gether to
F&A, MA-2	tennis ball crystals	1R50.22	Old tennis balls glued together to give two close packed crystals.	
D&R, S-200	tennis ball crystals	1R50.22		
TPT 5(7), 311	crystals - mirror images	1R50.24		
Mei, 18-1.7	Poisson contraction model	1R50.25		rvstals
Mei, 40-1.18	crystal overlays	1R50.29		
Sut, H-43	crystal structure	1R50.30		tern slides of
D&R, S-195	crystal structure in atomic planes	1R50.30	•	g crate
AJP 41(5),744	crystal growth from melt	1R50.31		ı
F&A, Om-13	crystal growth in a film	1R50.31	•	ed Polaroids
F&A, HI-11	ice nuclei	1R50.31	Large ice crystals form on the surface of a supercooled saturated solution.	d sugar
AJP 34(2),167	make tin crystal	1R50.32		
PIRA 1000	crystal fault model	1R50.40		
AJP 37(8),789	array of spheres	1R50.40		er spheres
AJP 34(11),1064	stacking fault model	1R50.40		from fcc to
F&A, MA-5	crystal faults	1R50.40	•	
D&R, S-200	faults in a crystal	1R50.40		overhead
·	-		display vacancies and dislocations.	
Disc 16-16	faults in crystal	1R50.40	Show natural faults in a calcite crystal, then the single layer of sn model.	nall spheres
AJP 40(4),618	deformation front model	1R50.42	A water film evaporating from an array of mesas shows the film e at several locations.	edge pinned
PIRA 1000	crushing salt	1R50.45		
UMN, 1R50.45	crushing salt	1R50.45		
F&A, MA-7	crushing salt	1R50.45		
, -	C		,	

	SURFACE TENSION Force of Surface Tension	2A00.00 2A10.00	
Ehrlich 1, p. 110	water filled cup	2A10.05	Many pennies can be dropped into a "filled" cup of water before it overflows.
PIRA 500	sliding wire	2A10.10	
UMN, 2A10.10	sliding wire	2A10.10	A soap film provides the force to slide a light wire on a frame.
F&A, Fi-7	force on a film	2A10.10	A soap film pulls a wire up a frame.
Sut, M-233	sliding wire	2A10.10	A soap film pulls a sliding wire up a U shaped frame.
Disc 13-21	soap film pullup	2A10.10	
Mei, 16-5.1	sliding wire	2A10.11	A sliding wire frame film with a spring on one end and a string pull on the other shows that tension does not increase with length.
Hil, M-21a PIRA 1000	sliding wire, etc. submerged float	2A10.12 2A10.15	The sliding wire, wire cubes, and other soap film stuff is pictured.
UMN, 2A10.15	submerged float	2A10.15 2A10.15	When submerged, a wire hoop keeps a float beneath the surface of water due to surface tension.
F&A, Fi-1	submerged float	2A10.15	
Sut, M-213	submerged float	2A10.15	-
Sut, M-213	Submerged hoat	2410.13	ring below the surface and it remains until soap is added to reduce the surface tension.
PIRA 200	floating metals	2A10.20	Float needles, paperclips, rings of wire, etc. on water.
Sut, M-213	floating metals	2A10.20	
D&R, F-330	floating metals	2A10.20	Float a needle in a petrie dish of water.
PIRA 1000	floating metal sheet	2A10.21	
Mei, 16-5.5	floating aluminum sheet	2A10.21	A sheet of aluminum will float on the surface of clean water.
Disc 13-20	floating metal sheet	2A10.21	Float a sheet of metal on the surface of distilled water and add weights until the metal sinks.
PIRA 1000	leaky boats	2A10.25	
UMN, 2A10.25	leaky boats	2A10.25	Try to float several large (one foot long) flat bottomed boats made of different screen material or aluminum with different size holes.
F&A, Fi-16	leaky boats	2A10.25	A screen boat, razor blade, or small metal boat with a large hole all float on water.
Sut, M-218	watertight sieves	2A10.25	A mesh boat floats until a drop of water is placed inside it. Dry cheesecloth holds water in an inverted beaker.
D&R, F-330	watertight sieves	2A10.25	A fine sieve will hold water if it is added carefully, but will leak if the underside is touched with a finger.
Bil&Mai, p 182	leaky boats	2A10.25	A mesh basket floats until a drop of soap is added to the water.
Mei, 16-5.6	waterproof fabric model	2A10.28	Paraffin coated pegs serve as large model fibers. Pictures.
PIRA 1000	surface tension balance	2A10.30	
AJP 58(8),791	surface tension balance	2A10.30	An improved method for measuring surface tension by the direct pull method.
Sut, M-261	adhesion balance	2A10.30	A glass plate on one end of a balance beam is in contact with a water surface.
Sut, M-211	surface tension of mercury	2A10.31	Use a Joly balance to measure the force required to pull a razor blade out of mercury.
Sut, M-210	pull on the ring	2A10.32	Pull a large ring away from the surface of a liquid with a spring scale.
PIRA 1000	surface tension disc	2A10.33	
Disc 13-19	surface tension disc	2A10.33	A flat glass disc on a soft spring is lowered onto the surface of distilled water and the extension upon pulling the disc off the water is noted.
PIRA 1000	cohesion plates	2A10.35	
UMN, 2A10.35	cohesion plates	2A10.35	
F&A, Fi-10	cohesion plates	2A10.35	Two heavy glass plates stick together when a film of water is between them.
Sut, M-259	cohesion plates	2A10.36	There is a difference in cohesion of dry and wet plate glass.
AJP 32(1),61	cohesion plates fallacy	2A10.37	If they demonstrate cohesion, why do they fall apart when placed in a bell jar that is evacuated?
Disc 11-13	adhesion plates	2A10.37	Atmospheric pressure holds two plate glass panes together.
Sut, M-260	cohesion tube	2A10.38	A long (2-4 m) tube full of water and sealed at the top will support the water column against gravity.
PIRA 1000	drop soap on lycopodium powder	2A10.40	
F&A, Fi-6	surface reaction	2A10.40	Some soap is dropped onto a water surface covered with sawdust.
Sut, M-222	drop soap on lycopodium powder	2A10.40	Sprinkle lycopodium powder on the surface of water, then place a drop of liquid soap on the surface.

Demonstration	Bibliography	Ju	uly 2015	Fluid Mechanics
D&R, F-330	pepper and soap	2A10.40	Pepper is floated on water in a petrie dish on the ow of soap touched to the middle will make the pepper	
Bil&Mai, p 182	pepper and soap	2A10.40	Pepper is floated on water in a petrie dish on the ow of soap touched to the middle will make the pepper the dish.	
Ehrlich 1, p. 111	pepper and soap	2A10.40	Sprinkle pepper onto the surface of a cup of water. middle of the pepper and observe.	Add a drop of soap in the
AJP 33(7),v	liquid fracture	2A10.45	Directions on making a tube filled with Freon 113 w tube on warming and fracture on cooling or when a brought near after partial cooling.	
PIRA 500	bubbles blowing bubbles	2A10.50		
UMN, 2A10.50	bubbles blowing bubbles	2A10.50	A "T" tube apparatus allows one to blow two soap b diameters, then interconnect them.	oubbles of different
AJP 46(10),978	analysis of bubbles blowing bubbles	2A10.50	The complete analytical solution to the two bubbles	problem.
F&A, Fi-3	soap bubbles	2A10.50	A smaller bubble blows up a larger one when conne	ected by a tube.
Sut, M-239	bubbles blowing bubbles	2A10.50	Blow bubbles of different size on a "T" tube. The sn larger one.	naller one will blow up the
Disc 13-23	two soap bubbles	2A10.50	The smaller soap film bubble blows up the larger or	ne.
PIRA 1000	rubber balloons	2A10.51	···· -······· ············	
UMN, 2A10.51	rubber balloons	2A10.51	Do the bubbles with large rubber balloons.	
AJP 46(10),976	rubber balloons	2A10.52	The equation relating the internal pressure to the ra	adius is derived and
Sut, M-240	pressure in a bubble	2A10.55	applied to the problem of the two interconnected un Connect a slant water manometer to a tube suppor	nequal balloons.
			size of the bubble and note the change of pressure	
Sut, M-242	water balloon	2A10.58	Make a large water balloon.	
PIRA 500	surface tension bottle	2A10.60		
UMN, 2A10.60	surface tension bottle	2A10.60		
F&A, Fi-2	wet mop	2A10.65	Surface tension pulls the strands of a small fluffy m	op together when wet.
Mei, 16-5.3	sponge action	2A10.68	Water picked up by a wet sponge is greater than th	at picked up by a dry one.
Mei, 16-5 Sut, M-249	surface tension water droplets	2A10.69 2A10.70	Discussion of eight surface tension demonstrations Small water droplets form on a surface not wet by when sprayed on with an atomizer. Water droplets of an overfull glass of water when projected out of a	water, droplets bounce off will roll across the surface
Sut, M-252	rolling drops	2A10.71	A drop of alcohol can roll on the surface of an alcoh	nol dish.
Sut, M-250	tears of wine ???	2A10.72	As 50 proof alcohol evaporates in a watch glass, th drops that run down the sides.	
Sut, M-256	Plateau's spherule	2A10.73	A method of projecting and strobing drops forming orifice.	down from a vertical
Sut, M-257	bursting water bubble	2A10.74	A jet of water directed upward against the apex of a to flow around and form a bubble. A drop of ether w tension and the bubble will collapse.	
Sut, M-241	mercury bubbles	2A10.75	Air is blown into mercury covered by a dilute solution Mercury bubbles rise to the surface and burst.	on of ammonium chloride.
Sut, M-248	mercury drops	2A10.76	Spray clear mercury into distilled water - no coalese acid - coalescence.	cence. Then add a little
PIRA 1000	charge and surface tension	2A10.80		
F&A, Eb-14	effect of charge on surface tension	2A10.80	Dripping rate is much greater from an electrically ch	harged buret.
Mei, 16-5.4	surface tension with electric field	2A10.81	Droplets from a orifice become a steady stream wh Wimshurst generator.	en connected to a
Mei, 29-1.16	electrostatic breakdown of surface tension	2A10.83	Droplets shoot out of a pond of carbon tetrachloride generator as electrostatic breakdown of surface ter	
Mei, 29-1.17	elecrostatic dispersion of water drops	2A10.84	Water drops from a pipette at high potential are dis	
Sut, M-247	changing drop size	2A10.85	As the amount of sodium hydroxide is varied in a did drops formed by a olive oil jet changes with the vari	
Sut, M-258	temperature effects	2A10.95	Olive oil sprayed on hot water forms droplets but or	າ cold water forms a slick.
TPT 3(6),285	Minimal Surface soap film recipe	2A15.00 2A15.01	A Joy(2.5)/water(8)/glycerine(6.5) recipe.	

Demonstration Bibliography July 2015 Fluid Mechanics AJP 69(8), 920 soap film recipes & measurements 2A15.01 Experimental measurements of pressure changes inside a bubble for two different soap solutions. Surface tension is then calculated using the Young-Laplace equation. PIRA 200 - Old ring and thread 2A15.10 A loop of thread in the middle of a soap film forms a circle when the center is popped. UMN, 2A15.10 pop the center 2A15.10 A circle will form when the center of a loop in a soap film is popped. F&A, Fi-13 ring and thread 2A15.10 A loop of thread forms a circle when popped in the middle of a soap film. Sut, M-237 pop the center 2A15.10 A loop of thread is attached to wire ring. Dip in soap and pop the center of the loop to form a circle. Disc 13-24 minimim energy thread 2A15.10 Dip a frame with a loop of thread in soap, then pop the film in the center of the thread. Sut, M-234 soap film minimal surfaces 2A15.11 Puncture various parts of the film that forms on a wire cube to get different geometrical shapes. **PIRA 1000** soap film minimal surfaces 2A15.20 UMN, 2A15.20 soap film minimal surfaces 2A15.20 Sut. M-236 soap film minimal surfaces 2A15.20 Wire frames dipped in soap film form minimal surfaces. Pictures. D&R, F-360 soap frame minimal surfaces 2A15.20 Wire frames of different sizes and shapes will form minimal surfaces when dipped in soap solution. Disc 13-22 soap film shapes 2A15.20 A pyramid, cube, and triangular prism. **PIRA 1000** catenoid soap film 2A15.21 UMN, 2A15.21 catenoid soap film 2A15.21 A soap film is established between two concentric rings which are pulled apart. F&A, Fi-4 cylindrical soap film 2A15.21 Two rings pulled apart with a soap film form a catenoid. Mei. 16-5.9 catenoid soap film 2A15.21 Picture of a catenoid. setup, some theory and diagrams. 2A15.21 Sut, M-235 catenoid soap film Dip two concentric circles of wire in soap and separate them to form a catenoid. liquid catenoid 2A15.21 Three liquids of different densities form a catenoid when the top and bottom Ehrlich 1, p. 111 layer are connected. AJP 59(5),415 soap films - phase transition 2A15.23 Use soap films to show phase transitions by changing sizes of variable modelframeworks. Sut. M-232 surface energy 2A15.25 A soap film on an inverted funnel ascends. 2A15.30 Mei, 16-5.8 soap bubbles Blow half bubbles on a glass plate. More. Sut, M-251 castor-oil drop 2A15.42 A large drop of castor oil is drawn under water where it forms a spherical drop. F&A, Fi-14 size of drops 2A15.50 Different size drops form on the ends of different O.D. capillary tubes. **Capillary Action** 2A20.00 **PIRA 500** capillary tubes 2A20.10 UMN, 2A20.10 capillary tubes 2A20.10 Two sets of capillary tubes, one filled with water and one filled with mercury. F&A, Fi-8 capillary tubes 2A20.10 Sets of capillary tubes with water and mercury are compared. Sut, M-214 capillary tubes 2A20.10 Sets of capillary tubes of various diameters show capillary rise with water and capillary depression with mercury. Hil, M-22g capillary tubes 2A20.10 Two sets of capillary tubes. Fill a set of capillary tubes with water. Disc 13-26 capillary tubes 2A20.10 F&A, Fi-11 depression and rise in capillary 2A20.11 "U" tubes with a large and small bore arm are filled with water and mercury and compared. 2A20.12 Hil. M-22h project capillary tubes An optical setup to project capillary tubes. **PIRA 1000** surface tension hyperbola 2A20.20 F&A, Fi-9 surface tension hyperbola A large meniscus forms between two sheets of glass held at an angle in a 2A20.20 pan of water. Sut, M-215 capillary hyperbola 2A20.20 Two glass plates are clamped on one edge and separated by a wire on the other. Mei, 16-5.2 Project the meniscus of water and mercury at the apex of wedge shaped meniscus 2A20.21 containers. Sut, M-216 drops in tapered tubes 2A20.30 A drop on water in a tapered tube moves to the narrow end and a mercury drop moves away from the narrow end. **PIRA 1000** capillary action 2A20.35 Disc 13-25 capillary action 2A20.35 Touch the end of a small glass surface with a small glass tube and the water is drawn into the tube. Sut, M-220 meniscus 2A20.40 Add 4-penny finishing nails to a full glass of water until it overflows. Sut, M-217 meniscus

Demonstratio	n Bibliography	J	uly 2015	Fluid Mechanics
TPT, 36(7), 410	position of objects floating in a glass	2A20.46	Corks floating in a container cling to the edge wh brim and float in the middle when the layer is abo densities greater than water (floating metals) floa water layer is below the brim and float to the edge the brim.	ve the rim. Objects with t in the middle when the
Sut, M-219	capillary phenomena	2A20.50	Four items: dip your finger in water covered with paintbrush in and out of water, pour water down a flexible paper box.	
	Surface Tension Propulsion	2A30.00		
PIRA 1000	surface tension boat propulsion	2A30.10		
F&A, Fi-17	surface tension boats	2A30.10	A crystal of camphor is attached to the back of a	
Sut, M-224	surface tension boat	2A30.11	Pieces of camphor placed on the edges of a light to spin on the surface of water.	aluminum propeller cause it
Sut, M-226	surface tension boat	2A30.12	How to use alcohol in a surface tension boat.	
Sut, M-225	surface tension boat	2A30.13	Rub a match stick on a cake of soap or attach a in water.	piece of camphor and place
Sut, M-223	surface tension flea	2A30.20	Bits of camphor dart around on the surface of wa	ter until soap is introduced.
Sut, M-227	surface tension flea	2A30.21	A drop of Duco cement will dart around on the su will play tag.	rface of water, two drops
PIRA 1000	mercury heart	2A30.30		
F&A, Fi-5	mercury amoeba	2A30.30	A watch glass containing mercury and a solution potassium dichromate is touched with a nail.	of sulfuric acid and
Sut, M-230	mercury heart	2A30.30	A globule of mercury is covered with 10% sulfurior potassium dichromate. Touch the mercury with a rhythmic pulsation.	-
Sut, M-228	mercury amoeba	2A30.31	Place a crystal of potassium dichromate near a g with 10% nitric acid.	lobule of mercury covered
Sut, M-229	mercury heart	2A30.32	Cover a globule of mercury with 10% hydrogen p bicarbonate. A yellow film appears on the mercur regularly.	
Sut, M-231	pulsating air bubble	2A30.35	An inverted watch glass traps an air bubble over at the edge of the bubble through a bent tube at a pulsations.	
	STATICS OF FLUIDS Static Pressure	2B00.00 2B20.00		
PIRA 200 - Old	pressure independent of direction	2B20.10	Insert a rotatable thistle tube with a membrane in	to a beaker of water.
UMN, 2B20.10	pressure independent of direction	2B20.10	A thistle tube covered with a diaphragm and conr lowered into water and oriented in different direct	
F&A, Fa-1	pressure independent of direction	2B20.10	A rubber membrane covers a thistle tube connec assembly is inserted into a beaker of water and c	
D&R, F-010	pressure independent of direction	2B20.10	A funnel covered with a rubber balloon diaphragn manometer is lowered into water and oriented in	
Disc 12-04	pressure independent of direction	2B20.10	Membrane on a tube connected to a manometer.	
Sut, M-273	pressure independent of direction	2B20.11	Three thistle tubes filled with colored alcohol and membranes are joined with the thistle ends bent directions. Immerse in water to show equal press turned to show the same thing.	to be oriented in various
PIRA 1000 AJP 32(1),xiv	pressure dependent on depth pressure dependent on depth	2B20.15 2B20.15	The manometer used in the demonstration is cali	brated on the basis of the
Hil, M-20b.1	fallacy pressure dependent on depth	2B20.15	law under investigation. Lower a small funnel covered with a rubber mem	brane attached to a
Disc 12-02	Pressure vs. depth	2B20.15	manometer into a water filled vessel. A pressure sensor is connected to a LED bar gra	nh
PIRA 1000	pressure vs. depth pressure vs. depth in water and alcohol	2B20.15 2B20.16	A prosoure sensor is connected to a LED Dal gla	P.1.
Disc 12-03	pressure vs. depth in water and alcohol	2B20.16	The electronic pressure sensor and LED bar grap water, then in alcohol.	oh display are used first in
AJP 56(7),620	electronic depth dependence	2B20.17	A circuit based on the Motorola MPX100AP press pressure depth curve on an XY recorder. An inter	esting feature is the use of
PIRA 500	dropping plate	2B20.20	two liquids showing a change of slope at the inter	Iaut.

Demonstration	Bibliography	J	uly 2015 F	luid Mechanics
UMN, 2B20.20	dropping plate	2B20.20		
F&A, Fc-1	dropping plate	2B20.20 2B20.20	Pressure holds a glass plate on the bottom of a glass beaker of water until the pressure is equalized by anot the tube.	
Mei, 16-4.2	dropping plate	2B20.20	A thin glass plate stays at the bottom of a glass tube in water is poured into the tube until the plate drops off.	mmersed in water and
Sut, M-276	dropping plate	2B20.20	Water pressure holds a plate against the bottom of a g beaker of water. Pour water into the cylinder until the p variation uses a lead plate.	
PIRA 1000	Pascal's paradox	2B20.25		
Sut, M-277	Pascal's paradox	2B20.25	Two identical truncated cones are in equilibrium on a p small end down, the other large end down. Replacing rubber diaphragms and supporting only the extended scale does not give equilibrium.	the bottoms with
Mei, 16-4.10	lateral hydrostatic pressure	2B20.26	An inverted funnel with a cork on the stem floats in a b pushed down into a layer of mercury, it stays; but if the floats back up.	
AJP 59(1),89	hydrostatic paradox - vector analysi	2B20.27	Use the hydrostatic paradox to introduce vector analys electromagnetism example.	sis instead of some
PIRA 1000	weigh a water column	2B20.30		
UMN, 2B20.30	weigh a water column	2B20.30	Same as AJP 28(6),557.	
AJP 28(6),557	weigh water in a tube	2B20.30	Suspend a tube from a spring scale in a beaker of wat into the tube. Why does the scale reading increase?	ter and suck water up
Mei, 16-4.9	hydrostatic paradox	2B20.30	Suspend a tube, open at the bottom, from a spring sca and partially evacuate the air from the tube.	ale in a beaker of water
PIRA 1000	chicken barometer	2B20.32		
UMN, 2B20.32	chicken barometer	2B20.32		
PIRA 1000	hydrostatic paradox - truncated cone	2B20.34		
Disc 12-08	hydrostatic paradox	2B20.34	A glass plate is held against the large end of a truncat placed under water. The plate drops away when place end.	
F&A, Fd-3	weigh a barometer	2B20.35	A barometer tube is weighed empty and filled with me vat of mercury and weigh again.	rcury, then inverted in a
Mei, 16-4.8	weigh a barometer	2B20.35	A spring scale, barometer tube, and mercury in a glase evacuated.	s tube that can be
PIRA 200	Pascal's vases	2B20.40	Six tubes of various shapes are connected to a comm	on water reservoir.
UMN, 2B20.40	Pascal's vases	2B20.40	A set of tubes of different geometries rising from a cor water.	mmon reservoir of
F&A, Fa-3	Pascal's vases	2B20.40	A common reservoir connecting several weirdly shape	ed tubes.
Sut, M-275	Pascal's vases	2B20.40	Tubes of various shapes rise from a common horizont with water, the level is the same in each tube.	al tube. When filled
Hil, M-22f.1	Pascal's vases	2B20.40	Six tubes of various shapes are connected to a comm	on water reservoir.
Disc 12-01	same level tubes	2B20.40		
F&A, Fa-2	Pascal's vases	2B20.42	A commercial device with a pressure gauge and interc shapes.	changeable vessel
Hil, M-22e.2	Pascal's vases	2B20.42	Vessels of various shapes are interchangeable on a b pressure gauge.	ase equipped with a
D&R, F-005	Pascal's vases	2B20.42	A commercial device with a pressure gauge and interc shapes.	changeable vessel
AJP, 75 (10), 915	Pascal's vases	2B20.42	A short article with picture describing an antique set of leak type pressure gauge.	f Pascal's vases with
AJP 53(11),1106	simplified hydrostatic paradox	2B20.43	Replace the sloped side vessels with stepped sides th horizontal and vertical components.	at include only
F&A, Fa-4	water level	2B20.45	Two open tubes are connected by a long water filled h	iose.
PIRA 1000	Pascal's fountain	2B20.50		
F&A, Fb-2	Pascal's fountain	2B20.50	A piston applies pressure to a round glass flask with s various points.	mall holes drilled at
Sut, M-271	Pascal's fountain	2B20.50	Water squirts out equally in all directions when forced tube fitted with a piston.	out of a sphere by a
F&A, Fb-1	Pascal's fountain	2B20.51	A piston applies pressure to a flask with vertical jets of points on the flask.	riginating at various
Sut, M-272	Pascal's diaphragms	2B20.52	•	ed with rubber
Mei, 16-2.3	squeeze the flask	2B20.53	Squeeze a flask capped with a stopper and small bore	e tube.

Demonstratio	n Bibliography	J	luly 2015 Fluid Mechanics
TPT 17(9),595	squeeze the flask	2B20.53	Fill a whisky flask with a stopper and a small bore tube. Squeeze the bottle
	·		and watch the colored water rise in the tube.
PIRA 500	hydraulic press	2B20.60	
UMN, 2B20.60	hydraulic press	2B20.60	
Sut, M-282	hydraulic press, etc.	2B20.60	valves of suction and force pumps.
Hil, M-20e	hydraulic press	2B20.60	A hydraulic press with a pressure gauge breaks a board or compresses a large spring.
Disc 12-07	hydraulic press	2B20.60	Break a piece of wood in a hydraulic press. The press has a pressure gauge.
PIRA 1000	two syringes	2B20.61	
F&A, Fb-3	two syringes	2B20.61	Two syringes of different size are hooked together and passed around the class for students to feel the pressure difference.
Bil&Mai, p 184	two syringes	2B20.61	Two syringes of different size are connected together with tubing. Pass the system around the class so that the students can feel that the smaller diameter syringe will always be able to move the larger diameter syringe.
PIRA 1000	hydraulic can crusher	2B20.62	
PIRA 1000	garbage bag blowup	2B20.65	
UMN, 2B20.65	garbage bag blowup	2B20.65	
D&R, F-060	garbage bag lift	2B20.65	Lift a person sitting on a garbage bag by inflating with an air blower.
Disc 11-17	air pressure lift	2B20.65	Lift a person supported by two hot water bottles by blowing them up with the
			mouth.
PIRA 1000	weight on a beach ball	2B20.66	Discuss 45 th and white an extended and all so and a hearth half and block on the
UMN, 2B20.66	weight on a beach ball	2B20.66	beach ball per os.
Mei, 16-4.6	weight on the beach ball	2B20.66	
Sut, M-268	incompressibility of liqiuds	2B20.66	Pound in a nail with a bottle completely filled with boiled water.
Sut, M-274	hydraulic balance	2B20.67	A 2m vertical glass tube is connected to a hot water bottle. Have students sit on the bottle.
PIRA 1000	compressibility of water	2B20.70	
F&A, Fn-1	compressibility of water	2B20.70	A piston in a heavy walled glass cylinder is screwed in causing mercury to move in a capillary in a second enclosed container.
Mei, 16-3.1	compressibility of water	2B20.70	
Sut, M-270	compressibility of water	2B20.70	
PIRA 1000	water/air compression	2B20.71	
Disc 12-05	water/air compression	2B20.71	A syringe filled with air is compressed when a large weight is placed on it, but a water filled syringe does not compress.
Mei, 16-3.3	Weinold piezometer	2B20.72	Humor from Phil Johnson as he wrote" Diagram. Complicated and delicate. The actual description is a labor intensive device using mercury to calculate
Mei, 16-3.2	near-incompressibility of water	2B20.75	the decrease in total volume of water upon compression. Shoot a .22 at a water filled half pint paint can and the cover flies off. ALSO -
Sut, M-269	incompressibility of liquids	2B20.76	Hammer a nail with the side of a glass bottle filled with water. With a hammer, strike the stopper of a large bottle completely filled with water and shatter the bottle.
D&R, F-065	incompressibility of fluids	2B20.76	
PIRA 500	hovercraft	2B20.70 2B20.80	A baggie taped onto a jar cannot be forced into or pulled out of the jar.
UMN, 2B20.80	hovercraft	2B20.80	There exists the hermony firms of a formation of the second state
D&R, M-282	hovercraft	2B20.80	, , , , , , , , , , , , , , , , , , , ,
	Atmospheric Pressure	2B30.00	
PIRA 1000	lead bar	2B30.05	
UMN, 2B30.05	lead bar	2B30.05	
PIRA 200	crush the can	2B30.10	Boil water in a can and cap. As the vapor pressure is reduced by cooling, the can collapses.
Sut, H-77	crush the can	2B30.10	Boil water in a can and cap. As the vapor pressure is reduced by cooling, the can collapses.
Sut, M-326	crush the can	2B30.10	•
Hil, M-22d	crush the can	2B30.10	·
D&R, F-025, H- 068	crush the can	2B30.10	
PIRA 1000	crush the soda can	2B30.15	
UMN, 2B30.15	crush the soda can	2B30.15	
Sprott, 2.4	crush the soda can	2B30.15	A soft drink can is crushed by rapid condensation of steam.

Demonstration	Bibliography	Jı	uly 2015	Fluid Mechanics
AJP 47(11),1015	crush the soda can	2B30.15	Heat water in the bottom of an al pan of water.	uminum soft drink can, then invert it over a
TPT 28(8),550	crush the soda can	2B30.15		over water, and then calculate the thermal
PIRA 500	crush a 55 gal drum	2B30.20	3 · · · · · · · · · · · · · · · · · · ·	
UMN, 2B30.20	crush a 55 gal drum	2B30.20	the smaller bung hole is optional	g three LP gas burners. A vacuum gage in . The barrel crushes at about a half
D&R, F-025	crush a 55 gal drum	2B30.20	atmosphere. Boil water in a 55 gal drum, seal,	and cool. Force approaches 3-4 tons.
Sprott, 2.4	crush a 55 gallon drum	2B30.20	Boil water in a 55 gal drum, seal,	and cool.
Disc 11-16	barrel crush	2B30.20	Boil water in a 55 gal drum, seal,	and cool.
PIRA 1000	crush the can with vacuum pump	2B30.25		
UMN, 2B30.25	crush the can with pump	2B30.25	inverted on cold water.	a pump. A pop can heated with water and
F&A, Fd-1	crush the can	2B30.25	Pump on a gallon can to collapse	
Disc 11-14	crush can with pump	2B30.25	A one gallon can is evacuated wi	
Mei, 16-2.2	blow up the crushed can	2B30.26	Take a deep breath and blow up	
Bil&Mai, p 186	vacuum pack a student	2B30.28	arms crossed over their chest. S and remove the air in the bag wit	r your head is place over a student with their Seal around the neck and the waist with tape h a vacuum. When vacuum packed, the
	Manufaharan karatan karat	0000.00	student will not be able to move t	
PIRA 200	Magdeburg hemispheres	2B30.30	Evacuate Magdeburg hemispher	
UMN, 2B30.30	Magdeburg hemispheres	2B30.30	A set of Magdeburg hemispheres	
AJP 36(3),ix	Magdeburg flat plates	2B30.30	Pump out flat plates separated b	
TPT 3(6),285 F&A, Fd-2	Magdeburg hemispheres	2B30.30 2B30.30	Separate the hemispheres by pla Evacuate Magdeburg hemisphere	
Hil, M-22b.3	Magdeburg hemispheres Magdeburg hemispheres	2B30.30 2B30.30	Picture of two Magdeburg hemis	
D&R, F-015	Magdeburg hemispheres	2B30.30 2B30.30		s are evacuated with a pump. Try to
Daix, 1-015	Magueburg hemispheres	2030.30	separate.	s are evacuated with a pump. Try to
Sprott, 2.1	Magdeburg hemispheres	2B30.30	Evacuate Magdeburg hemispher	es and try to separate them
Disc 11-12	Magdeburg hemispheres	2B30.30		phere set supports a large stack of weights.
Sut, M-323 PIRA 1000	Magdeburg hemispheres Magdeburg hemisphere swing	2B30.31 2B30.33	Pump out a cylinder at least 5" in	diameter and lift a student.
UMN, 2B30.33	Magdeburg hemisphere swing	2B30.33	Evacuate two Plexiglas plates wi ceiling, grab onto the bottom plat	th a 7.5" "O" ring in between. Hook to the e and swing.
PIRA 1000	Magdeburg tug-of-war	2B30.34		
UMN, 2B30.35	Magdeburg tug-of-war	2B30.35	rope to each plate. Have student	
AJP 48(11),987	Magdeburg hemispheres	2B30.35	A fifteen inch set used in a pull o drive.	ff between a Clydesdale and small 4-wheel
PIRA 1000	suction cups	2B30.36		ale a la su dia da ana Cara ana
UMN, 2B30.36 Ehrlich 1, p. 101	suction cups suction cups	2B30.36 2B30.36		grass nandier's suction cup. ure can be demonstrated by pressing two air between them and then trying to pull
PIRA 1000	soda straw contest	2B30.40		
UMN, 2B30.40	soda straw contest	2B30.40	Ask how far a person can suck.	Start with a 3' tube, then try 6', 12', and 18'.
Ehrlich 2, p. 102 AJP 44(6),604	soda straw contest inverted glass	2B30.40 2B30.45	•	not suck water up through a straw. I for the inverted glass demo. More on itation using the same tube
D&R, F-310	inverted glass	2B30.45		place a stiff card over opening and invert.
D&R, F-315	inverted glass spoof	2B30.45	•	the side can be made to release water
Ehrlich 1, p. 102	inverted glass	2B30.45		a stiff card over the opening. Invert the
AJP 29(10),711	card on inverted glass modification	2B30.46		0 cm and when half filled, it cannot be
D&R, F-305	egg in a bottle	2B30.47	A lit match is put into a milk bottl	e and a hardboiled egg put on the mouth of othe bottle by atmospheric pressure.
TPT, 37(3), 178	the jumping pencil	2B30.48	Atmospheric pressure pushes a	pencil out of a bottle.

	5 5 7	-	
Sut, M-322	atmospheric pressure demos	2B30.49	Four demos: 1) Hollow out a "suction cup" in the bottom of a cork so it will stay stuck at the bottom of a beaker as water is poured in. 2) Lift a heavy object by using rubber suction cups. 3) A smaller test tube is pulled into a larger water filled one as the system is inverted and the water runs out. 4) An aspirator is attached to a glass tube coming out of a sealed bottle of water.
PIRA 500	lift a staal	2020 50	
	lift a stool	2B30.50	
UMN, 2B30.50	lift a stool	2B30.50	Place a square foot of 1/16" rubber on a chair and lift the chair by pulling up
			on a handle attached to the rubber sheet.
Disc 11-19	rubber sheet lifting chair	2B30.50	Lift a chair by placing a thin sheet of rubber with a handle on the seat and pulling up.
PIRA 1000	adhesion plates	2B30.55	
PIRA 500	stick and newspaper	2B30.60	
Mei, 16-4.5	stick and newspaper	2B30.60	Hit and break the protruding part of a stick covered with a newspaper.
Disc 11-18	inertia shingles	2B30.60	Break a wood stick protruding from under a paper.
PIRA 1000	vacuum bazooka	2B30.70	
AJP 74(12), 1071	vacuum bazooka	2B30.70	Simulations and measurements of the shock wave that is produced by the Ping-Pong ball accelerator.
AJP 72(7), 961	vacuum bazooka	2B30.70	An analysis of the vacuum cannon and the theoretical maximum velocity the projectile can attain.
Disc 11-15	vacuum bazooka	2B30.70	Put a rubber ball in a tube, seal the ends, evacuate, and puncture the end
			with the ball.
Sut, M-325	pressure due to height	2B30.80	Flames burn the same at ends of a tube when horizontal but with different heights when the tube is vertical.
	Measuring Pressure	2B35.00	
PIRA 1000	mercury barometer	2B35.10	
UMN, 2B35.10	mercury barometer	2B35.10	A simple mercury barometer.
PIRA 1000	barometer in a tall bell jar	2B35.15	
			A tall hall for containing a margury barameter is avapuated
Hil, M-22b.1	barometer in a tall bell jar	2B35.15	A tall bell jar containing a mercury barometer is evacuated.
Disc 11-10	barometer in vacuum	2B35.15	Evacuate a bell jar containing a barometer.
AJP 29(6),369	balance barometer	2B35.16	A very sensitive barometer results when a balance which carries a mercury barometer, in addition to reading the weight of the glass tube, also reads the weight of the mercury column (1671).
F&A, Fd-4	low barometric pressure	2B35.18	A bell jar with a 10" barometer is evacuated.
PIRA 500	pull up a mercury barometer	2B35.20	··· ,
UMN, 2B35.20	pull up a mercury barometer	2B35.20	Pull a barometer tube up out of a tall reservoir of mercury.
AJP 30(11),807	pull up mercury barometer	2B35.20	Apparatus Drawings Project No.31: A mercury filled tube apparatus with a
	and the fight of a barrier ten	0005.00	reservoir deep enough to immerse the entire tube.
F&A, Ff-3	constant height of a barometer	2B35.20	A deep vat of mercury allows the height of the tube to be changed.
Sut, M-324	mercury barometer	2B35.20	Pull up a mercury filled tube until the mercury falls away. Also the weigh the barometer demo.
AJP 57(5),467	water/gas barometer	2B35.26	An accurate, easy to build water/gas barometer of similar size to the usual mercury barometer.
PIRA 200	manometer	2B35.30	•
PIRA 1000 - Old	manometer	2B35.30	
UMN, 2B35.30	manometer	2B35.30	Simple water and mercury manometers.
		2B35.30	
Mei, 16-4.1	overhead projector manometer		A horizontal manometer for the overhead projector.
AJP 29(2),123	magnifying manometer	2B35.35	A mercury manometer that when tipped over backward to an inclined position, has an angle whose sine is 1/10.
PIRA 1000	aneroid barometer	2B35.40	
F&A, Ff-2	aneroid barometer	2B35.40	A large open aneroid barometer.
Hil, M-22b.2	aneroid barometer	2B35.40	Picture of two aneroid barometers.
Disc 11-11	aneroid barometer	2B35.40	Blow and suck on a chamber containing an aneroid barometer.
TPT 33(4), 224	balloon barometer	2B35.45	A pressure indicator made from a balloon and a 2 liter soda bottle.
Mei, 16-4.7	plastic Torricelli type barometer	2B35.50	A Torricelli type barometer made out of Lucite. Diagram.
F&A, Ff-1	bourdon gauge	2B35.60	An open Bourdon gauge with a large element.
	Density and Buoyancy	2B40.00	
PIRA 200	weigh submerged block	2B40.10	Lower a 3 Kg block of aluminum suspended from a spring scale into water and note the new weight.
Ehrlich 1, p. 104	weigh submerged block	2B40.10	A weight hanging from a spring scale is lowered into a bucket of water. The scale reading is reduced by the amount of the buoyant force.
UMN, 2B40.10	weigh submerged block	2B40.10	Suspend a 3 Kg block of aluminum from a spring scale and then lower the block into water and note the new weight.
E&A Ea 4	loss of weight in water	2840 14	5
F&A, Fg-4	loss of weight in water	2B40.11	An aluminum block on a spring scale is lowered into a beaker of water tared on a platform balance.

Demonstration	n Bibliography	J	uly 2015	Fluid Mechanics
Mei, 8-1.8	reaction balance	2B40.12		e is displaced when an empty test tube is
Mei, 16-2.4	weigh submerged block	2B40.13	immersed. Immerse a lead block suspended from beaker of water on a counterweighted weight to bring the system back into	d platform balance and then transfer a
PIRA 1000	buoyant force	2B40.14		- 1
Disc 12-11	buoyant force	2B40.14	A weight suspended from a spring sc suspended from a spring scale.	ale is lowered into a beaker of water
PIRA 1000	finger in beaker	2B40.15		
UMN, 2B40.15	finger in beaker on balance	2B40.15		
Bil&Mai, p 188	finger in a beaker on balance	2B40.15	A beaker of water is placed on a bala scale reading will be when you insert	
Ehrlich 2, p. 102	finger in a beaker on balance	2B40.15	Place a cup of water on a scale. Inserve the scale reading.	ert your finger into the water and
AJP 52(2),184	improved hydrobalance	2B40.17	An improvement of the Nicholson hyd	drometer.
F&A, Fg-7	Nicholson balance	2B40.17	A float that allows determination of lo	
PIRA 1000	board & weights	2B40.18		
UMN, 2B40.18	board & weights float	2B40.18		
Ehrlich 1, p. 97	board and weights float	2B40.18	The amount of weight needed to sink floating in water is determined by the	
Disc 12-13	board and weights float	2B40.18	A board sinks equal amounts as equa	al weights are added.
PIRA 200	Archimedes' principle	2B40.20	Suspend a pail and weight from a spi collect the overflow, pour it into the p	ring scale, lower the weight into water, ail.
2B40.20	Archimedes' principle	2B40.20	A mass and bucket of the same volu	me hang from a spring scale. Lower the and pour the overflow into the bucket.
F&A, Fg-1	Archimedes' principle	2B40.20	A cylinder and bucket of the same vo cylinder in water, catch the runoff, po	blume hang from a scale. Immerse the
Sut, M-283	Archimedes' principle	2B40.20	Hang a cylinder turned to fit closely in bucket while suspended from the bot	nside a bucket from the bottom of the tom of a balance. Immerse the cylinder
Hil, M-20c	Archimedes' principle	2B40.20	in water and then pour water into the The four step Archimedes' principle v	bucket. with a close fitting cylinder and bucket.
D&R, F-105	Archimedes' principle	2B40.20	Suspend a pail and weight from a trip collect the overflow, and pour into the	b balance, lower the weight into water,
Disc 12-12	Archimedes' principle	2B40.20	•	ring scale, lower the weight into water,
Sut, M-284	Archimedes' principle	2B40.21	A beaker with a spout is tared on a b	alance. As an object is lowered into the er on the table and the balance remains
AJP 50(11),968	Archimedes' - historical discussion	2B40.22	Archimedes did not experience buoya	ancy, only how to measure volume.
AJP 50(11),968	Archimedes - historical discusson	2B40.22	Volume uncertainties make it imposs	ible to show adulteration.
AJP 50(6),491	Archimedes' original experiment	2B40.22	Letter that cautions against misunder	rstanding Archimedes' crown solution.
PIRA 1000 F&A, Fg-5	battleship in a bathtub float a battleship in a cup of water	2B40.25 2B40.25	A small amount of water floats a woo	d block shaped to just fit in a graduate.
Mei, 16-2.5	float a battleship in a cup of water	2B40.25	A juice can with ballast floats in a 100 look at the water level.	00 ml graduate. Also - sink the can and
Mei, 16-2.6	float a battleship in a cup of water	2B40.25	Float a 2500 g can in 500 g water.	
D&R, F-130	battleship in a bathtub	2B40.25	A small amount of water floats a woo	d block shaped to just fit in a tall beaker.
Disc 12-17 PIRA 1000	battleship in bathtub ship empty and full	2B40.25 2B40.26	A block of wood is floated in rectange	
UMN, 2B40.26	ship empty and full	2B40.26	Add mass to an empty model boat ar full.	nd show pictures of a ship empty and
UMN, 2B40.26	battleship in a bathtub	2B40.26	Same as TPT 28(7),510.	
TPT 28(7),510	battleship in a bathtub	2B40.26	Will a cup three quarters full float in a	a cup one quarter full?
TPT 25(1), 48 AJP, 78 (2), 139	metal boats metal boats	2B40.28 2B40.28	Why do metal boats float? Can bubbles rising through a body of	water sink a ship?

Demonstration	l Dibilography	5	
TPT 25(4), 244	buoyancy vs. surface area	2B40.29	A block with a rock or metal cube tied to the top floats in water. Measure the waterline on the block. Now turn the block over so that the rock is in the water under the block. The waterline is lower (the block floats higher)
PIRA 200 - Old	Cartesian diver	2B40.30	because of the increase in surface area supplied by the rock. Push on a diaphragm at the top of a large graduate or squeeze a stoppered whisky flask to make the diver sink.
UMN, 2B40.30	Cartesian diver	2B40.30	A whiskey bottle version and a large bottle with a rubber bulb version of the
AJP 48(4),320	cartesian diver "tricks"	2B40.30	room temp and allow it to cool during the class, set the diver so it will remain
AJP 49(1),92	Cartesian diver	2B40.30	on the bottom after squeezing. Squeeze the flat sides to sink the diver, squeeze the narrow sides to raise the diver.
AJP 51(5),475	Cartesian diver - toys	2B40.30	A review of two Cartesian diver toys.
AJP 70(7), 710	Cartesian diver	2B40.30	
F&A, Fg-6	Cartesian diver	2B40.30	
Sut, M-320	Cartesian diver	2B40.30	An inverted test tube diver in a jar.
Sut, M-321	Cartesian diver	2B40.30	•
,			
D&R, F-120	Cartesian diver	2B40.30	0
			diver. Medicine droppers used as the diver.
Ehrlich 1, p. 96	Cartesian diver	2B40.30	A Cartesian diver made from a soda bottle and a medicine dropper or a piece of soda straw.
Disc 12-22	Cartesian diver	2B40.30	A buoyant bottle in a water column.
AJP 49(12),1185	double cartesian diver	2B40.31	
Hil, M-20a.2	Cartesian diver	2B40.33	The picture is unclear, but the diver is in a graduate.
TPT 28(7),478	Cartesian matches	2B40.34	
())			
AJP 49(5),507	buoyant force model	2B40.37	A Plexiglas container of agitated plastic spheres forms a "fluid" in which various objects sink or float.
PIRA 500	buoyancy of air	2B40.40	
UMN, 2B40.40	buoyancy of air	2B40.40	A brass weight counterbalanced by a aluminum sphere filled with air is placed in a bell jar.
F&A, Fg-3	buoyancy of air	2B40.40	
Mei, 16-2.10	buoyancy of air	2B40.40	A toilet tank float is balanced against brass weights in air and in a vacuum.
Sut, M-327	buoyancy of air	2B40.40	A glass ball is balanced with a brass weight in a bell jar and then the air is pumped out.
Hil, M-22c	buoyancy of air	2B40.40	The Leybold buoyancy of air apparatus.
Sprott, 2.17	buoyancy of air	2B40.40	A balance with a brass weight and a hollow sphere is placed in a bell jar and evacuated.
PIRA 1000	buoyancy balloon	2B40.42	
UMN, 2B40.42	5 5		Disco a balloon with some neuropered dry ise in it on a balance. Take, and
	buoyancy balloon	2B40.42	watch as the balloon expands.
AJP 48(4),319	buoyancy balloon	2B40.42	Fill a balloon with dry ice, seal it, place it on a scale, and watch the weight decrease as the balloon inflates. Also determine the volume by immersion.
PIRA 1000	helium balloon in a glass jar	2B40.43	
Disc 12-20	helium balloon in glass jar	2B40.43	A helium balloon floats in an inverted container but sinks when the container is filled with helium.
PIRA 1000	helium balloon in liquid nitrogen	2B40.44	
Disc 12-21	helium balloon in liquid nitrogen	2B40.44	Cool a helium balloon to decrease its volume and it will no longer float.
			ooor a menum banoon to decrease its volume and it will no longer hoat.
PIRA 1000	weight of air	2B40.45	
UMN, 2B40.45	weight of air	2B40.45	
Mei, 16-4.3	weight of air in a tire	2B40.45	A inflated tire is suspended from a heavy duty spring and the air is let out.
Sut, M-315	weight of air	2B40.45	Place a large evacuated glass flask on a balance, then let air in and note the increased weight.
Hil, M-22a	density of air	2B40.45	A one liter flask is tared on a balance, then pumped out and the loss of weight is about one gram.
D&R, F-115	weight of a gas	2B40.45	
Sprott, 2.17	weight of air	2B40.45	Place a hollow sphere on a balance scale and balance with small weights. Evacuate the sphere and rebalance.

Demonstrat	ion Bibliography	J	uly 2015 Fluid Mechanics
Ehrlich 2, p. 13	36 weight of air	2B40.45	Place a 1 inch steel ball bearing in a balloon, blow it up, and tie it to a large rubber band. The ratio of the oscillations of the balloon when blown up and when empty will allow you to calculate the density of the air in the balloon.
Ehrlich 2, p. 11	11 weight of air	2B40.45	A balloon is weighed when fully inflated and when it is empty on a digital scale. An estimate can be made as to the air pressure inside the inflated balloon.
Disc 12-10	weight of air	2B40.45	
Hil, M-22e.1	density of hot and cold air	2B40.46	0
TPT 28(6),406	-	2B40.47	Use CO2 from carbonated water to fill a balloon for use in measuring the density of air.
Mei, 16-4.4	liquid density comparison	2B40.50	Put one branch of a "Y" tube in brine and the other in colored water and suck.
F&A, Fh-2	specific gravity of fluids	2B40.51	Water and an unknown liquid are raised to different heights in vertical tubes by a common low pressure.
TPT 36(1), 10	specific gravity with electronic balances	2B40.52	Finding the specific gravity of objects using an electronic balance.
PIRA 1000	water and mercury "U" tube	2B40.53	
F&A, Fh-1	comparison of fluid densities	2B40.53	A "J" tube with mercury in the short side and another fluid in the longer.
Disc 12-06	water and mercury u-tube	2B40.53	Water and mercury rise to different heights in a "J" tube.
PIRA 1000	buoyancy in various liquids	2B40.54	
Disc 12-18	buoyancy in various liquids	2B40.54	Iron, bakelite, and wood are dropped into a column containing mercury, carbon tetrachloride, and water.
PIRA 1000	floating square bar	2B40.56	
Disc 12-19	floating square bar	2B40.56	A long bar floats in one orientation in alcohol and switches to another orientation when water is added.
TPT 24(3), 164	4 density of a soft drink	2B40.57	Cans of regular Coke and Pepsi sink, diet Pepsi and diet Coke float.
D&R, F-110	density of a soft drink	2B40.57	Cans of regular Coke sink, cans of diet Coke float. Will not work with plastic bottles.
Bil&Mai, p 190	density of a soft drink	2B40.57	Cans of regular Coke or Pepsi sink, diet Coke and diet Pepsi will float in a container of water. Add salt to the water and the regular Coke or Pepsi will rise.
PIRA 1000	density ball	2B40.59	
F&A, Fg-2	buoyancy of hot and cold water	2B40.59	A hydrometer is made so it sinks in warm water and floats in cold.
D&R, F-135	density ball	2B40.59	A plastic ball will float in salt water but sink in pure water. Create a density gradient so it will float at the halfway mark
Disc 12-15	density ball	2B40.59	A metal sphere barely floats in cold water and sinks in hot water.
PIRA 1000	hydrometers	2B40.60	
Sut, M-286	hydrometers	2B40.60	A constant weight hydrometer, constant volume hydrometer (Nicholson), and Mohr-Westphal balance are used with liquids of various density.
Disc 12-09	hydrometer	2B40.60	A hydrometer is placed in water, then in alcohol.
PIRA 1000	different density woods	2B40.61	
Disc 12-14	different density woods	2B40.61	Float blocks of balsa, pine, and ironwood in water.
Hil, M-20a.3	density of wood	2B40.62	Place a wood dowel in a graduate.
F&A, Fi-12	spherical oil drop	2B40.65	Olive oil forms a large spherical drop in a stratified mixture of alcohol and water.
Mei, 16-5.7	large drop	2B40.65	A large drop of water is formed in a mixture of benzene and carbon disulfide. Picture.
Sut, M-238	equidensity bubbles	2B40.65	Blow a soap bubble with air and then gas to give a bubble of the same density as the surrounding air.
Sut, M-245	equidensity drops	2B40.65	A beaker of water has a layer of salt solution on the bottom. Place a drop of mineral oil on top and pipette in some colored salt solution. The drop in an oil sac sinks to the interface.
Sut, M-246	equidensity drops	2B40.65	A globule of oil floats at the interface in a bottle half full of water with alcohol on top.
Sut, M-244	equidensity drops	2B40.65	Aniline forms equidense and immiscible drops when placed in 25 C water. Pour 80 ml in cool water and heat.
Sut, M-243	equidensity drops	2B40.65	Orthotoluidine has the same density as water at 24 C and is immiscible.
Mei, 16-2.8	kerosene/carbon tet. mixtures	2B40.66	Kerosene and carbon tetrachloride can be mixed to give .9 g/cc to 1.6 g/cc densities.
Mei, 16-2.21	chloroform bubbles	2B40.67	Chloroform bubbles, formed by heating a layer of chloroform covered by a lot of water, move up and down.
Sut, M-328	lifting power of balloons	2B40.70	Fill balloons to the same diameter with different gases and show difference in lifting power.

Demonstration	n Bibliography	J	uly 2015	Fluid Mechanics
Sprott, 2.18	lifting power of balloons - the impossible balloon	2B40.70	A spoof on the lifting power of balloons demon- string through it which is attached to the ceiling power greater than permitted by Archimedes' p	appears to have a lifting
Sprott, 2.19	lifting power of balloons - neutral buoyancy balloon	2B40.70	A helium filled balloon attached to a heavy strin balances its weight plus the string. (Variation o	ng rises until its buoyancy just
Ehrlich 1, p. 103	lifting power of balloons	2B40.70	Hang the appropriate amount of weight from a achieve neutral buoyancy.	helium filled balloon to
Sut, M-285	floating and density	2B40.71	A tall tube is filled with several immiscible liquid objects are inserted that will float at the various egg in a tall jar of water and add a handful of s	interfaces. ALSO, Drop an
Hil, M-20a.4	adding salt	2B40.72	Salt is added to a beaker of water to make a de	,
Mei, 16-2.7 TPT 1(2),82	kerosene and water freon and air	2B40.73 2B40.74	Float a test tube in water, kerosene, and a com Fill a pan with freon and float a balloon on it to with air.	
Sut, M-316	pouring gases	2B40.75	Pour sulfuric ether or carbon dioxide into one or balance. Shadow projection may be used to ma	
Sprott, 2.16	carbon dioxide trough	2B40.75	Carbon dioxide pours down a trough and exting	
Sut, M-317	gasoline vapors	2B40.76	A teaspoon of gas placed at the top on a mode	
Mei, 16-2.11	sticking to the bottom	2B40.80	bottom. Push a rubber stopper that floats on mercury d	own and squeeze out the
PIRA 1000	density balls in beans	2B40.85	mercury between the dish and the stopper.	
TPT 28(7),500	rising stones	2B40.85	Rising of rocks in the spring is the same as the bottom of a cereal box.	sifting of fine particles to the
D&R, F-125	density balls in beans	2B40.85	A ping pong ball will rise and a steel ball will sin	nk in a bottle of shaken beans.
AJP 73(1), 8	granular physics	2B40.85	A listing of references on the following topics: F Avalanches and Granular Flow, Hoppers and J Induced Phenomena, Avalanche Stratification,	amming, Vertically Vibrated
TPT 28(2),104	Beans	2B40.85	The size of an aluminum ball determines wheth shaking bowl of beans.	ner it goes up or down in a
Bil&Mai, p 192	density balls in beans	2B40.85	Bury a 40 mm Ping Pong ball in a bowl of Pinto mm steel ball on top. Shake the bowl and the top while the steel ball will sink to the bottom.	
Disc 12-16	density balls in beans	2B40.85	A ping pong ball in the middle of a beaker of be is shaken.	eans will rise when the beaker
	Siphons, Fountains, Pumps	2B60.00		
PIRA 1000	Hero's fountain	2B60.10		and the total and the same of
UMN, 2B60.10	Hero's fountain	2B60.10	An arrangement of reservoirs connected by tub water above the highest reservoir.	bes that forces a stream of
F&A, Fc-2	Hero's fountain	2B60.10	A clever arrangement that allows water to foun	tain higher than the reservoir.
Sut, M-280	Hero's Fountain	2B60.10	A variant of Hero's fountain in which water show reservoir. Diagram.	ots up above the level of the
Bil&Mai, p10	Hero's fountain	2B60.10	A Hero's fountain constructed from 4 L bottles, and a funnel.	rubber tubing, glass tubing,
Mei, 27-3.2	fountain in a flask	2B60.15	A little water is boiled in a flask, a stopper with whole thing is inverted into a water reservoir.	a single tube is inserted, the
PIRA 1000	siphon	2B60.20		
F&A, Fe-1	siphon	2B60.20	A glass "U" tube demonstrates a siphon.	h a connecting base full of
Disc 13-10	siphon	2B60.20	Start with two beakers half full of water and wit water. Lift one beaker, then the other.	-
Mei, 16-4.12	siphon in a bell jar	2B60.23	Water is transferred through a "U" tube from a beaker when the assembly is placed in a bell ja	
Mei, 16-4.11	siphons	2B60.24	An apparatus that shows atmospheric pressure basis for the siphon action.	e (not cohesion) to be the
Ehrlich 2, p. 104	siphon	2B60.24	A demonstration to show that the maximum he 10 meters under usual conditions.	ight of a water siphon is about
Sut, M-281	pressure measurement in siphon	2B60.25	Hook a manometer to the upper portion of a sig	
Sut, M-318	gas siphon	2B60.26	Carbon dioxide is siphoned from one beaker to	
Sut, M-278	siphons	2B60.29	A mechanical model of a siphon consists of ch lower level. A diagram of a intermittent siphon	(Tantalus cup) is shown.
Mei, 15-10.12	self starting siphon	2B60.30	An inverted "U" tube sealed in the side of a beasiphon.	aker makes a self starting

			-
Sut, M-279	self-starting siphon	2B60.30	A diagram of a self-starting siphon.
F&A, Fe-2	intermittent siphon	2B60.35	A funnel with a "?" tube inside makes a self starting intermittent siphon.
Hil, M-20a.1	•	2B60.35	
,	intermittent siphon		The picture looks like the intermittent siphon.
PIRA 1000	Mairotte flask and siphon	2B60.40	
F&A, Fe-3	Mariotte flask and siphon	2B60.40	A Mariotte flask is used to make a siphon with a constant flow rate.
F&A, Fk-1	Mariotte flask	2B60.40	The height of an open tube inserted through the stopper of a jug with an
			outlet at the bottom regulates flow.
		0000.00	oullet at the bottom regulates now.
PIRA 1000	hydraulic ram	2B60.60	
UMN, 2B60.60	hydraulic ram	2B60.60	Same as M-291.
AJP 48(11),980	hydraulic ram	2B60.60	Analysis of the hydraulic ram with picture of a demonstration device.
Mei, 17-11.1	hydraulic ram	2B60.60	A large quantity of water falling a small height pumps a small quantity of
		2000.00	
			water a large height.
Sut, M-291	hydraulic ram	2B60.60	A diagram of how to construct a demonstration hydraulic ram.
Hil, M-20d	hydraulic ram	2B60.60	A glass model of a hydraulic ram that lifts water higher than the supply.
Hil, M-22f.2	spiral pump	2B60.70	A spiral pump made of a glass tube coil.
PIRA 1000		2B60.75	
	lift pump		
Hil, M-22f.3	lift pump	2B60.75	A glass model of a lift pump.
Hil, M-22f.4	force pump	2B60.80	A glass model of a force pump.
Hil, M-22f.5	hydraulic lift	2B60.85	A glass model of a hydraulic lift.
, -	-	2C00.00	5
	DYNAMICS OF FLUIDS		
	Flow Rate	2C10.00	
PIRA 200	velocity of efflux	2C10.10	
PIRA 500 - Old	velocity of efflux	2C10.10	
UMN, 2C10.10	velocity of efflux	2C10.10	A tall tube of water has holes top, middle, and bottom. Compare the range of
010114, 2010.10	velocity of enfux	2010.10	
=			the water streams.
AJP 73(7), 598	velocity of efflux	2C10.10	A study of the drainage of a cylindrical vessel using video capture so that
			stream trajectory vs. water height can be plotted.
TPT 1(3),126	velocity of efflux	2C10.10	
	-	2C10.10	
F&A, Fk-2	velocity of efflux		
Sut, M-314	velocity of efflux		A tall reservoir of water with holes at different heights.
Hil, M-20b.2	velocity of efflux	2C10.10	A bottle has horizontal outlets at three heights.
D&R, F-045	Torricelli's tank	2C10.10	Water streams from holes at different heights in a vertical acrylic tube.
Ehrlich 1, p. 98	velocity of efflux	2C10.10	
Ennion 1, p. 00	velocity of emax	2010.10	•
D : (0.17	—		The hole in the middle shoots water the farthest.
Disc 13-15	Toricelli's tank	2C10.10	5 5
Sut, M-313	Toricelli's tank	2C10.11	Determine the velocity of efflux by the parabolic trajectory method or attach a
			manometer to the various openings. Holes of different size at the same
			height show independence of diameter.
Mai 16 2 1	Mariatta'a flaak	2010 12	o
Mei, 16-2.1	Mariotte's flask	2C10.12	5
			water and closed with a stopper fitted with an open glass tube. The flow from
			the holes changes as the tube is moved up and down.
PIRA 500	uniform pressure drop	2C10.20	
F&A, Fj-7	pressure drop along a line	2C10.20	Open tubes along a drain pipe show pressure drop along a line.
	· · · ·		
Sut, M-58	viscosity	2010.20	A series of small holes in a long 3/4" water pipe shows pressure drop due to
			friction. Do the same thing with 3/8" gas pipe.
Ehrlich 1, p. 99	uniform pressure drop	2C10.20	The range of water streaming from a hole in the bottom of a can decreases
	•		linearly with time as the can empties.
Disc 13-12	uniform pressure drop	2C10.20	
D100 10 12		2010.20	
0.11.00			standpipes fitted with wood floats.
Sut, M-59	viscosity	2C10.22	
			bottom of each side. Show the difference between static and kinetic
			pressure.
PIRA 1000	syringe water velocity	2C10.26	
			End the second contract to a second
Ehrlich 1, p. 100	bottle water velocity	2C10.26	
			achieve the maximum range of the water stream.
Disc 13-11	syringe water velocity	2C10.26	Squirt water out of a syringe. The water moves faster through the
			constriction.
Ehrlich 2, p. 107	falling water stream	2C10.30	
Enhich $z, p. 107$	Tailing water stream	2010.30	•••
			flow velocity and the flow rate.
	Forces in Moving Fluids	2C20.00	
Mei, 17-2.11	hydrodynamic attraction	2C20.05	Move a small sphere in water and another in close proximity will move due to
			hydrodynamic attraction. Pictures.
PIRA 500	Venturi tubes	2C20.10	
			Als flavor there are taken at the test of the second state of the
UMN, 2C20.10	Venturi tubes	2C20.10	
			differences.
			differences.

Demonstratior	Bibliography	J	uly 2015 Fluid Mechanics
F&A, Fj-1	Venturi tubes	2C20.10	Air is blown through a constricted tube and the pressure measured with a manometer.
Hil, M-12d	Venturi tubes	2C20.10	A series of manometers measures pressure of flowing air at points along a restricted tube.
D&R, F-210	Venturi tubes	2C20.10	
PIRA 200	Venturi tubes with vertical pipes	2C20.15	
F&A, Fj-8	Venturi tubes with vertical pipes	2C20.15	Open vertical pipes show the drop in pressure as water flows through a constriction.
Sut, M-294	Venturi tubes with vertical pipes	2C20.15	Vertical tubes show the pressure as water flows along a restricted tube.
Disc 13-13	Venturi tubes	2C20.15	Three pressure indicating manometers with bright wood floats are located at and on either side of a constriction in a horizontal tube with water flow.
PIRA 500	atomizer	2C20.20	
F&A, Fj-2	atomizer	2C20.20	A jet of air is blown across one end of a "U" tube.
Ehrlich 1, p. 109	atomizer	2C20.20	An atomizer made from a plastic straw in a water filled cup.
Sut, M-304	aspirator, etc.	2C20.21	Three demos. 1) Water runs through a 1/2 " dia tube constricted to .1". The dissolved water boils in the constriction. 2) Hook a water faucet aspirator to a mercury manometer. 3) Blow one tube across the end of a second vertical tube dipped in water.
PIRA 1000	pitot tube	2C20.25	
F&A, Fj-11	pitot tube	2C20.25	A small Pitot tube is constructed from glass.
Disc 13-01	pitot tube	2C20.25	A pitot tube is connected to a water manometer and the air stream velocity is varied. Graphics.
Sut, M-305	venturi meter	2C20.26	A manometer measures the pressure difference between the restricted and unrestricted flow in a tube.
PIRA 200 - Old	floating ball	2C20.30	A ball is suspended in an upward jet of air.
UMN, 2C20.30	floating ball	2C20.30	A ball is suspended in an upward jet of air.
Sut, M-292	floating ball	2C20.30	A ping pong ball is supported on a vertical stream of water, air or steam.
Hil, M-12b	floating ball	2C20.30	
D&R, F-225, F- 230	floating ball	2C20.30	
Sprott, 2.2	floating ball	2C20.30	A balloon or ping pong ball is suspended in an upward jet of air.
Bil&Mai, p 198	floating ball	2C20.30	A beach ball is supported on a vertical stream of air from a leaf blower.
Disc 13-04 TPT 45(6), 379	floating ball in air jet free flowing air stream	2C20.30 2C20.30	A styrofoam ball is suspended in an air jet from a vacuum cleaner. A demonstration showing that the static pressure in a free air stream is the ambient pressure.
F&A, Fj-9	floating objects	2C20.31	•
D&R, F-232	floating objects with a leaf blower	2C20.31 2C20.31	2 liter soda bottles, small footballs, file handles, and soda cans suspended in
Dan, 1-232		2020.31	the air stream to unroll toilet paper from a dowel rod type dispenser.
Mei, 17-2.9 PIRA 200 - Old	oscillating floating balls funnel and ball		An air jet keeps two balls at the high edge of semicircular tracks. Support a ping pong ball by air or water streaming out of an upside-down funnel.
UMN, 2C20.35	ball and funnel	2C20.35	Air blowing out an inverted funnel will hold up a ball.
F&A, Fj-4	funnel and ball	2C20.35	
Sut, M-293	ball in a funnel	2C20.35	
D&R, F-220	funnel and ball	2C20.35	Blow air through an inverted funnel suspending a ball in the apex.
Sprott, 2.2	funnel and ball	2C20.35	
Ehrlich 1, p. 105	ball in a funnel	2C20.35	A Ping-Pong ball is supported by air that is blown through an inverted funnel.
PIRA 1000	ball in a stream of water	2C20.36	
UMN, 2C20.36	ball in a stream of water	2C20.36	Same as AJP 34(5),445.
D&R, F-225	ball in a stream of water	2C20.36	A ping pong ball suspended in an upward stream of water.
AJP 34(5),445	ball in a water stream	2C20.36	
PIRA 200 - Old	lifting plate	2C20.40	
UMN, 2C20.40	lifting plate	2C20.40	Air blowing out between two horizontal plates supports a mass.
F&A, Fj-5	lifting plate	2C20.40	A stream of air flowing radially between two plates will lift the bottom plate.
AJP 71(2), 176	lifting plate	2C20.40	Quantitative analysis of the levitation of a large flat plate.
Disc 13-05	suspended plate in air jet	2C20.40	Air blows radially out between two plates, supporting weights hung from the bottom plate.

Demonstration	Bibliography	Jı	ıly 2015	Fluid Mechanics
Sut, M-295	lifting plate	2C20.41	A pin is stuck through a card and it is inserted into t spool. Blow in the spool and the card sticks. This ca air pressure is available.	
Hil, M-12c	lifting plate	2C20.41	Blow into a spool and lift a paper with a pin stuck th spool.	rough into the hole in the
D&R, F-215	lifting plate	2C20.41	Blow into a spool and lift a paper with a thumb tack the hole in the spool.	through it inserted into
AJP 47(5),450	spin out the air	2C20.43	When a disc hanging from a spring scale is mounte spinning disc, the spring scale will show an increase	
PIRA 1000	coin in cup	2C20.44		
UMN, 2C20.44	blow coin into cup	2C20.44	Place a coin on the table a few inches in front of a c and the coin jumps into the cup.	offee cup, give a puff,
Ehrlich 1, p. 106	blow coin into cup	2C20.44	Blow over the surface of a coin to get it to jump into	a tilted cup.
PIRA 500	attracting sheets	2C20.45	5 , 1	
UMN, 2C20.45	attracting sheets	2C20.45	Blow a stream of air between two sheets of aluminu	m or aluminum foil.
Sut, M-296	attracting sheets	2C20.45	Blow air between two sheets of paper or two large b attraction.	alls and observe the
D&R, F-235	attracting balls	2C20.45	Blow air between two suspended light bulbs or balls attraction.	and observe the
Sprott, 2.2	attracting sheets	2C20.45	Blow air between two suspended pieces of paper.	Observe the attraction.
Ehrlich 1, p. 107	attracting sheets	2C20.45	A fan blows upward between two sheets of paper. ⁻ paper will show attraction.	The top edges of the
Disc 13-06	suspended parallel cards	2C20.45	Blow an air stream between two parallel cards on bi	filar suspensions.
F&A, Fj-6	sticking paper flap	2C20.46	A stream of air blown between a paper and a surfact cling to the surface.	e will cause the paper to
Ehrlich 1, p. 105	magnetic Ping-Pong ball	2C20.48	A Ping-Pong ball on a string brought near a falling s appear to be sucked into the stream.	tream of water will
PIRA 1000	airplane wing	2C20.50		
AJP 28(8),ix	airplane wing projection	2C20.50	A small cross section of an airplane wing with many locations is built into a projector assembly. A vacuus source.	
F&A, FI-1	wind tunnel	2C20.50	An airplane wing element in a small wind tunnel sho	ows lift.
Sut, M-302	airplane wing	2C20.50	A balanced model airplane shows lift when a stream	
Sut, M-301	airplane wing	2C20.51	Hold one edge of a sheet of paper horizontally and l across it and watch the sheet rise.	et the rest hang. Blow
Sut, M-303	airplane wing	2C20.52	Connect a slant manometer to holes on the top and	bottom of an airfoil.
Mei, 17-2.5	raise the roof	2C20.53	Air blown over a model house raises the roof. Pictur	e.
AJP 44(8),780	paper dirigible	2C20.54	A paper loop in an air stream and a falling card.	
Mei, 17-2.13	Rayleigh's disk	2C20.54	A lightweight disk turns perpendicular to the air flow	
AJP 53(6),524	straight boomerang	2C20.55	Make a light straight boomerang from balsa. The thusual one.	eory is different from the
TPT 28(3),142	boomerang flight	2C20.55	An article explaining boomerang flight along with dir building one.	ections for throwing and
AJP 45(3),303	fly wing mechanism	2C20.56	How to build a working model of Pringle's fly wing m	echanism.
AJP 29(7),459	flying umbrella	2C20.57	A motor mounted inside an umbrella is attached to a above the umbrella pulling air through a hole in the	0
Mei, 17-2.10	dropping wing sections	2C20.58	the side. Develops a few oz of lift. A folded index card, a paper pyramid, or a paper co dropped apex down.	ne are stable when
AJP 55(1),50	explaining lift	2C20.59	Explain lift based on repulsive forces.	
TPT 28(2),84	aerodynamic lifting force explained		An article explaining that the longer path length doe	s not cause lift.
TPT 28(2),78	aerodynamic lifting force	2C20.59	Lift is explained as a reaction force of the airstream airfoil. Several demonstrations are shown.	pushed down by the
PIRA 200 - Old	curve ball	2C20.60	Use a "V" shaped launcher to throw curve balls.	
UMN, 2C20.60	curve ball	2C20.60	A sandpaper covered wood track helps give a ball lo	ots of spin.
TPT 3(7),320	curve ball	2C20.60	Throw a 3" polystyrene ball with a "V" shaped launc cloth.	
F&A, Fj-3	curved ball trajectory	2C20.60	A ping pong ball is thrown with a sandpaper covered	d paddle.
Mei, 17-2.12	curve ball	2C20.60	A "V" shaped launcher lined with styrofoam is used	
Sut, M-299	autorotation	2C20.60	A half round stick used as a propeller will rotate in e start.	
Sut, M-297	curve ball	2C20.60	A mailing tube lined with sandpaper helps give spin balls.	while throwing curve

Demonstration	Bibliography	J	uly 2015	Fluid Mechanics
D&R, F-260	curve balls	2C20.60	A PVC tube lined with sand paper gives spin to Styre	ofoam balls when thrown.
Bil&Mai, p 196	curve ball		Use a sandpaper covered "V" shaped launcher to th	
Disc 13-03 Mei, 17-2.1	curve balls spinning ball	2C20.60 2C20.61	, 5	
Mei, 17-2.3	spinning ball device	2C20.62		ns and details.
AJP 76 (2), 119	spinning baseball	2C20.62	Measurements of the Magnus force on a spinning ba machine and high speed motion analysis system.	aseball using a pitching
PIRA 1000 UMN, 2C20.70	Bjerknes' tube Bjerknes' tube	2C20.70 2C20.70	Cloth webbing wrapped around a mailing tube is jer	ked out causing the tube
F&A, Fj-10	Bjerknes' tube	2C20.70		
Sut, M-298	Bjerknes' tube	2C20.70		mailing tube and give a
D&R, F-265	foam cup loop the loop	2C20.72	jerk. The tube does a loop-the-loop. A stretched rubber band wrapped around two Styrof	oam cups attached
			bottom to bottom will spin through a loop the loop m mailing tube will also display this motion when the st	•
AJP 47(2),200	foam cup loop the loop	2C20.72	Glue the rims of two Styrofoam cups together and la off the fingers while throwing. Four glued together w	
PIRA 500 UMN, 2C20.75	spinning pen barrel spinning pen barrel	2C20.75 2C20.75	Remove the filler from a ball point pen, place under	your thumbs at the edge
010111, 2020.75	spinning peri baner	2020.15	of the lecture bench. Pop the barrel out from under y of spin.	
PIRA 1000	Flettner rotator	2C20.80		
AJP 55(11),1040	Flettner rotor ship on air track	2C20.80	An aluminum can spun with a battery operated motor is mounted on an air track glider. A vacuum cleaner cross wind.	
Sut, M-300	Flettner rotator	2C20.80	Direct an air stream at a rotating vertical cylinder on move at right angles to the air stream.	a light car. The car will
Disc 13-02	Flettner rotator	2C20.80		pendicular to an air
Mei, 17-2.4	Magnus effect	2C20.85		
TPT 21(5), 325	frisbee	2C20.95	Of frisbees, can lids, and gyroscopic effects.	
TPT 24(8), 502 TPT 27(5), 406	flying ring, Aerobie flying ring	2C20.96 2C20.96	A description and the aerodynamics of the Aerobie f A flying ring that is thrown like a football. Description	
11 1 27(0), 400	ilying illig	2020.00	details.	
TPT 16(9), 662	flying ring	2C20.96	Why does a cylindrical wing fly? Also construction of	Jetails.
TPT 17(5), 286	flying ring	2C20.96	More on the flying cylinder.	
PIRA 1000	Viscosity viscosity disc	2C30.00 2C30.10		
Sut, M-62	viscosity disc	2C30.10	A horizontal disc is hung on a single thread and a se	econd disc is spun below
0 / 14 04	· · · · ·		it causing deflection.	
Sut, M-61	viscosity disc	2C30.11	A disc is spun between two parallel plates of a platfor deflection is noted.	
Sut, M-56	viscosity disc	2C30.12	the disc and observe the displacement of the sheet	by projection.
Sut, M-55	viscosity - viscosimeter	2C30.13	Coaxial cylinders are separated by a fluid. As the out the drag induced motion of the inner cylinder is obse magnification.	-
Mei, 17-3.1	pulling an aluminum plate	2C30.15	5	m plate out of a viscous
AJP 33(10),848	viscocity in capillary	2C30.20	A Mariotte flask with a capillary out on the bottom pe pressure at cm of water.	ermits varying the
PIRA 1000	viscosity of oil	2C30.25		
F&A, Fm-2	viscosity of oil	2C30.25	Invert several sealed tubes filled with oil. Air bubbles	s rise.
Disc 14-06	oil viscosity	2C30.25	Quickly invert tubes of oil and watch the bubbles rise	
Mei, 17-3.3	temperature and viscosity	2C30.30	Tubes filled with motor oil and silicone oil are inverte and after cooling with dry ice/alcohol.	d at room temperature
Sut, M-57	viscosity and temperature	2C30.30	Rotate a cylinder of castor oil in a water bath on a tu 40 C, the viscosity falls 15:1.	Irntable. Heated from 5-
F&A, Mb-32	termimal velocity - drop balls	2C30.45	Precision ball in a precision tube.	

PIRA 500	terminal velocity in water, glycerin	2C30.50	
UMN, 2C30.50	terminal velocity in water, glycerin	2C30.50	Drop balls in large 1 meter test tubes, one filled with water, the other with
F&A, Fm-1 Disc 14-02	terminal velocity - drop balls viscous drag	2C30.50 2C30.50	glycerine. A steel ball is dropped into a graduate filled with oil. Steel, glass, and lead balls are dropped in a tall cylinder filled with glycerine.
Mei, 17-4.1 Mei, 17-4.3	terminal velocity - diameter terminal velocity - diameter	2C30.51 2C30.52	Three steel balls of different diameters are sealed in a 4' tube. Illuminate with
Mei, 17-4.2	terminal velocity - specific gravity	2C30.53	a lamp at the bottom. Four balls of the same diameter with carefully adjusted specific gravity are dropped in glycerine.
PIRA 1000	ball drop	2C30.55	
AJP 34(4),xvii Disc 14-03	terminal velocity - styrofoam ball ball drop	2C30.55 2C30.55	A 2" dia. styrofoam ball reaches terminal velocity in 5 1/2 m. Several balls including styrofoam balls of three diameters are dropped four meters. Use stop frame and take data.
AJP 35(2),xx	terminal velocity - dylite beads	2C30.56	Dylite beads reach terminal velocity quickly in water, and when expanded by heating in boiling water, are also useful in air.
PIRA 500	terminal velocity - styrofoam	2C30.60	Deve start for the Manual start is a single
UMN, 2C30.60 PIRA 1000	terminal velocity - styrofoam terminal velocity coffee filters	2C30.60 2C30.65	Drop styrofoam half round packing pieces.
UMN, 2C30.65	terminal velocity coffee filters	2C30.65	Drop a coffee filter and it descends with low terminal velocity. Crumple one and drop it.
D&R, M-136	coffee filters	2C30.65	Drop coffee filters with masses of 1 and 4 simultaneously. Hold 4 mass filters at twice the height of 1 mass filter.
Bil&Mai, p 31	terminal velocity coffee filters	2C30.65	Coffee filters, one crumpled, are dropped over a motion sensor. Compare the graphs.
Ehrlich 2, p. 40	terminal velocity coffee filters	2C30.65	Drop coffee filters from different heights and measure their terminal velocity.
TPT, 37(3), 181	measuring friction on falling muffin cups	2C30.65	Using a set-up of muffin cups and a motion detector to explore terminal velocity.
Disc 14-01	air friction Turbulent and Streamline Flow	2C30.65 2C40.00	Drop crumpled and flat sheets of paper.
AJP 45(1),3	swimming bacteria	2C40.01	A transcription of an interesting talk about the world of low Reynolds number.
AJP 45(1),3 PIRA 1000	swimming bacteria streamline flow	2C40.01 2C40.10	A transcription of an interesting talk about the world of low Reynolds number.
PIRA 1000 UMN, 2C40.10	streamline flow streamline flow	2C40.10 2C40.10	The Cenco streamline flow apparatus.
PIRA 1000	streamline flow	2C40.10	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a
PIRA 1000 UMN, 2C40.10	streamline flow streamline flow	2C40.10 2C40.10	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051	streamline flow streamline flow streamline and turbulent flow	2C40.10 2C40.10 2C40.10	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2	streamline flow streamline and turbulent flow streamline flow streamline flow	2C40.10 2C40.10 2C40.10 2C40.10 2C40.10 2C40.11	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6	streamline flow streamline flow streamline and turbulent flow streamline flow	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2	streamline flow streamline flow streamline and turbulent flow streamline flow streamline flow	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.12	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6	streamline flow streamline flow streamline and turbulent flow streamline flow streamline flow	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.12	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2 Sut, M-307	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines on the overhead inverse square law patterns dry ice fog	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14 2C40.16	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines on the overhead	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2 Sut, M-307	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines on the overhead inverse square law patterns dry ice fog	2C40.10 2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14 2C40.16	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow. The effect of moving air on a disc and streamlined object of the same cross
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2 Sut, M-307 Sut, M-312	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines on the overhead inverse square law patterns dry ice fog streamline design	2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14 2C40.14 2C40.16 2C40.17	The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow. The effect of moving air on a disc and streamlined object of the same cross section is demonstrated. Several types of fluid mappers. Pictures and diagrams. Construction details
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2 Sut, M-307 Sut, M-312 Mei, 17-8.1	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines on the overhead inverse square law patterns dry ice fog streamline design fluid mappers	2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14 2C40.14 2C40.16 2C40.17 2C40.18	 The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow. The effect of moving air on a disc and streamlined object of the same cross section is demonstrated. Several types of fluid mappers. Pictures and diagrams. Construction details in appendix, p. 614. Place a lighted candle on one side of a beaker and blow on the other side to
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2 Sut, M-307 Sut, M-312 Mei, 17-8.1 Sut, M-308	streamline flow streamline and turbulent flow streamline flow streamline flow streamlines streamlines on the overhead inverse square law patterns dry ice fog streamline design fluid mappers streamline flow - blow out candle	2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14 2C40.14 2C40.16 2C40.17 2C40.18 2C40.20	 The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow. The effect of moving air on a disc and streamlined object of the same cross section is demonstrated. Several types of fluid mappers. Pictures and diagrams. Construction details in appendix, p. 614. Place a lighted candle on one side of a beaker and blow on the other side to put out the candle. Place a lighted candle on one side of a beaker and blow on the other side to put out the candle.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2 Sut, M-307 Sut, M-312 Mei, 17-8.1 Sut, M-308 Bil&Mai, p 194	streamline flow streamline and turbulent flow streamline and turbulent flow streamline flow streamlines streamlines on the overhead inverse square law patterns dry ice fog streamline design fluid mappers streamline flow - blow out candle streamline flow - blow out candle	2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14 2C40.14 2C40.16 2C40.17 2C40.18 2C40.20 2C40.20	 The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow. The effect of moving air on a disc and streamlined object of the same cross section is demonstrated. Several types of fluid mappers. Pictures and diagrams. Construction details in appendix, p. 614. Place a lighted candle on one side of a beaker and blow on the other side to put out the candle. Place a lighted candle on one side of a beaker and blow on the other side to put out the candle.
PIRA 1000 UMN, 2C40.10 AJP 59(11),1051 Sut, M-306 Mei, 17-2.2 Mei, 17-2.6 AJP 37(9),868 Mei, 17-8.2 Sut, M-307 Sut, M-307 Sut, M-312 Mei, 17-8.1 Sut, M-308 Bil&Mai, p 194 Sut, M-309	streamline flow streamline and turbulent flow streamline and turbulent flow streamline flow streamlines streamlines on the overhead inverse square law patterns dry ice fog streamline design fluid mappers streamline flow - blow out candle streamline flow - blow out candle	2C40.10 2C40.10 2C40.10 2C40.11 2C40.12 2C40.14 2C40.14 2C40.14 2C40.16 2C40.17 2C40.18 2C40.20 2C40.20 2C40.21	 The Cenco streamline flow apparatus. A simple streamline apparatus for use on the overhead projector that uses a ganged syringe ink source. A commercial apparatus to show flow around objects in projection cells. Directions for construction a streamline flow apparatus that uses several potassium permanganate tracers. a simple gravity streamline apparatus. Flow is shown between two glass plates from a source point to a collection point. Dilute NaOH passes a ring of phenophthalein beads around the source generating colored trails. Inverse-square-law field patterns are illustrated by dyed streamlines of water flowing between two glass plates. Construction details in appendix, p. 620. Some dry ice in a flask of warm water will produce a jet of fog that can be used with a fan to show the effects of various objects on air flow. The effect of moving air on a disc and streamlined object of the same cross section is demonstrated. Several types of fluid mappers. Pictures and diagrams. Construction details in appendix, p. 614. Place a lighted candle on one side of a beaker and blow on the other side to put out the candle. Place a lighted candle on one side of a beaker and blow on the other side to put out the candle.

Sut, M-310	streamline flow	2C40.25	Watch the interface between clear oil on the bottom of a glass tube and
			colored oil on top as oil is drawn off the bottom.
Sut, M-254	vena contracta	2C40.30	As a liquid emerges vertically downward, its jet contracts in diameter.
PIRA 1000	laminar and turbulent flow	2C40.50	
UMN, 2C40.50	laminar and turbulent flow	2C40.50	An ink jet is introduced at different rates into a tube of flowing water.
F&A, Fk-3	turbulent flow	2C40.50	The velocity of a stream of ink is varied in smoothly flowing water.
		2C40.50	
AJP 28(2),165	Reynold's number	2040.51	A tapered nozzle introduces tracer fluid into a tube at the bottom of a
Ma: 47 7 4	Deven a lalla seconda as	0040 54	reservoir.
Mei, 17-7.1	Reynold's number	2C40.51	A device for varying the flow in a tube and introducing a tracer into the flow.
			Several hints. Reference: AJP 28(2),165.
Mei, 17-7.2	Reynold's number	2C40.52	A funnel feeds methylene blue into a vertical tube with adjustable water flow.
Mei, 17-7.5	Reynolds' number	2C40.52	Water with potassium permanganate flows through a vertical tube. Flow is
			varied and rate is determined by timing 1 liter.
Mei, 17-7.3	Reynolds' number	2C40.53	The flow rate in a long thin brass tube is adjusted until spitting starts. Flow
			rate is determined by collecting water for a given time.
Mei, 17-2.7	laminar and turbulent flow	2C40.60	Shadow project rising warm air flowing around objects.
Sut, M-311	streamline vs. turbulent flow	2C40.61	Drop a ball into a viscous liquid or water. Shadow project a hot iron ball in
			slowly or rapidly moving air.
Mei, 17-2.8	laminar and turbulent flow	2C40.63	The Krebs apparatus is used to show flow of water around objects.
TPT 12(5),297	laminar & turbulent flow	2C40.71	A discussion of the various types of friction involving the air track.
. ,		2C40.73	On viewing fluid flow with stereo shadowgraphs.
AJP 44(10),981	stero shadowgraph		5
Hil, M-22c	weather maps	2C40.80	Daily weather maps show large scale fluid dynamics.
AJP 53(5),484	Rayleigh-Taylor instability in Prell	2C40.90	A air bubble rising in a tube of Prell shampoo demonstrates Rayleigh-Taylor
			instability. Other examples are given.
	Vorticies	2C50.00	
PIRA 200 - Old	smoke ring	2C50.10	Tap smoke rings out of a coffee can through a 1" dia. hole.
UMN, 2C50.10	smoke ring	2C50.10	Smoke rings are tapped out of a coffee can through a 1" dia. hole.
F&A, Fp-1	vortex rings	2C50.10	Tap smoke rings out of a can with a rubber diaphragm on one end and a hole
			in the other.
Sprott, 2.24	smoke ring	2C50.10	A cardboard box with a hole in one side produces smoke ring vortices.
Mei, 17-8.6	smoke rings	2C50.11	A rubber sheet at the back on a large wooden box is struck with a hammer to
	-		produce smoke rings capable of knocking over a plate. Fuming HCL and
			conc. ammonia produce the smoke.
Hil, S-2i	vortex box	2C50.12	A 15 inch square, 4 inch deep vortex box with a 4 inch diameter hole.
PIRA 1000	vortex cannon	2C50.15	
D&R, F-285, W-	vortex cannon	2C50.15	Use a large box with a hole in one end and a heavy plastic diaphragm in the
005		2000.10	other is used to blow smoke rings and blow out candles.
Bil&Mai, p 200	vortex cannon	2C50.15	Blow smoke rings with a 5 gallon bucket that has a hole in the bottom and a
Diama, p 200	Voltex californ	2000.10	plastic diaphragm over the top. Use a fog machine to make the "smoke".
Disc 13-07	vortex cappon	2C50.15	Use a large barrel to generate a smoke ring. Blow out a candle with the
DISC 13-07	vortex cannon	2000.10	USE à laige parrer le générale à sinore ling. Diew out à canque with the
	lieu de la continence	2050.00	vortex. Animation.
PIRA 1000	liquid vortices	2C50.20	vortex. Animation.
PIRA 1000 Sut, M-253	liquid vortices liquid vortices	2C50.20 2C50.20	vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a
0.11.070			vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is
Sut, M-253	liquid vortices	2C50.20	vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep.
0.11.070			vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water.
Sut, M-253	liquid vortices	2C50.20	vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water.
Sut, M-253	liquid vortices	2C50.20	vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water.
Sut, M-253 Mei, 17-8.4	liquid vortices	2C50.20 2C50.21	vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water.
Sut, M-253 Mei, 17-8.4	liquid vortices	2C50.20 2C50.21 2C50.21	vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108	liquid vortices ring vortices in liquid ring vortices in liquid	2C50.20 2C50.21 2C50.21	vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108	liquid vortices ring vortices in liquid ring vortices in liquid	2C50.20 2C50.21 2C50.21	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water	2C50.20 2C50.21 2C50.21 2C50.22	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex	2C50.20 2C50.21 2C50.21 2C50.22 2C50.23	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool	2C50.20 2C50.21 2C50.21 2C50.22 2C50.23 2C50.25	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube	2C50.20 2C50.21 2C50.21 2C50.22 2C50.23 2C50.25 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube	2C50.20 2C50.21 2C50.21 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex	2C50.20 2C50.21 2C50.21 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube	2C50.20 2C50.21 2C50.21 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2 D&R, F-280	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex tornado vortex	2C50.20 2C50.21 2C50.22 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex	2C50.20 2C50.21 2C50.21 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom. A vortex forms in a large cylinder on a magnetic stirrer. A vortex forms in a gallon jug when inverted and swirled about the vertical axis. Swirling a water filled jug that has a hole in its cap creates a tornado vortex
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2 D&R, F-280 Ehrlich 1, p. 70	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex tornado vortex tornado vortex	2C50.20 2C50.21 2C50.22 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom. A vortex forms in a large cylinder on a magnetic stirrer. A vortex forms in a gallon jug when inverted and swirled about the vertical axis. Swirling a water filled jug that has a hole in its cap creates a tornado vortex that lasts a long time.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2 D&R, F-280	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex tornado vortex	2C50.20 2C50.21 2C50.22 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom. A vortex forms in a large cylinder on a magnetic stirrer. A vortex forms in a gallon jug when inverted and swirled about the vertical axis. Swirling a water filled jug that has a hole in its cap creates a tornado vortex that lasts a long time. Couple two soft drink bottles with the commercial tornado tube coupler and
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2 D&R, F-280 Ehrlich 1, p. 70	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex tornado vortex tornado vortex	2C50.20 2C50.21 2C50.22 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom. A vortex forms in a large cylinder on a magnetic stirrer. A vortex forms in a gallon jug when inverted and swirled about the vertical axis. Swirling a water filled jug that has a hole in its cap creates a tornado vortex that lasts a long time.
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2 D&R, F-280 Ehrlich 1, p. 70	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex tornado vortex tornado vortex	2C50.20 2C50.21 2C50.22 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom. A vortex forms in a large cylinder on a magnetic stirrer. A vortex forms in a gallon jug when inverted and swirled about the vertical axis. Swirling a water filled jug that has a hole in its cap creates a tornado vortex that lasts a long time. Couple two soft drink bottles with the commercial tornado tube coupler and
Sut, M-253 Mei, 17-8.4 Ehrlich 1, p. 108 Mei, 17-8.5 TPT 28(7),494 Mei, 17-8.7 PIRA 1000 UMN, 2C50.30 F&A, Fp-2 D&R, F-280 Ehrlich 1, p. 70	liquid vortices ring vortices in liquid ring vortices in liquid semicircular vortex in water detergent vortex whirlpool tornado tube tornado tube tornado vortex tornado vortex tornado vortex	2C50.20 2C50.21 2C50.22 2C50.22 2C50.23 2C50.25 2C50.30 2C50.30 2C50.30 2C50.30	 vortex. Animation. A drop of inky water is allowed to form on a medicine dropper 1" above a beaker of water. This height is critical. The vortex will rebound if the beaker is less than 4" deep. Bursts of colored water are expelled from a glass tube in a beaker of water. Also a drop of aniline sinks in a beaker of water. A straw containing food coloring is dipped into a cup of water. Tap the straw to expel a drop of food coloring and produce a vortex ring. A skill demonstration. Use a small paddle to form vortices in a small dish on the overhead projector. A few drops of detergent in a jar of water are shaken and given a twist to form a vortex lasting several seconds. Water is introduced tangentially into a cylinder with a hole in the bottom. A vortex forms in a large cylinder on a magnetic stirrer. A vortex forms in a gallon jug when inverted and swirled about the vertical axis. Swirling a water filled jug that has a hole in its cap creates a tornado vortex that lasts a long time. Couple two soft drink bottles with the commercial tornado tube coupler and spin the top bottle so the water forms a vortex as it drains into the bottom

Demonstration	Bibliography	J	uly 2015	Fluid Mechanics
AJP 37(9),864 F&A, Fo-1	paraboloids and vortices growing a large drop	2C50.35 2C50.40	A transparent cylinder is rotated at speeds up to 1 A vortex is formed in an air stream allowing one to	
	Non-Newtonian Fluids	2C60.00		
Mei, 17-10.1	fluidization	2C60.10	A bed of silica powder acts like a fluid when air is f	forced through it. Diagram.
PIRA 1000	cornstarch	2C60.30		
UMN, 2C60.30	cornstarch	2C60.30	Add water to cornstarch until it is goo. Pour it, thro	w it, punch it.
PIRA LOCAL	cornstarch on a speaker	2C60.32	Cover a large speaker with Saran wrap. Pour the and make the mixture "dance" when you run the s generator or music.	
PIRA 1000	slime ball	2C60.35		
D&R, M-846	slime ball	2C60.35	Borax and resin glue will produce an elastic ball.	
Disc 15-19	slime ball	2C60.35	A commercial product "Slime" flows like a liquid ur bounces on impact.	nder normal conditions but
PIRA 1000	silly putty	2C60.40		
UMN, 2C60.40	silly putty	2C60.40		
Sut, M-267	fluids vs. solids	2C60.50	Asphalt splinters when smashed but flows gradual but remains in a conical pile.	ly, sand flows when poured
PIRA 1000	ketchup uzi	2C60.55		
UMN, 2C60.55	ketchup uzi	2C60.55	Fill a super soaker with ketchup. Shoot it across the wall.	ne room and it blobs on the

		2 4 00 00	
	OSCILLATIONS	3A00.00	
	Pendula	3A10.00	
PIRA 200	simple pendulum	3A10.10	
UMN, 3A10.10	simple pendulum	3A10.10	Suspend a simple pendulum from a ringstand.
D&R, M-900	simple pendulum	3A10.10	A pendulum made from a hacksaw blade with a mass on the end. Length of
			the pendulum is easily adjusted with a clamp.
Bil&Mai, p 172	simple pendulums	3A10.10	A set of 5 pendulums hung from the same support. Three have different
			lengths strings so that their periods can be compared. Three have different
			mass bobs but the same length strings so that the effect of mass can be
			observed.
AJP 74(10), 892	simple pendulum bobs	3A10.13	1 1 3,
			the small angle regime.
TPT 15(5),300	simple pendulum bobs	3A10.13	An apparatus for open-ended investigation of the simple pendulum. Bobs
			have adjustable length and are of different shape.
PIRA 1000	4:1 pendulum	3A10.14	
D&R, M-896	4:1 pendulum	3A10.14	8 pendula of differing lengths designed to lead students to the conclusion
			that length and period are related by the square of the period.
Disc 08-15	4:1 pendula	3A10.14	4:1 pendula have 2:1 period.
PIRA 500	bowling ball pendulum	3A10.15	
UMN, 3A10.15	bowling ball pendulum	3A10.15	Suspend a bowling ball from the ceiling.
PIRA 1000	different mass pendula	3A10.17	
Sut, M-81	lead and cork pendula	3A10.17	Long pendula made of lead and cork are released simultaneously.
Disc 08-14	different mass pendula	3A10.17	Pendula of the same length and different mass oscillate together.
PIRA 500	upside-down pendulum	3A10.20	5
UMN, 3A10.20	upside-down pendulum	3A10.20	A vertical leaf spring supported at the base has a movable mass.
F&A, Mx-6	inverted pendulum	3A10.20	A piece of clock spring mounted vertically on a heavy base has an adjustable
	·		mass to change the period.
F&A, So-1	metronome as a pendulum	3A10.21	The metronome as an adjustable pendulum.
PIRA 500	torsion pendulum	3A10.30	
UMN, 3A10.30	torsion pendulum	3A10.30	A metal spoked wheel is suspended as a torsional pendulum by a wire
			attached to the axle.
F&A, Mz-1	torsion pendulum	3A10.30	A wheel is suspended as a physical pendulum by a flexible axle.
D&R, M-904	torsion pendulum	3A10.30	A brass disk or bar is suspended as a torsion pendulum by a wire attached to
2011, 11 001		0,	the axle.
Disc 08-13	torsion pendulum	3A10.30	Add weight to a torsion pendulum to decrease the period.
Mei, 11-2.3h	torsion pendulum	3A10.31	A large clock spring oscillates an air bearing supported disc. Vary mass,
			damping, etc.
Hil, M-14g	torsion pendulum	3A10.31	A large clock spring oscillates a vertical rod with an adjustable crossbar.
Mei, 15-7.1	torsion pendulum	3A10.32	
		0/110.02	pendulum that has movable timer contacts.
Mei, 15-5.1	crossed dumbell pendulum	3A10.34	•
	crococa dambon pondulari	0,110.01	spokes of a wheel. Show the dependence of the period on rotational inertia
			and on the distance between the center of gravity and axis of the pendulum.
			and on the distance between the conter of gravity and axis of the periodician.
Mei, 15-7.2	torsion pendulum	3A10.35	Strobe photography of a torsion pendulum.
PIRA 1000	variable g pendulum	3A10.40	
Hil, M-14f.2	variable g pendulum	3A10.40	A pendulum with a bifilar support of solid rods can be inclined to decrease
1 m, w 141.2		0/110.40	apparent q.
Disc 08-19	variable angle pendulum	3A10.40	A physical pendulum is mounted on a bearing so the angle of the plane of
DI3C 00-13	valiable angle periodium	5410.40	oscillation can be changed.
AJP 52(1),85	variable g pendulum	3A10.42	Use an electromagnet under the pendulum bob to increase the apparent g.
Sut, M-129	variable g pendulum	3A10.42	
Out, M 120	valiable g periodiciti	5410.42	A model election agrici causes a variation in period of a non-period dina bob.
TPT 13(6),365	variable g pendulum	3A10.44	An evaluation of the model M110 Variable g Pendulum manufactured by
11 1 10(0),000	valiable g periodialiti	0,110.11	Physics Apparatus Research Inc. Good pictures of the device for those
			interested in building their own.
Mei, 15-4.1	cycloidal pendulum	3A10.50	Demonstrate that a cycloidal pendulum with any amplitude has a period
Wei, 10 4.1	oyololdal polladidili	0/110.00	identical to a equal length simple pendulum at small amplitude. Construction
			details p. 603.
Sut, M-94	cycloidal pendulum	3A10.50	A pendulum made to swing at large amplitude in the cusp of an inverted
Jul, 11 J-		0,110.00	cycloid is compared to a simple pendulum.
Mei, 15-1.14	nonisochronism of pendulum	3A10.55	Two identical pendula, started with large and small amplitudes, have different
		0,110.00	periods.
			P 0

Demonstration	Bibliography	Ju	uly 2015	Oscillations and Waves
AJP 28(1),76	sliding pendulum	3A10.61	A block of dry ice is placed on a large	
	Physical Pendula	3A15.00	trough or other (i.e., cycloidal) curves.	
PIRA 200	physical pendulum	3A15.10	Any distributed mass pendulum.	
Ehrlich 2, p. 122	other symmetrical shaped pendula	3A15.10	The frequency with which you swing y physical pendulum of the same length	
Ehrlich 2, p. 123	physical pendulum	3A15.10	A physical pendulum made from a me	eter stick.
AJP 48(6),487	physical pendulum set	3A15.10	A reconstruction of a nineteenth-centu shapes of equal length mounted from	a common bar.
TPT 28(1),51	other symmetrical shaped pendula	3A15.10	Twenty various physical pendula are s	shown.
AJP 55(1),84	balancing man physical pendulum	3A15.12	The balancing man usually used to sh physical pendulum.	ow stable equilibrium is used here as a
Mei, 15-5.2	rocking stick	3A15.13	A meter stick with small masses at the Derivation.	e ends rocks on a large radius cylinder.
Ehrlich 2, p. 124	rocking stick	3A15.13	A ruler is balanced on a cylinder or so	da can and set into oscillation.
PIRA 500	oscillating bar	3A15.20		
UMN, 3A15.20	oscillation bar	3A15.20	A bar is suspended from pivots at 1/6 simple pendulum is used for comparis	
TPT 17(1),52	oscillating bar	3A15.20	Analysis of the oscillating bar with a g	
TPT 12(8),494	oscillating bar	3A15.20	Analysis of the oscillating bar includes	
Sut, M-203	oscillating bar	3A15.20	simple pendulum of the same period.	d and find the center of oscillation with a
D&R, M-904	physical pendulum	3A15.20	A board 2 m long with holes drilled ev Find the minimum period.	
Disc 08-18	physical pendulum	3A15.20	Compare the period of a bar supporte 2/3 length.	d at the end with a simple pendulum of
Hil, M-14d	two rods and a ball	3A15.21	A rod pivots at a point 2/3 I, a second simple pendulum has length 2/3 I. The compare periods.	
PIRA 500	oscillating hoop	3A15.25		
UMN, 3A15.25	oscillating hoop	3A15.25	A hoop and pendulum oscillate from the	he same point.
F&A, My-3	oscillating hoop	3A15.25	Adjust a simple pendulum to give the	
PIRA 1000	paddle oscillator	3A15.30		
UMN, 3A15.30	paddle	3A15.30	A physical pendulum that oscillates w series of holes.	ith the same frequency from any of a
F&A, My-1	paddle	3A15.30	An odd shaped object oscillates from pendulum equal periods.	conjugate points that give the physical
Mei, 12-3.8	triangle oscillator	3A15.31		rays with the same period of oscillation. cles about the center of mass of a large tion is always the same.
F&A, My-8	bent wire	3A15.35	Measure the period of a two corks on wire bent to various angles.	a bent wire physical pendulum with the
PIRA 500	truncated ring	3A15.40	-	
UMN, 3A15.40	truncated ring	3A15.40	Same as AJP 35(10),971.	
Ehrlich 2, p. 126	truncated ring	3A15.40	Any partial ring regardless of its fraction the same period if they have the same	
AJP 35(10),971	truncated ring	3A15.40	Removing any part of the hoop will no	t change the period.
Disc 08-16	hoops and arcs	3A15.40	A hoop oscillates with the same period hoop.	d as arcs corresponding to parts of the
PIRA 1000	oscillating lamina	3A15.45		
UMN, 3A15.45	oscillating lamina	3A15.45	Same as TPT 4(2), 78. But where is the	ne reference?
PIRA 500	sweet spot	3A15.50		
UMN, 3A15.50	sweet spot	3A15.50	A baseball bat on a frame is rigged to when the bat is hit on and off the cent	
AJP 44(8),789	center of percussion	3A15.50	Hang a rod from a thin steel rod that a styrofoam ball on the thin rod is an inc hanging rod.	
AJP, 73 (4), 330	a better bat	3A15.50		blitude motion of a double pendulum are whow a "perfect" bat could be
F&A, My-7	sweet spot	3A15.50	Hit a baseball bat on a rail suspensior percussion.	at points on and off the center of
D&R, M-694	sweet spot	3A15.50	A baseball bat on a pivot where the hacenter of percussion.	ands would be is hit on and off the

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
Bil&Mai, p 214	sweet spot	3A15 50	A baseball bat on a pivot where the hand	ds would be is hit on and off the
Disc 06-12	center of percussion	3A15.50	center of percussion by a baseball susp Hang a long metal bar by a string from c	ended from a string.
Mei, 15-6.2	sweet spot	3A15.52	at various points. Fire a spring powered gun at a meter sti The top jumps one way or the other whe	
Sut, M-204	sweet spot	3A15.53	Strike a meter stick supported by a mate Repeat off the center of percussion and up.	
Mei, 15-6.1	sweet spot	3A15.54	•	
F&A, My-5	sweet spot	3A15.55		d along with an adjustable simple
Sut, M-205	sweet spot	3A15.55	Strike a heavy metal bar suspended by	a string at various points.
F&A, My-4	sweet spot	3A15.56	A rectangular bar is supported as a physical and with a simple pendulum.	sical pendulum from one of two pivots
PIRA 1000	sweet spot of a meter stick	3A15.57		
UMN, 3A15.57	sweet spot of a meter stick	3A15.57		
Mei, 15-3.6	sweet spot	3A15.58	A bat is suspended from a horizontal ca the center of percussion, vibrations in th	
AJP 49(9),816	sweet spot analysis	3A15.59	The different definitions of the term "swe based on a different physical phenomen	•
AJP 54(7),640	analysis of the sweet spot	3A15.59	Analysis of the three sweet spots of the impact point that gives maximum power	baseball bat and the location of the
AJP 77 (1), 36	measurements on the swing of a bat	3A15.59	Measurements on the swing of a baseba basic mechanics of the swing.	all bat are analyzed to extract the
PIRA 1000	Kater's pendulum	3A15.70		
AJP 48(9),785	Kater's pendulum	3A15.70	Modification of a Welch Kater pendulum systematically and with improved precis to gravity.	
F&A, My-2 TPT 10(8),466	Kater's pendulum Kater's pendulum	3A15.70 3A15.72	An elaborate pendulum that allows "g" to Analysis of: if the center of mass is halfy determined from measurements of equa	way between the pivots, g cannot be
AJP 69(6), 714	Kater & Bessel's pendulum	3A15.73	A Bessel pendulum is used in the labora acceleration of gravity made to an accur principles underlying the Kater pendulun also reviewed.	atory and measurements of the local racy of 1 part in 10,000. Physical
	Springs and Oscillators	3A20.00		
PIRA 200	mass on a spring	3A20.10	A mass oscillates slowly on a large sprir	
UMN, 3A20.10	mass on a spring	3A20.10	A kg and other masses oscillate on a sp	ring with a constant of about 30 N/m.
F&A, Mx-3	mass on a spring	3A20.10	Mass on a spring.	
Disc 08-11	mass on spring	3A20.10	Double the mass on the same spring. The	
AJP 49(11),1074	bouncing students	3A20.11	Students are bounced from GM car hoo different students on board.	
TPT 14(3),174	mass on a spring	3A20.12	A shortcut method for constructing a ver predetermined period.	
TPT 16(2),114	mass on a spring	3A20.13	Use a Slinky for a spring and vary k by u	•
TPT 14(9),573	mass on a spring	3A20.16	A discussion of the complexities of the v comparison to the horizontal case.	vertical mass on the spring in
PIRA 1000	springs in series and parallel	3A20.20	11	en tra en in en in en in en dour
UMN, 3A20.20	springs in series and parallel	3A20.20	Hang a mass from a spring, 1/2 mass fr from springs in parallel.	
Disc 08-02	air track glider and spring	3A20.30	An air cart is attached to a single horizon	
PIRA 200 - Old	air track glider and spring	3A20.30	An air glider is attached to a single horiz	
UMN, 3A20.30 F&A Mx-7	air track glider and spring air track glider and spring	3A20.30 3A20.30	An air glider is attached to a single horiz Horizontal mass and single spring on the	
F&A, Mx-7 Mei, 11-1.13	air track glider and spring	3A20.30 3A20.31	Four methods of determining Hooke's la	
PIRA 1000	air track glider between springs	3A20.31 3A20.35		
UMN, 3A20.35	air track glider between springs	3A20.35		
Hil, S-1g	air track mass between springs	3A20.35	A mass between two springs on an air ti	rack.
Disc 08-12	air track simple harmonic motion	3A20.35	Place an air track glider between two sp	
		·	sinusoidal path.	- •

Demonstration Bibliography July 2015 **Oscillations and Waves** Mei, 10-2.13 dry ice puck oscillator 3A20.36 A dry ice puck between two springs on a plate of glass. Projection, photocell velocity measurement, etc. **PIRA 1000** roller cart and spring 3A20.40 UMN. 3A20.40 roller cart and spring 3A20.40 Attach a large horizontal compression spring to a large heavy roller cart. **PIRA 1000** oscillating chain 3A20.50 UMN, 3A20.50 oscillating chain 3A20.50 Tie the ends of a short logging chain with heavy thread and suspend the thread over a pulley. F&A, Mz-4 oscillating chain 3A20.50 A chain suspended on both ends by a string which runs over a pulley. Mei, 15-7.3 oscillating chain 3A20.50 Ends of a chain are connected with string and hung over a large pulley. F&A. Mz-5 "U" tube An open "u" tube filled with mercury. 3A20.55 Hil, S-1h ball in spherical dish 3A20.60 A ball oscillates in a clear spherical dish on the overhead. Mei, 15-1.17 differences in harmonic motion 3A20.65 A plastic hemisphere rocking in water has a higher frequency than when rocking on a level surface. Mei, 10-2.14 diatomic molecule oscillator 3A20.70 Two dry ice pucks coupled with vertical hacksaw blades attached to a steel bar. Ehrlich 2, p. 142 burn a candle at both ends 3A20.75 A long candle free to pivot in the middle is lit at both ends. The candle oscillates with a predictable frequency. Sut, S-7 A light car is fastened between two springs and then between two pulleys simple non-harmonic motion 3A20.90 with hanging weights. In the second case the period is dependent on amplitude. **Simple Harmonic Motion** 3A40.00 **PIRA 200** circular motion vs. mass on a 3A40.10 Shadow project a ball at the edge of a disc rotating at the same frequency as spring a mass on a spring. projected SHM A rotating disc with a ball and a mass on a spring are shadow projected on UMN, 3A40.10 3A40.10 the wall. Bil&Mai, p 170 circular motion vs. mass on a 3A40.10 Shadow project the motion of a dowel on the edge of a turntable rotating at spring the same frequency as a mass on a spring. D&R, M-876 projected SHM 3A40.10 Shadow project a rotating disk with arrow and a mass on a spring with identical frequencies. Disc 08-20 circular motion vs. spring and 3A40.10 Front on view of a marker on a disc and a mass on a spring. weight Sut, S-5 circular motion 3A40.12 A bike wheel with a ball mounted on the rim can be oriented with the axle vs.pendulum/spring vertical when shadow projected with a pendulum or with the axis horizontal when shadow projected with a mass on a spring. Mei, 10-2.12 pendulum vs. mass on spring 3A40.15 A dry ice puck between two horizontal springs oscillates under a long pendulum. PIRA 200 - Old circular motion vs. pendulum 3A40.20 Shadow project a pendulum and turntable which have identical frequencies. UMN, 3A40.20 3A40.20 Shadow project a pendulum and a turntable with a ball mounted on the rim. circular motion vs. pendulum Mei, 15-1.2 pendulum SHM 3A40.20 Shadow project a pendulum and turntable which have identical frequencies. Mei, 15-1.4 pendulum SHM 3A40.20 Using a 78 rpm phonograph turntable to synchronize a pendulum and ball on a turntable. Sut, S-3 pendulum SHM 3A40.20 A pendulum bob and shadow projection of circular motion of the same frequency appear coupled. D&R, M-884 pendulum SHM 3A40.20 Shadow project a pendulum and turntable with an arrow on the rim which have identical frequencies. Front view of a marker on a disc and a pendulum. Disc 08-21 circular motion vs. pendulum 3A40.20 TPT 3(3),127 pendulum SHM 3A40.21 A pendulum bob is shadow projected along with a post rotating on a turntable. **PIRA 1000** ball on track vs. pendulum 3A40.25 Ehrlich 2, p. 130 ball on a track vs. pendulum 3A40.25 A ball oscillates in a track made of plastic rulers that has an approximate parabolic shape. The simple harmonic motion displayed is compared to that of a simple pendulum. AJP 49(6),557 portulum 3A40.27 In a variation of the simple swinging pendulum, the "portulum", a ball, driven by short blasts of air, rolls along a curved tube. The oscillations of the rolling ball have the same mathematical form as the oscillations of a ball swinging along the same path, but with a lower frequency. 3A40.30 **PIRA 1000** arrow on the wheel UMN, 3A40.30 arrow on the wheel 3A40.30 An arrow that can be oriented tangentially or radially is mounted at the edge of a rotating disc and shadow projected on the wall. F&A, Mx-1 arrow on mounted wheel 3A40.30 A large arrow that can be oriented either tangentially or radially is mounted on the periphery of a rotating disc and shadow projected on a screen.

Med. 15-1.1mounted wheel3440.30An arrow at the edge of a rotating disk. Traject the shadow of the arrow on a screene tables 3HM.D8R, M-194arrow on the wheel3A40.31Shadow project a rank handle oriented perpendicular to the wall or screen.Sut, S-1arrow on the wheel3A40.31Shadow project a rank handle oriented perpendicular to the wall or screen.ALP 30(6):470SHM vectors3A40.32Shadow project a rank handle oriented perpendicular to the wall or screen.D8R, M-892SHM vectors3A40.32Stm setup as in 3A40.10 but with arrow princed an a screen.D8R, M-892SHM vectors3A40.32Stm vectory and the acceleration.UNN, 3A40.35SHM vectors3A40.33Amotorized divice in sarted in a lantern side projector shows a rotating spot and an SHM acceleration.Sut, S-4SHM side3A40.34Amotorized divice in sarted in a lantern side projector shows a rotating spot and an SHM apd.Sut, S-2SHM side3A40.35Amotorized divice in sarte as inhows one spot moving in circular motion and another in SHM.Sut, S-6project SHM3A40.40Autoe and the interving and meur colorend discs on the circular pin and SHM pin.Sut, S-6project SHM3A40.40Autoe and the orientifice of the arotating minor onto a screene.Sut, S-6project SHM3A40.40Autoe and the orientifice of the arotating minor onto a screene.Sut, S-6project SHM3A40.40Autoe and minor on the display of an acceleration.Aup S-4(1),033penduum motion3A40.40Autoe and minor on the display of	Demonstratior	Bibliography	J	uly 2015	Oscillations and Waves
DBR, M-194 arrow on the wheel 3A40.30 Place an arrow on a rotating disk. Project the shadow of the arrow on a screen to show SHM. Sut, S-1 arrow on the wheel 3A40.31 Shadow project a crank handle onented perpendicular to the wall or screen. DBR, M-592 SHM vectors 3A40.32 Three arrows are soldered on a rotating spindle: acceleration, velocity, and displayment vectors. The device is shadow projected on a screen. DBR, M-592 SHM vectors 3A40.32 Shadow project a crank handle onented SHM acceleration. UMN, 3A40.35 SHM slide 3A40.35 Amotorized device inserted in a lantern slide projector shows a rotating spin acting and mount colored discs on the circular motion. Sut, S-2 SHM slide 3A40.35 Amotorized device inserted in a lantern slide projector shows a rotating in a circla, up and SHM spin. TPT 15(7),436 SHM on CRO 3A40.35 Amotorized faither and faither scieles cope is also given. Sut, S-6 project SHM 3A40.40 Up clear barm of light of a mirror on a turing fork with light the same is within by a video camera. A sine turing fork with light the araw spindle acceleration. 3A40.40 Direct of SHM 3A40.41 Altex ha amall light of a mirror on a turing fork to a totating mirror onto a screen and the araw is witable by caminer reating. Sut	Mei, 15-1.1	mounted wheel	3A40.30	An arrow at the edge of a	rotating disc that can be oriented radially or
Sul, S-1 arrow on the wheel 3440.31 Shadow project a crank handle oriented perpendicular to the wall or screen. AJP 30(6),470 SHM vectors 3440.32 Three arrows are soldered on a rotating spindle: acceleration, velocity, and displacement vectors. The divice is shadow projected on a screen. D&R, M-892 SHM vectors 3440.35 SHM vectors 3440.35 PIRA 1000 SHM side 3440.35 A motorized device inserted in a lattern slide projector shows a rotating spot and a SHM spot. F&A, M-2 SHM side 3440.35 A motorized device inserted in a lattern slide projector shows as rotating spot and a SHM spot. Sut, S-2 SHM side 3440.35 A motorized device that shows one spot moving in circular motion and another in SHM. Sut, S-2 SHM side 3440.36 A sectorizer and SHM pin. Sut, S-4 project SHM 3440.31 A sectorizer and three oscilloscopes to show a spot moving in a circle, up and down with SHM, and a sine wave. A method for ding this sectori. Sut, S-6 project SHM 3440.41 Attech a small light of a minror on a sing fork to a rotating minror onto a sing size with by diversma retenion. JBA 0000 tuning fork with light 3440.45 A induccd EMF from the magnet bob and an ADC forms the basis for this i	D&R, M-194	arrow on the wheel	3A40.30	Place an arrow on a rotat	
displacement vectors. The device is shadow projected on a screen. 3440.32 PIRA 1000 SHM vectors 3440.32 SHM vectors 3440.32 SHM vectors JUMN, 3440.35 SHM vectors 3440.35 F&A, Mx-2 SHM solide 3440.35 Sul, S-4 SHM Solide 3440.35 Sul, S-4 SHM Solide 3440.35 Sul, S-2 SHM solide 3440.35 Sul, S-2 SHM solide 3440.35 Sul, S-2 SHM solide 3440.35 Sul, S-6 project SHM 3440.36 Using electronics and three oscilloscopes to show a spot moving in a circle, up and down with SHM, and a sine way. A method for doing this sequentially on only one oscilloscope is also given. Sul, S-6 project SHM 3440.41 Disc 08-10 tuning fork with light 3440.41 Auta a small light to a large slow fork and pan it by a video camera. A sine way: a video camera vi	Sut, S-1	arrow on the wheel	3A40.31		andle oriented perpendicular to the wall or screen.
D&R, M-892 SHM vectors 3A40.32 Same setup as in 3A40.10 but with arrow pointed tagentially to indicate SHM acceleration. PIRA 1000 SHM side 3A40.35 Amotorized device inserted in a lantern side projector shows a rotating spot and a SHM spot. FAA, Mx-2 SHM side 3A40.35 Amotorized davice inserted in a lantern side projector shows a rotating spot and a SHM spot. Sut, S-4 SHM side 3A40.35 Amotorized davice inserted in a lantern side projector shows a rotating spot and a SHM spot. Sut, S-4 SHM side 3A40.35 Amotorized lantern side showing both rectilinear SHM and uniform circular motion. Sut, S-5 SHM side 3A40.40 Projecton site device that shows one spot moving in a circle, up and down with SHM, and a sine wave. A method for doing this sequentially on ony one oscilloscope is also given. Sut, S-6 project SHM 3A40.41 Atado.41 Disc 08-10 tuning fork with light 3A40.41 AJP 54(10).953 pendulum interface - Apple II 3A40.41 AM0.45 strain gauge SHM 3A40.45 AM0.45 strain gauge SHM 3A40.45 A spring and mass are suspended from a Pasco dynamic force transducer and the force singlaped on an oscilloscope.	AJP 30(6),470	SHM vectors	3A40.32		
FIRA 1000SHM slide3A40.35UMN, 3A40.35SHM slide3A40.35F&A, Mx-2SHM slide3A40.35Sut, S-4SHM slide3A40.35Sut, S-4SHM slide3A40.35Sut, S-2SHM slide3A40.35Sut, S-2SHM slide3A40.35Sut, S-2SHM slide3A40.35Sut, S-6projector slide device that shows one spot moving in a circle, up and down with SHM, and a sine wave. Is method for doing this sequentially on only one cscilloscopes is also given.Sut, S-6project SHM3A40.40PIRA 1000tuning fork with light3A40.41Diac 06-10tuning fork with light3A40.41Atteh a small light to a large slow fork and pan it by a video camera. A sine wave is visible by camera ratention.AJP S4(10),953pendulum interface - Apple II3A40.41TPT 17(1),58displaying pendulum motion3A40.45FIRA 1000taria gauge SHM3A40.40S44.35SHM inder camera tartention.AJP S4(10),953pendulum interface - Apple IITPT 17(1),58displaying pendulum motionMei, 15-1.7plotting SHMS44.0.50Strain gauge SHMS44.0.50Strain gauge SHMS44.0.50Strain gauge SHMS44.0.50Strain gauge SHMS44.0.50Strain gauge SHMS44.0.50A poing and mass are suspended from a Pasco dynamic force transducer and the fore is displayed on a callelacoppe.FRA, Mx-4strain gauge SHMS44.0.50A poing and mass are suspended fro	D&R, M-892	SHM vectors	3A40.32	Same setup as in 3A40.1	0 but with arrow pointed tangentially to indicate
F&A, Mx-2SHM slide3A40.35A motorized latents slide showing both rectilinear SHM and uniform circular motion.Sut, S-4SHM Slide3A40.35A projection slide device that shows one spot moving in circular motion and another in SHM.Sut, S-2SHM slide3A40.36Lise a socitot cross mechanism (drawing) and mount colored discs on the circular pin and SHM pin.TPT 15(7),436SHM on CRO3A40.36Using electronics and three oscilloscopes to show a spot moving in a circle, up and down with SHM, and a sine wave. A method for doing this sequentially on only one oscilloscope Is allog given.PIRA 1000tuning fork with light3A40.41Attach a small light to a large slow fork and pan it by a video camera. A sine wave is visible by camera relation.AJP 54(10),953pendulum interface - Apple II3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.TPT 17(1),58displaying pendulum motion3A40.46A bifilar pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.VINN, 3A40.50strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on a oscilloscope.F&A, Mx-4strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on a calcular work in a ballistic pendulum suspension.FWIA 1000strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on a calcular work in a ballistic pendulum suspension.FWIA 1000strain gauge SHM3A40.50A spring and mass ar	PIRA 1000	SHM slide	3A40.35		
F&A, Mx-2SHM slide3.440.35A motorized fantem slide showing both rectilinear SHM and uniform circular motion.Sut, S-4SHM Slide3.440.35A projection slide device that shows one spot moving in circular motion and another in SHM.Sut, S-2SHM slide3.440.36Use a socith cross mechanism (drawing) and mount colored discs on the circular pin and SHM pin.TPT 15(7),436SHM on CRO3.440.36Use a socith cross mechanism (drawing) and mount colored discs on the circular pin and SHM pin.Sut, S-6project SHM3.440.40Project a beam of light of a mirror on a tuning fork to a rotating mirror onto a screen.Sut, S-6project SHM3.440.40Project a beam of light of a mirror on a tuning fork to a rotating mirror onto a screen.AJP 54(10),953pendulum interface - Apple II3.440.45An inducad EMF from the magnet bob and an ADC forms the basis for this interface.TPT 17(1),58displaying pendulum motion3.440.45The free and of the pendulum carries a pin aleicrode in a vater trough with electrodes at acch end. The signal is displayed on a oscilloscope.Mei, 15-1.7plotting SHM3.440.50A spring and mass are suspended from a Pasco dynamic force transducer advanced by a motor.TPT 20(3),186mass-spring gauge SHM3.440.50A spring and mass are suspended from a spring to show acceleration at the earling and the coscilloscope.F&A, Mx-4strain gauge SHM3.440.50A spring and mass are suspended from a spring to show acceleration at the earling accelerometerTPT 20(3),186mass-spring gazelerometer3.440.50 <td>UMN, 3A40.35</td> <td>SHM slide</td> <td>3A40.35</td> <td></td> <td>ted in a lantern slide projector shows a rotating spot</td>	UMN, 3A40.35	SHM slide	3A40.35		ted in a lantern slide projector shows a rotating spot
Sur, S-4SHM Slide3.440.35A projection slide device that shows one spot moving in circular motion and another in SHM.Sur, S-2SHM slide3.440.36Use a sorth cross mechanism (drawing) and mount colored discs on the dircular pin and SHM pin.TPT 15(7).436SHM on CRO3.440.36Using electronics and three oscilloscopes to show a spot moving in a circle, up and down with SHM, and a sine wave. A method for doing this sequentially on only one oscilloscope is also given.Sur, S-6project SHM3.440.40Project a beam of light off a mirror on a tuning fork to a rotating mirror onto a screen.JDisc 08-10tuning fork with light3.440.413.440.41JDisc 08-10tuning fork with light3.440.41JDisc 08-10tuning fork with light3.440.41JDisc 08-10tuning fork with light3.440.41JDisc 08-10tuning fork with light3.440.41JDisc 08-10tuning fork with light3.440.45TPT 17(1).58displaying pendulum motion3.440.56After 14a miduce SLM From the magnet bob and an ADC forms the basis for this interface.TPT 17(1).58displaying pendulum motion3.440.50After 15.7plotting SHM3.440.50VMN, 3.440.50strain gauge SHM3.440.50UMN, 3.440.50strain gauge SHM3.440.50Aking 16mass-spring accelerometer3.440.50TPT 20(3).186mass-spring accelerometer3.440.55Mei, 15-1.6mass-spring accelerometer3.440.55TPT 16(6).404acceleration in a pend	F&A, Mx-2	SHM slide	3A40.35	A motorized lantern slide	showing both rectilinear SHM and uniform circular
Sur, S-2SHM slide3.440.36Use a sorch cross mechanism (drawnip) and mount colored discs on the circular pin and SHM pin.TPT 15(7),436SHM on CRO3.440.38Using electronics and three oscilloscope is also given.Sur, S-6project SHM3.440.41Project a beam of light of a mirror on a turning fork to a rotating mirror onto a sorteen.Disc 08-10turning fork with light3.440.41Attach a small light to a large slow fork and pan it by a video camera. A sine wave is visible by camera retention.AJP 54(10),953pendulum interface - Apple II3.440.41Attach a small light to a large slow fork and pan it by a video camera. A sine wave is visible by camera retention.AJP 54(10),953pendulum interface - Apple II3.440.45The free end of the pendulum carries a pin electrode in a water trough with electrodes at each end. The signal is displayed on a oscilloscope.TPT 17(1),58displaying pendulum motion3.440.54The free end of the pendulum carries a pin electrode in a water trough with electrodes at each end. The signal is displayed on a oscilloscope.PIRA 1000strain gauge SHM3.440.50A bifiliar pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.F&A, Mx-4strain gauge SHM3.440.50A sing paleetoronic discipce an on a colloscope.F&A, Mx-4strain gauge SHM3.440.50A sing paleetoronic discipce the oscilloscope.FWA, Mx-4strain gauge SHM3.440.55A, To tobe more the singlayed on a no scilloscope.scilloscope.FWA, Mx-4strain gauge SHM3.440.56A, To tobe more the singlayed on a noccillosc	Sut, S-4	SHM Slide	3A40.35	A projection slide device	that shows one spot moving in circular motion and
TPT 15(7).436SHM on CRO3A40.38Using electronics and three oscilloscopes to show a spot moving in a circle, up and down with SHM and a sine wave. A method for doing this sequentially on only one oscilloscope is also given.Sut, S-6project SHM3A40.40Priceic a beam of light off a mirror on a tuning fork to a rotating mirror onto a screen.Disc 08-10tuning fork with light3A40.41Attach a small light to a large slow fork and pan it by a video camera. A sine wave is visible by camera retention.AJP 54(10).953pendulum interface - Apple II3A40.44Attach a small light of a mirror on a tuning fork to a rotating mirror onto a screen.TPT 17(1).58displaying pendulum motion3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.TPT 17(1).58displaying pendulum motion3A40.46A hirifue concluum with a marker traces on a sheet of wrapping paper advanced by a motor.UNN, 3A40.50strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on a oscilloscope.F&A, Mx-4strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on a ocalloscope.FW1 17(1).68mass-spring on scope3A40.50A 20.50FW2 (3).186mass-spring accelerometer3A40.50A 'U' tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.61Y' tube manometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.TPT 16(6).404<	Sut, S-2	SHM slide	3A40.36	Use a scotch cross mech	(S)
Sut, S-6project SHM3A40.40Project a beam of light off a mirror on a tuning fork to a rotating mirror onto a screen.PIRA 1000tuning fork with light3A40.413A40.41Disc 08-10tuning fork with light3A40.413A40.41JAP 54(10),953pendulum interface - Apple II3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.TPT 177(1),58displaying pendulum motion3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.TPT 177(1),58displaying pendulum motion3A40.45A biffiar pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.PIRA 1000strain gauge SHM3A40.50Strain gauge SHM3A40.50JUNN, 3A40.50strain gauge SHM3A40.50Mass on spring hangs from a Pasco dynamic force transducer and the force is displayed on a accilloscope.F&A, Mx-4strain gauge SHM3A40.50Mass on spring hangs from a Pasco strain gauge with the output to a oscilloscope.TPT 20(3),186mass-spring accelerometer3A40.50A Disteration in AppendulumBehrlich 1, p. 90mass-spring accelerometer3A40.50An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.TPT 16(6),404acceleration in a pendulum3A40.65An acceleration in SHM.Disc 08-22phase shift disc3A40.65Shadow project two bails mounted on the edge of a disc. Vary the angle between the bails to vary the phase shift.Mei, 15-1.11plotting SHM with spray paint3A40.72A can dispray paint o	TPT 15(7),436	SHM on CRO	3A40.38	Using electronics and thr up and down with SHM, a	ee oscilloscopes to show a spot moving in a circle, and a sine wave. A method for doing this
Disc 08-10tuning fork with light3A40.41Attach a small light to a large slow fork and pan it by a video camera. A sine wave is visible by camera retention.AJP 54(10),953pendulum interface - Apple II3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.TPT 17(1),58displaying pendulum motion3A40.45An free end of the pendulum carries a pin electrode in a water trough with electrodes at each end. The signal is displayed on a oscilloscope.Mei, 15-1.7plotting SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.F&A, Mx-4strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.TPT 20(3),186mass-spring on scope3A40.50A spring number of a mass-spring system on the oscilloscope.Mei, 15-1.6mass-spring accelerometer3A40.53An optoelectronic device to display the displacement of a mass-spring 	Sut, S-6	project SHM	3A40.40	Project a beam of light of	
AJP 54(10),953pendulum interface - Apple II3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.TPT 17(1),58displaying pendulum motion3A40.45The free end of the pendulum carries a pin electrode in a water trough with electrodes at each end. The signal is displayed on a socilloscope.Mei, 15-1.7plotting SHM3A40.48A bifilar pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.PIRA 1000strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.F&A, Mx-4strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.TPT 20(3),186mass-spring on scope3A40.53A viff ub force is displayed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.53A viff ub the manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.65An acceleration motion.TPT 16(6),404acceleration in a pendulum3A40.65Shadow project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift3A40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.1plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towells pulled uniformly by the instructor. </td <td>PIRA 1000</td> <td>tuning fork with light</td> <td>3A40.41</td> <td></td> <td></td>	PIRA 1000	tuning fork with light	3A40.41		
AJP 54(10).953pendulum interface - Apple II3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.TPT 17(1).58displaying pendulum motion3A40.45An induced EMF from the magnet bob and an ADC forms the basis for this interface.Mei, 15-1.7plotting SHM3A40.45The free end of the pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.PIRA 1000strain gauge SHM3A40.50Aspring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.F&A, Mx-4strain gauge SHM3A40.50Aspring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.TPT 20(3).186mass-spring on scope3A40.50Asson spring hangs from a Pasco strain gauge with the output to a oscilloscope.TPT 16(6).404accelerometer3A40.50A-U' tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.60Use the Project Physics accelerometer as a pendulum with a ballistic pendulum suspension.TPT 16(6).404acceleration in a pendulum3A40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.11plotting SHM on the overhead projector3A40.71An acetater roll is motorized on the overhead projector. Another motor drives a pen in SHM.Mei, 15-1.3plotting SHM3A40.72A can of spray paint oscillating between two springs traces on a roll of butcher paper.D&R, M-876	Disc 08-10	tuning fork with light	3A40.41	-	
TPT 17(1),58displaying pendulum motion3A40.45The free end of the pendulum carries a pin electrode in a water trough with electrodes at each end. The signal is displayed on a oscilloscope.Mei, 15-1.7plotting SHM3A40.48A billiar pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.PIRA 1000strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.F&A, Mx-4strain gauge SHM3A40.50Asson spring hangs from a Pasco strain gauge with the output to a oscilloscope.TPT 20(3),186mass-spring on scope3A40.52An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.Mei, 15-1.6mass-spring accelerometer3A40.53A 'U' tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.65A acceleration in a pendulumTPT 16(6),404acceleration in a pendulum3A40.65Shadove project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift disc phase shift3A40.65Shadove project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift disc phase shift3A40.72A can of spray paint coll is motorized on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.11plotting SHM with spray paint3A40.72A can of spray paint coll is motorized on the overhead projectorD&R, M-876plotting SHM3A	AJP 54(10),953	pendulum interface - Apple II	3A40.45	An induced EMF from the	
Mei, 15-1.7plotting SHM3A40.48A bifilar pendulum with a marker traces on a sheet of wrapping paper advanced by a motor.PIRA 1000strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.F&A, Mx-4strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.TPT 20(3),186mass-spring on scope3A40.52An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.Mei, 15-1.6mass-spring accelerometer3A40.53An coptoelectronic device to display the displacement of a mass-spring system on the oscilloscope.TPT 16(6),404acceleration in a pendulum3A40.53An accelerometer is placed on a cart between springs to show acceleration in SHM.TPT 16(6),404acceleration in a pendulum3A40.65An accelerometer is suppended from a spring to show the acceleration at the end points of the simple harmonic motion.TPT 16(6),404acceleration in a pendulum3A40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.11plotting SHM on the overhead projector3A40.72A car of spray paint oscillating between two springs traces on a roll of paper towles pulled uniformly by the instructor.D&R, M-876plotting SHM3A40.72A car of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.Mei, 15-1.9plotting SHM3A40.72A car of spray paint oscillat	TPT 17(1),58	displaying pendulum motion	3A40.45	The free end of the pend	
UMN, 3A40.50strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.F&A, Mx-4strain gauge SHM3A40.50A spring and mass are suspended from a Pasco dynamic force transducer and the force is displayed on an oscilloscope.TPT 20(3),186mass-spring on scope3A40.52An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.Mei, 15-1.6mass-spring accelerometer3A40.53A "U" tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.65An acceleration in a sping to show the acceleration at the end points of the simple harmonic motion.TPT 16(6),404acceleration in a pendulum3A40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.PIRA 1000phase shift disc projector3A40.71An accetare roll is motorized on the overhead projector. Another motor drives a pen in SHM.Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM3A40.75A large ball coscillation suppaper.D&R, M-880plotting SHM3A40.81A large ball coscillation in unison with a mass on a spring traces on a roll of moving paper.D&R, M-876plotting SHM3A40.75A large ball coscillation suppaper.D&R, M-876plotting SHM3A40.75A large ball cosc	Mei, 15-1.7	plotting SHM	3A40.48	A bifilar pendulum with a	
F&A, Mx-4strain gauge SHMand the force is displayed on an oscilloscope.TPT 20(3),186mass-spring on scope3A40.50Mass on spring hangs from a Pasco strain gauge with the output to a oscilloscope.TPT 20(3),186mass-spring on scope3A40.52An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.Mei, 15-1.6mass-spring accelerometer3A40.53A "U" tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.63A na ccelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.TPT 16(6),404acceleration in a pendulum3A40.60Use the Project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shiftGA40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.11plotting SHM on the overhead projectorAn of spray paint aper in SHM.Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of bucher paper.D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.81A plate resting on two oppositely rotating drums (wheels) exhibit	PIRA 1000	strain gauge SHM	3A40.50		
F&A, Mx-4strain gauge SHM3A40.50Mass on spring hangs from a Pasco strain gauge with the output to a oscilloscope.TPT 20(3),186mass-spring on scope3A40.52An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.Mei, 15-1.6mass-spring accelerometer3A40.53A "U" tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.60Ja40.53An accelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.TPT 16(6),404acceleration in a pendulum3A40.65An accelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.PIRA 1000phase shift3A40.65Shadow project hysics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift3A40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.11plotting SHM on the overhead projector3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM3A40.75A large ball cocillates on a spring and a pen on a rider below the ball traces on a roll of bucher paper.D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed undermath.TPT 10(7),377analysis,etc3A40.81A plate resting on two oppositely rotatin	UMN, 3A40.50	strain gauge SHM	3A40.50		
TPT 20(3),186mass-spring on scope3A40.52An optoelectronic device to display the displacement of a mass-spring system on the oscilloscope.Mei, 15-1.6mass-spring accelerometer3A40.53A "U" tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.53An accelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.TPT 16(6),404acceleration in a pendulum3A40.65Sacelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.PIRA 1000phase shift disc3A40.65Shadow project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift3A40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.11plotting SHM on the overhead projector3A40.71An accetate roll is motorized on the overhead projector. Another motor drives a pen in SHM.Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.Mei, 15-1.9plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80A collection of 16 physical	F&A, Mx-4	strain gauge SHM	3A40.50	Mass on spring hangs fro	
Mei, 15-1.6mass-spring accelerometer3A40.53A "U" tube manometer is placed on a cart between springs to show acceleration in SHM.Ehrlich 1, p. 90mass-spring accelerometer3A40.53An accelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.TPT 16(6),404acceleration in a pendulum3A40.60Use the Project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift disc3A40.65Disc 08-22phase shift3A40.65Mei, 15-1.11plotting SHM on the overhead projector3A40.71An accelerate roll is motorized on the overhead projector. Another motor drives a pen in SHM.Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM3A40.75Plotting SHM3A40.75A can of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.Mei, 15-1.9plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80Ale 15-1.5plate on drumsAle 2,51.5plate on drumsAl40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.Alp 56(12),1151"Atwood's" oscillatorAl40.82An advanced SHM system of a weight hanging from the edge of a solid disk<	TPT 20(3),186	mass-spring on scope	3A40.52	An optoelectronic device	
Ehrlich 1, p. 90mass-spring accelerometer3A40.53An accelerometer is suspended from a spring to show the acceleration at the end points of the simple harmonic motion.TPT 16(6),404acceleration in a pendulum3A40.60Use the Project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift disc3A40.65Disc 08-22phase shift3A40.65Mei, 15-1.11plotting SHM on the overhead projector3A40.71An acetate roll is motorized on the overhead projector. Another motor drives a pen in SHM.Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHMPlotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHMAA40.75A satt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etcAA40.81A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drumsAA40.82An advanced SHM system of a weight hanging from the edge of a solid disk	Mei, 15-1.6	mass-spring accelerometer	3A40.53	A "U" tube manometer is	
TPT 16(6),404acceleration in a pendulum3A40.60Use the Project Physics accelerometer as a pendulum with a ballistic pendulum suspension.PIRA 1000phase shift disc3A40.65Disc 08-22phase shift3A40.65Mei, 15-1.11plotting SHM on the overhead projector3A40.71Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.A can of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.Mei, 15-1.9plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHMTPT 10(7),377analysis,etcMei, 15-1.5plate on drumsA40.80A collection of 16 physical systems which oscillate with SHM and one that does on t. Analyses are given for several.Mei, 15-1.5plate on drumsA40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.	Ehrlich 1, p. 90	mass-spring accelerometer	3A40.53	An accelerometer is susp	
PIRA 1000 Disc 08-22phase shift disc phase shift3A40.65Mei, 15-1.11plotting SHM on the overhead projector3A40.65Mei, 15-1.8plotting SHM with spray paint3A40.72Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint of butcher paper.3A40.72D&R, M-876plotting SHMPlotting SHM3A40.75A large ball oscillating on a roll of butcher paper.D&R, M-880plotting SHMSHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHMA40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etcA40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillatorAA40.82An advanced SHM system of a weight hanging from the edge of a solid disk	TPT 16(6),404	acceleration in a pendulum	3A40.60	Use the Project Physics	
Disc 08-22phase shift3A40.65Shadow project two balls mounted on the edge of a disc. Vary the angle between the balls to vary the phase shift.Mei, 15-1.11plotting SHM on the overhead projector3A40.71An acetate roll is motorized on the overhead projector. Another motor drives a pen in SHM.Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM with spray paint3A40.72A can of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.Mei, 15-1.9plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	PIRA 1000	phase shift disc	3A40.65	1	
Mei, 15-1.11plotting SHM on the overhead projector3A40.71An acetate roll is motorized on the overhead projector. Another motor drives a pen in SHM.Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM with spray paint3A40.72A can of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.Mei, 15-1.9plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	Disc 08-22	•	3A40.65		, , , , , , , , , , , , , , , , , , ,
Mei, 15-1.8plotting SHM with spray paint3A40.72A can of spray paint oscillating between two springs traces on a roll of paper towels pulled uniformly by the instructor.D&R, M-876plotting SHM with spray paint3A40.72A can of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.Mei, 15-1.9plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	Mei, 15-1.11		3A40.71	An acetate roll is motoriz	•
D&R, M-876plotting SHM with spray paint3A40.72A can of spray paint oscillating in unison with a mass on a spring traces on a roll of butcher paper.Mei, 15-1.9plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	Mei, 15-1.8		3A40.72	A can of spray paint osci	
Mei, 15-1.9plotting SHM3A40.75A large ball oscillates on a spring and a pen on a rider below the ball traces on a roll of moving paper.D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	D&R, M-876	plotting SHM with spray paint	3A40.72	A can of spray paint osci	
D&R, M-880plotting SHM3A40.75A salt filled funnel on bifilar suspension traces a sine wave as a piece of paper is moved at constant speed underneath.TPT 10(7),377analysis,etc3A40.80A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	Mei, 15-1.9	plotting SHM	3A40.75	A large ball oscillates on	
TPT 10(7),377analysis,etc3A40.80A collection of 16 physical systems which oscillate with SHM and one that does not. Analyses are given for several.Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	D&R, M-880	plotting SHM	3A40.75	A salt filled funnel on bifil	ar suspension traces a sine wave as a piece of
Mei, 15-1.5plate on drums3A40.81A plate resting on two oppositely rotating drums (wheels) exhibits SHM. Includes Derivation.AJP 56(12),1151"Atwood's" oscillator3A40.82An advanced SHM system of a weight hanging from the edge of a solid disk	TPT 10(7),377	analysis,etc	3A40.80	A collection of 16 physica	al systems which oscillate with SHM and one that
AJP 56(12),1151 "Atwood's" oscillator 3A40.82 An advanced SHM system of a weight hanging from the edge of a solid disk	Mei, 15-1.5	plate on drums	3A40.81	A plate resting on two op	
	AJP 56(12),1151	"Atwood's" oscillator	3A40.82	An advanced SHM syste	

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
TPT 11(1),46	photographing SHM	3A40.90		on a spring using a camera and a strobe. Also a cardboard mask in front of an oscilloscope with a
Mei, 15-1.3	photographing SHM	3A40.91	Take strobe wheel photogra	aphs of a pendulum light and a mass on a spring
Mei, 15-1.10	photographing SHM Damped Oscillators	3A40.93 3A50.00	light. Photograph a blinky that tra	anslates and oscillates.
PIRA 500	dash pot	3A50.10		
UMN, 3A50.10	dash pot	3A50.10	A mass on a spring has a r	baddle that can be placed in water for damping.
F&A, Mx-9	dash pot	3A50.10	1 0 1	attached dash pot for critical damping.
Mei, 15-2.2	dash pot	3A50.10		springs with different size vanes in water provide
Bil&Mai, p 178	damped mass on spring	3A50.15	A 200 gram mass is conne some string. Observe the	cted to a digital force probe with a spring and position-time graph when the system oscillates in a socillates in a water filled graduated cylinder.
PIRA 1000	damped SHM tracer	3A50.20		
UMN, 3A50.20	damped SHM tracer	3A50.20	A mass on a spring holds a pulls off a roll.	a magic marker that traces on paper the instructor
Mei, 11-1.8	double spring damped air glider	3A50.40	One end of two long spring	s are attached to each end of the air track. The then attached to a glider in the center of the track.
AJP 51(10)954	small air track oscillator	3A50.42	A small specially construct	ed air track and optoelectric transducer provide Details of circuit and description of air track
PIRA 1000	oscillating guillotine	3A50.45		
UMN, 3A50.45	oscillating guillotine	3A50.45	Sets of magnets provide va	ariable damping of an oscillating aluminum sheet.
AJP 73(11), 1079 TPT 20(3),188	damped physical pendulum bouncing magnets	3A50.45 3A50.50		um is measured with a data acquisition system. rod. A large area photocell is used to detect the
Mei, 15-2.1	tuning fork	3A50.60	position of the levitated ma	•
	-		forks increases damping.	
Mei, 15-2.4	steel bar	3A50.65	electromagnetically for disp	
Mei, 15-2.3	ship stabilizer	3A50.70	-	tube half filled with colored water has a rubber ljusting the damping. Demonstrates a ship
AJP 30(9),654	water balloon oscillator	3A50.75		are mounted on the ends of a glass tube. Flatten n will oscillate about six times.
Mei, 15-9.7	analog computer simulation Driven Mechanical Resonance	3A50.90 3A60.00	-	uspension system with an analog computer.
PIRA 200	Tacoma Narrows film	3A60.10	A film of the collapse of the	-
UMN, 3A60.10	Tacoma Narrows film/videodisc	3A60.10	excellent.	e first eleven minutes of the video disc is
TPT 15(3),189 AJP 74(8), 706	Tacoma Narrows engineering analysis of the bridge	3A60.11 3A60.12	On building a model of the A physical model for the fail	Tacoma Narrows bridge. ilure of the Tacoma Narrow bridge.
AJP 59(2),118	engineering analysis of the bridge	3A60.12	Computational, experiment Understanding gained from	al, and historical data support the model. full, dynamically scaled models of the bridge is
	driven alider on eintre-li	2460.00	runuamentally utterent for	n the explanation in most physics texts.
PIRA 500 UMN, 3A60.20	driven glider on air track driven glider on air track	3A60.20 3A60.20	A glider is placed between	two long springs driven by a variable speed motor.
Mei, 11-1.9	driven glider on air track	3A60.20	Drive an air glider between	two springs
AJP 31(12),xiii	driven cart between springs	3A60.20	A PSSC cart is driven by a	ratio motor between two springs. Use eddy
Mei, 15-10.14	driven cart between springs	3A60.24		t between two springs with eddy current damping
Mei, 15-10.8	driven cart between springs	3A60.24	and recording. Construction A cart between stretched ru speed motor. Eddy current	ubber bands is driven by an eccentric on a variable
TPT 20(4),257	driven glider on air track	3A60.25	A driven air track glider has	an adjustable vane in a tank of water. Graphs of ping are generated the old fashioned way.
PIRA 500	Barton's pendula	3A60.30		
UMN, 3A60.30	Barton's pendula	3A60.30	A set of pendula of increas frequencies.	ing length are driven in common at varying

Demonstration	n Bibliography	J	uly 2015	Oscillations and Waves
TPT 12(3),178	Barton's pendula	3A60.30	A simple implementation of Barton's pen	dula
F&A, Sd-1	Barton's pendula	3A60.30	Several pendula of graduated length are	
Sut, S-20	Barton's pendula	3A60.30	Many of different length small pendula a adjustable heavy pendulum.	re hung from a rod driven by an
Ehrlich 2, p. 121	Barton's pendula	3A60.30	Several pendula of different length are h movements of the bar at the right freque oscillations in the pendulum of your chos	ncy will exite large amplitude
PIRA 1000	resonant driven pendula	3A60.31		5
Disc 09-02	resonant driven pendula	3A60.31	A massive pendulum drives three differe	nt length hifilar pendula
PIRA 1000	bowling ball pendulm resonance	3A60.35	A massive pendulum unves three unere	ni lengin binar pendula.
	- .			
TPT 21(5),333 Mei, 11-2.3i	torsion resonance torsion resonance	3A60.35 3A60.35	Driving a torsion pendulum with a jigsaw An air bearing supported disc/large clock	
Disc 09-01	bowling ball pendulum resonance	3A60.35	driven. Also vary damping, mass. Strike a bowling ball pendulum with rand normal frequency.	om blows, then with blows at the
AJP 30(2),115	impulse driven torsional oscillator	3A60.36	Apparatus Drawings Project No. 23: Plar pendulum with a natural period of 2 sec.	ns for a simple impulse driven torsion
Mei, 15-10.9	driven torsional oscillator	3A60.37	Upper and lower discs are connected by SHM and the resulting motion of the low	
PIRA 1000	driven mass on spring	3A60.40		
Mei, 15-10.11	driven spring	3A60.40	A small DC motor with an eccentric on the	a shaft is suspended from a spring
Mei, 15-10.11	unven spring	3700.40	and run up through the various resonance	
Sut, S-13	driven mass on a spring	3A60.40	The vibrator in S-9 is used to drive a veri differences above and below resonance.	tical mass on a spring to show phase
Ehrlich 1, p. 93	driven mass on spring	3A60.40	A mass on a spring is gently shaken fror resonant frequency.	
Sut, A-22	mechanical analog of electrical res.	3A60.41	A driven system of a mass hanging betw	een two springs.
F&A, Mx-8	driven resonance tracer	3A60.42	A driven mass between two springs carri graph paper pulled at a steady rate.	es a felt tip marker that traces on
PIRA 1000	driven spring weight	3A60.43		
Disc 09-03	driven spring weight	3A60.43	Drive a mass hanging from a spring.	
PIRA 1000	drunken sailor	3A60.44		
UMN, 3A60.44	drunken sailor	3A60.44	A hollow toy "Donald Duck" is driven bet "wine" is poured in to reach resonance a to overshoot resonance.	
F&A, Mx-5	drunken sailor	3A60.44	A bottle (sailor) between two springs is d water. Start empty, add wine to half full,	
Mei, 15-10.1	hand driven rubber tube	3A60.45	Longitudinal oscillations are induced by l wood block attached in the middle.	nand on a long rubber tube with a
Mei, 15-10.7	spring driven spring on a spring	3A60.46	A large spring and adjustable mass on a spring with provisions for damping.	lever arm drives a small mass on a
AJP 28(6),534	driven mass on spring	3A60.47	Apparatus Drawings Project No.8: A vert frequency driver and adjustable damping	
AJP 56(4),352	driven mass spring apparatus	3A60.48	Optical transmission wedges are used to the spring.	
AJP 55(12),1126	electromagnetically driven apparatus	3A60.48	A magnet hanging on a spring oscillates serves as a pickup to an oscilloscope, an of introducing damping forces.	-
AJP 53(3),278	electromechanical shaker/accelerometer	3A60.48	A small accelerometer is placed on a ma electromagnetic shaker.	ass driven by a commercial
PIRA 500	resonance reeds	3A60.50		
UMN, 3A60.50	resonance reeds	3A60.50		
F&A, Mx-13	resonance reeds	3A60.50	A set of steel reeds is mounted on a con	nmon excited strip
Mei, 15-10.4	resonance reeds	3A60.50	A large scale resonance reed set is drive	-
Sut, S-15		3A60.50	A set of resonance reeds is mounted on	5
	resonance reeds			• •
Hil, S-4a.2	resonance reeds	3A60.50	A set of resonance reeds is mounted on	
D&R, M-968	resonance reeds	3A60.50	A set of hacksaw resonance reeds clam variable speed drill strapped to the board	1.
Disc 09-05	reed tachometer	3A60.50	A set of reeds is attached to a small unb	
Mei, 15-10.3	resonance reeds	3A60.51	A steel bar has pairs of inverted pendula	
			a particular rod will cause its mate to vib length.	rate but not the others of different

Demonstratior	Bibliography	J	uly 2015	Oscillations and Waves
Ehrlich 1, p. 92	resonance reeds	3A60.51	A tin can has vertical strips of varying on one side and cause a strip of the resonate.	g lengths cut on each side. Pluck a strip same length on the other side to
Ehrlich 2, p. 128	resonance reeds	3A60.51	A plastic ruler held against a block at other end will resonate.	its midpoint. Pluck one end and the
Ehrlich 2, p. 129	resonance rings	3A60.51	5 circular paper rings of different diar frequency at which you shake the bas	
Mei, 15-10.5	resonance reeds	3A60.53	with the greatest amplitude. A vacuum cleaner motor with an ecce strip hanging over the edge of the lec	entric mass is clamped to a long steel sture bench.
PIRA 1000	driven torsion pendulum	3A60.55		
AJP 56(9),839	galvanometer movement resonance	3A60.56	A galvanometer movement (observed slow function generator (observed on and driven motions.	d by reflected laser beam) driven by a an oscilloscope) shows both driving
AJP 45(11),1113	galvanometer movement oscillations	3A60.56	Record the motion of the galvanomel magnetic field at a frequency beyond detecting the induced current.	ter movement by modulating the radial the response of the movement and
AJP 43(10),926	galvanometer movement oscillations	3A60.57		riod 20 sec.) with a low frequency signal
Sut, S-16	water dropper resonance	3A60.58	5	clamped at one end is adjusted so that a bar.
PIRA 1000	upside-down pendulum	3A60.60		
UMN, 3A60.60	upside-down pendulum	3A60.60	Same as Mz-9.	
F&A, Mz-9	upside-down pendulum	3A60.60	A variable speed motor provides vert with an adjustable mass.	ical undulatory motion for a vertical rod
Ehrlich 2, p. 134	inverted pendulum - ruler	3A60.61	An inverted pendulum with a vibrating	g platstic ruler as the driving oscillator.
AJP 53(11),1079	inverted pendulum - portable jigsaw	3A60.61	Strobe pictures along with some theo portable jigsaw.	bry of an inverted pendulum driven with a
AJP 37(9),941	inverted pendulum - sabre saw	3A60.61	Mount a short stick on the blade of a	n inverted saber saw.
AJP 59(9),816	inverted pendulum - liquid	3A60.62	Demonstration and theory of an inver	ted liquid pendulum.
AJP 50(10),924	inverted pendulum - an analog	3A60.63	The inverted pendulum is presented a filter. Theory of the inverted pendulur	
AJP 38(7),874	inverted pendulum - speaker driven	3A60.64		sing a series of short impulses instead speaker with a 3/4" movement is used to pendula.
Mei, 15-10.2	upside-down pendulum	3A60.67		an upright leaf spring from an auto and
PIRA 1000	lamppost resonance	3A60.70		
AJP 52(7),662	lampost resonance	3A60.70	A three meter steel rod model of a la resonated by hand until a bolt in the statement of th	
Sut, S-14	driven conical pendulum	3A60.75	A variable length conical pendulum is phase is compared to a reference.	s driven at a single frequency and the
Mei, 15-10.10	Calthrop resonance pendulum	3A60.80	Drive a heavy compound pendulum v pendulum.	which in turn drives a light simple
Sut, S-21	Rayleigh's driven pendulum	3A60.81	Lord Rayleigh's method of suspendin pendulum.	g a light pendulum from a heavy driving
Sut, S-140	pendulum in a dish ????	3A60.85	is dipped into a shallow washbasin of	ion is: An adjustable period pendulum f water near the periphery. Rotate the mum oscillations due to eddies forming
TPT 28(6),417	paddleball - non SHM	3A60.89	A paddleball is a non-SHM system th resonance.	
	Coupled Oscillations	3A70.00	_	
PIRA 200 - Old UMN, 3A70.10	Wilberforce pendulum Wilberforce pendulum	3A70.10 3A70.10		d torsional modes. tuned so the three modes of oscillation
	Wilhorforce pondulum	2470 40	will couple.	
F&A, Mx-11 Sut, S-18	Wilberforce pendulum Wilberforce pendulum	3A70.10 3A70.10	The Wilberforce pendulum. Transfer of energy between torsional Wilberforce pendulum.	vibration and vertical oscillation in the
Hil, M-14f.1	Wilberforce pendulum	3A70.10	Shows two Wilberforce pendula.	
Hil, S-4a.4	Wilberforce pendulum	3A70.10	A small Wilberforce pendula.	
D&R, M-964	Wilberforce pendulum	3A70.10	The Wilberforce pendulum and direct	tions to make one out of a doorspring.

July 2015

Oscillations and Waves

Demonstratic	n Dibilography	0	
Sprott, 1.19	Wilberforce pendulum	3A70.10	A spring pendulum constructed such that the torsional and longitudinal frequencies are nearly identical. Energy is transferred back and forth between the two modes of oscillations.
Ehrlich 1, p. 89	Wilberforce pendulum	3A70.10	Make a Wilberforce pendulum from a spring, a steel rod, a ball or clay, and a straw.
Disc 09-08	Wilberforce pendulum	3A70.10	
AJP 58(9),833	Wilberforce pendulum analysis	3A70.11	Analysis of the Wilberforce pendulum. Compare theory with experiment.
TPT 21(4),257	Wilberforce pendulum	3A70.12	
			winding the spring.
AJP 46(1),110	swinging mass on a spring	3A70.14	Derivation with the additional hint that you can use a weak spring by adding a length of string to increase the period of the pendulum motion.
PIRA 1000	swinging mass on a spring	3A70.15	
UMN, 3A70.15	swinging mass on a spring	3A70.15	The oscillation mode of a mass on a spring couples with the pendulum
			mode.
AJP 44(12),1121	I swinging mass on a spring	3A70.15	Analysis of autoparametric resonance that occurs when the rest length of a spring is stretched by about one third by a mass.
Mei, 15-1.12	swinging mass on a spring	3A70.15	Oscillations couple if the frequency of a mass on a spring is twice the pendulum mode frequency.
AJP 48(6),488	swinging mass on a spring - uncoupled	3A70.16	The special case in which the angular frequency of the spring and the frequency of the pendulum are equal, where the equations of motion actually
			uncouple and yield independent vertical and pendular motion. The simple
M-: 45 4 40		047047	apparatus is shown.
Mei, 15-1.13	spring pendulum	3A70.17	Time the period of a 12" pendulum, take a 12" spring and add mass until the
PIRA 200	acupled pendula	2470.20	period is the same. Show the extension is 12"
UMN, 3A70.20	coupled pendula coupled pendula	3A70.20 3A70.20	Hang two or three pendula from a flexible metal frame. Two pendula are hung from a flexible metal frame. A third can be added.
Mei, 15-9.2	coupled pendula	3A70.20	Two bobs suspended from a suspended horizontal dowel.
Hil, S-4a.3	coupled pendula	3A70.20	Rods and spring steel support two pendula. The picture is less than clear.
Ehrlich 1, p. 94	coupled pendula	3A70.20	Two pendula hung from a horizontal rod or taut horizontal string will transfer
Ennion 1, p. o i		0/11 0.20	energy back and forth between them.
F&A, Mx-12	coupled pendula	3A70.21	Three identical pendula are coupled by a slightly flexible support.
F&A, Sa-1	coupled pendula	3A70.21	Three identical pendula hang from a slightly flexible stand.
F&A, Sa-2	projection coupled pendula	3A70.22	Two small coupled pendula hang from a slightly flexible stand on a clear base.
AJP 70(10), 992	synchronizing metronomes	3A70.23	Multiple metronomes are spaced atop a foam board and started. When the board and metronomes are placed onto two empty soda cans set on their
			sides, the metronomes quickly synchronize.
PIRA 500	spring coupled pendula	3A70.25	
UMN, 3A70.25	spring coupled pendula	3A70.25	Two pendula are coupled with a light spring.
F&A, Mx-10	spring coupled pendula	3A70.25	Two equal adjustable pendula coupled with a light spring.
Mei, 15-9.1	spring coupled pendula	3A70.26	Two identical bobs are coupled with a leaf spring.
PIRA 1000	spring coupled physical pendula	3A70.27	
Mei, 15-9.3	coupled pendula	3A70.27	Two bowling ball bobs on aluminum rods allowing for length adjustments are
0			coupled with a light spring between the rods.
Sprott, 1.18	coupled pendula	3A70.27	fourth between the two.
Disc 09-07	coupled pendula	3A70.27	Two physical pendula are coupled by a spring.
PIRA 1000	string coupled pendula	3A70.30	Development of the second state of the second
UMN, 3A70.30	string coupled pendula	3A70.30	Pendula are suspended from a horizontal string.
AJP 49(12),1245	a 1 1	3A70.30	Theory and diagram of the string-coupled pendula.
Sut, S-17	string coupled pendula	3A70.30	Two pendula are coupled on a string. Coupling time depends on the string tightness, amplitude depends on the mass.
Hil, S-4a.1	string coupled pendula	3A70.30	Two pendula are suspended from a common string.
D&R, M-960	coupled pendula	3A70.30	Pendula of the same and different lengths are suspended from a loosely supported horizontal string.
Bil&Mai, p 174	string coupled pendula	3A70.30	Six pendula are suspended from a horizontal string.
AJP 45(11),1022	2 triple pendula	3A70.31	A spring coupled triple pendulum used to demonstrate the character of normal modes and in particular a mode that has high Q even with the center pendulum highly damped. This is mathematically similar to the equations of
AJP 53(11),1114	1 resonant double pendulum	3A70.32	three coupled quantum mechanical levels. This double pendulum system with modes that differ by a factor of two has
Mai 15-0 1	varied length coupled pondulo	3470 33	not yet been completely solved. A symmetrical arrangement of seven steel halls are coupled 6" below their
Mei, 15-9.4	varied length coupled pendula	3A70.33	A symmetrical arrangement of seven steel balls are coupled 6" below their anchor points with a long wooden bar through which the cords pass. Energy transfers from one end to the other.

Demonstratior	Bibliography	J	uly 2015	Oscillations and Waves
AJP 38(4),536	double simple pendulum	3A70.35	•	string with combinations of the masses
Mei, 15-9.6	over-under pendula	3A70.36	and strings being equal or unequal. A light pendulum suspended from a h	eavy pendulum
Mei, 29-4.9	electrostatically coupled pendula	3A70.38	Two pith ball pendula couple only whe polarity.	
PIRA 1000	inverted coupled pendula	3A70.40		
Hil, A-8b	inverted coupled pendula	3A70.40	Two vertical hacksaw blades with weight bottom.	ghts at the top are coupled at the
AJP 69(11), 1191	inverted coupled pendula	3A70.40	Weakly magnetically coupled pendula computationally, and theoretically.	a are studied experimentally,
Mei, 15-9.5	coupled upside down pendula	3A70.41	Two adjustable upside down pendula shows beats.	are coupled with a rubber band. Also
PIRA 1000	coupled masses on springs	3A70.45		
PIRA 1000	oscillating magnets	3A70.50		
Ehrlich 2, p. 153	oscillating magnets	3A70.50	up. Fold the note card in half and tim	ng note card with like poles all pointing e the oscillations of the unit with a
TPT 18(1),39	oscillating magnets	3A70.50	metronome. Original Phil Johnson humor is shown	
			see the picture of this to believe it". T rectangular magnets arranged so that magnets are suspended in mid air. T	the inner edges of the outer two ap one so that it oscillates and the
AJP 76 (2), 125	oscillating magnets	3A70.50	energy will be transferred to the other	ns on magnets suspended by a thread
AJF 70 (2), 123	Userialing magnets	5A70.50	which can act as a pendulum and also with the Earth's magnetic field.	
TPT, 36(7), 417	cheap and easy coupled- oscillations demonstration	3A70.51	•	lations are produced with magnets and
AJP 56(3),200	coupled compass needles	3A70.55	Oscillations of two compass needles	couple.
D&R, M-960, B- 060	coupled compass needles	3A70.55	Compasses or magnets in horizontal nearby one will start oscillating.	cradles. Start one oscillating and a
AJP 28(8),744	coupled magnets	3A70.56	,	suspended wooden wand, all horizontal.
AJP 56(4),345	ball & curved track pendulum	3A70.60		uarter circle track pendulum with a ball
AJP 37(8),841	rotating 2D coupled oscillations	3A70.70	Examine the oscillations of a "Y" pend	dulum as it is rotated at varying speeds.
	Normal Modes	3A75.00		
PIRA 500	coupled harmonic oscillators	3A75.10		
UMN, 3A75.10	coupled harmonic oscillators	3A75.10	Many identical air track gliders are convariable frequency motor.	upled with springs and driven with a
AJP 31(12),915	coupled harmonic oscillators	3A75.10	Article on identical spring coupled air	gliders includes theory.
F&A, Mx-14	coupled harmonic oscillators	3A75.10	Several identical air track gliders are o	
Mei, 11-1.17	coupled harmonic oscillators	3A75.10	A driven chain of air gliders and spring	
Mei, 11-1.16	coupled harmonic oscillators	3A75.11	Five blocks coupled with coil springs r	•
AJP 35(11),1065	coupled harmonic oscillators	3A75.12	A six meter chain of air supported puc	
Mei, 10-2.18 PIRA 1000	coupled harmonic oscillators	3A75.12 3A75.30	Six meters of dry ice pucks on a drive	n siinky.
Sut, S-19	masses on a string masses on a string	3A75.30	Clamp 1,2,3, or 4 equal masses to a	variably driven wire to show normal
Mei, 18-7.2	weighted string	3A75.31	modes.	by a large motor show the lower normal
			modes of a many body system.	
PIRA 1000	bifilar pendulum modes	3A75.40		
Mei, 15-8.2	bifilar pendulum	3A75.40	All three modes of oscillation are disc with bifilar suspensions.	
Mei, 15-8.1	bifilar pendulum	3A75.40	Discusses two of three modes - trans- twisting.	
Mei, 15-10.15	selsyn motor pendula	3A75.45	Pendula are hung from the shafts of to can be demonstrated.	
Mei, 15-10.6	double pendulum	3A75.50	Normal modes of a two pendula sprin	
AJP 45(9),882	exposing normal modes	3A75.80	When two modes are simultaneously frequency of one normal mode will all independently. A double hacksaw sys	ow the other to be observed
	Lissajous Figures	3A80.00	· · · · · · · · · · · · · · · · · · ·	-
PIRA 1000	Lissajous sand pendulum	3A80.10		
UMN, 3A80.10	Lissajous sand pendulum	3A80.10	A sand filled compound pendulum tra-	ces out a Lissajous pattern.

July 2015

Demonstration	вынодгарну	J	uly 2015 Oscillations and waves
F&A, Sn-2	sand track Lissajous figures	3A80.10	A compound pendulum drops sand out of the pendulum bob in a Lissajous pattern.
Sut, S-43	Lissajous sand pendulum	3A80.10	•
D&R, M-926	Lissajous sand pendulum	3A80.10	•
F&A, Sn-1 AJP 59(4),330	Lissajous figures in sand Blackburn pendulum	3A80.11 3A80.13	A compound pendulum bob traces a Lissajous figure in sand.
AJP 38(9),1116 Mei, 15-3.1	double pendulum "art machine" Lissajous figures - double pendulum	3A80.15 3A80.15	Design for a double pendulum machine that draws with a pen. Two adjustable physical pendula at right angles coupled to a pen. Diagram.
PIRA 500 UMN, 3A80.20 F&A, Sn-3	Lissajous figures - scope Lissajous figures - scope Lissajous figures on the scope	3A80.20 3A80.20 3A80.20	Two generators are fed into the x and y channels of a scope. Two oscillators generate Lissajous figures of the X and Y channels on an
D&R, M-930 Disc 08-26 Hil, S-1e	Lissajous figures - scope Lissajous figures - scope Lissajous figures	3A80.20 3A80.20 3A80.21	oscilloscope. Two function generators are fed into the x and y channels of a scope. Use two independent generators to show Lissajous figures on a scope. Lissajous figures on a scope and three other methods in a reprint.
Mei, 15-3.3	Lissajous figures - scope	3A80.22	Two sine waves are produced by coupling a variable speed motor to one pot in each of two Wheatstone bridge circuits.
Sut, S-8	Lissajous bar	3A80.30	An oscillating one meter long bar with the width to length ratio a small integer will show a Lissajous pattern when clamped at one end and viewed from the other.
Sut, S-44	Lissajous figure vibrations	3A80.35	A rectangular cross section rod is mounted vertically and the top is bent over at right angles. When the protruding end is struck it will describe Lissajous patterns.
PIRA 1000	Lissajous figures - laser	3A80.40	
Sut, S-45 Sprott, 6.2	Lissajous figures - projected Lissajous figures - laser	3A80.40 3A80.40	Use small mirrors on tuning forks to project a beam of light on the wall. A laser beam is reflected off small mirrors glued to two speakers and then onto a screen. Vary the frequency of each speaker with a frequency generator.
TPT 17(9),593	Lissajous figures - projected	3A80.41	Bounce a laser off a soap film excited by a audio speaker and a Lissajous figure can be projected onto a screen.
Sut, S-46	Lissajous figures - harmonograph	3A80.43	An elaborate apparatus made to reflect beams off mirrors - two oscillations in SHM and one that is the combination.
Mei, 15-3.2	Lissajous figures - projected	3A80.44	A sine wave of an integral number of periods is drawn on a clear cylinder. When projected on an overhead, any phase may be obtained by turning the cylinder
AJP 47(11),1014	Lissajous figures - mechanical	3A80.46	Chains, gears, etc., that allow control of amplitude, initial phase, and frequency of the two component vibrations.
Sut, S-48	Lissajous figures - 3d	3A80.50	An elaborate setup that uses three motors to produce a spot of light on a card that is the result of three mutually perpendicular SHM's.
Sut, S-47	Lissajous figures - 3d	3A80.51	A slit in a lantern projector is driven in SHM and the resulting light beam is projected onto a white pencil mounted on a disc rotated by a motor in the perpendicular direction.
AJP 52(7),657 Mei, 15-3.4	textbook corrections characteristic triangle method	3A80.60 3A80.90	Most Lissajous figures illustrated in textbooks are wrong. A Lissajous ellipse is drawn using the characteristic triangle method. Fully derived instructions.
F&A, Sn-3	Lissajous coordinate system	3A80.91	A coordinate system with the grid proportional to the sines of 0, 30, 60, and 90 degrees is sketched on the board.
PIRA 1000 Mei, 33-1.4 AJP 39(5),575	Non-Linear Systems water relaxation oscillator water relaxation oscillator electrical and water relaxation osc.	3A95.00 3A95.10 3A95.10 3A95.12	A cylinder is filled with water at a constant rate and periodically empties. A water relaxation oscillator models a neon flasher relaxation oscillator.
AJP 40(2),360	pipet rinser oscillator	3A95.13	The commercial pipet rinser is a much better relaxation oscillator than that in
UMN, 3A95.15 PIRA 1000	wood relaxation oscillator wood block relaxation oscillator	3A95.15 3A95.20	AJP 39(5),575. A wood block rides up and slides back on the inside of a turning hoop.
Mei, 15-10.13	water feedback oscillator	3A95.20	A tubing and bellows arrangement to generate oscillations by feedback. Picture.
AJP 45(10),994	compound pendulum	3A95.22	A driven, damped, adjustable compound pendulum for intermediate demonstrations and labs.
AJP 51(7),655	stopped spring	3A95.25	Complete discussion and analysis of a stopped spring system.

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
AJP 32(2),xiii	non-linear springs	3A95.26	Two springs are attached in a "Y" arrang along a spring so it becomes taut when tension springs".	
AJP 42(8),699	rubber band oscillations	3A95.28	A review of the foundations a of the rubb	
TPT 13(6),367	beyond SHM	3A95.31	to the oscillations of a loaded rubber bar Shadow project an inertial pendulum on the resulting voltage on an oscilloscope. apparent.	to a selenium photocell and display
AJP 44(7),666	beyond SHM	3A95.32	The design of a pendulum that can dem on amplitude. Common laboratory supp timing is done with a stopwatch. Agreen theory to 1 in 1000 is conveniently obtai	lies are used for construction, and nent between experimental data and
AJP 45(4),355	large amplitude pendulum	3A95.32	Use a rod instead of a string to support degrees. Construction details are given.	the bob and angles can reach 160
PIRA 1000	pendulum with large amplitude	3A95.33		
Disc 08-17	pendulum with large amplitude	3A95.33	Vary the from 5 to 80 degrees.	
AJP 40(5),779	non-harmonic air glider	3A95.35	A Jolly balance spring is attached from a track to the top of a glider.	a point above the middle of an air
AJP 50(3),220	nonlinear air track oscillator	3A95.36	A length of rubber perpendicular to the a force. Relative strengths of linear and no	
AJP 59(2),137	saline nonlinear oscillator	3A95.37	A small cup with a hole in the bottom an large vessel of pure water. The system of can be reproduced by numerical simulat	does all sorts of nonlinear stuff that
PIRA 1000	perodic non-simple harmonic motion	3A95.38		
Disc 08-23	periodic non-simple harmonic motion	3A95.38	A large pendulum drives a restricted ver	tical pendulum.
AJP 53(6),574	anharmonic LRC circuit	3A95.41	A linear LRC circuit demonstrates "soft" behavior.	and "hard" spring nonlinear resonant
AJP 52(9),800	anharmonic oscillator	3A95.43	An op amp with RC feedback network th small inputs and then shifts to anharmon	
PIRA 1000	amplitude jumps	3A95.45		ő
AJP 35(10),961	amplitude jumps	3A95.45	Non linear oscillators driven by a variabl described.	e periodic force: two systems are
AJP 36(4),326	anharmonic air track oscillator	3A95.46	A driven air glider between two springs h are introduced by other magnets. Jump	e 1
AJP 38(6),773	amplitude jumps	3A95.46	Use the small Cenco string vibrator to de	
PIRA 1000	chaos systems	3A95.50		
AJP 55(12),1083	five chaos systems	3A95.50	Five simple systems, both mechanical a demonstrate period doubling, subharmo intermittent and continuous chaos.	
AJP 77 (3), 216	double pendulum	3A95.50	A variation of the simple double pendulu replaced by square plates.	m where the two point masses are
AJP 60(6), 491	double pendulum	3A95.50	Chaos in the double pendulum system is evaluate the sensitive dependence on in	•
Sprott 1 20	choos systems	2405 50	double pendulum are described.	a or loboratory avalaration
Sprott, 1.20	chaos systems chaos system - dripping faucet	3A95.50	Other chaos systems available for lectur	
Sprott, 2.26 AJP 58(1),58	chaos in the bipolar motor	3A95.50 3A95.51	A dripping faucet illustrates periodic and A simple bipolar model demonstrates ch	aos on the overhead projector. Plots
TPT, 37(3), 174	a chaotic pendulum	3A95.52	require a digital scope or other equipme A cheap and simple chaotic pendulum n	
Sprott, 1.20	a chaotic pendulum	3A95.52	A simple chaotic pendulum made with d magnet concealed in a tennis ball. Can overhead projector or for a large classro	isk magnets, string, and another be scaled up or down for use on the
Ehrlich 1, p. 35	a chaotic pendulum	3A95.52	A chaotic pendulum made from two disk from a steel bob or paper clip. Make thi projector.	magnets with a pendulum made
AJP 69(9), 1016	a chaotic pendulum	3A95.52	A cheap magnetically driven chaotic per acquisition equipment.	ndulum is analyzed with data
AJP 71(3), 250	a chaotic pendulum	3A95.52	A commercially available chaotic pendul to study nonlinear dynamics including th sections, fractal dimensions, and Lyapu	e determination of Poincare
TPT 28(1),26	mechanical chaos demonstrations	3A95.53	Three mechanical chaos demonstrations magnets, balls in a double potential well	s: paperclip pendulum over two disk

Demonstratior	n Bibliography	J	uly 2015	Oscillations and Waves
AJP 59(11),987	inverted pendulum chaos	3A95.54		goes through the transition from periodic to ensor is used to get data to a computer which
Sprott, 4.9	electronic chaos circuit	3A95.55		rical circuits produce chaotic output that can be
AJP 58(10),936	double scroll chaotic circuit	3A95.55	A simple electronic circuit sh	ows double scroll chaotic behavior on an am to display computer simulation is also
AJP 53(4),332	electronic chaos circuit	3A95.55	An electronic circuit impleme	nting a coupled logistic equation is used to r in one or two dimensions on an oscilloscope
AJP 35(1), 31 PIRA 1000	chaos of a diode parametric resonance	3A95.55 3A95.60	A simple circuit built around a	a diode that exhibits chaos.
AJP 50(6),561	parametric resonance	3A95.60		em to give vertical SHM to a pendulum. The occurs when the pendulum is driven vertically at
AJP 39(12),1522	parametric phenomena	3A95.61	Parametric excitation of a res	sonant system is self excitation caused by a rameter of the system. A brief history.
AJP 28(5),506	pendulum parametric amplifier	3A95.62		endulum driver to demonstrate parametric
AJP 28(2),104	hula-hoop theory	3A95.63		e of heteroparametric excitation.
AJP 29(6),374	magnetic dunking duck	3A95.66	Beak on a dunking duck is a	magnet that triggers the driving circuit.
PIRA 1000	pump a swing	3A95.70		
UMN, 3A95.70	pump a swing	3A95.70	Periodically pull on the string	
Mei, 15-1.15	pump a swing	3A95.70	the string periodically.	a pulley. Increase the amplitude by pulling on
Sut, M-182	pump a swing	3A95.70	center of mass by a switch.	n a swing allows one to raise and lower the
Sut, M-181	pump a swing	3A95.70	Work up a swing by pulling o	
Disc 09-04	pump pendulum	3A95.70	Periodically pull on the string	
AJP 38(7),920	more on pumping a swing	3A95.71	length is a function of time.	and demonstrated as a simple pendulum whose
AJP 37(8),843	pumping a swing comments	3A95.71	the amplification process is s	
AJP 36(12),1165	pump a swing	3A95.72		g out three and one half cycles.
AJP 44(10),924	swinging	3A95.73	Parametric amplification and	•
AJP 38(3),378	pump a swing	3A95.73	•	P 36(12),1165 prohibits starting from rest. This sufficient to demonstrate the start from rest.
AJP 39(3),347	pump a swing	3A95.73	More on the first pump.	
AJP 40(5),764	start a swing	3A95.73	Now we use a rigid swing su	pport instead of a rope.
PIRA 1000	parametric instability	3A95.80		
UMN, 3A95.80	parametric instability	3A95.80	Same as AJP 48(3),218.	
AJP 48(3),218	parametric instability	3A95.80	The two lowest order resonant	ort a block from which a "Y" pendulum swings. nces are described in detail.
ref.	fire hose instability	3A95.85	See 1N22.51.	
	WAVE MOTION Transverse Pulses and Waves	3B00.00 3B10.00		
AJP 37(1),52	Klein-Gordon equation wave model	3B10.01		Klein-Gordon equation. Sort of looks like half a hang down out of a horizontal coil spring.
PIRA 1000	the wave - transverse	3B10.05		
UMN, 3B10.05	the wave - transverse	3B10.05		o the standard stadium wave.
PIRA 200	pulse on a rope	3B10.10	<i>,</i> ,	
UMN, 3B10.10	pulse on a rope	3B10.10	lecture bench.	hand on a long rope stretched across the
F&A, Sa-3	pulse on a rope	3B10.10		
Sut, S-34	shake a rope	3B10.10	Fix one end of a rope and sh	
Hil, S-2a.1	pulse on a spring	3B10.10	Two students stretch a spring pulse.	g and one student hits it to give a transverse
D&R, W-010	pulse on a rope		A heavy piece of stretched ro	
D&R, W-025	pulse on a spring	3B10.10		ow transverse and longitudinal pulses.
Ehrlich 1, p. 126	pulse on a spring	3B10.10	Stretch a helical spring or a r waves.	ubber hose to show transverse and longitudinal

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
Ehrlich 1, p. 134	pulse on a spring	3B10.10	Excite standing waves in a long spring to harmonics are multiples of the fundamen	
Disc 09-09	wave on a rope	3B10.10	•	
AJP 35(3),xxi	slow pulse	3B10.11	Epoxy split-shot fishing sinkers on model	
AJP 43(7),651	speed of a pulse - stretched string	3B10.12	every inch to give a wave speed of about Mount two small pieces of paper on a stru- photocell gate when a pulse from pluckin	etched string so they will interrupt a
Mei, 18-3.6	speed of a pulse in a rope	3B10.12	Microswitches at two ends of a stretched passes. Weights are used at one end to	rope trigger a timer as a pulse
TPT 28(1),57	pulse speed on a string	3B10.13	A pulse on a steel string passes between is used to measure the time between volt pulse.	
PIRA 1000	tension dependence on wave speed	3B10.15		
Sut, S-23	rope	3B10.15	Use pairs of ropes or tubes to compare s per unit length are changed.	peed of pulses as tension and mass
Disc 09-11	tension dependence of wave speed	3B10.15	Hold a rubber tube under different tension	ns and send a pulse along it.
PIRA 1000	speed of torsional waves	3B10.16		
Disc 09-13	wave speed	3B10.16	Show the difference in wave speed and p long and short rods.	oulse shape on Shive machines with
PIRA 1000	speed of a Slinky pulse	3B10.17		
UMN, 3B10.17	speed of a Slinky pulse	3B10.17	Critically damp one end of a stretched SI Measure mass per unit length, time a pul	
AJP, 78 (1), 35	Slinky walking down stairs	3B10.17	Motion of a Slinky walking down a set of exhibits a periodic gait.	
PIRA 1000	speed of pulses on ropes	3B10.18		
UMN, 3B10.18	speed of a pulse	3B10.18	Pluck two ropes of different mass per uni tension, and compare the speed of the p	
Sprott, 3.1	wave speed on a rope	3B10.18	The difference in wave propagation spee different masses and tensions is illustrate	d for transverse waves on ropes of
Mei, 18-8.1	chain	3B10.19	Transverse pulses and waves are demor hanging Slinky.	
PIRA 500	Slinky on the table	3B10.20		
UMN, 3B10.20	Slinky on the table	3B10.20	Create pulses and waves by hand on a S bench.	linky stretched down the lecture
F&A, Sa-14	Slinky on the table	3B10.20	A transverse pulse is sent down a Slinky	
Hil, S-2a.2	Slinky on the table	3B10.20	Students stretch a Slinky and send longit	udinal waves down from one end.
Sprott, 3.7	Slinky on the table	3B10.20	Show transverse and longitudinal modes	with a Slinky.
Bil&Mai, p 204	Slinky on the table	3B10.20	Create pulses and waves by hand on a S bench.	-
Ehrlich 1, p. 135	Slinky in a circle	3B10.23	Longitudinal standing waves are generate cylinder and joined end to end.	ed in a Slinky wrapped around a
PIRA 1000	standing pulse	3B10.25	0 0 5	
UMN, 3B10.25 F&A, Sa-5	standing pulse standing pulse	3B10.25 3B10.25	Same as Sa-5. A pulse in a loaded rubber tube driven by	a motorized pullow remains almost
			stationary.	
Mei, 18-3.1	standing pulse	3B10.25	An endless belt running at constant spee sharp blow and the pulse is nearly statior 16(4)248; Sutton p.139.	
Mei, 18-3.3	stationary pulse	3B10.25	A 12' loop of bead chain is suspended ov pulley. Ball bearing rollers deform the cha	
Sut, S-29	stopping a pulse	3B10.25	Run a belt over a pulley at a high enough appears to stand still.	speed so a wave traveling along it
Hil, S-2f Disc 09-10	stationary transverse wave pulse on moving chain	3B10.25 3B10.25	An endless belt running over two pulleys. A motor drives a large loop of chain susp	
Sut, S-30	stopping a pulse	3B10.26	Suspend a heavy cord formed into a circl	
PIRA 200	Shive (Bell Labs) wave model	3B10.30	Spin at speed sufficient that a pulse will a Excite a horizontal torsional wave machin	
UMN, 3B10.30	Bell Labs wave model	3B10.30	clamped, or critically damped. Excite a horizontal torsional wave machir clamped, or critically damped.	ne by hand. The other end is open,

July 2015

AJP 31(11),xvi	Bell Labs wave machine	3B10.30	Bell Telephone Company wave machine - source of film, booklet, and apparatus (as of 1963).
Mei, 18-2.1	Bell Labs model	3B10.30	A long article on the Bell Labs torsional wave model.
D&R, W-030	Bell Labs wave model	3B10.30	A horizontal torsion wave machine that is excited by hand.
	torsional waves	3B10.30	
Disc 09-12			Show a torsional wave on a Shive wave machine.
AJP 37(1),104	toothpick wave machine	3B10.31	A method of looping No. 32 rubber bands through toothpicks to make a traveling wave machine.
AJP 49(4),375	horizontal torsion bars	3B10.31	Use soda straws and seamless elastic to make an inexpensive bell wave motion machine.
Mei, 18-8.3	horizontal torsion bars	3B10.31	Wood dowels are mounted to a section of steel tape.
TPT, 36(7), 392	making waves: a classroom	3B10.31	Directions for constructing a large scale torsional wave machine.
11 1,00(1),002	torsional wave machine (part 1)	0010.01	Birodione for conclusioning a large coale telefonar wave machine.
TDT 26(0) 466	u ,	2010.24	Further discussion of eventiments to de using a large coole targingel wave
TPT, 36(8), 466	making waves: a classroom	3B10.31	Further discussion of experiments to do using a large scale torsional wave
	torsional wave machine (part 2)		device.
F&A, Sa-6	traveling wave	3B10.32	A torsion wave machine hangs from the ceiling. Also, a rope from the ceiling.
PIRA 1000	Kelvin wave apparatus	3B10.40	
Sut, S-31	Kelvin wave machine	3B10.40	A ladder style hanging wave apparatus with strings for the two sides.
			A variable speed motor driven brass chain lariat is struck with a stick and the
Mei, 18-3.2	stationary pulse - lariat	3B10.41	•
			pulse is stationary at all speeds. simpler version also shown. Diagram and
			construction details.
Mei, 18-2.2	hanging torsional waves	3B10.41	A vertical torsion wave machine made with electrical terminal clips on a
			rubber tape. Pictures.
Sut, S-32	damped Kelvin wave machine	3B10.45	A long steel band with metal crossbars carrying balls on the ends is
			suspended from a copper disc between the poles of an electromagnet.
PIRA 500	vertical rods wave model	3B10.50	
Sut, S-26	vertical rods wave model	3B10.50	A wave template is slid under an array of vertical rods.
TPT 28(7),508	transverse wave machine	3B10.51	A cheap modern version of a nineteenth century wave machine with vertical
11 1 20(7),500		5010.51	rods driven from the bottom by an eccentric.
Cut C 27	vertical rada waya madal	2010 51	
Sut, S-27	vertical rods wave model	3B10.51	The bottoms of a series of identical rods rest on a series of discs mounted
			eccentrically on a common shaft. The tops of the rods execute a wave when
			the shaft is rotated.
Hil, S-2a.3	wave generator	3B10.53	Picture of a series of balls at different phase angles that seem to be
			connected to rotating rods. Demonstrates both transverse and longitudinal
			waves.
TPT 3(8),376	transverse waves on the overhead	3B10.55	Four demos: a rotating coil, wave templates, a sinusoidal wave plotter, and a
			superposition wave adder.
Mei, 18-8.4	project rotating wire	3B10.56	A wire spiral is rotated by a motor and projected to demonstrate transverse
	, , ,		waves. Construction details.
Sut, S-22	water waves	3B10.60	Water waves in a long trough with glass sides. Put a cork in to show particle
out, o ==		02.0.00	motion. Show standing waves with proper timing.
Ehrlich 1 n 120			
	water wayes	3B10.60	
Ehrlich 1, p. 128	water waves	3B10.60	Water waves in a long trough to show wave pulses and sinusoidal waves.
Eninich 1, p. 126	water waves	3B10.60	Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to
			Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves.
TPT 28(5),337	water waves traveling wave on a scope	3B10.60 3B10.65	Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to
			Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves.
			Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave.
			Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling
TPT 28(5),337	traveling wave on a scope	3B10.65	Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave.
TPT 28(5),337	traveling wave on a scope	3B10.65	Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing
TPT 28(5),337	traveling wave on a scope	3B10.65	Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit
TPT 28(5),337 Sut, S-38 PIRA 1000	traveling wave on a scope pendulum waves pendulum waves	3B10.65 3B10.70 3B10.75	Water waves in a long trough to show wave pulses and sinusoidal waves.Use a mass on a spring to oscillate in and out of the water at one end to generate the waves.Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave.A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it.
TPT 28(5),337 Sut, S-38	traveling wave on a scope pendulum waves	3B10.65 3B10.70	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves,
TPT 28(5),337 Sut, S-38 PIRA 1000	traveling wave on a scope pendulum waves pendulum waves	3B10.65 3B10.70 3B10.75	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter
TPT 28(5),337 Sut, S-38 PIRA 1000	traveling wave on a scope pendulum waves pendulum waves	3B10.65 3B10.70 3B10.75	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves,
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves	3B10.65 3B10.70 3B10.75 3B10.75	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the same time interval.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves pendulum waves	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves pendulum waves solitons in a wave tank	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves solitons in a wave tank non-recurrent wavefronts	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves pendulum waves solitons in a wave tank	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826 UMN, 3B10.85	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves solitons in a wave tank non-recurrent wavefronts Longitudinal Pulses and Waves	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85 3B20.00	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826 UMN, 3B10.85 PIRA 1000	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves solitons in a wave tank non-recurrent wavefronts	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826 UMN, 3B10.85	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves solitons in a wave tank non-recurrent wavefronts Longitudinal Pulses and Waves	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85 3B20.00	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826 UMN, 3B10.85 PIRA 1000	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves solitons in a wave tank non-recurrent wavefronts Longitudinal Pulses and Waves the wave - longitudinal	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85 3B20.00 3B20.05	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis. See Mechanical Universe #18 ch 3-5, film loop Ealing #217.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826 UMN, 3B10.85 PIRA 1000	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves solitons in a wave tank non-recurrent wavefronts Longitudinal Pulses and Waves the wave - longitudinal	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85 3B20.00 3B20.05	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis. See Mechanical Universe #18 ch 3-5, film loop Ealing #217.
TPT 28(5),337 Sut, S-38 PIRA 1000 AJP 59(2),186 AJP 69(7), 778 Disc 08-25 AJP 52(9),826 UMN, 3B10.85 PIRA 1000 UMN, 3B20.05	traveling wave on a scope pendulum waves pendulum waves uncoupled pendulum waves pendulum waves solitons in a wave tank non-recurrent wavefronts Longitudinal Pulses and Waves the wave - longitudinal the wave - longitudinal	3B10.65 3B10.70 3B10.75 3B10.75 3B10.75 3B10.75 3B10.80 3B10.85 3B20.00 3B20.05	 Water waves in a long trough to show wave pulses and sinusoidal waves. Use a mass on a spring to oscillate in and out of the water at one end to generate the waves. Show a traveling wave near 60 Hz on a line triggered scope and switch to internal triggering to stop the wave, then hold a slit in front of the traveling wave. A row of rods with balls on the ends are hung from pivots that can swing either in the plane of the row or perpendicular to it. Adjustable collars permit varied coupling. Read it. A set of pendula, started in phase, exhibit a sequence of traveling waves, standing waves, and random motion. Each in the set of successively shorter pendula executes one additional oscillation in the same time interval. The cycling of the pendulum wave patterns arise from aliasing. The apparatus from AJP 59(2),186. A 5.5 m wave tank is described along with analysis. See Mechanical Universe #18 ch 3-5, film loop Ealing #217.

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
F&A, Sa-12 Mei, 18-3.4 Sut, S-39	hanging Slinky hanging Slinky hanging Slinky	3B20.10 3B20.10 3B20.10	Compression pulses are sent along a har Time a longitudinal pulse and compare to A long helical spring suspended every fer	calculated. ALSO normal mode.
Disc 09-15	longitudinal Slinky waves	3B20.10	Directions for making the spring. Show longitudinal waves on a bifilar susp fifth coil.	ended Slinky with paper flags every
AJP 57(10),949	wave cutoff with a hanging Slinky	3B20.15	Waves do not propagate below a critical to by short strings.	frequency if the Slinky is supported
PIRA 1000 F&A, Sa-13	longitudinal wave on air track longitudinal wave on the air track	3B20.20 3B20.20	A pulse is sent down a set of gliders coup	oled with springs on the air track.
AJP 33(4),269	traveling & standing waves/air track	3B20.21	Complete discussion of traveling and star critical point being the special mass and o	
AJP 50(6),569	air tube magnetic waves	3B20.25	glider in the traveling case. An air tube support magnetically coupled longitudinal waves. Replacing half the be a different medium.	
PIRA 1000	longitudinal wave model (PASCO)	3B20.30		
UMN, 3B20.30	springy snow fence	3B20.30	The Pasco longitudinal wave machine ha and coupled with springs.	s vertical rods pivoted at the center
Disc 09-14	longitudinal wave model	3B20.30	The Pasco device.	
PIRA 1000 UMN, 3B20.35	longitudinal wave machine longitudinal wave machine	3B20.35 3B20.35		
Sut, S-40	ball and spring waves	3B20.33	A series of croquet balls are hung from be with coil springs. Balls of different mass of	
Hil, S-2d	hanging magnets	3B20.45	About twenty magnets on bifilar suspensi waves.	
Sut, S-41	hear the reflection	3B20.50	Stretch a stiff helical spring across the roas a longitudinal pulse strikes.	om to a sounding board and listen
PIRA 1000	speed of particles vs. waves	3B20.60	C	
UMN, 3B20.60	speed of particles vs. waves	3B20.60	Same as Sa-11.	
F&A, Sa-11	speed of particles, waves	3B20.60	A line of sticks with small gaps is pushed	from one end.
PIRA 1000	Crova's disc	3B20.70		
F&A, Sa-15	Crova's disc	3B20.70	Non-concentric circles ruled into a Plexig when projected through a slit.	las disc appear to be compressions
Hil, S-7c.2	Crova's Disc	3B20.70	A projection Crova's disc.	
PIRA 200	Standing Waves Melde's vibrating string	3B22.00 3B22.10	Drive one end of a string over a pulley to	a mass with variable frequency
	Melde's	3B22.10	SHM	a mass with variable frequency
UMN, 3B22.10 F&A, Sa-9			A jigsaw drives a rope at variable speed. A DC motor is driven at variable speeds t	a concrete standing wayse on an
·	Melde's		attached rope.	
Mei, 18-7.1	Melde's Melde's		A 3 m rubber tube with a variable speed of A string upder topping in driven to show a	•
Mei, 18-5.1 Sut, S-35	Melde's	3B22.10 3B22.10	0	•
D&R, W-120	Melde's vibrating string	3B22.10	standing waves. Drive a string with an electromagnetic vib a pulley and produce different standing w	6
D&R, W-125	Melde's vibrating string variation	3B22.10	Substitute the string for a Melde's appara	tus with a tapered fishing leader.
D&R, W-122	Melde's - DC motor on a string	3B22.10	Decreasing diameter decreases node to a A small unbalanced DC motor and batter	y are attached to the end of a string
			and suspended vertically. Varying the stri standing wave patterns and amplitude ch	anges.
D&R, W-150	Melde's - standing waves in a hanging chain or spring	3B22.10	Standing waves can be produced in a har a node at the upper end and an antinode it does not matter if the loops in the chain	at the lower or free end. Note that
Bil&Mai, p 210	Melde's vibrating string	3B22.10	Drive a string with a variable speed hand over a ring stand and produce different st	•
Disc 09-28	rubber tube standing waves	3B22.10	tension with a set of masses. A long rubber tube driven by a variable sp	peed motor
AJP 43(10),926	Melde's driver	3B22.10 3B22.11	Bend the clapper away from the magnet	
AJP 33(10),856	Melde's driver	3B22.11	Use a dc to ac vibrator-converter for gene drive the string.	

July 2015

Oscillations and Waves

201101101101101	. 2.6.109.4.6.1.9	•	
AJP 33(4),340 AJP 50(10),910	driving mechanism for Melde's speaker driven string	3B22.11 3B22.11	Couple a loudspeaker cone to a string for a variable driver. Use two drivers to
AJP 50(12),1170	Melde's driver for overhead	3B22.11	show beats. A quiet electromagnetically driven string driver suitable for use on the overhead projector.
AJP 36(1),63	Melde's with fluorescent light	3B22.11	
	-		0
Mei, 18-7.6	hair cutter driver	3B22.11	A hair cutter powered with a variac is modified to drive a string.
Hil, S-2b	Melde's	3B22.11	A Melde's driver. Reference: AJP 20(5),310.
F&A, Sa-10	Melde's - tuning fork	3B22.12	A tuning fork drives a string into resonances with varied tension.
Sut, S-36	Melde's - tuning fork	3B22.12	Vary the tension of yarn driven by an electrically driven tuning fork.
Hil, S-2c	tuning fork Melde's	3B22.12	An electrically driven tuning fork sets up standing transverse waves in a string.
Mei, 18-7.5	piano wire	3B22.13	A motor driven, variable frequency oscillator gives transverse impulses to a stretched piano wire.
Mei, 18-5.5	electromagnetically excited wire	3B22.14	An electromagnet is placed at the center of a stretched wire and connected to a signal generator to produce several modes of oscillations.
Mei, 18-7.4	AC driven wire	3B22.14	The tension is changed on a wire carrying AC in the field of a magnet and the fundamental and various harmonics are shown.
Sut, S-37	wire standing waves	3B22.14	Use iron wire and an electromagnet or AC current and a magnet to generate standing waves in wire.
D&R, W-270	wire standing waves	3B22.14	Use iron wire, AC current supplied by a function generator, and a magnet to
Dail, W 270	wire standing waves	5022.14	produce standing waves. Impedance matching may be provided by a speaker transformer.
PIRA 1000	three tensions standing waves	3B22.15	
Disc 09-27	three tensions standing waves	3B22.15	Three strings driven by the same driver have weights of 0.9:2:8 to produce
	Ŭ		the first, second, and third harmonics.
AJP 43(12),1112	phase changes in Melde's	3B22.16	Show two positions of max amplitude, one red and one blue, with fluorescent lighting and a vibrator synchronous to the lamp flutter.
Hil, S-2e.1	multiple Melde's	3B22.17	The same motor drives two horizontal strings and one vertical string of equal length. All strings are in resonance.
Mei, 18-5.4	AC heated stretched nichrome wire	3B22.18	Standing waves are produced by stretching nichrome wire and heating with AC.
D&R, W-105	wire standing waves	3B22.18	Run AC through a stretched iron wire. Add magnet at various locations to make desired standing waves. Turn up AC until nodes glow red.
Mei, 18-5.3	air driven rubber tube	3B22.21	Standing waves are produced in a stretched rubber tube by a jet of air.
Sut, S-33	nice wave machine	3B22.22	A weighted rubber tube is hung horizontally from the ends of short pivoted and counterweighted bars. Friction adjustments at the pivots allow any amount of energy to be absorbed. When driven from one end, many wave properties may be shown.
Mei, 18-5.11	stroboscopic projection with wire	3B22.25	Waves in a wire are stroboscopically projected.
Mei, 18-5.10	projecting a standing wave on a wire	3B22.25	A rotating mirror arrangement projects the shape of a standing wave on a wire.
PIRA 500	Shive /Bell Labs standing waves	3B22.30	
UMN, 3B22.30	Bell Labs standing waves	3B22.30	Excite the Bell Labs machine at various rates to obtain standing waves with
			one, two, and three nodes.
Disc 09-26	standing waves	3B22.30	Drive the Shive wave machine by hand to produce standing waves.
PIRA 1000	vertical vibrating bar	3B22.40	
AJP 48(9),786	vertical vibrating bar	3B22.40	Vibrate a yardstick or meter stick by hand through the fundamental and first overtone. Due to the rule, the position of the node can be measured easily.
Mei, 18-7.3	transverse waves in a rod	3B22.40	Hold a long rod at the center or at an end and vibrate it at the natural frequency with the other hand. ALSO - chalk squeak and breaking.
Ehrlich 1, p. 138	transverse waves in a rod	3B22.40	Excite the fundamental transverse standing wave in a rod with a karate chop to the middle.
Sut, S-135	vertical steel bar Melde's	3B22.41	A steel bar is clamped vertically and driven mechanically through the first three harmonics.
Ehrlich 1, p. 138	horizontal vibrating rod	3B22.41	A rod is clamped horizontally. Higher harmonics are produces with a mechanical vibrator.
Mei, 18-5.9	free boundary hanging tube	3B22.45	A support designed to excite a hanging tube while maintaining free boundary conditions.
PIRA 1000	Slinky standing waves	3B22.50	
UMN, 3B22.50	Slinky standing waves	3B22.50	
Disc 09-25	Slinky standing waves	3B22.50	Drive a hanging Slinky by hand to produce standing waves.
AJP 55(7),666	hanging spring standing waves	3B22.51	A solenoid drives a magnet attached to a hanging spring.

July 2015

Demonstration	Bibliography	•	
Hil, S-2e.2 Mei, 18-5.2	hanging Slinky standing waves driven jolly balance spring waves	3B22.51 3B22.52	A motor oscillator drives a hanging Slinky. A tuning fork drives a jolly balance spring to produce standing longitudinal waves. A lantern projector with a rotating disk slows the motion stroboscopically.
PIRA 1000	longitudinal standing waves	3B22.60	
Disc 09-24	longitudinal standing waves	3B22.60	Excite the Pasco longitudinal waves machine to get standing waves.
			• • •
Mei, 18-5.8	magnetostrictive standing waves	3B22.65	A feedback circuit to a coil around a nickel rod drives magnetostrictive
	Charles and the Course	0000 70	standing waves indicated by a ball bouncing at one end.
PIRA 1000	soap film oscillations	3B22.70	
Mei, 18-5.7	soap film standing waves	3B22.70	Large wire frames dipped in soap film are manipulated by hand to produce
Ehrlich 1, p. 142	soap film standing waves	3B22.70	standing waves. Nice pictures. Immerse a large frame in soap bubble solution. Shake the frame to create
			large amplitude standing waves.
Sut, S-105	standing waves	3B22.75	Use a sensitive flame to detect standing waves from a loudspeaker between
TDT 27(4) 220	standing microwayaa an tha	2022.00	two boards.
TPT, 37(4), 228	standing microwaves on the	3B22.80	Using a microwave/overhead set-up, quantitatively illustrate standing waves
	overhead projector	0000.00	to a large lecture.
PIRA 1000	crank slide	3B22.90	
UMN, 3B22.90	crank slide	3B22.90	Same as Sa-8.
F&A, Sa-8	traveling and standing wave models	3B22.90	A projection device that gives the appearance of waves traveling in opposite directions and the sum of the waves.
Sut, S-25	crank wave model	3B22.90	Wire helixes turned about their axes in a lantern projector appear as waves
			traveling in opposite directions. An additional bent wire shows the resulting standing wave.
D&R, W-045, W-	crank wave model	3B22.90	Wire helixes made from a Slinky and turned about their axes on the
115			overhead show traveling waves.
Ehrlich 1, p. 129	traveling and standing wave models	3B22.90	A standing longitudinal wave is simulated by two cylinders made from transparencies.
AJP 44(3),284	analog computer simulation	3B22.99	An analog computer used with a dual trace storage scope to demonstrate traveling and standing waves.
PIRA 500	Impedance and Dispersion impedance matching - Shive model	3B25.00 3B25.10	
UMN, 3B25.10	impedance matching - Bell model	3B25.10	Two sections of a horizontal torsion machine with different lengths are joined abruptly for unmatched coupling and with a section of gradually lengthening
F&A, Sa-7	wave reflection at a discontinuity	3B25.10	rods for matched coupling. Two Bell Labs torsion machines with different length rods are hooked
Dia 00 40	·······	2025 40	together.
Disc 09-19	wave coupling	3B25.10	Shive wave machines with long and short rods are coupled abruptly or with a tapered section.
Sut, S-24	impedance mismatching in rope	3B25.15	Pulses are sent down a cord with part of its length half the diameter of the other part.
PIRA 1000	reflection - Shive model	3B25.20	
UMN, 3B25.20	reflection - Bell labs	3B25.20	
Disc 09-17	reflection of waves	3B25.20	A pulse sent down a Shive wave machine reflects from either a fixed or free
		0220.20	end.
PIRA 1000	spring wave reflection	3B25.25	
Disc 09-18	spring wave reflection	3B25.25	Reflections from a long horizontal brass spring with fixed and free ends.
PIRA 1000		3B25.25 3B25.26	Reflections from a long fionzonial brass spring with fixed and free ends.
	fixed and free rope reflection		The ensure to a beautiful a larger lungt on the it to a closer
UMN, 3B25.26	fixed and free rope reflection	3B25.26	Tie a rope to a bar with a loose knot or tie it to a clamp.
AJP, 65(4), 310-	transverse standing waves in a	3B25.26	A nice demonstration of standing waves with free ends using a long soft
313	string with free ends		spring, and the Pasco mechanical wave driver.
PIRA 1000	effect of bell	3B25.30	
PIRA 1000	acoustic coupling with speaker	3B25.35	
Disc 10-17	acoustic coupling	3B25.35	Sound a 2" loudspeaker alone and with an exponential horn.
PIRA 1000	soundboard	3B25.40	
PIRA 1000	dispersion in a plucked wire	3B25.50	
Mei, 18-3.5	dispersion in a plucked wire	3B25.50	A crystal phonograph cartridge attached to one end of a long stretched wire will pick up the reflected waves when plucked.
AJP 55(2), 130	Slinky whistlers	3B25.51	Audible whistlers from a Slinky.
AJP 55(10), 952	Slinky whistlers	3B25.51	A correction to AJP 55(2), 130.
. ,	•		
AJP 58(10),916	Slinky-whistler dispersion	3B25.51	An analysis of and directions for performing the Slinky-whistler dispersion.
PIRA 1000	space phone (spring horn toy)	3B25.55	
LINANI ODOC	the second se	0005	
UMN, 3B25.55	space phone	3B25.55	

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
TPT 27(3), 201	whistlers	3B25.55	Producing whistlers in a stretched sp	ring that is tapped with a pencil
Sut, S-54	dispersion	3B25.55	•	its sound slowly. Speak into a sound box
AJP 36(11),1022	echoes in a pipe	3B25.62	A 10" dia 85' tube yields five clearly c	liscernible echoes.
AJP 38(3),378	chirped handclaps	3B25.65	Clap your hands while standing next	to a corrugated wall.
TPT 21(9), 605	whistlers/chirps	3B25.65	How the whistler is produces by high frequency sound arriving before the low frequencies.	
AJP 59(2),175	racquetball court whistlers	3B25.65	Whistlers rise in frequency in the race	
AJP 41(7),857	chirp radar	3B25.66	Modify a simple microwave Doppler s	shift apparatus to study chirp concepts.
AJP 59(11),1050	dechirping Slinky whistlers	3B25.66	Record a single whistler on the Mac, phone, and hear a "ch".	play it backwards into the whistler-
AJP 59(2),181	comment on "culvert whistlers"	3B25.67	A comment clarifies the relationship to ionospheric whistlers.	petween culvert whistlers and
AJP 56(8),752	culvert whistlers revisited	3B25.67	An analysis of "echo tube" corridor de ionospheric whistlers, tweeks and chi	
AJP 39(6),610	culvert whistlers	3B25.67	Long article on culvert whistlers.	
AJP 68(6), 531	culvert whistlers	3B25.67	Culvert whistlers are analyzed with be	oth wave and geometrical ray models.
AJP 48(8),639	shear, Lamb, and Rayleigh waves	3B25.80	A panametrics 5022 P/R pulser/recei a water bath directed at solid blocks i traces of different waves.	ver driving a piezoelectric transducer in is used with an oscilloscope to show
	Compound Waves	3B27.00		
PIRA 1000	Slinky and soda cans	3B27.10		
UMN, 3B27.10	Slinky and soda cans	3B27.10	Persons at each end of a stretched S the pulses kicks one soda can out fro Slinky. Also cancel opposite pulses.	linky generate a pulse. The addition of om a line of cans placed along the
PIRA 1000	wave superposition - Shive model	3B27.15		
Disc 09-16	wave superposition	3B27.15	Start positive pulses from each end c	f a Shive wave machine.
PIRA 1000	adding waves apparatus	3B27.20		
Mei, 18-8.5	adding waves apparatus	3B27.20	•	esenting two sine waves to be combined
TPT 28(8),568	harmonic sliders	3B27.21		slid under a set of vertical wood bars
Mei, 18-8.7	adding waves	3B27.21	cut to various lengths to forming a dif A machine with pins cut to form a sin sine wave. Picture. Construction deta	e wave riding on a plate machined to a
Sut, S-28	wave addition model	3B27.21	Stack several sets of vertical rods that resultant.	
Mei, 18-8.14	carousel waves	3B27.22	630 knitting needles are mounted on	a bicycle wheel riding on a second e cam. Pictures. Construction details in
Mei, 18-8.6	wood block interference	3B27.23		o length to form a sine wave. A template
Wei, 10 0.0		5621.25	in the shape of another wave is push	•
PIRA 1000	double pendulum beat drawer	3B27.30		
F&A, Si-6	beat pendula	3B27.30	Two physical pendula with slightly dif and the sum is shown by reflecting a	ferent periods oscillate in parallel planes laser beam off mounted mirrors.
Sut, S-42	sand pendulum compound wave	3B27.30	A compound sand pendulum with bot onto an endless belt.	th oscillations in the same plane dumps
Mei, 18-4.1	beat pendula	3B27.31	Three mirrors are mounted on two per Two show the motion of each pendul	
Mei, 18-4.2	recording beat pendula	3B27.32	Pictures, Diagram. Construction deta Inductive pickup of the position of two	
Mei, 18-4.3	photo of beat pendula	3B27.33	frequencies. Construction details. Lenses on beat pendula focus spots	of light on moving photographic paper.
AJP 35(11),1043	turntable oscillators	3B27.35	A phono turntable drives a horizontal demonstrate beats and Lissajous figu	
Sut, S-106	beats	3B27.40		ightly different tuning forks to a rotating
Mei, 33-2.8	beat lights	3B27.45		dded to line frequency through a step-up
	Wave Properties of Sound	3B30.00		

July 2015

Oscillations and Waves

Demonstration	Bibliography	JL	aly 2015 Oscillations and Waves
AJP 38(1),110	ultrasonic wave phenomena	3B30.01	Use 40Khz transducers to show standing waves, spherical propagation, angular distribution, two source interference, etc. by observing the output on an oscilloscope.
AJP 52(9),854	phase of a reflected acoustic wave	3B30.03	Note: Physics textbooks incorrectly state that a sound wave reflected at a rigid boundary is 180 degrees out of phase with the incident wave.
PIRA 500	speed of sound by phase difference	3B30.10	
UMN, 3B30.10	speed of sound by phase difference	3B30.10	A function generator drives a speaker. A dual trace oscilloscope displays both the generator output and a microphone signal as the microphone is moved on the lecture bench.
TPT 3(4),170	speed of sound by phase difference	3B30.10	An electronic switch is used to show both speaker and microphone traces on a single sweep scope.
F&A, Sh-1	wavelength of sound by phase diff.	3B30.10	A microphone is moved away from a speaker while an oscilloscope shows the generated and detected sine waves.
Mei, 19-2.1	velocity of sound by phase shift	3B30.10	Measure the speed of sound by the phase shift of a trace on the oscilloscope as the source is moved back and forth.
D&R, W-080	speed of sound by phase difference	3B30.10	A function generator drives a speaker. An oscilloscope displays both the generator output and microphone signal as the speaker is moved along the lecture bench.
Sprott, 3.2	speed of sound by phase difference	3B30.10	The speed with which sound travels through the air is illustrated with a function generator, microphone, and an oscilloscope.
TPT 2(8),390	speed of sound by phase difference	3B30.11	A microphone is moved back and forth in front of a speaker and the Lissajous figure from the generator and microphone is examined on an oscilloscope.
TPT 3(2),79	speed of sound by phase difference	3B30.11	More comments on the TPT 2,390 (1964) article. Additional references.
AJP 52(5),465	sound wave visualization	3B30.12	A probe detects the phase difference between the sampling microphone and the speaker and lights either a red or green LED.
AJP, 50 (11), 1025	speed of sound and gravity	3B30.13	The effect of gravity on the speed of sound in a gas is shown to decrease linearly with altitude.
PIRA 500	direct speed of sound	3B30.20	
UMN, 3B30.20	direct speed of sound	3B30.20	
AJP 37(2),223	direct speed of sound	3B30.20	Striking a gong with a metal rod triggers an oscilloscope and a microphone picks up the sound.
Hil, S-3g	direct speed of sound	3B30.20	Striking a gong with a metal rod triggers an oscilloscope and a microphone picks up the sound. Reference: AJP 37(2),223.
AJP 31(1),xiv	direct speed of sound	3B30.21	Spark a 10,000 V .02 microF capacitor and pick up the sound with a piezoelectric transducer.
AJP 57(10),920	time of flight	3B30.22	A circuit triggers an oscilloscope and coincidentally produces bursts of sound from a speaker.
AJP 49(6),595	time of flight - ultrasonic ranger	3B30.23	Polaroid Corporation's ultrasonic ranging system is used as the basis of a time of flight determination of the speed of sound.
Ehrlich 2, p. 138	speed of sound by echo	3B30.25	A metronome, hammer, and a metal pipe are used to find the speed of sound using the echo from a building about 80 meters away.
AJP 48(6),498	speed of sound by clapping	3B30.25	Use a clap,echo,rest,rest sequence with a second student as a director.
PIRA 200 - Old	bell in a vacuum	3B30.30	Pump air from a bell jar as a battery powered bell rings inside.
UMN, 3B30.30	bell in a vacuum	3B30.30	Evacuate a bell jar while a ringing bell is suspended inside.
F&A, Sh-2	bell in a vacuum	3B30.30	A doorbell is placed in a bell jar which is then evacuated.
Sut, S-53	bell jar	3B30.30	You can hear a bell in a closed jar while air is present.
Sut, S-52	bell in a jar	3B30.30	Ring a bell in an evacuated bell jar. Other methods and hints.
Hil, S-3a	bell in a vacuum	3B30.30	Air is pumped from a bell jar as a battery powered bell rings inside.
D&R, W-015	bell in a vacuum	3B30.30	Pump air from a bell jar as a battery powered bell rings inside.
Sprott, 3.4	bell in a vacuum	3B30.30	An electric bell in a jar makes a sound that decreases in intensity as the air is evacuated from the jar.
Bil&Mai, p 207	bell in a vacuum	3B30.30	A ringing bell is placed into a container filled with air, without air, and then filled with other gases.
Disc 10-09 PIRA 1000	siren in vacuum speaker and candle	3B30.30 3B30.40	Place an electronic siren with a LED in series in a bell jar.
UMN, 3B30.40	speaker and candle	3B30.40	Place a candle in front of a large speaker and make the candle flicker with large amplitude low frequency oscillations.
PIRA 1000	bubbles and bugle	3B30.45	, ,
UMN, 3B30.45	bubbles and bugle	3B30.45	Dip a toy bugle in soap solution and blow. The size of the bubble changes imperceptibly.
Sprott, 3.7	bubbles and trumpet - clarinet - saxaphone	3B30.45	Dip the bell of a wind or brass instrument in soap solution. You can play the instrument without popping the bubble showing that sound is a wave that does not result in a net motion of the air.

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
Bil&Mai, p 206	bubbles and trumpet	3B30.45	Dip the bell of a trumpet into a shallow part trumpet and show that the size of the bubl	
PIRA 1000 UMN, 3B30.50 Sut, S-86 Sprott, 3.3	helium talking helium talk medium and speed of sound helium and sulfur hexafluoride	3B30.50 3B30.50 3B30.50 3B30.50	Sing, talk or laugh while breathing helium. Fill your lungs with hydrogen or helium an Breathing helium and sulfur hexafluoride of	d speak or sing.
Bil&Mai, p 207	talking helium talking	3B30.50	speed of sound with the density of a gas. Fill your lungs with helium from a helium fi sing. Sulfur hexafluoride gas may also be	
Disc 10-14 Sut, S-85	sound in helium medium and speed of sound	3B30.50 3B30.51	Blow an organ pipe with air and helium, th Two organ pipes are adjusted to unison, th long tube is attached to a whistle and whe	en talk with helium. hen one is filled with hydrogen. A
TPT 14(8), 510 TPT 15(8), 453 AJP 39(3),340	speed of sound in water speed of sound in water speed of sound in liquid	3B30.52 3B30.52 3B30.52	A classic experiment that measured the sp More on the classic experiment in TPT 14 Shop drawings and circuit diagram for a u measuring the velocity of sound in liquids.	(8), 510 Itrasonic echo pulse chamber for
TPT 28(2),125	medium and speed of sound with PZT	3B30.52	Use a piezoelectric element as a detector in solids and liquids.	for measuring the speed of sound
AJP 41(3),433	speed of sound in liquid	3B30.53	An ultrasonic transducer is pulsed in a liquereflected pulses are observed on an oscille	•
AJP 45(6),588	modified circuit	3B30.53	Add a simple circuit to chop the initial puls amplifier overload.	•
PIRA 1000	sound velocity at different temperatures	3B30.55		
Sut, S-83	temp and speed of sound	3B30.55	Two organ pipes are blown simultaneously by an internal coil.	y and then the air in one is heated
Sut, S-84	temp and speed of sound	3B30.55	Two whistles of the same pitch are blown match.	and one is then heated with a
Disc 10-13	sound velocity of different temperat	3B30.55	Blow two identical organ pipes from the sa to one of the pipes with a Bunsen burner.	ame source, then heat the air going
Mei, 19-2.4	velocity of sound with temperature	3B30.56	Attach a whistle to a coil of copper tubing	placed in liquid nitrogen.
TPT, 37(1), 53	the speed of sound in air as a function of temperature	3B30.57	The speed of sound in air at room tempera speed of sound in the air of a walk-in freez	•
PIRA 1000 UMN, 3B30.60	speed of sound in rod and air speed of sound in rod and air	3B30.60 3B30.60	Hit a twelve foot aluminum rod on one end oscilloscope with a microphone at the han from microphones at the end of the rod ar	nmer end and display the signal
Mei, 19-2.3	velocity of sound in a rod	3B30.61	A timer is triggered by metal balls bouncin meter apart on a brass rod when one end	ng off brass blocks mounted one
D&R, W-365	velocity of sound in a rod	3B30.61	Excite fundamental in a rod, then compute length of the rod. Use function generator used to determine speed of sound and Yo	to determine frequency. Can be
AJP 78 (12), 1429	velocity of sound in a rod	3B30.61	Tap on one end of a rod with a microphon sound analysis software to obtain the reso speed of sound, Young's modulus, and the obtained.	onance spectrum of the bar. The
AJP 38(9),1151	direct speed of sound in a rod	3B30.62	A bell clapper hits one end of a rod and tri phonograph needle and crystal pickup on that is displayed on the scope.	
PIRA 1000 UMN, 3B30.65	music box music box	3B30.65 3B30.65	Sound is transmitted through a long wood	rod from a music box in the
			basement to a sounding box in the classro	oom.
F&A, Sf-3	transmission of sound through wood	3B30.65	A long 1"x1" wood bar is placed on top of through a hole in the floor, to a sounding b	pox in the classroom.
Sut, S-87	medium and speed of sound	3B30.66	Stand near a railroad track and listen as a 200' away.	hammer is struck against the rail
PIRA 500	Phase and Group Velocity group velocity on scope	3B33.00 3B33.10		
UMN, 3B33.10	group velocity on scope	3B33.10	Two sine waves of almost equal frequenci a oscilloscope.	ies and their sum are displayed on

Demonstration	Bibliography	Jı	uly 2015	Oscillations and Waves
AJP 31(12),xiii	wave and group velocity on scope	3B33.10	Directions for showing wave and group ve	locities on the oscilloscope.
AJP 46(5),579	phase and group velocity	3B33.10	This article spells out the subtleties for ge direction.	tting both traces to move in one
F&A, SI-2 Mei, 38-6.1	phase and group velocity group and phase velocity	3B33.10 3B33.10	An oscilloscope shows signals from two o Two sine waves are added and displayed Diagram.	
Mei, 38-6.2	group velocity	3B33.11	Measuring group velocity using two sine v Diagram.	vaves and an oscilloscope.
AJP 41(11),1283	group velocity - gated pulse	3B33.12	An amplifier circuit is given that gates a si wave generator. The resulting packets of to the beat method.	
Hil, S-2k	group and phase vel apple peeler	3B33.18	This group and phase velocity device was	made from an apple peeler.
PIRA 1000	two combs	3B33.20		
AJP 37(8),842	two combs	3B33.20	Superimpose two combs on the overhead velocity.	projector to show phase and group
AJP 38(4),547	two combs	3B33.20	This was published in AJP,21,388 (1953).	
Mei, 18-8.9	two combs	3B33.20	Move two combs across each other on ar phase and group velocity. Picture.	
Mei, 18-8.10	phase and group velocity with bars	3B33.21	Two sheets of bars of ratio 9:10 are super A revolving model works too.	rimposed on the overhead projector.
Mei, 18-8.13	densimeter comb	3B33.22	Two densimeter plates are used in place	of combs. Pictures.
Mei, 18-8.8	phase and group velocity on the overhead projector	3B33.25	A sheet with black bands is pulled across except for slits parallel, perpendicular, and Picture, diagram, construction details in a	d at 45 degrees to the motion.
AJP 54(12),1064	R H Good software	3B33.30	Free Apple II software showing, among of velocity. This is the best Apple II software	her things, group and wave
AJP 54(7),656 AJP 41(10),1203	group velocity software	3B33.31	A short review of group velocity that happ	ens to mention some software.
AJP 41(10),1203	group and phase velocity in a pool	3033.40	Make a large scale demonstration in a fou	intain pool (14 x 25 x 1).
	Reflection and Refraction (Sound)	3B35.00		
PIRA 1000	gas lens	3B35.10		
Mei, 19-8.1	gas lens	3B35.10	Hydrogen and carbon dioxide balloons are lenses. Picture.	e used as diverging and converging
Sut, S-95	refraction lens - CO2	3B35.10	Make an acoustical lens by cementing the cellophane and filling the space between	
AJP 77 (3), 197	gas lens	3B35.10	A demonstration showing that scattering t gas filled balloon used as an acoustic lense	heory is required to understand a
PIRA 1000	refraction prism - CO2	3B35.20		
Sut, S-96	refraction prism - CO2	3B35.20	Direct a beam of sound through a prism of	f CO2.
Sut, S-97	refraction with CO2	3B35.22	Set up a source, reflector, and detector. T incident beam to scatter the sound.	hen pour CO2 into the path of the
PIRA 1000	parabolic reflector and sound source	3B35.30		
Sut, S-93	curved reflectors	3B35.30	Place a watch at the focal point of a mirro class.	r and project the beam around the
F&A, Sg-2	directional transmission	3B35.35	A Galton whistle at the focus of a paraboli by a microphone placed at the focus of a	•
Sut, S-92	curved reflectors	3B35.36	Place a whistle and sensitive flame sever parabolic reflector behind the whistle.	al meters apart, then place a
Sut, S-91	reflection of sound waves	3B35.37	A whistle and detector are placed in a line Precautions may have to be taken to insu waves.	•
Sut, S-94	curved reflectors	3B35.39	Take a field trip a dome to observe the "w	hispering gallery" effect.
Sut, S-90	wave properties of sound	3B35.50	Using a shrill whistle of wavelength from 2 usually shown only with optics can be der	2-8 cm, many properties of waves
PIRA 1000	refraction of water waves	3B35.60		
Disc 09-20	refraction of water waves	3B35.60	Plane waves refract in a tank with deep a	nd shallow sections.
	Transfer of Energy in Waves	3B39.00		
PIRA 1000	water wave model	3B39.10		

Demonstration	n Bibliography	J	uly 2015	Oscillations and Waves
UMN, 3B39.10	water wave model	3B39.10		the side of a box rotate at the same rate with cessive rods. The combined motion simulates
F&A, Sa-4	water wave model showing phase	3B39.10	Balls that rotate vertically on the	e end of rods hooked to horizontal shafts and
Mei, 18-8.15	velocity water wave model	3B39.12	-	in circular motion with constant successive histruction details in appendix, p.644.
Mei, 18-8.12	rotating phasors	3B39.14	Synchronous motors drive a se such that the balls describe a s	t of balls in a circle with phase relationship ine wave.
PIRA 1000	dominoes	3B39.20		
D&R, W-010	dominoes	3B39.20	Dominoes illustrate energy tran	sfer mechanism.
AJP, 78 (7), 721	dominoes	3B39.20	including the effect of friction.	g dominoes is discussed and analyzed,
D&R, W-020	coat hanger on a string	3B39.30	the string over your fingers and	lle of a 3 foot long string. Loop the ends of then place your fingers in your ears. Swing e or other object. A booming sound is heard.
TPT 31(7), 400	coat hanger on a string	3B39.30	Mathematical analysis of the co sounds like Big Ben.	pat hanger on a string and why it produces
TPT 30(4), 239	coat hanger on a string	3B39.30	8	string demonstration to a large classroom
D&R, W-020	cup telephone	3B39.40		through tin cans or plastic cups and secured taut and talk into one cup while someone and.
Mei, 18-8.11	multiple wave types	3B39.50		verse, longitudinal, and water wave motion.
Hil, S-2j	seismograph Doppler Effect	3B39.60 3B40.00	The output from seismographs	
PIRA 200	Doppler buzzer	3B40.10	Swing a battery powered buzze	er on a string around in a horizontal circle.
UMN, 3B40.10	Doppler buzzer	3B40.10		string is swung around in a horizontal circle.
AJP 29(10),713	Doppler buzzer	3B40.10	Mount a buzzer and a battery o about the center of mass.	n opposite ends of a meter stick and rotate
AJP 41(5),727	Doppler buzzer	3B40.10	Attach a Sonalert to a 2 m strin interference and radiation resis	g and the shift is almost a minor third. MORE: tance.
Bil&Mai, p 222	Doppler buzzer	3B40.10	A battery powered buzzer is pla horizontal circle.	aced inside a Nerf ball on a string. Swing in a
F&A, Si-3	Doppler speaker on turntable	3B40.10		ives a speaker mounted on a 3' turntable.
Ehrlich 1, p. 143	Doppler buzzer	3B40.10		ring is whirled in a horizontal circle.
Disc 10-21	Doppler effect	3B40.10	through slip rings.	ng frame and attach to an audio oscillator
AJP 30(4),307	Doppler speaker pendulum	3B40.12		n audio oscillator suspended as a pendulum.
Mei, 19-6.6	intermittent Doppler speaker	3B40.13	speaker is moving towards or a	on and off so sound is emitted only when the way from the observer and arranged so the observer only. Reference: AJP 21(5)407.
PIRA 1000	Doppler whistle	3B40.15		
UMN, 3B40.15	Doppler whistle	3B40.15	A whistle on the end of a tube i circle.	s blown while swung around in a horizontal
F&A, Si-1	Doppler whistle	3B40.15	A small whistle at the end of a being blown.	rubber tube is twirled around the head while
Mei, 19-6.2	Doppler whistle	3B40.15	A compressed air whistle on the head.	e end of a rubber tube is twirled around the
Mei, 19-6.1	Doppler rocket	3B40.16	A whistling rocket mounted on	a rod is rotated in a three foot radius circle.
Sut, S-150	Doppler effect	3B40.18	-	eed, rotating whistle, and rotating speaker all
D&R, W-380	Doppler effect	3B40.18	A whirled tuning fork, rotating re Doppler effect.	eed, and moving aluminum rod, all show the
PIRA 500	Doppler spear	3B40.20		
UMN, 3B40.20	Doppler spear	3B40.20	Stroke a twelve foot aluminum and thrust it toward the class.	rod until it sings, then hold it at the midpoint
Ehrlich 1, p. 144	Doppler spear	3B40.20	Excite a "singing rod". Move th	e rod toward or away from the listener.
PIRA 1000	Doppler reed	3B40.25		-
UMN, 3B40.25	Doppler reed	3B40.25	A reed is turned at the end of a	motorized shaft.

Demonstration	Bibliography	Jı	uly 2015	Oscillations and Waves
F&A, Si-2	Doppler reed	3B40.25	A reed on an arm is rotated by a motor.	
Hil, S-6b	Doppler reed	3B40.25	•	m with a road at the and
Sprott, 3.5	Doppler reed	3B40.25 3B40.25	An adjustable speed motor rotates an arr A reed mounted on the end of a rotating wobbles up and down as the arm rotates	arm produces a tone whose pitch
PIRA 1000	Doppler beats	3B40.30		•
Mei, 19-6.3	Doppler beats	3B40.30	A naked tuning fork is moved back and for	•
Mei, 19-6.5	Doppler beats	3B40.30	is moved back and forth behind a fork. R The complete discussion of Doppler bear speakers of equal or unequal frequencies	ts: swinging tuning forks and
AJP 39(2),229	Doppler radio on air track	3B40.32	Modulate an rf generator and tune two tra Mount one on an air track and listen to th	ansistor radios to the frequency.
AJP 69(12), 1231	Doppler speaker on air track	3B40.32	Direct acquisition of Doppler shifted sour using a computer sound card.	•
AJP 35(6),530	moving detector Doppler	3B40.33	A moving microphone detector is tuned t loudspeaker.	o the Doppler shifted frequency of a
Mei, 19-6.4	Doppler speakers	3B40.35	The difference tone between a stationary amplified through a third speaker. Diagra	
Sut, S-151	Doppler effect analog	3B40.50	A student drops paper riders on an endle instructor picks them up while walking to	• • •
	Shock Waves	3B45.00		
Ehrlich 2, p. 139	Doppler effect - shock waves	3B45.05	Shock waves can be shown by equally s dowel being dunked into a long water tar dowel while dunking determines whether Doppler pattern.	k. The angle at which you hold the
PIRA 200 - Old	ripple tank film loops	3B45.10	A 3:45 film loop shows Doppler effect an	d shock waves.
UMN, 3B45.10	ripple tank film loop - shock waves	3B45.10	The film loop lasts 3:45.	
AJP 48(6),498	continuous ripple-tank Doppler	3B45.11	A loudspeaker wave generator is used w water for continuous generation of Doppl portion of the disk of interest is illuminate	er and shock waves. Only the small
Mei, 17-9.4	shock wave in water	3B45.13	A film of water flowing down an incline is waves.	
PIRA 1000 AJP 43(1),101	shock waves in ripple tank ripple tank Doppler and bow shock	3B45.15 3B45.15	Mount a burette on a carriage over a larg	e pan of water.
PIRA 1000	pop the champagne cork	3B45.20		
Mei, 17-9.3	pop the champagne cork	3B45.20	Pop a plastic cork out of a water filled ch on a pine board.	ampagne bottle by hitting the base
Ehrlich 2, p. 141	shock waves - coins	3B45.25	A penny is flicked into a second penny b causing another penny in contact on the created shock wave.	
PIRA 1000	solition tank	3B45.30		
AJP 58(11),1100	nonpropagating hydrodynamic solitons	3B45.31	Theory and apparatus for producing solit discussed.	ons of (0,1) and (0,2) modes are
TPT, 36(8), 498	build your own soliton generator	3B45.32	A soliton is easily produced with a freque a tank of water/chemical solution.	ency-generator driven speaker under
Mei, 17-9.1	water trough tidal bore	3B45.35	Water in a long tank is given a sudden in wave is produced.	npulse with a paddle and a shock
PIRA 1000	tsunami tank	3B45.40	·	
AJP 44(11),1073	tsunamis	3B45.40	A simple sloping tank with ground glass	side for recording the peak profile.
Mei, 17-9.5 TPT 31(6), 376	supersonic jet bull whip and towel snap	3B45.60 3B45.61	Schleirin optics are used to project the flucture audible crack of a bull whip or snapp breaks the sound barrier.	
Mei, 17-9.2	shock waves in argon	3B45.65	An elaborate setup to introduce helium ir	
	Interference and Diffraction	2850.00	cause a yellow glow from the compresse	aiyun.
PIRA 500	Interference and Diffraction	3B50.00		
UMN, 3B50.10	ripple tank - single slit ripple tank - single slit	3B50.10	The film loop lasts 2:20	
DMN, 3850.10 F&A, Sm-4	ripple tank - single slit ripple tank - single slit	3B50.10 3B50.10	The film loop lasts 3:30. Diffraction from a plane wave passing the	rough a single slit on the ripple tank.
Disc 09-21	single slit diffraction of water wave	3B50.10	Ripple tank single slit diffraction with vary	ving slit and wavelength.
Sut, S-144	ripple tank diffraction	3B50.12	Use the ripple tank to show radiation path horn configurations.	terns from different baffle, pipe, and

Demonstratior	n Bibliography	J	uly 2015	Oscillations and Waves
Ehrlich 1, p. 139	ripple tank - standing waves	3B50.13	Standing waves are generated in a ripp	le tank by holding a mechanical
Ehrlich 1, p. 140	ripple tank - standing waves	3B50.13	vibrator against the edge of the tank. Long wavelength standing waves are c tank back and forth in simple harmonic	
Ehrlich 1, p. 141	ripple tank - standing waves	3B50.13	Circular standing waves are created in the middle of the tank at the right frequ	a ripple tank by dunking a pencil in
PIRA 500	ripple tank - two point	3B50.20	ů i	
UMN, 3B50.20	ripple tank - two point	3B50.20	Two point sources show interference. A diffraction.	A plane wave through a slit shows
F&A, Sm-2 Mei, 18-6.3	ripple tank - double source ripple tank - two point	3B50.20 3B50.20	A ripple tank with two point sources in p Waves produced by audio oscillators d	
Ehrlich 1, p. 192	ripple tank	3B50.20	diaphragms. Picture. More. A ripple tank constructed from a clear p clips, and a block of wood. An old com	
AJP, 50 (2), 136	ripple tank - two point	3B50.20	source. Two point sources are used to display or responsible for producing beats.	dynamic interference patterns
PIRA 1000	ripple tank - double slit	3B50.25	····· ································	
F&A, Sm-5	ripple tank - double slit	3B50.25	Interference from a plane wave passing tank.	g through a double slit in the ripple
Disc 09-22	double slit interference of water waves	3B50.25	Ripple tank double slit interference with separation.	n varying wavelength and slit
AJP 34(2),170	mechanical double slit	3B50.28	Lead shot drops from two hoppers and interference pattern.	shows a single distribution with no
PIRA 500	ripple tank - film loops	3B50.30		
UMN, 3B50.30	ripple tank film loop	3B50.30		
PIRA 200	Moire pattern transparencies	3B50.40	A double slit representation of Moire particular ruled transparencies.	atterns from two sheets of semicircular
UMN, 3B50.40	Morie pattern transparencies	3B50.40	Transparencies with identical circular p other with a slight offset.	atterns are placed on top of each
Mei, 35-2.1	Moire pattern	3B50.40	Moire patterns from two sheets of semi double slit representation.	circular ruled transparencies form a
D&R, W-325, O- 420	Moire pattern	3B50.40	A pattern of concentric rings that can b	e copied for use on the overhead.
Bil&Mai, p 348	Moire pattern	3B50.40	Moire patterns from two sheets of semi double slit representation.	circular ruled transparencies form a
Ehrlich 1, p. 186	Moire' pattern transparencies	3B50.40	Superimpose transparencies of circle p diffraction of waves from point sources.	
Ehrlich 1, p. 191	Moire' pattern	3B50.40	Interference effects that can be shown inexpensive commercially available Mo	, 1 0,
Disc 09-23	Moire pattern	3B50.40	Two transparencies of equally spaced of	circles on the overhead.
AJP 32(4),247	Morie pattern - complete treatment	3B50.42	All you ever wanted to know about Mor	ie patterns.
AJP 30(5),381	Moire' pattern	3B50.43	Electronic chassis covers (with holes ki and the pattern changes as your viewin	, , , , , , , , , , , , , , , , , , , ,
Mei, 34-1.24	Moire pattern	3B50.43	Moire patterns with chassis boxes. Pict	ures.
PIRA 1000	double slit transparency	3B50.50		
UMN, 3B50.50	double slit transparency	3B50.50	Two strips of clear acetate with identica points representing two slits to demons interference.	•
Mei, 18-8.2	two ropes	3B50.51	Two ropes mounted on the wall 3' apar sections are stretched and crossed by constructive or destructive interference	the demonstrator to simulate
PIRA 1000	interference model	3B50.55		
AJP 59(9),857	interference model	3B50.55	Painted wave trains on wood lath are a blackboard	ttached to magnets for use on a steel
D&R, W-320	interference model	3B50.55	Corrugated strips with painted troughs destructive interference.	and crests will show constructive and
Sut, S-149	ripple tank scattering	3B50.80	A brass disc is used as an obstacle for show scattering.	various wavelength plane waves to
	Interference and Diffraction of Sound	3B55.00	č	
PIRA 200	two speaker bar	3B55.10	Two speakers driven from a common s long bar.	ource are mounted at the ends of a

Demonstration	n Bibliography	J	uly 2015	Oscillations and Waves
UMN, 3B55.10	speaker bar	3B55.10	Two speakers driven from a common sour long bar. The bar can be moved slightly or	
	large encolver her	2055 10	heads to hear the interference pattern.	malifier
AJP 42(5),413 F&A, SI-3	large speaker bar speaker bar	3B55.10 3B55.10	Use high power speakers and a 50 Watt a Two speakers 2m apart are driven from th	e same oscillator while students
Mei, 19-5.1	speaker bar	3B55.10	move their heads around to hear the interf Two speakers mounted at the ends of a bo	-
Mei, 19-5.2	speaker bar	3B55.10	same high frequency audio signal. The pattern from two speakers 3' apart is i	investigated with a microphone and
Sut, S-102	interference	3B55.10	microammeter. Two speakers fed from the same source a	It the ends of a 12' bar. Project the
		0055.40	pattern into the room and move the bar.	table and an end of the
D&R, W-330 Disc 10-20	two speaker interference	3B55.10 3B55.10	Speakers in phase are mounted on a turn	•
Sut, S-101	two speaker interference interference	3B55.10 3B55.11	Speakers in phase are mounted at the end Investigate the interference pattern from the	
Sul, S-101	Interference	3033.11	megaphones hooked to the same source.	vo rectangular aperture
Ehrlich 1, p. 199	interference	3B55.11	Two source interference demonstrations c placed at the center of a hollow tube.	an be shown with a piezo buzzer
AJP 32(2),xiv	speaker bar, etc.	3B55.12		urces demonstrations: slides
	opouloi bul, ele.	0200.12	ripple tank, speaker bar, microwave, home	
Sut, S-104	interference	3B55.13	Send a parallel beam against a board with with a sensitive flame.	two slits and investigate the result
AJP 44(12),1120	speaker bar room acoustics problems	3B55.14	The effects of reflections from the room su	Irfaces are often underestimated.
AJP 44(4),400	speakers on a bar	3B55.15	Mount twelve 3" diameter speakers on a b	ar with a 25' radius.
PIRA 500	baffle and speaker	3B55.30		
UMN, 3B55.30	baffle and speaker	3B55.30	Hold up a 1" speaker oscillating at 350 Hz speaker.	
D&R, W-335	baffle and speaker	3B55.30	Play a small speaker with a tape player. In of a baffle with speaker cone size hole.	ntensity increases with the addition
Ehrlich 2, p. 171	baffle and speaker	3B55.30	A cassette tapr recorder is connected to a intensity from the speaker increases if a pi placed in front of the speaker.	
Mei, 19-4.10	baffles and resonators	3B55.31	A baffle is held between the forks of a tuni open end facing toward and away from the	•
Sut, S-109	interference of a tuning fork	3B55.31	Hold a tuning fork in the hand with and with	hout a cardboard baffle.
PIRA 200	trombone - interference /	3B55.40	A speaker drives two tubes, one variable,	that come together into a common
	Quinckes' tube		horn.	
UMN, 3B55.40	trombone - interference	3B55.40	A speaker drives two tubes, one variable , horn.	-
F&A, Sg-4	trombone - interference	3B55.40	A horn driver is connected to tubing that sp and is recombined at a horn.	
Mei, 19-5.3	trombone - interference	3B55.40	Two identical trombone slide assemblies a driver and detector. One of the slides is lead	•
Sut, S-103	trombone - interference	3B55.40	difference of one half wavelength. Two "U" tubes , one of them of variable ler	ngth, are both connected to the
TPT 3(6),282	large trombone interference	3B55.41	same source and ear piece. A large trombone interferometer made out	of 1' copper tubing.
AJP 28(1),77	Herschel divided tube	3B55.42	Interference of sound in a double tube, on Plexiglas.	
AJP 34(10),946	acoustical interferometer	3B55.45	A speaker is mounted at one end of telesc microphone is mounted at one end of the i	
Sut, S-99	diffraction	3B55.51	A board with a variable slit is placed in a p is moved about and the slit width is varied	arallel sound beam. The detector
Sut, S-98	diffraction	3B55.51	A whistle and parabolic mirror form a para barrier and move the detector back until it successively smaller barriers until the deter	llel beam. Interrupt the beam with a responds again. Or - use
Ehrlich 1, p. 196	diffraction - carpet tubes	3B55.51	shadow of the barrier. Piezo buzzers are placed in one end of a 4 12 inch diameter carpet tube. Sweep the tappreciable diffraction from the 4 inch tube tube.	tubes across the room and hear
Ehrlich 1, p. 195	diffraction with a fan	3B55.53	A high frequency piezo buzzer is placed in listener behind the fan hears a warbling so	
PIRA 1000	diffraction pattern of a piston	3B55.55		

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
Mei, 19-7.2	diffraction pattern of a piston	3B55.55	•	d replaced with a Lucite disc. The intensity is s the speaker assembly is rotated.
Sut, S-100	diffraction	3B55.55	Attach a megaphone of rectang	gular cross section 3/2 wavelength by tector off to the side is placed so it will
Ehrlich 1, p. 199	diffraction around objects	3B55.58	A 12 inch diameter carpet tube above to below a desk creating	with a piezo buzzer in the end is moved from a noticable drop in sound intensity. Doing quency source shows no appreciable drop in
AJP 54(7),661 PIRA 1000	hearing around a corner diffraction fence	3B55.58 3B55.60	Things aren't simple, seeing ar	nd hearing are different.
F&A, Sg-3	diffraction of sound	3B55.60	The beam from a Galton whistl through a picket fence to a dete	e at the focus of a parabolic mirror is passed ector.
Mei, 19-7.3	diffraction with a wire mesh	3B55.60	Parabolic reflectors are used to	p produce parallel sound waves that are action grating to a movable microphone.
Ehrlich 1, p. 200	diffraction fence	3B55.60	-	tube with equally spaced holes creates an
Mei, 19-7.1	diffraction of coherent and incoherent	3B55.80	Plot the intensity vs. angle of for a single oscillator.	our speakers driven by four oscillators and by
AJP 40(5),697	diffraction by ultrasound in liquid	3B55.91	The physical origin of the "shad wavefronts in liquids.	dow" seen in the visual display of standing
Mei, 19-7.4	ultrasound camera	3B55.92	•	details of a ultrasonic camera for ation and Fraunhofer and Fresnel diffraction.
	Beats	3B60.00	5	
PIRA 200	beat forks	3B60.10	Two tuning forks differing by at	bout 1 Hz are mounted on resonance boxes.
UMN, 3B60.10	beat forks	3B60.10	Two tuning forks on resonance scope can be used to display the	boxes, one adjustable. A microphone and he beat pattern.
Hil, S-5a.1	beat forks	3B60.10	Two tuning forks differ by 1 Hz	but are not mounted on resonance boxes.
D&R, W-355	beat forks	3B60.10	Two tuning forks on resonance	boxes, one adjustable by up to 3 Hz.
Sprott, 3.8	beat forks	3B60.10	Two tuning forks on resonance scope can be used to display the	boxes, one adjustable. A microphone and he beat pattern.
Ehrlich 1, p. 145	beat forks	3B60.10	frequency is produced when th	•
Ehrlich 2, p. 140	beat forks	3B60.10	Listeners can hear beats if you away from sound reflecting wal	hold a vibrating tuning fork while walking II.
Disc 10-18	tuning fork beats	3B60.10	Two tuning forks are on resona slightly different.	ant boxes. Adjust the frequency of one to be
PIRA 1000	beat bars	3B60.11		
F&A, Si-4	beat bars	3B60.11		resonator boxes are detuned by a movable ats and show on an oscilloscope.
Hil, S-4d.2	beat bars	3B60.11	The standard tunable bars on a	a resonance box.
Sprott, 3.8	organ pipe beats	3B60.13	Two organ pipes are slightly de	etuned to produce a beat frequency.
Bil&Mai, p 221	singing rods - beats	3B60.13	-	e midpoint and stroke with rosined fingers. at is 1 cm shorter and listen to the beats.
PIRA 1000	beat whistles	3B60.15		
UMN, 6C30.15	beat whistles	3B60.15	Two air whistles can be adjuste	
F&A, Si-5	beat whistles	3B60.15	Two tunable air whistles are us	
Sut, S-107	beat notes	3B60.15	difference in frequencies is end	d change the frequency of one until the bugh to produce a musical beat note.
Hil, S-5a.2	Knipp singing tubes beats	3B60.16	Two Knipp singing tubes are tu	
Hil, S-5a.3	Galton whistle beats	3B60.17	Two Galton whistles can be ad	
PIRA 200	beats on scope	3B60.20	oscilloscope and audio amp.	d thru an audio interstage transformer to an
UMN, 3B60.20	beats on scope	3B60.20	amplified and listened to and/o	
AJP 29(9),645	beats on scope	3B60.20		rmers is fed into the secondary of an audio n there to both an oscilloscope and an audio
Mei, 19-5.5	beats on scope	3B60.20	An interstage audio transforme oscillators to an oscilloscope a	r and an audio output transformer couple two nd speaker.
D&R, W-315	beats on scope	3B60.20	Two function generators are us can be amplified and listened t	ed to generate a beat pattern or group that o and/or displayed on a scope.
Disc 10-19	beats with speaker and oscilloscope	3B60.20	Two function generators are us scope and amplified to a speak	eed to make beats that are displayed on a ker.

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
TPT, 37(3), 177	a visual and acoustic demonstration of beats and interference	3B60.20	Two function generators, a stereo system show and hear beats at the same time.	n, and an oscilloscope are used to
AJP 43(12),1103	beat oscillator switch	3B60.22	A circuit to switch between inputs or the individual frequencies or the beats to be	•
ref.	beats vs. diff.tone	3B60.30	see 3C55.35	
AJP 30(11),840	reply to beats misconceptions	3B60.31	Beat notes are what the misconceptions frequencies.	are about, beats are just combined
AJP 30(5),386	beats vs. difference tones	3B60.31	Hey, guys, simple "mixture" of frequencie only present when modulation operations	•
AJP 42(7),603	beat demodulation	3B60.38	Two oscillators drive a loudspeaker, swit modulation frequency can be detected.	
PIRA 1000	ripple tank beats	3B60.40		
AJP 31(10),794	ripple tank beats	3B60.40	Two point sources in a ripple tank run at included.	different frequencies. Theory
AJP 50(2),136	ripple tank beats	3B60.40	Beats are demonstrated as a moving inte by using two separate point source gene controls.	
	Coupled Resonators	3B70.00		
PIRA 200 - Old	coupled tuning forks	3B70.10	Two matched tuning forks are mounted or other vibrates too.	on resonance boxes. Hit one and the
Sut, S-115	resonance in forks	3B70.10	Two identical tuning forks on resonance starts vibrating.	boxes - strike one and the other
Sut, S-50	sympathetic vibrations	3B70.10	Two tuning forks on resonance boxes: hi Several hints on showing this effect.	t one and the other vibrates too.
D&R, W-265	resonance in forks	3B70.10	Two identical tuning forks on resonance each other and strike one, the other will s	•
Sprott, 3.8	resonance in forks	3B70.10	Strike one tuning fork mounted on a box will vibrate sympathetically.	and a second of the same frequency
PIRA 200 - Old Mei, 19-4.7	coupled speaker/tuning forks sympathetic vibrations in forks	3B70.20 3B70.25	Drive a tuning fork on a resonant box wit A horn driver directed at a box coupled to vibrations which are detected by a crysta oscilloscope.	o a tuning fork produces sympathetic
Sut, S-116	resonance of strings	3B70.30	A tuning fork is held against a three strin the fork frequency. Only the tuned string	
Hil, S-4b	tuning fork driven sonometer	3B70.31	Place a tuning fork on the bridge of a tun motion of a small piece of paper placed	ed sonometer and observe the
	ACOUSTICS	3C00.00		
	The Ear	3C10.00		
PIRA 1000	model of the ear	3C10.10		
UMN, 3C10.10	model of the ear	3C10.10		
TPT 52(2), 77	eardrum model	3C10.15	A model eardrum is constructed using a membrane, mirror, and a laser. An audio	
PIRA 500	time resolution of the ear	3C10.20		
F&A, SI-1	binaural hearing	3C10.20	Hold the ends of a long tube to each ear and then a few centimeters to each side.	
D&R, W-035	time resolution of the ear	3C10.20	A long tube with funnels connected to the and have someone tap the tube in the ce	
Sut, S-153	direction judgment of the ear	3C10.21	High frequency location depends on different shadow of the head.	erence in intensity produced by the
Sut, S-152	direction judgment of the ear	3C10.21		•
PIRA 500	bone conduction	3C10.30		
D&R, W-425, M- 945	bone conduction	3C10.30	A tape player sends a signal to a coil on magnet. Bite down on the rod or place to hear the sound. Also, a tuning fork held	he end of the rod against the skull to
	Pitch	3C20.00	-	
TPT 17(2), 102	infrasound	3C20.05	Using infrasound to understand the atmo	•
PIRA 200	range of hearing	3C20.10	Use an oscillator driving a good audio sy hearing.	stem to demonstrate the range of
UMN, 3C20.10 F&A, Sh-3	range of hearing range of hearing	3C20.10 3C20.10	A set of good speakers is used to test th An oscillator driving a good audio system of hearing.	

Demonstration	n Bibliography	J	uly 2015	Oscillations and Waves
D&R, W-085	range of hearing	3C20.10	Connect a function generator to a spe	eaker. Adjust frequency while students
			plot their cutoff. Show waveforms on	
Sprott, 3.7	range of hearing	3C20.10	Use a function generator connected t human hearing and deterioration with	o speakers to demonstrate the range of age.
Sut, S-122	range of hearing	3C20.11	Use whistles, forks, etc. to establish u oscillator from 10 to 30,000 Hz.	upper range of hearing or an audio
F&A, Sg-1	Galton whistle	3C20.15	The Galton whistle can be adjusted to ultrasonic range.	o produce an intense sound into the
F&A, Sf-4	ultrasonic waves	3C20.16	A set of steel rods tuned to frequenci hammer and the sound both heard an	
Sprott, 3.10	ultrasonic waves	3C20.16	Various sources of sound with freque illustrate the distinction between a ph sound.	ncies above the range of audibility ysical sound wave and the perception of
AJP, 75 (6), 574	tonometers - ultrasonic rods	3C20.16	A short article with picture describing standards and how they are used.	the tonometers as secondary frequency
Mei, 19-10.1	ultrasonic vibrations of quartz	3C20.17		using it to make a fountain and
AJP, 75 (5), 415	quartz tuning fork	3C20.17	Using a common quartz tuning fork to force scanning probe microscopy on equipment found in a teaching labora	a simple profiler constructed with
PIRA 500	zip strips	3C20.20		
PIRA 500	bottle scale	3C20.25		
F&A, Se-4 D&R, W-260	musical bottles musical bottles	3C20.25 3C20.25	Blow across a set of bottles with wate Participants blow across a set of bott 8 note scale which is enough to play	les with water levels adjusted to give an
Bil&Mai, p 216	musical bottles	3C20.25	• • •	add water to the bottle as you continue
ref.	see 3C60.30	3C20.30	see 3C60.30	
PIRA 1000	siren disc	3C20.30		
UMN, 3C30.20	siren disc	3C20.30		
F&A, Sc-1	siren disc	3C20.30	An air jet is directed at a rotating disc	with holes.
Sut, S-120	siren disc	3C20.30	Air is blown through concentric rows of disc. Change of speed of the disc cha	of regularly spaced holes on a spinning anges frequencies but not intervals.
D&R, W-050	siren disk	3C20.30	An air jet is directed at a rotating disc	with concentric rows of holes.
Disc 10-10	siren disc	3C20.30	, ,	spaced holes is spun by a motor and a
TPT 42(7), 418	siren	3C20.35	Pictures, functions, and characteristic	cs of typical demonstration sirens.
PIRA 1000	Savart's wheel	3C20.40		
AJP 32(2),xiv	frequency and pitch	3C20.40	A set of gears on a single shaft of a v 44-47-49-52-55-59-62-66-70-74-78-8	rariable speed motor have the ratios of 3-88.
F&A, Sc-2	musical saw	3C20.40	A card is held against a dull saw as the	•
Mei, 19-4.3	tooth ratio scale	3C20.40	A set of gears with 44-47-49-52-59-62	
			coaxially on a shaft connected to a va shows intervals are determined by fre pitch.	ariable speed motor. Varying the speed equency ratios rather than absolute
Sut, S-121	Savart wheel	3C20.40	Hold a stiff cardboard against the rim wheels on the same shaft each with o	different numbers of teeth.
Hil, S-3b	Savart's wheels	3C20.40	with tooth ratios of 3:4:5:6.	rdboard is held against rotating wheels
Disc 10-11	gear and card	3C20.40	Hold a card against gears on a comm	
Mei, 19-4.4	saw blade organ	3C20.41	Several saw blades are mounted on t produced by amplifying the output of selects the active blades, allowing ch	a coil pickup. A band of switches
Sut, S-118	pitch sort of	3C20.45		lity but with some definite pitch. E.g., a
TPT 36(8), 508	increasing pitch with decreasing amplitude	3C20.60	Euler's disk, buzzing magnets, and g	lass bottles that are gently struck audible pitch with the decrease in motion
AJP 47(2),199	sound cart	3C20.70	•	of sound course is loaded on one mobile
	Intensity and Attenuation	3C30.00		
PIRA 200	dB meters and horn	3C30.20		
PIRA 500 - Old	dB meters and horn	3C30.20		
UMN, 3C30.20	dB meters and horn	3C30.20	Place dB meters in the class at 2 me	ter intervals, then blow a loud horn.

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
PIRA 1000	dB meter and horn	3C30.21		
UMN, 3C30.21	dB meter and horn	3C30.21	An air horn driven by a compressed range. Use a dB meter to measure t	air tank gives a 120 dB sound at close
F&A, Sc-4	air horn	3C30.21	-	compressed air has a nearby intensity of
D&R, W-090	dB meter and horn	3C30.21	Students measure air horns and oth	er readily available sound sources.
Hil, S-3c	sound level meter	3C30.22	A sound level meter is used to meas	-
PIRA 1000	loudness (phones and sones)	3C30.30		sale the methodol opeaking, etc.
PIRA 1000	hearing -3dB	3C30.35		
UMN, 3C30.35	hearing -3dB	3C30.35	A function generator with a dB mete	r is used to quickly adjust to half power.
Mai 10 4 15	2 40	2020.26	One and two atudants nound the tak	ale aquidistant from an abaanuar
Mei, 19-4.15 Sut, S-88	3 dB attenuation of materials	3C30.36 3C30.41	One and two students pound the tab Place various materials between a s a block of wood.	sounding board and a tuning fork stuck in
Mei, 19-9.2	modified tuning fork resonance box	3C30.42		esonance box and a rod, string, and water
D&R, M-945	modified tuning fork resonance box	3C30.42	Place a tuning fork on different table	es or objects to increase the volume.
Sut, S-89	attenuation in CO2	3C30.43	A high pitched tone transmitted thro filled with CO2.	ugh a 10' pipe will be attenuated when
Hil, S-7f	acoustical tiles	3C30.45	Show various acoustical tiles.	
	Architectual Acoustics	3C40.00		
PIRA 500	reverberation time	3C40.10		
AJP 48(1),32	room reverberation time	3C40.10	Go around and record pistol shots ir	various rooms, then determine
A01 40(1),32		5040.10	reverberation time at different freque classroom.	
Mei, 19-4.14	reverberation time	3C40.10	Students clap hands to generate so	und for reverberation time.
Mei, 19-4.13	reverberation time	3C40.10	Study the reverberation time of a root	om.
Sut, S-146	reverberation time	3C40.10	Measure reverberation time of the c	lassroom with a dB meter. (-60dB)
Sut, S-147	reverberation tube	3C40.11	Measure the time required for sound caps of various materials.	d to die in a tube that can be fitted with
Sut, S-148	ripple tank acoustics	3C40.20	Cross sectional models of various a show scattering and reflection.	uditoriums are used in a ripple tank to
	Wave Analysis and Synthesis	3C50.00		
PIRA 200 - Old	Pasco Fourier synthesizer	3C50.10	The Pasco Fourier synthesizer allow up to nine harmonics.	vs one to build an arbitrary waveform with
UMN, 3C50.10	Pasco Fourier synthesizer	3C50.10	The Pasco Fourier synthesizer is us	ed to build up a square wave.
F&A, Sk-3	Pasco Fourier synthesizer	3C50.10	The Pasco Fourier synthesizer allow	vs one to build an arbitrary waveform out
	-		of up to nine harmonics.	
D&R, W-075	Pasco Fourier synthesizer	3C50.10	A Pasco Fourier synthesizer allow o harmonics. An oscilloscope is attac	n to build arbitrary waveforms out of nine shed for viewing.
Disc 10-15	Fourier synthesizer	3C50.10	Use the Pasco Fourier synthesizer t triangle waves.	o demonstrate building square and
AJP 43(9),755	electronic music synthesizer	3C50.12	The principles of an electronic music demonstrations.	c synthesizer and its use in
AJP 29(6),372	electric organ as synthesizer	3C50.12	The timbre of a musical note is dem trace of an electric organ while char	onstrated by showing an oscilloscope nging the drawbars.
AJP 40(7),937	electromechanical Fourier synthesize	3C50.13	A set of eight mechanically geared p waves and harmonics.	potentiometers generate sine/cosine
Mei, 18-4.4	mechanical multichannel generator	3C50.13	A four channel mechanical signal ge and two harmonics. Picture. Constru	enerator is used to show a fundamental uction details in appendix, p. 626.
AJP 43(10),899	synthesizer	3C50.14	The PAiA 2720 Synthesizer used wi demonstrations.	th an oscilloscope for ten
AJP 42(9),754	waveform synthesizer	3C50.14		Khz have variable amplitude and phase.
AJP 53(9),874	waveform synthesizer	3C50.14		ne Intel 8748 microcontroller is described
D&R, W-055	waveform synthesizer	3C50.14	• • •	ms, or a microphone, drives an audio
PIRA 1000	mechanical square wave generator	3C50.15		
UMN, 3C50.15	mechanical square wave generator	3C50.15		a small disc mounted at the edge of a ared to rotate 3 times as fast as the larger

Demonstration Bibliography July 2015 **Oscillations and Waves** Mei, 33-2.9 arbitrary waveform generator 3C50.18 Sweep a high freq signal at a low freq on an oscilloscope with a mask cut out to the shape of the wave desired and look at it with a photocell. PIRA 200 - Old 3C50.30 Hold a small microphone individually to a set of Helmholtz resonators. Helmholtz resonators and microphone UMN, 3C50.30 Helmholtz resonators and 3C50.30 microphone Mei, 19-4.6 Helmholtz resonator 3C50.31 Sound from a loudspeaker is directed at a series of Helmholtz resonators with pinwheel detectors at their small apertures. ganged resonance boxes A pistol is fired in front of a set of tuning fork resonance boxes equipped with Mei, 19-4.8 3C50.31 inductive pickups. Picture. Mei, 19-4.11 resonance in a box 3C50.33 A complex setup to plot the frequency spectrum of a box. Pictures, Diagrams. Sut, S-117 resonant response of vocal 3C50.34 Use a fake larynx to talk without using the vocal cords. cavities **PIRA 1000** 3C50.35 resonance tube spectrum UMN, 3C50.35 resonance tube spectrum 3C50.35 Drive a speaker at one end of a tube with the swept frequency output of a spectrum analyzer. 3C50.36 AJP 48(1),24 Use a storage scope and two function generators to display the swept air column resonance spectra spectrum. Interesting additions are end corrections, tone holes, and adding a bell. Sut, S-145 radiation patterns of horns 3C50.37 Feed an oscillator or other sound to any one of four different types of horns to show differences in quality at various frequencies. **PIRA 1000** harmonic tones (vibrating string) 3C50.40 string resonance spectra on AJP 50(6),570 3C50.40 Sweep the source generator and oscilloscope horizontal from a generator. oscilloscope Use a steel wire and guitar pickup. AJP 52(5),470 resonances in strings 3C50.40 Excite a steel string with a linearly swept sinusoidal signal and show the output on a spectrum analyzer or storage oscilloscope. **PIRA 1000** noise (pink and white) 3C50.50 **PIRA 1000** distinguishing harmonics with the 3C50.55 ear UMN. 3C50.55 3C50.55 distinguishing harmonics A generator with an adjustable high Q bandpass filter allows one to train the ear to pick out the harmonics of a complex sound. AJP 53(11),1112 distinguishing harmonics 3C50.55 The circuit diagram for the Gronseth device. 3C50.70 **PIRA 1000** wave analysis (PASCO filter) **PIRA 1000** spectrum analyzer 3C50.80 Mei, 33-3.7 RLC bank harmonic analyzer 3C50.81 A bank of RLC circuits covering to the tenth harmonic of 235 Hz is used as a harmonic analyzer. Diagram. AJP 28(4),405 LC harmonic analyzer 3C50.82 Sweep a square wave generator through a single LC filter and detect maxima at harmonics of the fundamental. AJP 45(1),103 3C50.83 A circuit for a 100 kHz spectrum analyzer using a standard oscilloscope for low cost spectrum analyzer display. AJP 48(6),451 spectrum analyzer - Tek 5L4N 3C50.83 The Tek 5L4N spectrum analyzer plug-in is used with a camera (instead of a storage scope) to show the spectrum of sustained tones from musical instruments at different pitch and loudness. AJP 52(8),713 FFT on 6502 3C50.94 A FFT algorithm relocatable to any 6502 is available from the author. microcomputer based analyzer AJP 53(11),1107 3C50.94 Discusses algorithms for cross correlation and sound intensity analysis. Music Perception and the Voice 3C55.00 **PIRA 1000** 3C55.20 pitch of complex tones AJP 50(9),855 pitch of complex tones 3C55.20 Use an Apple computer to generate complex tones. Students judge the pitch. **PIRA 1000** missing fundamental 3C55.25 missing fundamental 3C55.25 Microcomputers with built-in tone generators are handy for generating AJP 52(5),470 "missing fundamental" demonstrations. AJP 41(8),1010 sing/whistle - which octave 3C55.26 Whistle and sing into a three foot pipe and use the resonances to show your whistling range is much higher than your singing range. **PIRA 1000** difference tones 3C55.30 UMN, 3C55.30 difference tones 3C55.30 AJP 42(7),616 subjective tones 3C55.30 A toy whistle emits tones at 2081, 1896, and 1727 Hz. Subjective difference tones at 169, 185, and 374 Hz are clearly audible. combination tones and the ear 3C55.31 Explanation of how the nonlinear ear creates difference tones and common AJP 37(7),730 examples of the phenomena. Two demonstrations: sweep with a second oscillator to find the difference tone, add 200, 300 and 400 Hz to hear 100 Hz. 3C55.35 **PIRA 1000** beats vs. difference tones

Demonstration	Bibliography	J	uly 2015 Oscillations and Waves
AJP 49(7),632	difference tones and beats	3C55.35	Two pure tones produce beats or difference tones. Theory and a
AJF $49(7),032$	difference tories and beats	3055.55	demonstration that trains our ears to hear and distinguish the two.
AJP 3292),xiii	beats on scope, difference tones	3C55.35	The usual two oscillators, amplifier, and scope. For difference tones, set one oscillator above the audible range and the difference tone is the only thing the student can hear.
Mei, 19-5.4	beats on scope, difference tones	3C55.35	Two audio oscillators drive two speakers. A microphone pickup displays the sum on an oscilloscope. ALSO - difference tone.
PIRA 1000	chords	3C55.40	
F&A, Sj-5	chords	3C55.40	Using the three string sonometer to study the structure of chords by varying the bridge location of strings tuned in unison.
F&A, Sk-2	circular glockenspiel	3C55.41	Mallets can be put in any of twelve holes on a spool to play major, minor, augmented, and diminished cords on a circular glockenspiel.
AJP 49(6),579	consonant musical interals	3C55.42	Consonant and dissonant intervals are explained by a relation between the time required to perceive a definite pitch and the period of a complex tone.
PIRA 1000	consonance and dissonance	3C55.45	
F&A, Sj-4	harmonious notes	3C55.45	Using the sonometer to demonstrate the harmonic content of different interval combinations.
PIRA 500	musical scale	3C55.50	
AJP 55(3),223	numerical investigation of scales	3C55.51	An investigation of why the 12 note scale is the best equal tempered scale.
AJP 42(7),543	quanitiative investigation of scales	3C55.51	A quantitative measurement of how well any tuning succeeds in providing just intonation for any specific piece of music.
AJP 35(5),441	scales and algebraic groups	3C55.51	On transposing.
AJP 56(4),329	lucky equal temperaments	3C55.52	An analysis of how good the fits of 12, 19, 31, and 53 steps per octave are in equally tempered scales.
PIRA 1000	tuning forks on resonance boxes	3C55.55	
AJP 47(6),564	piano tuning	3C55.55	On making use of instrumentation to help with piano tuning.
AJP 47(5),475	piano tuning	3C55.55	A pianist discusses the finer points of piano tuning.
AJP 46(8),792 F&A, Sf-1	piano tuning tuning forks with resonators	3C55.55 3C55.55	On "stretching" the equally tempered scale. A set of tuning forks mounted on resonance boxes make the musical scale.
T &A, 31-1	tuning forks with resonators	3033.33	A set of tuning forks mounted of resonance boxes make the musical scale.
Hil, S-4d.4	tuning fork resonance boxes	3C55.55	A set of four different tuning forks on resonant boxes.
Sprott, 3.7	tuning forks	3C55.55	Using resonance boxes with tuning forks.
Disc 11-08	tuning forks on resonant boxes	3C55.55	Two tuning forks, two boxes. Show the box needs to be matched to the fork.
F&A, Sk-1	Johnson intonation trainer	3C55.60	A small organ that is switched between fixed and variable tuning to demonstrate even tempered and just intonation.
Sut, S-123	tone quality	3C55.65	A series of organ pipes tuned carefully to give the harmonics of a fundamental can be used to show the effect of suppressing various harmonics.
PIRA 1000	tone quality	3C55.70	
UMN, 3C55.70	microphone and oscilloscope	3C55.70	Show the output of a microphone on an oscilloscope.
D&R, W-390	microphone and oscilloscope	3C55.70	Show the output of a microphone on the oscilloscope. Observe patterns of voices, speech, tuning forks, and musical instruments.
Sprott, 3.7	microphone and oscilloscope	3C55.70	Use a microphone with an oscilloscope to display waveforms.
Sut, S-79	sound wave on oscilloscope	3C55.71	Show a sound wave on the oscilloscope while listening to it.
Sut, S-125	tone quality	3C55.72	Using a microphone and oscilloscope, demonstrate that a tuning fork does not produce a pure sine wave but a fork on a resonance box does.
AJP 43(8),736	tone quality of a Boehm flute	3C55.73	Harmonic analysis of rich and dull tones from the Boehm flute.
PIRA 1000	keyboard and oscilloscope	3C55.74	······································
AJP 44(6),593	forms of sounds	3C55.75	A variant of the circuit produces roulette figures, etc.
AJP 43(3),282	voice display - corridor demo	3C55.75	A circuit to advance the horizontal 45 degrees and retard the vertical 45 degrees to give a circular trace when a falsetto "o-o-o" is sung.
PIRA 1000	formants	3C55.80	-
UMN, 3C55.80	formants	3C55.80	Sing formants into a HP analog spectrum analyzer.
Disc 10-16	vocal formants	3C55.80	Use an computer based real time spectrum analyzer to display vocal formants.
AJP, 59 (6), 564	vocal formants	3C55.80	A simple demonstration experiment that illustrates the separate functions of the vocal cords and the vocal tract.
Sut, S-124	tone quality	3C55.82	Using a phonelescope or oscilloscope, sing the different vowels at the same pitch and the same vowels at different pitches.
PIRA 1000	filtered music and speech	3C55.85	
UMN, 3C55.85	filtered music and speech	3C55.85	
AJP 50(11),1050	octave-band filters	3C55.85	Use an octave-band filter (from an audio store) to demonstrate filtered music and speech.

ALP S9(1),94 Book/CD review - piano acoustics SGS5.00 Review of a book' Acoustics of the Piano' that comes with a CD that includes samples used in the lectures. Hil, S-7b musical sound records SGS5.00 Review of a book' Acoustics of the Piany and Motion - Zarre and Singer, Experimental Songe - Doubly Collins, Stace Songe - Tom Citezer & Dotte Evans, Physics Songe - State University of Iowa. DBR, W-005 Science of Sound records or tapes SCS5.00 Protectaeter by Boll Labs. Haw wind demonstrations and examples. FRA. Si-7 churchbell gular INSTRUMENTS assonmeter SCS5.00 Swing a gular back and forth as it is plucked to mimic a church bell. JURA 300-100 sonometer 3020.00 Assonding bas with etrings, tuning machines, and adjustable bridges. Singer Si	Demonstration	Bibliography	Jı	uly 2015	Oscillations and Waves
Includes examples used in the lectures.Hill, S-7bmusical sound recordsSCS: 80TE Schene of Sourd Points, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dordty Collins, Space Songs - Ton Glazer & Dottie Evanimental Songs - Dottie - SonometerF&A, Si-1Sonometer3020.10A sonode pow with strings, tuning machines, and adjustable bridges. SonometerSot, S-131sonometer3020.11A strindard to wire sonometer. A long spruce box with three strings, tuning machines, and adjustable bridges.F&A, Si-3harmonics on a string302.10Commercial allows tension to be applied by simply hanging weights.F&A, Si-3harmonics on a string302.20F&A, Si-3harmonics on a string302.20F&A, Si-3modes of string oscillation acope302.20F&A, Si-4modes of string oscillation302.20F&A, Si-4modes of string oscillation302.20Sonometer302.20sonometerF&A, Si-4modes of string oscillation302.20F&A, Si-3asonemeter302.20F&A, Si-4modes of string oscillationF&A, Si-2modes of string oscillation	AJP 59(1).94	Book/CD review - piano acoustics	3C55.90	Review of a book "Acoustics of the Piano"	" that comes with a CD that
Hill, S-7b musical sound records 3C55.00 The Science of Sound - Bell Labs, Energy and Motion - Zamet and Singer, Experimental Songs - Dorothy Collins, Space Songs - Ton Glazer & Dotlie Evans, Physical Songs - State University of Iowa. D&R, W-095 Science of Sound records or tapes 3C55.09 Sound a Way audio demonstrations and examples. F&A, Si-7 churcheell gutar 3C55.09 Sound a gutar back and forth as it is plucked to mimic a church bell. FRA 302-10 sonometer 3D20.00 Asounding box with strings, tuning machines, and adjustable bridges. Suit, S-131 sonometer 3D20.10 Asounding box with strings, tuning machines, and adjustable bridges. D&R, W-102 sonometer 3D20.10 Aspender discussion of sonometer. Suit, S-131 sonometer 3D20.10 Aspender discussion of sonometer. Suit, S-131 sonometer 3D20.10 Aspender discussion of sonometer. F&A, Sj-2 modes of string oscillation on socpase of string oscillation on socpase of string oscillation on socpase of string oscillation on socplase of string oscillation and solution of a string at electric signal with good accuracy. D&R, F-24A, W-320 sonometer 3D20.20 Lee voltages generated by magnets placed across vibrating steel wires on ascillaccope. D	//01/00(1),04		0000.00		
D&R, W-095 Science of Sound records or tapes 3C55.90 Produced by Bell Labs. Many audio demonstrations and examples. F&A, Si-7 churchbell guitar 3C55.90 Swing a guitar back and forth as it is plucked to minic a church bell. INSTRUMENTS Resonance in Strings 3D20.00 Stronmeter 3D20.10 A sounding box with strings, tuning machines, and adjustable bridges. Ski, S-13 sonometer 3D20.10 The standard two wire sonometer. adjustable bridges. Ski, S-13 sonometer 3D20.10 A general discussion of sonometer. adjustable bridges. Ski, S-13 sonometer 3D20.10 A general discussion of sonometer. adjustable bridges. Ski, S-13 sonometer 3D20.15 Pluck a string at different distances from the end or pluck while touching at various indes. PRA 1000 modes of string oscillation 3D20.20 bar various indes. an oscillaccope. Ski, W-320 sonometer 3D20.20 bar various indes. an oscillaccope. DBR, B-240, M modes of string oscillation 3D20.20 bar various indes. an oscillaccope. DBR, B-240, M modes of string oscillation 3D20.	Hil, S-7b	musical sound records	3C55.90	The Science of Sound - Bell Labs, Energy Experimental Songs - Dorothy Collins, Sp	ace Songs - Tom Glazer & Dottie
INSTRUMENTS 3000.00 Resonance in Strings 3020.00 3020.00 PIRA 200 - OIG UMN, 3020.10 sonometer 3020.10 A sounding box with strings, tuning machines, and adjustable bridges. UMN, 3020.10 sonometer 3020.10 A sounding box with strings, tuning machines, and adjustable bridges. Sut, S-131 sonometer 3020.10 A sounding box with strings, tuning machines, and adjustable bridges. AJP 58(1),83 sonometer 3020.10 A general discussion of sonometers and the various demonstrations possible. PIRA 1000 modes of string oscillation on scope references 3020.20 Puck a string at different distances from the end or pluck while touching at various nodes. PIRA 1000 modes of string oscillation on scope references 3020.20 Use voltages generated by magnets placed across stell string sattached to an oscilloscope to view string motion. D8R, B-240, M modes of wire oscillation 3020.20 Use voltages generated by magnets placed across vibrating stell wires on an oscilloscope. D8R, B-240, M modes of wire oscillation 3020.21 A model that analyzes and explains the distortion that the pickup generates wires wires with y advalues the information of instruments with fres taking into account the anscience of the string on a noscilloscope. D8R, B-240, M guitar and	D&R, W-095	Science of Sound records or tapes	3C55.90		
PIRA 200 - Old VMN 3022-01 sonometer 3122.010 A sounding box with strings, tuning machines, and adjustable bridges. VMN 3022-01 sonometer 3122.010 Neg spruce box with three strings, tuning machines, and adjustable bridges. Sut, S-131 sonometer 3122.010 A perceral discussion of sonometer. AJP 58(1).93 vertical sonometer 3122.010 Commercial 3 wite sonometer. AJP 58(1).93 vertical sonometer 3122.011 Commercial 3 wite sonometer. AJP 58(1).93 wertical sonometer 3122.012 Commercial 3 wite sonometer. AJP 58(1).93 modes of string oscillation on scope 3122.012 Pluck a string at different distances from the end or pluck while touching at various nodes. F8A, Sj.2 modes of string oscillation on scope 3122.02 Delipy voltages generated by magnets placed across stell strings attached to an oscilloscope to view string motion. Dast, D-22 sonometer 3122.02 A model that analyzes and explains the distortion that the pickup generates on an oscilloscope. Dist, D-22 sonometer 3122.02 A model that analyzes and explains the distortion that the string in a nocilloscope. Dist, D-12 guitar and scope 3122.02 Show the output an analyzes the information of a string to an electric signal with good accuracy. AJP, 77 (2), 144 guitar - fretted string instruments 3122.02 <	F&A, Si-7	INSTRUMENTS	3D00.00	Swing a guitar back and forth as it is pluch	ked to mimic a church bell.
UMN. 3020.10 sonometer 3020.10 The standard two wire sofometer. FAA, Si-1 sonometer 3020.10 A long spruce box with three strings, tuning machines, and adjustable bridges. Sut. S-131 sonometer 3020.10 A long spruce box with three strings, tuning machines, and adjustable bridges. AJP 58(1).83 vertical sonometer 3020.10 A general discussion of sonometer. AJP 58(1).83 vertical sonometer 3020.10 A central discussion of sonometer allows tension to be applied by simply hanging weights. FAA, Si-3 harmonics on a string 3020.10 Pluck a string at different distances from the end or pluck while touching at various nodes. PIRA 1000 modes of string oscillation 3020.20 Use voltages generated by magnets placed across streel strings attached to an oscilloscope. PIRA 1000 modes of wire oscillation 3020.20 Disel to voltage generated by magnets placed across vibrating steel wires on an oscilloscope. PIRA 1000 guitar and scope 3020.21 A model that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy. AJP 77 (2), 144 guitar and scope 3020.21 Anadyzes the intonation of instruments with frest staing in to		•		A counding how with strings, tuning mashi	inco, and adjustable bridges
FAA, Sj-1sonometer320:10A tong spruce box with three strings, tuning machines, and adjustable bridges.Sut, S-131sonometer320:10A general discussion of sonometers and the various demonstrations possible.DAR, W-120sonometer320:10Commercial 3 wire sonometer.AJP 56(1):93vertical sonometer320:10Commercial 3 wire sonometer.FAA, Sj-3harmonics on a string320:10Pluck a string at different distances from the end or pluck while touching at various nodes.FRA, Sj-2modes of string oscillation on scope320:20Ue voltages generated by magnets placed across steel string attached to an oscilloscope to view string motion.DAR, B-240, M- 16, 8, W-320modes of wire oscillation on scope320:20Ue voltages generated by magnets placed across vibrating steel wires on an oscilloscope.PIRA 1000guitar and scope electric guitar - modeling the magnetic pickup is used to display the waveform of the sonometer string on an oscilloscope.320:20AJP 77 (2), 144guitar and scope angentic pickup320:20A model that analyzes and explains the distorin that the pickup generates string on an oscilloscope.Disc 10-01 Sub 10, 17guitar and scope angentic pickup320:20Amode that analyzes and explains the distoring and inharmonicity due to other string sourcesDisc 10-01 Sub 10, 11, 12guitar and scope angentic pickup320:20Amode that analyzes and explains the distoring and sourcesSub 10, 11, 12sonometer modeling the magnetic pickup320:20Amode that analyzes and explains the<				3	nes, and adjustable bridges.
Sut, S-131snometer302.0A general discussion of sonometers and the various demonstrations possible.D&R, W-120sonometer3D20.10Commercial 3 wire sonometer.AJP 58(1).93noncis on a string3D20.11Pluck a string at different distances from the end or pluck while touching at various nodes.PIRA 1000modes of string oscillation on scope3D20.01SonometerPAS, S; 2modes of string oscillation on scope3D20.01Display voltages generated by magnets placed across steel strings attached to an oscilloscope to view string motion.9AR, B-240, M- 916, 84, W-320modes of wire oscillation on scope3D20.20Disc voltages generated by magnets placed across vibrating steel wires on an oscilloscope.916, 8, W-320modes of wire oscillation on scope3D20.21A nelectromagnetic pickup is used to display the waveform of the sonometer string on an oscilloscope.917, 20, 144quitar and scope magnetic pickup3D20.21A model that analyzes and explains the distortion that the pickup generates wire norwering the motion of a string is and inharmonicity due to other string occuracy.AJP 73 (1), 47guitar - fretted string instruments string in a projector3D20.21Show the output of an electric guitar on an oscilloscope.Sut, S-132sonometer wire motion3D20.20Show the output of an electric guitar on an oscilloscope.Sut, S-133string in a projector3D20.30Brow the output of an electric guitar on an oscilloscope.Sut, S-142acolian targ acolian string can be string in a projector3D20.20Show t	,			A long spruce box with three strings, tunin	ng machines, and adjustable
AJP 58(1).93 vertical sonometer 3D20.11 A vertical sonometer allows tension to be applied by simply hanging weights. F&A, Sj-3 harmonics on a string 3D20.15 Pluck a string at different distances from the end or pluck while touching at various nodes. PIRA 1000 modes of string oscillation 3D20.20 Use voltages generated by magnets placed across steel strings attached to an oscilloscope. D8R, B-240, M- 916, & W-320 modes of wire oscillation 3D20.20 Use voltages generated by magnets placed across vibrating steel wires on an oscilloscope. D1sc 10-02 sonometer 3D20.21 An electromagnetic pickup is used to display the waveform of the sonometer string on an oscilloscope. PIRA 1000 guitar and scope 3D20.21 A model that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy. AJP, 78 (1), 47 guitar - fretted string instruments 3D20.21 A model that analyzes and explains the distortion that the pickup generates of across string and scope Dise 10-01 guitar and scope 3D20.21 Show the output of an electric guitar on an oscilloscope. Sut, S-132 sonometer wire motion 3D20.21 Show the output of an electric guitar on an oscilloscope. Sut, S-132 sonometer wire motion 3D20.21 Show the output of an electric guitar on an oscilloscope. Sut, S-133 string in a projec	Sut, S-131	sonometer	3D20.10	A general discussion of sonometers and t	he various demonstrations
F&A, Sj-3 harmonics on a string 3D20.15 Pluck a string at different distances from the end or pluck while touching at various nodes. PIRA 1000 modes of string oscillation on scope 3D20.20 Use voltages generated by magnets placed across steel strings attached to an oscilloscope to view string motion. DBR, B-240, M- 916, & W-250 modes of wire oscillation 3D20.20 Use voltages generated by magnets placed across vibrating steel wires on an oscilloscope. DBR, B-240, M- 916, & W-250 modes of wire oscillation 3D20.20 Display voltages generated by magnets placed across vibrating steel wires on an oscilloscope. String A JP 77 (2), 144 modes of wire oscillaring instruments 3D20.21 A model that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy. AJP, 78 (1), 47 guitar - fretted string instruments 3D20.21 A model that analyzes the intonation of instruments with frest staing into account the effects of deformation of the strings and inharmonicity due to other string characteristics. Disc 10-01 guitar and scope 3D20.20 Show the output of an electric guitar on an oscilloscope. AJP 53(12),1195 sonometer wire motion 3D20.30 Row endotion of a string to noi string motion simulated piano string coupling Sut, S-132 sonometer wire motions in string 3D20.30	D&R, W-120	sonometer	3D20.10	•	
PIRA 1000 scopemodes of string oscillation on scope3D20.20F&A, Sj-2modes of string oscillation and so for wire oscillation3D20.20Use voltages generated by magnets placed across steel strings attached to an oscilloscope to view string motion.D&R, B-240, M- 916, & W-320modes of wire oscillation3D20.20Discioscope. on an oscilloscope.Disc 10-02sonometer3D20.20A nelectromagnetic pickup is used to display the waveform of the sonometer string on an oscilloscope.PIRA 1000 AJP 77 (2), 144guitar - modeing the magnetic pickup3D20.21A model that analyzes and explains the distortion that the pickup generates 	AJP 58(1),93	vertical sonometer	3D20.11	A vertical sonometer allows tension to be	applied by simply hanging weights.
PIRA 1000modes of string oscillation on scope3D20.20F&A, Sj-2modes of string oscillation3D20.20Use voltages generated by magnets placed across steel strings attached to an oscilloscope to view string motion.D&R, B-240, M- 916, 8 W-320modes of wire oscillation3D20.20Display voltages generated by magnets placed across vibrating steel wires on an oscilloscope.DBR, B-240, M- 916, 1040modes of wire oscillation3D20.20Display voltages generated by magnets placed across vibrating steel wires on an oscilloscope.Disc 10-02guitar and scope3D20.21An electromagnetic pickup is used to display the waveform of the sonometer string on an oscilloscope.AJP, 77 (2), 144guitar - fretted string instruments magnetic pickup3D20.21Anodel that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy.AJP, 78 (1), 47guitar and scope bowed string3D20.21Show the output of an electric guitar on an oscilloscope. 3D20.30Disc 10-01 AJP 44(11),1077guitar and scope bowed string3D20.30Demonstrate the motion of a string strobe projection and the string is bowed stringSut, S-132sonometer wire motion simulated piano string coupling3D20.30Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or sismal glift heam and revolving miror.Sut, S-134optical detection of string motion simulated piano string coupling3D20.50An explated detection system for showing the position of a tring is and theory of the device.Sut, S-144 se	F&A, Sj-3	harmonics on a string	3D20.15	•	he end or pluck while touching at
F&A, Sj-2modes of string oscillation3D20.20Use voltages generated by magnets placed across steel strings attached to an oscilloscope to view string motion.D8R, B-240, M- 916, & W-320modes of wire oscillation3D20.20Display voltages generated by magnets placed across vibrating steel wires on an oscilloscope.DISD 10-02sonometer3D20.21An electromagnetic plckup is used to display the waveform of the sonometer string on an oscilloscope.PIRA 1000guitar and scope3D20.21An eddel that analyzes and explains the distortion that the plckup generates when converting the motion of a string to an electric signal with good accuracy.AJP, 78 (1), 47guitar - fretted string instruments3D20.21Analyzes the intonation of instruments with frets taking into account the effects of deformation of the strings and inharmonicity due to other string ohracteristics.Disc 10-01guitar and scope3D20.21Show the output of an electric guitar on an oscilloscope.AJP 44(11).1077bowed string3D20.30An overhead projector is modified for strobe projector and the string is bowed with a motorized "O" ring.Sut, S-132sonometer wire motion3D20.31The motion of a string is shown by placing any portion in a lantern projector imited by a sit. The difference in bowing, plucking, and striking can be demonstrated.AJP 53(12).1195 Sut, S-142optical detection of string motion simulated piano string coupling3D20.45Sut, S-143aeolian scope3D20.45Sut, S-144aeolian scope3D20.45Sut, S-144aeolian scope3D20.50Sut, S-14	PIRA 1000	-	3D20.20	various nodes.	
D&R. B-240, M- 916, & W-320 modes of wire oscillation 916, & W-320 3D20.20 Display voltages generated by magnets placed across vibrating steel wires on an oscilloscope. PIRA 1000 guitar and scope electric guitar - modeling the magnetic pickup 3D20.20 An electromagnetic pickup is used to display the waveform of the sonometer string on an oscilloscope. AJP 77 (2), 144 guitar and scope electric guitar - modeling the magnetic pickup 3D20.21 A model that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy. AJP, 78 (1), 47 guitar and scope guitar and scope 3D20.21 Analyzes the intonation of instruments with frets taking into account the effects of deformation of instruments with artest string on an oscilloscope. Disc 10-01 guitar and scope 3D20.20 An electric guitar on an oscilloscope. JP 44(11).0177 bowed string 3D20.30 An overhead projector is modified for strobe projection and the string is bowed with a motoricated '0' ring. Sut, S-132 sonometer wire motion 3D20.30 Demonstrate the motion of a siting is shown by placing any portion in a lantern projector limited by a slit. The difference in bowing, plucking, and striking can be demonstrated. AJP 53(12),1195 optical detection of string motion suitared plano string coupled wind accuracy of the device. 3D20.36 <t< td=""><td>F&A, Sj-2</td><td>•</td><td>3D20.20</td><td></td><td>ed across steel strings attached to</td></t<>	F&A, Sj-2	•	3D20.20		ed across steel strings attached to
Disc 10-02sonometer3D20.20An electromagnetic pickup is used to display the waveform of the sonometer string on an oscilloscope.PIRA 1000guitar and scope3D20.21AJP 77 (2), 144electric guitar - modeling the magnetic pickup3D20.21AJP, 78 (1), 47guitar - fretted string instruments3D20.21AJP, 78 (1), 47guitar - fretted string instruments3D20.21AJP, 78 (1), 47guitar - fretted string instruments3D20.21AJP 44(11), 1077guitar and scope3D20.21AJP 44(11), 1077bowed string3D20.21Sut, S-132sonometer wire motion3D20.30Sut, S-133string in a projector3D20.31Sut, S-133string in a projector3D20.31AJP 53(12), 1195optical detection of string motion simulated piano string coupling3D20.32AJP 53(12), 1195optical detection of string motion and an any3D20.32Sut, S-108longitudinal vibrations in string simulated piano string coupling3D20.32Sut, S-141acolian harp3D20.32PIRA 1000Acolian harp3D20.32Sut, S-134string snope3D20.32Sut, S-134acolian harp3D20.42Sut, S-141acolian harp3D20.42Sut, S-142acolian harp3D20.42Sut, S-144acolian harp3D20.42Sut, S-144acolian harp3D20.42Sut, S-144acolian harp3D20.42Sut, S-144acolian harp3D20.42Sut, S-144acol		modes of wire oscillation	3D20.20	Display voltages generated by magnets p	laced across vibrating steel wires
PIRA 1000 guitar and scope 3D20.21 A model that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy. AJP, 78 (1), 47 guitar - fretted string instruments 3D20.21 A model that analyzes the intonation of instruments with frets taking into account the effects of deformation of the strings and inharmonicity due to other string characteristics. Disc 10-01 guitar and scope 3D20.21 Show the output of an electric guitar on an oscilloscope. AJP 44(11),1077 bowed string 3D20.30 An overhead projector is modified for strobe projection and the string is bowwed with a motorized 'O' ring. Sut, S-132 sonometer wire motion 3D20.30 Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving mirror. Sut, S-133 string in a projector 3D20.31 An optical detection system for showing the position of a vibrating string. AJP 53(12),1195 optical detection of string motion 3D20.45 Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog. PIRA 1000 Aeolian harp 3D20.50 Storke a string string svertically on a rotating table to give the sound of strings excited by jerking, you can make it bark like a dog. PIRA 1000 violin 3D22.50 Asort of acolian		sonometer	3D20.20	An electromagnetic pickup is used to disp	lay the waveform of the sonometer
AJP 77 (2), 144electric guitar - modeling the magnetic pickup3D20.21A model that analyzes and explains the distortion that the pickup generates when converting the motion of a string to an electric signal with good accuracy.AJP, 78 (1), 47guitar - fretted string instruments3D20.21Analyzes the intonation of instruments with frets taking into account the effects of deformation of the strings and inharmonicity due to other string characteristics.Disc 10-01 AJP 44(11),1077guitar and scope bowed string3D20.21Show the output of an electric guitar on an oscilloscope. a no verhead projector is modified for strobe projection and the string is bowed with a motorized "O" ring.Sut, S-132sonometer wire motion3D20.30Demonstrate the motion of a string is shown by placing any portion in a lantern projector inimide by a sith. The difference in bowing, plucking, and striking can be demonstrated.AJP 53(12),1195 AJP 53(12),1195 ALP 53(12),1195optical detection of string motion simulated piano strings coupling3D20.31An optical detection system for showing the position of a vibrating string. 3D20.31Sut, S-108 Sut, S-141 aeolian harpapolical string surfaments3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-132 Sut, S-134aeolian scope and place3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.AJP 53(12),1195 Sut, S-108longitudinal vibrations in strings3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-142 BA	PIRA 1000	guitar and scope	3D20.21		
AJP, 78 (1), 47guitar - fretted string instruments3D20.21Analyze's the intonation of instruments with frets taking into account the effects of deformation of the strings and inharmonicity due to other string characteristics.Disc 10-01guitar and scope3D20.21Show the output of an electric guitar on an oscilloscope.AJP 44(11),1077bowed string3D20.30An overhead projector is modified for strobe projection and the string is bowed with a motorized "O" ring.Sut, S-132sonometer wire motion3D20.30Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving miror.Sut, S-133string in a projector3D20.31An optical detection of a string is shown by placing any portion in a lantern projector limited by a slit. The difference in bowing, plucking, and striking can be demonstrated.AJP 53(12),1195 simulated piano string coupling3D20.31An optical detection system for showing the position of a vibrating string. 3D20.36Sut, S-108longitudinal vibrations in strings3D20.45Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.PIRA 1000Aeolian harp3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-134rubber-band harp3D20.20The pitch of a rubber-band changes only slightly with great increase in length (tersion).UMN, 3D22.10violin3D22.103D22.10UMN, 3D22.20cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20U	AJP 77 (2), 144	electric guitar - modeling the	3D20.21		
Disc 10-01 ALP 44(11),1077guitar and scope bowed string3D20.21Show the output of an electric guitar on an oscilloscope. An overhead projector is modified for strobe projection and the string is bowed with a motorized "O" ring.Sut, S-132sonometer wire motion3D20.30Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving mirror.Sut, S-133string in a projector3D20.30The motion of a string is shown by placing any portion in a lantern projector limited by a slit. The difference in bowing, plucking, and striking can be demonstrated.AJP 53(12),1195optical detection of string motion simulated piano string coupling3D20.31An optical detection system for showing the position of a vibrating string. 3D20.36AJP 54(2),137optical detection of string motion simulated piano string coupling3D20.45Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.PIRA 1000Aeolian harp aeolian scope3D20.52A sort of aeolian stethoscope.Sut, S-142aeolian scope3D20.52A sort of aeolian stethoscope.Sut, S-134rubber-band harp3D20.50The pitch of a rubber-band changes only slightly with great increase in length (tension).UMN, 3D22.10violin3D22.10The pitch of a cylinder cigar box celloUMN, 3D22.20cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.PIRA 1000cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.PIRA	AJP, 78 (1), 47	guitar - fretted string instruments	3D20.21	Analyzes the intonation of instruments wit effects of deformation of the strings and in	
AJP 44(11),1077bowed string3D20.30An overhead projector is modified for strobe projection and the string is bowed with a motorized "O" ing.Sut, S-132sonometer wire motion3D20.30Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving mirror.Sut, S-133string in a projector3D20.30The motion of a string is shown by placing any portion in a lantern projector limited by a slit. The difference in bowing, plucking, and striking can be 	Dicc 10.01	quitar and scope	2020.21		
Sut, S-132sonometer wire motion3D20.30bowed with a motorized "O" ring.Sut, S-133string in a projector3D20.30Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving mirror.Sut, S-133string in a projector3D20.30The motion of a string is shown by placing any portion in a lantern projector limited by a sitt. The difference in bowing, plucking, and striking can be demonstrated.AJP 53(12),1195 AJP 52(2),137optical detection of string motion simulated piano string coupling simulated piano string coupling3D20.31An optical detection system for showing the position of a vibrating string. A classroom device that simulates the coupled motion of piano strings and theory of the device.Sut, S-108longitudinal vibrations in strings3D20.45Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.PIRA 1000Aeolian harp aeolian scope3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-142 sut, S-134aeolian scope3D22.060The pitch of a rubber-band changes only slightly with great increase in length (tension).Vinin violin3D22.103D22.20Vinin violin3D22.20A wooden cigar box serves as sounding box for a one string violin.PIRA 1000 violincigar box cello3D22.20PIRA 1000 violincigar box cello3D22.20Violin violin3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, Si-6 vi		•			
Sut, S-132sonometer wire motion3D20.30Demonstrate the motion of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving mirror.Sut, S-133string in a projector3D20.30The motion of a sinulated period of a sonometer wire by stroboscopic shadow projection or using a light beam and revolving mirror.AJP 53(12),1195optical detection of string motion simulated piano string coupling3D20.31An optical detection system for showing the position of a vibrating string. 3D20.31AJP 52(2),137optical detection of string coupling simulated piano string coupling3D20.35A classroom device that simulates the coupled motion of piano strings and theory of the device.Sut, S-108longitudinal vibrations in strings acolian harp3D20.50Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.PIRA 1000Aeolian harp aeolian scope3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-134aeolian scope3D20.50The pitch of a rubber-band changes only slightly with great increase in length (tension).UMN, 3D22.10violin3D22.103D22.10UMN, 3D22.10violin3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, S_16cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, S_16cigar box cello3D22.20A one string violin made with a cigar box body.D&R, W-410, W- 415coffee can monochord3D22.00 <td< td=""><td></td><td>Source string</td><td>0020.00</td><td></td><td></td></td<>		Source string	0020.00		
Sut, S-133string in a projector3D20.30The motion of a string is shown by placing any portion in a lantern projector limited by a slit. The difference in bowing, plucking, and striking can be demonstrated.AJP 53(12),1195 AJP 52(2),137optical detection of string motion simulated piano string coupling3D20.31An optical detection system for showing the position of a vibrating string. 3D20.30Sut, S-108longitudinal vibrations in strings3D20.45Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.PIRA 1000Aeolian harp3D20.50Sut, S-141aeolian harp3D20.52Sut, S-142aeolian scope3D20.52Sut, S-134rubber-band harp3D20.50VIN, S-134stringed Instruments3D22.06VIN, 3D22.10violin3D22.10VINN, 3D22.20cigar box cello3D22.20VINN, 3D22.20cigar box cello3D22.20VINN, 3D22.20cigar box cello3D22.20PIRA 1000cigar box cello3D22.20PIRA 1000cigar box cello3D22.20VINN, 3D22.20cigar box cello3D22.20PIRA 1000cigar box	Sut, S-132	sonometer wire motion	3D20.30	Demonstrate the motion of a sonometer v	
AJP 53(12),1195 AJP 52(2),137optical detection of string motion simulated piano string coupling3D20.31An optical detection system for showing the position of a vibrating string. 3D20.36Sut, S-108longitudinal vibrations in strings3D20.45Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.PIRA 1000Aeolian harp aeolian harp3D20.50Sut, S-141aeolian scope rubber-band harp3D20.52Sut, S-142aeolian scope rubber-band harp3D20.62Sut, S-134Stringed Instruments violin3D22.10PIRA 1000 UMN, 3D22.10Stringed Instruments cigar box cello3D22.10PIRA 1000 Cigar box cello3D22.20Sut, S-16 UMN, 3D22.20cigar box cello cigar box cello3D22.20PIRA 200 - Oldvertical resonance tube3D20.50PIRA 200 - Oldvertical resonance tube3D30.00	Sut, S-133	string in a projector	3D20.30	The motion of a string is shown by placing limited by a slit. The difference in bowing,	g any portion in a lantern projector
Sut, S-108longitudinal vibrations in strings3D20.45Stroke a string attached to a diaphragm across the open end of a cylinder. By jerking, you can make it bark like a dog.PIRA 1000Aeolian harp3D20.50Sut, S-141aeolian harp3D20.52Sut, S-142aeolian scope3D20.52Sut, S-134rubber-band harp3D20.60The pitch of a rubber-band changes only slightly with great increase in length (tension).The pitch of a rubber-band changes only slightly with great increase in length (tension).PIRA 1000violin3D22.10UMN, 3D22.10violin3D22.20UMN, 3D22.20cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20A, Wooden cigar box serves as sounding box for a one string violin. 415A one string violin made with a cigar box body.PIRA 200 - Oldvertical resonance tube3D30.00PIRA 200 - Oldvertical resonance tube3D30.10	().			An optical detection system for showing the	
PIRA 1000 Sut, S-141Aeolian harp aeolian harp3D20.50 3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-142 Sut, S-134aeolian scope rubber-band harp3D20.52 3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-142 Sut, S-134aeolian scope rubber-band harp3D20.60The pitch of a rubber-band changes only slightly with great increase in length (tension).PIRA 1000 UMN, 3D22.10violin3D22.00PIRA 1000 UMN, 3D22.20cigar box cello3D22.20PIRA 1000 Cigar box cello3D22.20VMN, 3D22.20 Cigar box cello3D22.20VMN, 3D22.20 Cigar box cello3D22.20VMN, 3D22.20 Coffee can monochord3D22.20PIRA 200 - OldVertical resonance tube3D30.00PIRA 200 - OldVertical resonance tube3D30.10PIRA 200 - OldVertical resonance tube3D30.10				theory of the device.	
Sut, S-141aeolian harp3D20.52Mount strings vertically on a rotating table to give the sound of strings excited by the wind.Sut, S-142aeolian scope3D20.52A sort of aeolian stethoscope.Sut, S-134rubber-band harp3D20.60The pitch of a rubber-band changes only slightly with great increase in length (tension).PIRA 1000violin3D22.00VMN, 3D22.10violin3D22.10VIMN, 3D22.20cigar box cello3D22.20VIMN, 3D22.20cigar box cello3D22.20VMN, 3D22.20cigar box cello3D22.20VAN, 3D22.20cigar box cello3D20.00VAN, 3D22.20cigar box cello3D30.00 <td></td> <td></td> <td></td> <td></td> <td></td>					
Sut, S-142 Sut, S-134aeolian scope rubber-band harp3D20.52 3D20.60A sort of aeolian stethoscope. The pitch of a rubber-band changes only slightly with great increase in length (tension).PIRA 1000violin3D22.00PIRA 1000violin3D22.10UMN, 3D22.10violin3D22.20PIRA 1000cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20PIRA 1000cigar box cello3D22.20VMN, 3D22.20cigar box cello3D22.20PIRA 1000cigar box cello3D22.20PIRA 1000cigar box cello3D22.20PIRA 1000cigar box cello3D22.20PIRA 200 - Oldwertical resonance tube 3D30.00 PIRA 200 - Oldvertical resonance tube 3D30.10 PIRA 200 - Oldvertical resonance tube 3D30.10		•		Mount strings vertically on a retating table	to give the equipal of strings evolted
Sut, S-134rubber-band harp3D20.60The pitch of a rubber-band changes only slightly with great increase in length (tension).PIRA 1000violin3D22.00PIRA 1000violin3D22.10UMN, 3D22.10violin3D22.10PIRA 1000cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, Sj-6cigar box celloD&R, W-410, W-coffee can monochord3D22.20A subscript of the can monochord3D22.20PIRA 200 - Oldvertical resonance tube3D30.00PIRA 200 - Oldvertical resonance tube3D30.10				by the wind.	to give the sound of strings excited
Stringed Instruments3D22.00PIRA 1000violin3D22.10UMN, 3D22.10violin3D22.10PIRA 1000cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, Sj-6cigar box celloD&R, W-410, W-coffee can monochord4153D30.00PIRA 200 - Oldvertical resonance tube3D30.10Draw a glass tube out of a water bath while holding a tuning fork over one		•		•	
PIRA 1000violin3D22.10UMN, 3D22.10violin3D22.10PIRA 1000cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, Sj-6cigar box celloD&R, W-410, W-coffee can monochord4153D22.20PIRA 200 - Oldvertical resonance tube3D30.10Draw a glass tube out of a water bath while holding a tuning fork over one	Sut, S-134	·			slightly with great increase in length
UMN, 3D22.10violin3D22.10PIRA 1000cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, Sj-6cigar box celloD&R, W-410, W-coffee can monochord4153D22.20PIRA 200 - Oldvertical resonance tube3D30.10Draw a glass tube out of a water bath while holding a tuning fork over one		-			
PIRA 1000cigar box cello3D22.20UMN, 3D22.20cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, Sj-6cigar box cello3D22.20A one string violin made with a cigar box body.D&R, W-410, W-coffee can monochord3D22.20Run a string through a coffee can, stretch taut and pluck or bow.415Resonance CavitiesPIRA 200 - Oldvertical resonance tube3D30.10Draw a glass tube out of a water bath while holding a tuning fork over one					
UMN, 3D22.20cigar box cello3D22.20A wooden cigar box serves as sounding box for a one string violin.F&A, Sj-6cigar box cello3D22.20A one string violin made with a cigar box body.D&R, W-410, W-coffee can monochord3D22.20Run a string through a coffee can, stretch taut and pluck or bow.415Resonance CavitiesPIRA 200 - Oldvertical resonance tube3D30.10Draw a glass tube out of a water bath while holding a tuning fork over one					
F&A, Sj-6 cigar box cello 3D22.20 A one string violin made with a cigar box body. D&R, W-410, W- coffee can monochord 3D22.20 Run a string through a coffee can, stretch taut and pluck or bow. 415 Resonance Cavities 3D30.00 PIRA 200 - Old vertical resonance tube 3D30.10 Draw a glass tube out of a water bath while holding a tuning fork over one				A wooden cigar box serves as sounding b	ox for a one string violin.
415 Resonance Cavities 3D30.00 PIRA 200 - Old vertical resonance tube 3D30.10 Draw a glass tube out of a water bath while holding a tuning fork over one					5
PIRA 200 - Old vertical resonance tube 3D30.10 Draw a glass tube out of a water bath while holding a tuning fork over one				Run a string through a coffee can, stretch	taut and pluck or bow.
	PIRA 200 - Old	vertical resonance tube	3D30.10		le holding a tuning fork over one

Demonstration Bibliography July 2015 **Oscillations and Waves** UMN, 3D30.10 vertical resonance tube 3D30.10 The length of a glass tube is varied by pulling it out of a water reservoir. A tuning fork is used as a frequency source. AJP 36(1),ix vertical resonance tube 3D30.10 Design of a clamp to hold the tuning fork and resonance tube, and a bracket modification for the water reservoir. F&A, Se-1 vertical resonance tube 3D30.10 A glass tube is drawn out of a water bath while holding a tuning fork over one end. Sut, S-80 vertical resonance tube 3D30.10 Use a tuning fork to excite the air column in a vertical tube as it is pulled out of a water bath. D&R, W-255 vertical resonance tube 3D30.10 Draw a piece of electrical conduit out of a water bath while holding a tuning fork over one end. Sut, S-112 vertical resonance tube 3D30.11 Blow across the mouth of bottles or a adjustable air column. Mei, 19-4.9 vertical resonance tube 3D30.12 A vertical tube is mounted over a siren disk. Sut, S-113 A length of open tube adjusted by a paper extension and excited by a tuning open tube resonance 3D30.14 fork. 3D30.14 Ehrlich 1, p. 131 open tube resonance A variable length tube excited by a beeper. AJP 69(3), 311 open tube resonance 3D30.14 Measure Q of an open ended tube being driven by a speaker set some distance away. **PIRA 1000** 3D30.15 resonance tube with piston AJP 77 (8), 678 resonance tube analysis 3D30.15 Using holographic interferometry to study standing sounds waves in a resonance tube driven by a small loudspeaker at one end. Disc 11-01 resonance tube with piston 3D30.15 Mount a microphone on a piston that slides in a glass tube and close the other end of the tube with a speaker. **PIRA 1000** horizontal resonance tube 3D30.16 A plunger on a rod is used to change the effective length of a horizontal glass UMN, 3D30.16 horizontal resonance tube 3D30.16 tube as a tuning fork supplies the exciting frequency. Sut, S-129 organ pipe velocity nodes 3D30.16 Lower a ring with a membrane and sand into a pipe with a clear side to observe velocity nodes and antinodes. AJP 56(8),702 3D30.17 A thorough discussion of modes of various bottles working up to a 3-D modes of a bottle model. AJP 77 (10), 882 modes of cylindrical containers 3D30.17 Use a small speaker, a microphone, and a CD container as a ready made acoustical resonant cavity. The angular behavior of resonant modes can be observed in addition to its frequency on an oscilloscope. Sut, S-66 A special tip for an air jet that produces many frequencies of low intensity low frequency generator 3D30.19 useful for exciting enclosed air columns. **PIRA 500** open and closed tubes 256/512 3D30.20 Disc 11-04 resonance tube 256/512 3D30.20 A tube is cut to length to resonate at 256 Hz when closed and 512 Hz when open. Sut, S-114 conical pipes 3D30.21 Corrections for the effective length of open and closed circular pipes are given. A conical pipe discussion with several interesting demonstrations is listed. 3D30.35 **PIRA 500** bloogles - kroogah tubes AJP 42(4),278 Hummer tube 3D30.35 The complete explanation on singing corrugated pipes. F&A, Se-7 freq tube dash pot A freq tube is attached to coffee can moved up and down in a pail of water. 3D30.35 F&A, Se-6 freq tube 3D30.35 Open tubes of corrugated plastic are whirled around. D&R, W-230 3D30.35 Open tubes of corrugated plastic of different lengths are whirled around. freq tube 3D30.35 Sprott, 3.7 freq tube - corrugaphone Swing a corrugated plastic tube in a circle and observe the wave forms on an oscilloscope. Ehrlich 1, p. 132 3D30.35 An open tube of corrugated plastic is blown like a whistle or whirled around. freq tube **PIRA 1000** Helmholtz resonators 3D30.40 F&A, Se-3 Helmholtz resonators 3D30.40 A set of spherical resonators made of spun brass. Helmholtz resonators Mei, 19-4.5 A small vane is rotated when placed near the small opening of a resonating 3D30.40 Helmholtz cavity. Hil, S-4d.1 acoustic resonator 3D30.40 This picture appears to be of a Helmholtz resonator. AJP 72(8), 1035 Helmholtz resonators Some Helmholtz resonators are measured for the quality factor Q and the 3D30.40 results are compared to the computed theoretical values. Sprott, 3.7 Helmholtz resonators 3D30.40 Various objects used as Helmholtz resonators. Disc 11-09 Helmholtz resonators 3D30.40 Two resonators are matched to two tuning forks. F&A, Sd-3 The hole size of a resonance box is adjusted to maximize resonance with a tuning a resonance box 3D30.41 tuning fork. Sut, S-81 Fizeau resonance box 3D30.43 A toothed wheel is used to produce a high pitched sound and an adjustable resonance box with a sensitive flame detector is used to determine speed of sound. F&A, Se-2 ploop tubes 3D30.45 Stoppers are removed from a set of tubes of varying length. Sut, S-111 ploop tubes

Demonstratior	n Bibliography	J	uly 2015 Oscillations and Waves
PIRA 500	Ruben's tube	3D30.50	
UMN, 3D30.50	Ruben's tube	3D30.50	The standard Reuben's tube.
F&A, Sa-16	Ruben's tube	3D30.50	
Mei, 19-3.5	Ruben's tube	3D30.50	
Sut, S-130	Ruben's tube	3D30.50	
Hil, S-2h	Ruben's tube	3D30.50	A horn driver is used as a sound source.
D&R, W-225	Ruben's tube	3D30.50	Directions for building and use of a Ruben's tube with driving speaker.
Sprott, 3.6	Ruben's tube	3D30.50	A pipe several meters long, with evenly spaced holes along the top, filled with natural gas and connected to a loud speaker.
Bil&Mai, p 212	Ruben's tube	3D30.50	Directions for building and use of a Ruben's tube with driving speaker. Use an electric keyboard to drive the speaker.
AJP 54(4),297	Rubens tube comment	3D30.55	A comment on AJP 53,1110 (1985).
AJP 51(9),848	Rubens tube flame structure	3D30.55	An examination of the structure of the flames in the normal mode (flame maxima at pressure nodes).
AJP 53(11),1110	Ruben's tube nodes	3D30.55	The pressure is measured at each flame hole and the results are that the flames are larger at the pressure antinodes.
AJP 54(12),1146	Ruben's tube nodes	3D30.55	
PIRA 200	Kundt's tube	3D30.60	
PIRA 1000 - Old	Kundt's tube	3D30.60	
F&A, Sa-17	Kundt's tube	3D30.60	Sawdust in a tube makes piles when driven by rubbing a rod attached to a disc.
Sut, S-82	Kundt's tube	3D30.60	Standard Kundt's tube: glass tube with cork dust, stroke a rod to excite air in tube.
Disc 11-03	Kundt's tube	3D30.60	Stroke a rod to excite cork dust in a tube.
AJP 30(7),512	horn driven Kundt tube	3D30.61	Investigation of striations in an electrically driven Kundt tube.
Hil, S-3f	Kundt's tube	3D30.61	The cork dust in Kundt's tube is excited by a horn driver.
Sut, S-127	Kundt's tube	3D30.62	A variation of Kundt's tube with an organ pipe made with one side of rubber or cellophane and sprinkled with sand while laid on its side.
Mei, 19-3.1	Kundt's tube on the overhead	3D30.63	A Kundt's tube is modified for use on the overhead projector.
TPT 3(1),30	evacuate Kundt's tube	3D30.64	Show the effect of pressure variation on the speed of sound by partially evacuating the Kundt's tube.
F&A, Sa-18	hot wire Kundt's tube	3D30.65	Cooling of a glowing wire down the center of a tube indicates standing waves.
Mei, 19-3.4	horizontal resonance tube - wire	3D30.65	A nichrome wire stretched down the middle of a glass tube and heated electrically will glow to show standing waves.
Sut, S-128	hot wire pipe	3D30.65	
Mei, 19-3.2	Kundt's tube - impedance measurement	3D30.66	Use the oscilloscope to show variation of impedance in the driving coil with changes in tube length.
AJP 39(7),811	pressure distribution in a cavity	3D30.69	Liquid deformation on the bottom of an acoustic cavity shows the time- dependent pressure distribution in a standing sound wave.
PIRA 200	hoot tubes	3D30.70	A bunsen burner heats a screen in the bottom of a large open vertical tube.
UMN, 3D30.70	hoot tubes	3D30.70	Large glass tubes sound when a wire mesh at one end is heated with a Bunsen burner.
F&A, Se-5	hoot tubes	3D30.70	A Bunsen burner heats a screen in the bottom of a large open tube.
Sut, S-62	hoot tubes	3D30.70	Singing tubes excited by hot gauze.
Sut, S-61	hoot tubes	3D30.70	Hints for making a singing tube work with only flame excitation.
D&R, W-210	hoot tubes	3D30.70	Singing tubes excited by hot gauze. Turn the tube horizontally to "pour out" the sound.
Sprott, 3.7	hoot tubes	3D30.70	A tube lowered over a Bunsen burner or a tube with an internal screen that is heated.
Disc 11-07	singing pipes	3D30.70	Two metal tubes and a glass one.
Hil, S-4c	hoot tube	3D30.71	Insert a fisher burner in a tube.
D&R, W-210	hoot tubes	3D30.71	Lower one end of a large pipe onto a Fisher burner until it resonates.
Sut, S-64	hoot tubes	3D30.72	above it.
AJP 34(4),360	Rijke Tube - electrical heating	3D30.73	Construction of electrically heated Rijke tubes, tuning a T shaped tube.
PIRA 1000	variable hoot tubes	3D30.74	
UMN, 3D30.74	variable hoot tube	3D30.74	

Demonstration	Bibliography	J	uly 2015 Oscillations and Waves
Sut, S-63	Knipp tubes	3D30.75	Knipp tubes are a special form of singing tube made by holding a short length of glass tube in the closed end of a larger tube. Picture. Ref. F.R.Watson, "Sound"p.214.
AJP 50(5),398	hot chocolate effect	3D30.77	Tap on a tall cylinder full of water and then repeat with hot water so there are lots of bubbles. The pitch descends three octaves and rises as the bubbles float up.
AJP 59(4),296 AJP 58(11),1033	hot chocolate effect - comment hot chocolate effect	3D30.77 3D30.77	A few explanations from a physical chemist. Tap on the bottom of an empty glass, a full glass (higher pitch), and a glass full of tiny bubbles (pitch raises as glass clears). Methods of generating bubbles with beer and hot water. More.
PIRA 1000	Air Column Instruments organ pipes with holes	3D32.00 3D32.10	
Sut, S-126	organ pipes with holes	3D32.10	Show open and closed pipes of various lengths and one with holes bored in
Mei, 19-3.3	tin flute	3D32.10	the side to give the diatonic scale. Open and close holes on a tin flute to find pressure nodes and antinodes.
Disc 11-02	resonance tubes (three lengths)	3D32.10	Blow air out of a flat nozzle across a set of three different length tubes.
Sut, S-65	shrieker	3D32.13	6
TPT 28(7), 459	clarinet - saxaphone	3D32.14	How to make a PVC clarinet from a clarinet mouthpiece and PVC pipe. Also some discussion on various scales.
PIRA 1000	slide whistle	3D32.15	
UMN, 3D32.15	slide whistle	3D32.15	Use a high quality sliding whistle made for band.
F&A, Se-10	variable pitch whistle	3D32.15	A whistle with a sliding piston.
D&R, W-220, W- 360	whistles	3D32.15	A collection of whistles including a train whistle and police whistles
Disc 11-06	slide whistle	3D32.15	The variable length organ pipe.
Sut, S-59	bird call	3D32.16	5 5
Ehrlich 1, p. 132	soda straw oboe	3D32.18	Snip pieces off the end of a straw to produce a double reed. Adjust the frequency by cutting the straw to different lengths.
TPT 23(9), 566	soda straw oboe	3D32.18	How to make a soda straw oboe.
PIRA 1000	organ pipes	3D32.20	
Hil, S-7c.1	organ pipe	3D32.20	An organ pipe is connected to the house air.
Sut, S-57	pipes and whistles	3D32.20	A simple discussion listing organ pipes and whistles.
PIRA 1000	open and closed end pipes	3D32.25	A collection of an an algorid and weights leaved array nines
UMN, 3D30.25 F&A, Se-9	organ pipes organ pipe	3D32.25 3D32.25	A collection of open, closed, and variable length organ pipes. A set of square wood organ pipes with a removable plug.
Hil, S-4d.3	open and closed tubes	3D32.25	Some very nice adjustable open and closed resonance tubes.
D&R, W-190	open and closed end pipes	3D32.25	Excite the fundamental of an open or closed pipe. Open pipe is one octave higher.
D&R, W-215	organ pipes	3D32.25	0
Disc 11-05	open and closed end pipes	3D32.25	Three organ pipes, open and closed.
TPT 13(9), 557	harmonica		The harmonica as an audio frequency generator.
F&A, Se-11	"C" bazooka		A 1.314 m brass tube sounds the note "C" when blown with the lips.
AJP 53(12),1130	hose in the bell	3D32.36	
PIRA 1000	demonstration trumpet	3D32.40	
AJP 53(5),504	demonstration trumpet	3D32.40	Interchangeable mouthpiece, leadpipe, cylindrical section, and bell allow one to show the function of the various parts of the brass instruments.
PIRA Local	baritone - Euphonium	3D32.41	Functions of a large brass instrument and it's parts are explored.
PIRA Local	tuba - Sousaphone	3D32.42	Functions of a large brass instrument and it's parts are explored.
PIRA Local	trombone	3D32.43	Explore the unique functions of the trombone slide.
PIRA 1000	PVC instruments	3D32.45	
D&R, W-415	PVC instruments - pan pipes	3D32.45	Pan Pipe made from 1/2 inch plastic water pipe.
TPT 28(7),459	PVC instruments, etc.	3D32.45	Very good instructions on making various instruments out of PVC. Also using a computer with a synthesizer to study scales.
	Resonance in Plates, Bars, Solids	3D40.00	
PIRA 1000	xylophone	3D40.10	
UMN, 3D40.10	xylophone	3D40.10	
AJP 69(7), 743	xylophone	3D40.10	The basic physics of xylophone and marimba bars.
F&A, Sf-5	glockenspiel	3D40.10	A small xylophone can be played to demonstrate the musical scale.
Hil, S-7d.2	xylophone	3D40.10	A small xylophone.
D&R, W-130	xylophone	3D40.10	transverse standing waves. Use this to discuss location of supports under
D&R, W-145	xylophone construction	3D40.10	xylophone pipes. Homemade xylophone made from aluminum conduit.

Julv 2015

Demonstration Bibliography		J	uly 2015 Oscillations and Waves	
Disc 10-07	xylophone bars	3D40.10	Use a microphone and oscilloscope to display the waveforms of various notes on a xylophone.	
PIRA 1000	rectangular bar oscillations	3D40.11		
Disc 10-05	rectangular bar oscillations	3D40.11	Strike a three foot rectangular bar on different faces and on the end. Listen t the different frequencies.	to
PIRA 1000	high frequency metal bars	3D40.12	······································	
Disc 10-06	high frequency metal bars	3D40.12	Hold a metal rod at the midpoint and strike at the end. Two rods an octave apart are shown.	
PIRA 1000	musical sticks	3D40.15	•	
UMN, 3D40.15	musical sticks	3D40.15	A set of wood sticks play a major scale when dropped on the lecture table.	
F&A, Sf-6	musical sticks	3D40.15	A set of wood sticks is cut so they sound the musical scale when dropped.	
Sut, S-119	musical sticks	3D40.15	Directions for making musical sticks.	
Hil, S-7d.1	musical sticks	3D40.15	A set of sticks give a complete scale when dropped.	
D&R, W-145	musical sticks	3D40.15		
D&R, W-146	musical rods - Xylopipes	3D40.15		
Bil&Mai, p 216	musical rods - Xylopipes	3D40.15		
PIRA 1000	musical nails	3D40.16		
TPT 25(2), 98	musical strips - musical ruler	3D40.16	Hold or clamp one end of a meter stick to a table and vibrate the other end. A graph of the frequency vs. the length of the meter stick can be obtained.	
D&R, M-900	musical strips - musical ruler	3D40.18	Clamp one end of a hacksaw blade to a table and set the other end to vibrating. An audible sound is produced with an increase in frequency with a reduction of the vibrating length.	а
TPT 43(5), 282	musical strips - musical ruler	3D40.18	Drive the hacksaw blade with an electromagnetic coil.	
Bil&Mai, p 216	musical strips - musical ruler	3D40.18		
	·		end that is extending over the edge of the table to vibrating. Reduce the vibrating length to increase the frequency.	
TPT 39(5), 310	thumb piano	3D40.19	Description and analysis of a thumb piano also known as a mbira or kalimba Also pictures and analysis of Marloye's harp.	3.
PIRA 200	singing rod	3D40.20	Hold a long aluminum rod at the midpoint and stroke with rosined fingers.	
UMN, 3D40.20	singing rod	3D40.20		
D&R, W-135, W- 205	singing rod	3D40.20	rod is of correct diameter and length, coupled oscillations between	:
Sprott, 3.7	singing rod	3D40.20	1 0	
Bil&Mai, p 219	singing rod	3D40.20	Observe the wave forms on an oscilloscope. Hold a long aluminum rod at the midpoint and stroke with rosined fingers.	
			Press the end of the rod to a Styrofoam cup to amplify the sound.	
Ehrlich 1, p. 137	singing rod	3D40.20	Put some no-slip spray or gel on your fingers. Stroke an aluminum rod to excite longitudinal standing waves.	
Disc 10-08	singing rods	3D40.20	Hold a long aluminum rod at the midpoint and stroke with rosined fingers.	
Mei, 19-3.6	singing rod	3D40.21	Stroke a 1/2" x 72" aluminum rod while holding at nodes to produce different harmonics.	t
Sut, S-136	bow the vertical rod	3D40.23	A long thin rod attached to a short thick rod clamped vertically is bowed and plucked while held at various positions.	
AJP 38(9),1152	regenerative feedback in rod	3D40.24	A detector at one end, speaker at the other, and an amplifier in between provides a regenerative feedback system for exciting a rod in the fundamental frequency.	
AJP 41(5),734	speed of sound in a rod	3D40.24	Stroke a loud rod to get a squeal, tune an oscillator and speaker to get rid of beats, and calculate the velocity.	f
AJP 42(12),1117 Mei, 19-2.2	speed of sound in a metal wire velocity of sound in a rod	3D40.24 3D40.24	Wire is stretched tightly and stroked with a wet sponge.	
, . 			Lissajous pattern is formed on an oscilloscope with the signal from a microphone placed at the other end.	
Mei, 18-1.1	singing rod	3D40.24		۱
Mei, 18-1.2	singing rod	3D40.27		
PIRA 200	Chladni plate	3D40.30		

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
UMN, 3D40.30	Chladni plate	3D40.30	A brass plate clamped horizontally in the	center is bowed while the edges are
0		02 10100	touched to provide user selected nodes. E oscillations.	•
F&A, Sb-3	Chladni plates	3D40.30	Bow the Chladni plate while damping at n	ode locations with a finger.
Mei, 19-4.2	Chladni plates	3D40.30	Excite the Chladni plates with a cello bow	. Picture.
Sut, S-137	Chladni plate	3D40.30	A horizontal metal plate covered with sand	d is struck or bowed while touching
		0040.00	the edge at various nodal points.	
Hil, S-7e	Chladni plates	3D40.30	Bow circular and square Chladni plates.	d fa have dealette terrebten de andere
D&R, W-165	Chladni plates	3D40.30	A horizontal metal plate covered with sand at various nodal points. Fluorescent sand	
			dramatic.	and black lights make it more
Disc 09-30	Chladni plates	3D40.30	A plate is driven by magnetostriction in the	e 10 to 30 Khz range.
AJP, 50 (3), 271	Chladni plates	3D40.30	On Chladni's law for vibrating plates.	0
F&A, Sb-1	Chladni plates	3D40.31	Sprinkled sand shows standing waves on	a circular metal plate driven at the
			center by an oscillator.	
Sut, S-138	Chladni plates	3D40.31	Drive a Chladni plate from the center.	
AJP 59(7),665	Chladni plates on the overhead	3D40.32	Directions for making a loudspeaker drive	n Chladni plate for the overhead
Mai 10 / 1	projector Chladni platan	2010 22	projector.	Jaudanaakar Bisturaa
Mei, 19-4.1 PIRA 1000	Chladni plates thick Chladni plate	3D40.32 3D40.33	Chladni plates are driven from above by a	i loudspeaker. Fictures.
UMN, 3D40.33	thick Chladni plate	3D40.33	A circular disc of 1/2" aluminum exhibits a	a single pattern.
AJP 73(3), 283	Chladni plates	3D40.34	Additional comments on AJP 72(10), 134	o 1
AJP 72(10), 1345	Chladni plates	3D40.34	Grains of salt and salt dust are used at the	
			the nodal lines while the dust collects at the	he antinodes.
AJP 72(2), 220	Chladni plates - Gong - Cymbals	3D40.34	Something about nondegenerate normal-	mode doublets in vibrating flat
			circular plates.	
AJP 50(3),271	Chladni plates - Gong - Cymbals	3D40.34	After some interesting historical and gene	eral comments, nonflat plates
		2040.25	(cymbals, gongs, etc.) are examined.	
PIRA 1000 UMN, 3D40.35	flaming table flaming table	3D40.35 3D40.35	Same as AJP 55(8),733.	
AJP 55(8),733	2-D flame table	3D40.35 3D40.35	Two-dimensional rectangular and circular	flame tables extensions of the one-
/101 00(0),/00		0040.00	dimensional Rubens tube, are shown in s	
F&A, Sb-2	flaming birthday cake	3D40.35	Flames from a two dimensional array driv	
	C		resonant modes.	
AJP 56(10),913	2D flame table analysis	3D40.36	An analysis of the two dimensional flame	table.
PIRA 500	drum head	3D40.40		
AJP 51(5),474	Chladni figures - tympani head	3D40.40	Drive a timpani head with a loudspeaker.	and a standard standard standard the fills are been to all
AJP 35(11),1029	standing waves on a drum	3D40.40	A speaker drives a circular rubber membr	ane under tension while illuminated
Mei, 19-4.12	standing waves in a drum	3D40.40	with a strobe. A circular rubber membrane with a pattern	a is illuminated with a strobe and
		0010.10	driven from below by a 12" loudspeaker. F	
Disc 09-29	drumhead	3D40.40	A speaker drives a drumhead.	
AJP 36(8),669	vibrations in a circular membrane	3D40.41	The eigenfrequencies of (21) agree closel	ly with the theoretical values. Air
			damping is removed by using a wire mesh	h driven magnetically.
PIRA 1000	bubble membrane modes	3D40.45		
UMN, 3D40.45	bubble membrane modes	3D40.45	Use a large right angle PVC fitting.	
AJP 33(11),xvii	soap film membrane modes	3D40.45	Light from a slide projector is reflected off speaker behind.	a soap film with a black cloth and
AJP 59(4),376	bubble membrane modes	3D40.45	A simple technique to drive bubble memb	ranes of various shapes with a
/101 00(1),010		0010.10	speaker.	
D&R, W-170	soap film membrane modes	3D40.45	Drive bubble membrane with a speaker or	n an acrylic tube. Focus reflected
			light from a slide projector with a large ler	ns.
D&R, W-175	bubble membrane modes	3D40.45	Large bubble membranes in large circular	and rectangular frames are
			oscillated by hand.	
PIRA 1000	musical goblet	3D40.50		
F&A, Se-8	musical goblets	3D40.50	Rub the edge of a goblet with a wet finger	
Hil, S-7d.3	glass tumbler	3D40.50	Rub a finger dipped in vinegar around the	
AJP 73(11), 1045	musical goblet variation	3D40.50	A model to compute the frequency shift of is added.	i the singing wineglass when water
D&R, W-155	musical goblet	3D40.50	Rub the edge of a goblet with a wet finger	
D&R, W-160	musical goblet variation	3D40.50	Excite a goblet by rubbing a wet finger are	
	-	-	level in the goblet.	
Ehrlich 1, p. 135	musical goblet	3D40.50	Rub the rim of a wine glass with a moist fi	inger.
Mei, 18-5.6	standing waves in a bowl	3D40.51	A 15 I flask is cut in half to form a bowl wh	
			waves. Suspended ping pong balls indica	te nodes and loops.

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
Sut, S-139	bowing the bowl	3D40.51	Suspend four pith balls so they touch two of the balls.	the edge of a bowl and bow between
TPT 30(7), 341	spouting bowl	3D40.51	Three demonstrations of ancient chin bronze mirror or magic mirror, water	•
AJP 53(11),1070	"whispering" waves in a wineglass	3D40.52		ves in vessels, including ethylene glycol
AJP 51(8),688 TPT 28(9),582	wineglass acoustics wine glass waves, etc.	3D40.52 3D40.53	A study of wineglass acoustics. Seven questions about wine glass wa harmonica and a Chinese "water spo	aves are answered. Pictures of a glass uting basin".
PIRA 200 PIRA 500 - Old	shattering goblet shattering goblet	3D40.55 3D40.55		°
AJP 47(9),828	shattering goblet or beaker	3D40.55	Laboratory beakers are shattered in a paper over the rim serving as a resor	a chamber with a small piece of folded
TPT 28(6),418 Sprott, 3.9	shattering goblet shattering goblet or beaker	3D40.55 3D40.55	Break a lead crystal goblet with ampl A glass beaker exposed to a sufficier resonant frequency will shatter.	ified sound.
Disc 09-06 AJP 58(1),82	glass breaking with sound wind chimes	3D40.55 3D40.60	Large amplitude sound at the resona Directions for making wind chimes. S complex tones.	
PIRA 1000	bull roarer	3D40.65	•	
Sut, S-143 AJP 53(6),579	aeolian "bull roarer" spherical oscillations movie	3D40.65 3D40.90	The Australian "bull-roarer" produces A description by the author of a comp oscillations.	
	Tuning Forks	3D46.00		
Hil, S-2g	tuning fork sets	3D46.15	Various sets of tuning forks.	
PIRA 1000	tuning fork	3D46.16	A second the second strength second for	
Sprott, 3.7	oscilloscope waveforms - tuning forks	3D46.16	An oscilloscope displays the wavefor	ms of various tuning forks.
Disc 10-03	tuning fork	3D46.16	Use a microphone and oscilloscope t and 1024 Hz tuning forks.	o display the waveforms of 256, 512,
Sut, S-110	tuning forks	3D46.20	Strike two tuning forks. Hold one aga When the first is no longer audible, h	
Sut, S-55	tuning forks	3D46.21		eel and alloy, on and off a resonator box.
PIRA 1000	adjustable tuning fork	3D46.22		
Disc 10-04	adjustable tuning fork	3D46.22	Adjust masses on each tine of a large oscilloscope. Mistuned forks damp qu	
Mei, 19-9.3	modulation of sound waves	3D46.25	a b j	requencies mounted on resonant boxes by an oscillating barrier between them.
F&A, Sh-4	low frequency tuning fork	3D46.30	Tuning fork motion can be studied wi	
D&R, W-265	low frequency tuning fork	3D46.30	Tuning fork vibrations may be studied	-
Bil&Mai, p 216	low frequency tuning fork	3D46.30	a strobe.	d with a large fork and a bowl of water or
Sut, S-51	project a tuning fork	3D46.31	Stroboscopically shadow project a vit	
F&A, Sf-2 F&A, Sc-3	vowel tuning forks quadrupole nature of a tuning fork	3D46.40 3D46.45	A set of tuning forks made to give so Hold a tuning fork close to the ear an	
AJP 68(12), 1139	quadrupole nature of a tuning fork	3D46.45	The sound of a tuning fork rotated clo is shown to be that of a linear quadru	ose to the ear, and then at arms length,
AJP 28(8),ix	frequency standard tuning forks	3D46.90	Driven precision tuning forks of 400 a frequency standards.	•
AJP 28(5),505	Electronically driven tuning fork	3D46.90	A tube circuit for driving a tuning fork	
Sut, S-56	electrically driven fork Electronic Instruments	3D46.90 3D50.00	A vacuum tube circuit for driving tunin	
PIRA 500	keyboards	3D50.10		
Sprott, 3.7	electronic keyboard SOUND	3D50.10 3E00.00	Display the output of an electronic ke	yboard on an oscilloscope.
	REPRODUCTION	2540.00		
PIRA 1000	Audio Systems audio cart - complete audio	3E10.00 3E10.10		
	system			
	Loudspeakers	3E20.00		

Demonstration	Bibliography	J	uly 2015	Oscillations and Waves
D&R, W-425	loudspeakers	3E20.10	A simple speaker constructed of a coil connected to a tape player. Hold the of be made audible by placing the end of	coil next to a magnet. The sound can
Disc 10-12	cutaway speaker	3E20.15	A loudspeaker has been cut in two so easily observed at low frequencies.	that the motion of the cone can be
AJP, 50 (4), 348	loudspeaker - resonant frequency	3E20.15	Finding the fundamental resonant freq its useful low-frequency limit.	uency of a loudspeaker and marking
PIRA 1000	crossover network for speakers	3E20.20		
PIRA Local	crossover network for speakers	3E20.20	White noise is played through a speak frequency speaker elements that are of microphone connected to an oscilloso frequencies are coming through the tw through the woofer.	controlled by a crossover. Using a
TPT, 9, (1), p.47	crossover network	3E20.25	A crossover is connected to a signal g adjusted, the speaker is switched betw in the circuit demonstrating how the cr	veen the tweeter and woofer positions
D&R, W-405	sound color organ	3E20.30	A kit that is basically a low-mid-high cu connected to a different colored light. light, mid-range frequendies to a green light.	In this case, low frequencies to a red
	Microphones	3E30.00		
	Amplifiers	3E40.00		
PIRA Local	distortion in an audio amplifier	3E40.10	Raising the input signal of an audio an distortion in the ouput signal. The dist easily seen on an oscilloscope.	nplifier past its linear range creates ortion and additional harmonics can be
Sprott, 3.7	distortion in an audio amplifier	3E40.10	Show effect of distortion due to signal and oscilloscope.	amplification using a transistor radio
	Recorders	3E60.00		
PIRA Local	harmonic disortion of tape recorders	3E60.10	Set up to record a square wave on the passes the preamps of the recorder, a been recorded and played back.	tape player. Look at the signal after it not then look at the signal after it has
	Digital Systems	3E80.00		
PIRA 1000	CD with holes	3E80.10		
PIRA Local	CD with holes	3E80.10	A CD has small increasing size holes small holes with no skipping as the dis damage to the disc.	
PIRA Local	MP3 compression	3E80.50	0	ressions of a short musical CD excerpt. see how the spectrum is being limited

	THERMAL PROPERTIES	4A00.00	
	OF MATTER		
	Thermometry	4A10.00	
PIRA 500	various thermometers	4A10.10	
Sut, H-2	various thermometers	4A10.10	Show many different thermometers.
Mei, 25-1	commercial apparatus	4A10.12	A listing of commercial apparatus for measuring temperature.
AJP 29(6),368	demonstration thermometer	4A10.13	Review of the large dial Atomic Laboratories thermometer.
PIRA 1000	mercury thermometer	4A10.15	.
F&A, Ha-1	mercury thermometer	4A10.15	Show various liquid thermometers.
PIRA 1000	Galileo's thermometer	4A10.20	
AJP 59(1),90	Galileo's thermometer	4A10.20	A set of glass spheroid buoys of varying density in a glass cylinder arranged so the lowest floating ball represents the temperature. History and sources. See AJP 57,845-846.
Sut, H-96	low temperature thermometers	4A10.25	Measure temperatures with thermocouples or a pentane thermometer.
Sut, H-6	thermocouple	4A10.30	The copper-constantan thermocouple and galvanometer as a lecture table thermometer.
Sut, H-7	thermocouples	4A10.31	Make a thermocouple and demonstrate it if you are going to use it in thermoelectricity.
Mei, 25-2.5	supersensitive thermometer	4A10.35	Directions for making a thermometer from a thermistor and transistor amplifier.
Mei, 25-2.3	temperature sensitive paint	4A10.40	Directions for making temperature sensitive paint.
AJP 30(4),300	thermosensitive pigment	4A10.42	Double iodide of mercury and silver (Hgl2.2Agl) changes from yellow to red on heating. Several demos.
TPT 1(5),226	thermochromic cards	4A10.45	Many demonstrations are discussed using thermochromic cards as temperature indicators.
Mei, 26-3.5	Thermicon card	4A10.45	Many demonstrations are discussed making use of the Thermicon card. Pictures, Diagrams, Reference.
PIRA 1000	cholesteric liquid crystals	4A10.50	
AJP 38(4),425	cholesteric liquid crystals	4A10.50	Making liquid crystals for thermal mapping.
D&R, H-018	liquid crystal sheets	4A10.50	Gather an assortment of commercially available liquid crystal strips with different temperature ranges.
Disc 24-17	liquid crystal sheets	4A10.50	Watch a liquid crystal thermometer change color.
Sut, H-8	pyrometry	4A10.70	1) Show the changes in color and brightness as a iron wire is heated. 2) Place a lamp on the focal plane of a projection lantern and vary the voltage
Sut, H-1	temperature ranges	4A10.90	so the filament appears darker and brighter than the background. Prepare a large diagram several meters long ranging from 0 to 6000 K with points of interest indicated.
	Liquid Expansion	4A20.00	
PIRA 500	Torchelli tube	4A20.10	
UMN, 4A20.10	Torricelli tube	4A20.10	Immerse a Torchelli tube filled with red water in a boiling water bath. The fluid will drop before rising.
F&A, Ha-9	expansion up a tube by heating	4A20.10	A flask with a long slender neck is filled with colored water and immersed in a hot water bath.
Disc 14-13	thermal expansion of water		Fill a round bottomed flask with water, stick a slender tube in the neck, and heat with a burner.
Sut, H-32	Torricelli tube	4A20.11	A small bulb with a capillary full of mercury is immersed in a bath of hot water. The meniscus falls, then rises.
Mei, 25-2.1	Torricelli tube	4A20.12	glass expands before the liquid warms.
Hil, H-2a.7	water thermometer	4A20.13	A bulb with a small bore tube.
F&A, Ha-12	expansion of fluids	4A20.20	A manometer is surrounded on one side with ice water and on the other by steam.
Sut, H-27	test tube set	4A20.25	A number of test tubes filled with various liquids are immersed in a hot water bath. Expansion is magnified by small bore tubes.
PIRA 1000	maximum density of water	4A20.30	A flash with a manufacture of the state of t
Sut, H-28	maximum density of water	4A20.30	A flask with a narrow stem shows volume changes and a thermocouple shows temperature changes when water is allowed to warm from 0 C.
Sut, H-29	maximum density of water	4A20.30	Refinements to H-28. Use a 100 ml quartz flask and 1 mm bore capillary tube for a meniscus drop of 5 to 6 mm.
Disc 14-14	negative expansion coefficient of water	4A20.30	Immerse a water thermometer in an ice bath
F&A, Ha-13	water at 4 C	4A20.35	Water at the bottom of a cylinder remains at 4 C when surrounded by ice at the middle.

July 2015

Th	erm	odyn	ami	cs

1		Bibliography		
	Sut, H-31	maxium density of water	4A20.35	The familiar Hope apparatus. A tall cylinder of water with a collar of salt/ice around the middle will freeze at the top and remain at 4 C at the bottom.
	Sut, H-30	maximum density of water	4A20.35	In a jar of water 35 cm high with 15 cm of ice floating on top, the temperature at the bottom does not fall below 4 C.
	TPT 2(7),338	coefficient of expansion of oil Solid Expansion	4A20.40 4A30.00	A hydrometer is used to measure the density of olive oil as it cools.
		•		Ctring of discimilar motols handed together hand when booted
	PIRA 200	bimetal strip	4A30.10	Strips of dissimilar metals bonded together bend when heated.
	UMN, 4A30.10	bimetal strip	4A30.10	A bimetal strip of brass and steel is heated in a Bunsen burner flame.
	F&A, Ha-5	bimetal strip	4A30.10	Strips of dissimilar metals bonded together bend when heated.
	Mei, 25-2.2	bimetallic strip	4A30.10	A pointer is mounted on the end of a bimetallic strip. Picture.
	Sut, H-21	bimetal strip	4A30.10	Two 25 cm strips of brass and invar steel are welded together for use as a bimetal strip.
	Hil, H-2a.5	bimetallic strip	4A30.10	Just a picture.
	D&R, H-110	bimetalic strip	4A30.10	Heat a bimetallic strip and observe bending.
	Disc 14-08	bimetallic strip	4A30.10	Heat the commercial bimetallic strip in a flame.
	PIRA 1000	thermostat model	4A30.11	
	F&A, Ha-6	thermostat	4A30.11	A small bimetal strip acts as a switch in a thermostat.
	Sut, H-22	bimetallic strip thermostat	4A30.11	Set up a bimetallic strip thermostat to ring bells or flash lights.
	D&R, H-044	bimetallic strip thermostat	4A30.11	A bimetallic strip thermostat will turn lights on and off.
	Disc 14-09	thermostat model	4A30.11	A bimetallic strip bends away from an electrical contact when heated turning off a light.
	AJP 55(10),954	turn signal oscillator	4A30.12	Two types of turn signal oscillators that use bimetal strips are discussed.
	PIRA 1000	wire coil thermostat - Zigmund Peacock, University of Utah	4A30.15	Two thermostat coils made from flat spring steel with pointer rods added to the outer end. One flat, and one stretched into the shape of a cone. Both work the same. Shows that most thermostats are just coils of spring steel and not bimetal strip.
	PIRA 200	balls and ring	4A30.20	A ring with a set of two balls, one over and one under size. Heat the ring and
		-		slip over both.
	UMN, 4A30.20	balls and ring	4A30.20	
	F&A, Ha-7	ball and ring	4A30.21	A ball passes through a ring only when it is heated.
	Sut, H-15	ball and ring	4A30.21	A ball passes through a snugly fitting ring when both are at the same temperature.
	Hil, H-2a.4	ball and ring	4A30.21	Just a picture.
	D&R, H-114	ball and ring	4A30.21	The ball will pass through a ring only after the ring has been heated.
	Disc 14-11	thermal expansion	4A30.22	A brass plate with a hole is heated until it fits over a ball.
	Sut, H-16	shrink fit	4A30.23	Heat a brass ring and slip it onto a slightly tapered steel bar and pass around the class.
	PIRA 500	break the bolt	4A30.30	
	UMN, 4A30.30	break the bolt	4A30.30	Heat a iron bar, then tighten it in a yoke so it breaks a cast iron bar when the bar cools.
	F&A, Ha-10	forces caused by change of length	4A30.30	A heavy iron bar heated and placed in a yoke breaks a cast iron bolt as it cools.
	Sut, H-17	break the bolt	4A30.30	A heated bar is tightened in a yoke against a cast iron peg which breaks as the bar cools.
	Disc 14-10	pin breaker	4A30.30	Heat a rod to break a 1/8" diameter pin by expansion.
	Sut, H-18	break the bolt	4A30.31	A drill rod clamped between a inner steel rod and an outer brass tube breaks
			4A30.40	when the brass tube is heated. Diagram.
	PIRA 1000	hopping discs		Rimotal disce hap on guide wires between het and sold plates
	F&A, Ha-11	hopping discs	4A30.40	Bimetal discs hop on guide wires between hot and cold plates.
	D&R, H-122	hopping discs	4A30.40	Warm bimetal disks will jump in the air when cooled.
	Ehrlich 1, p. 114	hopping discs	4A30.40	Warm bimetallic disks will jump in the air when cooled.
	Sut, H-13	bending glass by expansion	4A30.45	One edge of a strip of plate glass is heated with a Bunsen burner causing the glass to bend toward the cooler side.
	Sut, H-24	Trevelyan rocker	4A30.46	A brass or copper rocker heated and placed on a lead support will rock due to expansion of the lead. Diagram.
	PIRA 1000	expansion of quartz and glass	4A30.50	
	UMN, 4A30.50	expansion of quartz and glass	4A30.50	
	F&A, Hd-8	expansion of quartz	4A30.50	Quartz and glass tubes are both heated with a torch and plunged into water.
	Sut, H-25	expansion of quartz and glass	4A30.50	Heat a piece of quartz tube and quench it in water. Try the same thing with Pyrex and soft glass.
	F&A, Ha-8	expansion of a tube	4A30.55	Steam is passed through an aluminum tube and a dial indicator shows the change in length.
	Sut, H-12	expansion tube	4A30.55	One end of a tube rests on a needle attached to a pointer that moves as the tube is heated.

Demonstration	n Bibliography	J	uly 2015 The	ermodynamics
D&R, H-040	expansion rod	4A30.55	One end of a rod rests on a needle attached to a pointe The pointer will move as the rod is heated. Shine a las observe minute expansion.	
Bil&Mai, p 228	expansion rod	4A30.55	One end of a rod rests on a needle attached to a pointe The pointer will move as the rod is heated. Shine a las observe the expansion.	
PIRA 500	sagging wire	4A30.60		
UMN, 4A30.60	sagging wire	4A30.60		
Sut, H-9	sagging wire	4A30.60	Heat a length of nichrome wire electrically and watch it Recalescence temperature of iron (800 C).	sag. ALSO -
Hil, H-2b	linear expansion of a wire	4A30.60	A wire is heated electrically and a pointer indicates char recalescence of iron.	inge of length. Also
Disc 14-07	thermal expansion of wire	4A30.60	A long iron wire with a small weight hanging at the mid electrically.	point is heated
Sut, H-10	expanding wire	4A30.61	One end of a heated wire is passed over a pulley to a v a pointer attached.	weight. The pulley has
Sut, H-14	bridge expansion	4A30.65	Either the wire or the roadway can be heated in this mo bridge.	odel of a suspension
Sut, H-23	gridiron pendulum	4A30.69	A gridiron pendulum of constant effective length when tubes of brass and zinc.	heated is made of
PIRA 1000	heat rubber bands	4A30.80		
UMN, 4A30.80	heat rubber bands	4A30.80		
AJP 31(5),397	heat rubber bands	4A30.80	 Pass out rubber bands, have the students stretch the against lips, then wait and reverse for cooling. Hang rubber bands so it touches the table, heat 20 sec with a mass will lift 1 cm. 	a 1 kg mass from four
F&A, Hm-4	thermal properties of rubber	4A30.80	Rubber tubing inside a copper shield contracts as it is I	heated.
Sut, H-19	heat rubber	4A30.80	Hang a 100 g weight from a rubber band and heat with enclose a rubber tube in a brass cylinder and heat with	a radiant heater. Or,
Sut, H-173	rubber band on lips	4A30.80	Pass out rubber bands for the students to put on their I in temperature as they stretch and unstretch.	ips to feel the change
D&R, H-054	heat rubber bands	4A30.80	Hang 1 kg from a rubber band and heat. Observe cont	traction.
D&R, H-340	rubber band on lips	4A30.80	Touch a rubber band to upper lip, stretch and unstretch up when stretched and down when unstretched.	n. Temperature will go
Sut, H-20	heat rubber	4A30.82	A complex apparatus that oscillates as a rubber band is	s heated and cooled.
	Properties of Materials at Low Temperatures	4A40.00		
PIRA 200 - Old	lead bell, solder spring	4A40.10	Ring a lead bell after it is frozen in liquid nitrogen, cool make a spring.	
UMN, 4A40.10	lead bell	4A40.10	Ring a lead bell at room temperature and after it has be nitrogen.	een cooled in liquid
F&A, Hk-9	lead bell	4A40.10	A lead bell frozen in liquid nitrogen gives a tone.	
Sut, H-100	lead bell, solder spring	4A40.10	A lead bell rings at low temp, a solder spring supports a	a weight.
AJP 77 (10), 917	lead bell	4A40.10	Picture of two different types of lead bells.	
ref.	faith bell	4A40.12	A bell that gives a dull sound at room temperature and temperature. The opposite of the lead bell. See 3D40	
PIRA 500	solder spring	4A40.15		
UMN, 4A40.15	solder spring	4A40.15	Cool a solder spring in liquid nitrogen and hang a mass	s from it.
Disc 08-09	elasticity of low temperature	4A40.15	Liquid nitrogen and a solder spring, rubber hose, etc.	
PIRA 1000	mercury hammer	4A40.20		
F&A, Hk-8	mercury hammer	4A40.20	Mercury is frozen in the shape of a hammer head and	used to pound a nail.
Sut, H-101 PIRA 200	mercury hammer smashing rose and tube	4A40.20 4A40.30	Cast a mercury hammer and freeze with liquid nitrogen Cool a rose, rubber tube, or handball in a clear dewar of smash it.	
UMN, 4A40.30	smashing rose and tube	4A40.30	Cool a rose in a clear dewar of liquid nitrogen and sma	sh it.
F&A, Hk-7	rubber at low temperature	4A40.30	A rubber hose is dipped in liquid nitrogen and smashed	
D&R, H-078	smashing flower and balls	4A40.30	Cool flowers and cheap rubber balls in liquid nitrogen a bananas and balloons.	ind smash. Also try
Sprott, 2.9 TPT 28(8),544	smashing flower and balls low temp behavior	4A40.30 4A40.32	Objects placed in liquid nitrogen change their physical A discussion of a heat of vaporization of liquid nitrogen	
			usual demonstrations.	

July 2015

Demonstration	Bibliography	J	uly 2015 I hermodynamics
Sut, H-99	low temp behavior	4A40.32	Smash a wiener, sheet metal, flower, hollow rubber ball, saw a sponge, alcohol is viscous, a pencil won't mark.
TPT 28(5),321	cyrogenics day in a high school	4A40.33	Description of the annual cryogenics day at F. D. Roosevelt High School listing many demonstrations.
PIRA 1000	cool rubber band	4A40.35	loting many domonotidations.
PIRA 1000	viscous alcohol	4A40.40	
			Ether all a back as the second as the second at the side with a second second second second second second second
F&A, Hk-10	viscous alcohol	4A40.40	Ethyl alcohol becomes very viscous at liquid nitrogen temperatures.
Disc 14-05	viscosity of alcohol at low temp	4A40.40	Cool alcohol with liquid nitrogen and pour through a cloth screen.
Sut, H-114	liquid air fountain	4A40.50	A fountain is made using evaporating liquid air as a pressure source.
Sut, H-116	absorption of gases	4A40.60	A test tube filled with charcoal is attached to a bent 80 cm tube dipped in a beaker of mercury. When the charcoal is cooled, the mercury rises.
Sut, H-117	absorption of gases	4A40.60	A discharge tube filled with charcoal passes through all the stages to vacuum when cooled in liquid air.
Sut, H-121	burning in liquid oxygen	4A40.70	Steel wool is burned after being immersed in liquid oxygen.
Sut, H-118	burning in liquid oxygen	4A40.71	Old cigars (and other things) burn well when saturated with liquid oxygen.
Sut, H-120	burning in liquid oxygen	4A40.72	While smoking a cigarette the lecturer puts liquid oxygen in the mouth and blows out.
Sut, H-119	chemical reaction rates in liquid oxygen	4A40.75	Drop a piece of potassium cooled in liquid oxygen into water.
Sut, H-107	filtering liquid air	4A40.80	Crystals of ice and carbon dioxide are retained in a filter.
Sut, H-108	density of liquid air	4A40.85	Pour liquid air into water. As the nitrogen evaporates, the liquid air sinks and oscillates with convection currents.
AJP 55(6),565	low temperature lattice models	4A40.90	Arrays of magnetic quadrapoles in square and triangular lattices simulate orientational ordering of diatomec molecule at low temperatures.
	Liquid Helium	4A50.00	C I
Mei, 28-1	basic low temperature apparatus	4A50.10	The basic apparatus for working with liquid helium is reviewed. Details in appendix, p.1305.
AJP 34(8),692	low temp apparatus	4A50.11	Pictures of many devices for use in lecture demonstration and laboratory.
AJP 43(12),1105	superconduction in lead	4A50.20	A superconducting ammeter allows direct observation of the current.
Mei, 28-2.1	superconduction in lead	4A50.20	Lead in liquid helium is superconducting and floats a magnet. Picture.
Mei, 28-2.2	the persistent current	4A50.30	A niobium coil remains superconducting at 4.2 K for up to 5 amps. Picture, Diagram.
Mei, 28-2.3	lambda-point transition	4A50.40	The transition between helium I and II.
Mei, 28-2.4	superleak	4A50.50	Leakage through a fritted disk happens with helium I but not II.
Mei, 28-2.5	the fountain effect	4A50.60	The fountain effect. Pictures.
Mei, 28-2.6	rolling creeping film	4A50.70	A film of helium II creeps out of a dish. Picture.
Mei, 28-2.7	resistance vs. temperature	4A50.80	A circuit shown can be used to demonstrate superconductivity in lecture. Diagram.
	HEAT AND THE FIRST	4B00.00	
	LAW Heat Capacity and Specific Heat	4B10.00	
AJP 52(9),856 PIRA 500	specific heat of liquids problem water and aluminum on a hot plate	4B10.05 4B10.10	A note on the inexplicably high specific heat of liquids.
UMN, 4B10.10	water and aluminum on the hot plate	4B10.10	One liter of water in a beaker, water and aluminum of 1 Kg total mass in another beaker, are heated on the same hot plate. Display temperatures of both.
F&A, Hb-2	heat capacity	4B10.10	Two beakers, one with 1 Kg water and the other with .5 Kg water and .5 Kg lead are heated at the same rate.
Disc 14-17	specific heat	4B10.10	Heat lead, aluminum, and steel to 100 C and then warm cool water. Show temp on LED bar graph.
PIRA 1000	water and oil on a hot plate	4B10.15	
UMN, 4B10.15	water and oil	4B10.15	Heat two beakers on a single hot plate, each contains the same mass of either water or oil.
Sut, H-35	iron and water	4B10.16	Iron and a vessel of water with the same mass and area are heated on identical Bunsen burners. Dip your hand in the water and sprinkle it on the iron plate where it will sizzle.
Sut, H-39	mixing water	4B10.20	Different masses of hot and cold water are mixed in a large beaker and the final temp is compared to the calculated value.
F&A, Hb-1	calorimeter	4B10.26	A calorimeter is used to measure the specific heat of lead.
Sut, H-40	hot lead into water	4B10.26	Known masses of lead and copper are heated and poured into calorimeters
			with a known mass of water. Specific heats are computed from initial and final temperatures.

Demonstratior	Bibliography	J	uly 2015	Thermodynamics
Ehrlich 1, p. 113	hot metal into water	4B10.26	Known masses of metal are heated in boiling w calorimeters containing a known mass of water	
Sut, H-38	ice calorimeter	4B10.27	computed. Several different metals on the same mass are lowered into a line of crushed ice filled funnels. in graduates.	•
Sut, H-37	metals in water	4B10.28	Heat metals of the same mass and lower them same amount of water at room temperature.	into beakers containing the
PIRA 1000	melting wax	4B10.30	same amount of water at room temperature.	
UMN, 4B10.30	melting wax	4B10.30	Five metals of the same mass are heated in bo thin sheet of paraffin.	iling water and placed on a
Sut, H-36	melting wax	4B10.30	Several cylinders of the same metals with the s heated in paraffin and transferred to a paraffin of	
D&R, H-210	melting wax	4B10.30	Balls of steel, aluminum, and lead with same di water and then dropped onto a thin sheet of wa	
Disc 14-18	specific heat with rods and wax	4B10.30	Heat equal mass cylinders of aluminum, steel, path through honeycomb.	and lead and let them melt a
Mei, 26-2.1	specific heat at low temperatures	4B10.35	Cylinders of the same size of aluminum and lea after being cooled in liquid nitrogen.	ad heat up at the same rate
Sut, H-41	differential thermoscope	4B10.40	The jacket areas of two unsilvered unevacuated to a U tube and equal masses of water and me The U tube shows the difference in heat capaci	rcury at 100 C are poured in.
Sut, H-42	heat of combustion	4B10.50	A bomb or continuous flow calorimeter is used foods and fuel.	
AJP 33(1),18	specific heat of a gas	4B10.55	Heat a gas in a flask by discharging a capacitor wire and measure the momentary increase in p manometer.	-
PIRA 1000	Clement's and Desormes' experiment	4B10.60		
UMN, 4B10.60	Clement's and Desormes' experiment	4B10.60	A 10 L flask fitted with a mercury manometer is valve is quickly opened and shut. The ratio of p specific heats.	
F&A, Hg-3	Clement's and Desormes' experiment	4B10.60	A large flask with an attached mercury manomer momentarily opened to the atmosphere.	eter is overpressured and
AJP 35(9),892	comment on Cp/Cv with manometer	4B10.61	Recommendation of an alternative statement o	f the problem and results.
AJP 35(4),xvi	Cp/Cv with water manometer	4B10.61	Replace the mercury in the oscillating column r the confined air is a large volume.	nethod with water provided
UMN, 4B10.65	elastic properties of gases	4B10.65	A steel ball in a precision tube oscillates as gas overpressured flask.	escapes from a slightly
F&A, Hg-4	elastic properties of gases	4B10.65	Gas escapes from a flask through a precision to oscillator.	ube with a precision ball
PIRA 1000	elastic properties of gases	4B10.70		
AJP 32(1),xiii	Ruchhardt's method for gamma	4B10.70	An ordinary glass tube is selected with a slight throttle valve controls the inlet pressure and the tube are timed.	
Mei, 27-6.5	Ruchhardt's method for gamma	4B10.70	A ball oscillates in the neck of a flask filled with measured indirectly as the ball oscillates.	gas. The pressure is
AJP 32(4),xvi	Ruchhardt's method - add mass	4B10.72	Add additional mass to the oscillating ball and p mass.	plot period as a function of
Mei, 27-6.6	Ruchhardt's method for gamma	4B10.72	Ruchhardt's apparatus is driven by a slow flow with additional mass.	of gas and the ball is loaded
AJP 53(7),696	syringe Ruchhardt's experiment	4B10.73	A glass syringe replaces the precision ball in a accelerometer mounted on the syringe allows to on an oscilloscope.	•
F&A, Hg-5 AJP 68(3), 265	Ruchhardt's experiment Ruchhardt's experiment	4B10.75 4B10.75	Measure the temperature in the flask with the or Ruchhardt's experiment is used to measure the	-
AJP 69(3), 387	Ruchhardt's experiment	4B10.75	specific heats for eighteen gases with atomicity Ruchhardt's experiment is used to measure the	
AJP 69(11), 1205	Ruchhardt's experiment	4B10.75	using computer data acquisition sensors. Ruchhardt's experiment is used to measure the	
	Convection	4B20.00	using a graphic calculator, interface, and senso	15.
PIRA 200	convection tube	4B20.10	Heat one side of a glass tube loop filled with wa	ater and insert some ink.
UMN, 4B20.10	convection tube	4B20.10	Heat one side of a glass tube loop filled with wa	

I	Demonstration	Bibliography	Jı	uly 2015 Thermodynamics
	F&A, Hc-2	convection of liquids	4B20.10	One side of a square tube filled with water is heated while ink is inserted to
	1 07, 110 2		4020.10	show the flow.
	Sut, H-143	heating system model	4B20.10	Heat water in a loop of glass tubing.
	D&R, H-160	convection of liquids	4B20.10	Food coloring or ink is added to a water filled square tube. Heat one side of
				the tube and observe the flow pattern.
	Sut, H-144	convection tube	4B20.11	A rectangular glass tube filled with water is heated on one side.
	Sut, H-145	heating system	4B20.13	Permanganate crystals show flow. A model of a heating system with an expansion chamber and radiator.
		noaking oyotom	1020.10	Diagram.
	PIRA 500	convection flasks	4B20.15	
	PIRA 1000	two chimney convection box	4B20.20	
	UMN, 4B20.20	two chimney convection box	4B20.20	
	F&A, Hc-1	two chimney convection box	4B20.20	A candle burns under one chimney in a double chimney convection box.
	Sut, H-139	two chimney convection box	4B20.20	A container has two lamp chimneys, a candle is placed under one of them.
	Hil, H-3a.2	two chimney convection box	4B20.20	Smoke is used to indicate convection in the two chimney box.
	D&R, H-160	two chimney convection box	4B20.20	A candle burns under one chimney in a double chimney convection box.
	Dart, IT-100	two enimitely convection box	4020.20	Smoke paper in the box will enhance viewing.
	PIRA 1000	convection chimney with vane	4B20.25	
	UMN, 4B20.25	convection chimney with vane	4B20.25	
	Sut, H-140	convection chimney	4B20.25	A candle in a chimney burns as long as there is a metal vane dividing the
				chimney into two parts.
	Sprott, 2.13	convection chimney with vane	4B20.25	A candle extinguishes when a glass cylinder is placed over it unless a T-
				shaped piece of metal is lowered into the cylinder.
	PIRA 1000	convection chimney with confetti	4B20.30	
	TPT 26(7), 468	convection of a gas - heat turbine	4B20.38	How to make a small turbine rotator that will turn when placed above a heat
		convection ourrents projected	4000 40	source.
	PIRA 1000 Sut, H-142	convection currents projected convection projection cell	4B20.40 4B20.40	Electrically heat the water at the bottom of a projection cell. Diagram.
	Ehrlich 2, p. 118	convection currents	4B20.40 4B20.40	An immersion heater is placed at the bottom or the top of a cup of water.
	Linicit 2, p. 110	convection currents	4020.40	Temperature rise vs. time is much faster when it is placed at the bottom of
				the cup.
	Disc 14-27	convection currents	4B20.40	An electric element heats water in the bottom of a projection cell.
	Sut, H-138	convection box	4B20.41	Shadow project convection in a 1 foot square box with hot and cold sinks on
				the sides.
	Sut, H-141	projection cell	4B20.42	Introduce hot water at the bottom of cold or cold water at the top of warm in a
				projection cell.
	PIRA 500	burn your hand	4B20.45	
	UMN, 4B20.45	burn your hand	4B20.45	Shadow project a Bunsen burner flame on a screen and hold your hand in
	0.4.11.407	huma usun hanal	1000 15	the hot gas.
	Sut, H-137	burn your hand	4B20.45	Shadow project convection currents from a Bunsen burner, hot pipe, dry ice,
	PIRA 1000	Barnard cell	4B20.50	or ice water.
	UMN, 4B20.50	Barnard cell	4B20.50	A thin layer of paraffin with reflective flakes is heated until Barnard cells form.
		Damara con	1020.00	
	F&A, Fp-3	Barnard cell	4B20.50	Paraffin with aluminum dust is heated in a small brass dish until convection
				cells are formed.
	UMN, 4B20.55	Jupiter's red spot	4B20.55	Show time lapse video of Jupiter's red spot. Astronomy video disc frame
				32888.
		Conduction	4B30.00	
	PIRA 500	conduction - dropping balls	4B30.10	Waved hells drap off various motal rade compacted to a best source as the
	UMN, 4B30.10	conduction - dropping balls	4B30.10	Waxed balls drop off various metal rods connected to a heat source as the heat is conducted.
	F&A, Hd-1	conduction of heat	4B30.10	Waxed balls drop at different times from rods attached to a common heat
	r dA, rid r	conduction of near	4000.10	source.
	D&R, H-140	conduction - dropping tacks	4B30.10	Waxed tacks drop off various metal rods as the center of the apparatus is
	,			heated.
	Hil, H-3a.1	conduction - dropping balls	4B30.11	The center of a star configuration of five different metal bars is heated to melt
				wax at the far ends, dropping balls.
	PIRA 1000	conduction - melting wax	4B30.12	
	Disc 14-21	thermal conductivity	4B30.12	Dip rods in wax, then watch as the wax melts off. Time Lapse.
	Ehrlich 1, p. 120	thermal conductivity of Styrofoam	4B30.13	Measure the rate that the temperature of water in a Styrofoam cup decreases
		the second state of the state of the	1000	to determine the thermal conductivity of Styrofoam.
	Ehrlich 1, p. 121	thermal conductivity of uninsulated	4B30.14	Study the parameters that determine the rate of temperature decrease of hot
	PIRA 500	objects melting paraffin - sliding pointer	4B30.15	uninsulated objects.
		meany paramin - shainy pointer	-1000.10	

Demonstratior	n Bibliography	J	uly 2015 Thermodynamics
Sut, H-124	sliding pointers	4B30.15	Vertical rods of different metals are soldered onto the bottom of a vessel filled with boiling water. Pointers held by some paraffin slide down as the rods heat. Diagram.
PIRA 1000	painted rods	4B30.20	· · · · · · · · · · · · · · · · · · ·
F&A, Hd-2	conduction of heat	4B30.20	Rods of different material are coated with heat sensitive paint and attached to a common heat source.
Mei, 26-3.3	painted rods	4B30.20	Steam is passed through a manifold with heat sensitive paint coated rods of different materials.
D&R, H-140	conductometer	4B30.20	Rods of different materials are coated with heat sensitive paint and connected to a heat source.
PIRA 200	conduction bars	4B30.21	
Sut, H-122	conduction bars	4B30.21	Relative conductivities of bars of metals in a common copper block are indicated by match head ignition or temperature indicating paint.
Mei, 26-3.8	iron and copper strips	4B30.22	Iron and copper strips are coated with "thermal color" and heated at one end.
PIRA 1000	four rods - heat conduction	4B30.25	
UMN, 4B30.25	four rods - heat conduction	4B30.25	
PIRA 1000	copper and stainless tubes	4B30.30	
UMN, 4B30.30	copper and stainless tubes	4B30.30	A contest is held between people holding copper and stainless tubes in twin acetylene torch flames.
F&A, Hd-5	poor thermal conductivity of stainless steel	4B30.31	Heat a stainless tube with a blow torch until it is white hot and hold close to the hot spot.
Mei, 26-3.4	stainless rod	4B30.31	Heat one end of a stainless steel rod white hot while holding the other end.
Mei, 26-3.2	iron and aluminum rods	4B30.32	A student holds iron and aluminum rods in a burner flame.
PIRA 1000	toilet seats	4B30.35	
UMN, 4B30.35	toilet seats	4B30.35	
Sut, H-129	wood and metal rod	4B30.40	Wrap a paper around a rod made of alternating sections of wood and metal and hold in a flame.
Sut, H-130	high conductivity of copper	4B30.41	Hold a burning cigarette on a handkerchief placed over a coin.
Mei, 26-3.1	matches on hot plates	4B30.42	Matches are placed on plates of two different metals over burners.
PIRA 1000	heat propagation in a copper rod	4B30.50	
UMN, 4B30.50 Mei, 26-3.7	heat propagation in a copper rod propagation in a copper rod	4B30.50 4B30.50	Solder a copper-constantan thermocouple into a copper rod and thrust the
Mei, 26-3.10	spreading heatwave	4B30.51	end into a flame. An aluminum bar has a series of small mirrors mounted on small bimetallic strips to allow projection of the curve of the temperature in the bar as it is
Sut, H-123	dropping ten penny nails	4B30.52	heated. Construction details in appendix, p.1287. Ten penny nails attached with wax will progressively drop off a bar as a Bunsen burner heats one end. Pennies or lead shot can also be used.
AJP 41(2),281	liquid crystal indicator	4B30.53	Liquid crystal indicator from Edmund Sci. was bonded to a strip and a plate of metal and the resulting color change compared well with a computer generated model.
Sut, H-125	temperature indicating paper	4B30.53	A copper bar is placed on temperature indicating paper and one end is heated.
F&A, Hd-6	heat transfer	4B30.54	
Sut, H-128	anisotropic conduction	4B30.56	
Mei, 26-3.9	thermal vs. electrical conduction	4B30.58	A rod is fabricated with end sections of copper and a center section of constantan. Temperatures along the rod when heated differentially are compared with voltages along it while a potential is applied.
AJP 36(2),120 TPT 52(2), 102	electrical analog of heat flow electrical analog of heat flow	4B30.59 4B30.59	A circuit that gives the electrical analog of heat conduction. Several simple resistor circuits may be used to model conductive heat loss from most homes.
Sut, H-131 Sut, H-132	heat conductivity of water heat conductivity of water	4B30.60 4B30.61	Boil water in the top of a test tube while ice is held at the bottom. The bulb of a hot air thermometer is placed in water and a layer of inflammable liquid is poured on top and burned.
TPT, 36(9), 546	demonstrating that air is a bad conductor of heat	4B30.63	Placed on a flat heat source and with both half-filled with H2O, a flat bottom Al can and a soda can are heated together, with the resulting temp change in each can analyzed over time.
Sut, H-133	heat conduction in gases	4B30.65	Small double walled flasks are filled with ether, the jackets contain different gases. When placed in boiling water, the height of ether flames varies.

July	2015
------	------

Bomonotiatio	Dibilography	Ū	
AJP 29(8),549 Sut, A-61	heat conductivity of CO2 conduction of heat in a lamp	4B30.66 4B30.71	Author tried using dry ice to cool break the bolt. Nothing happened. A carbon filament lamp is filled with different gases at various pressures and the brightness of the filament observed.
Mei, 27-5.1	glowing tubes	4B30.72	
Mei, 27-5.2	double glow tube	4B30.73	
	Radiation	4B40.00	
PIRA 200	light the match	4B40.00 4B40.10	Light a match at the focus of one parabolic reflector with a heating element at the focus of another reflector.
UMN, 4B40.10	light the match	4B40.10	Two parabolic reflectors are aligned across the table, a heat source at the focus of one reflector and a match at the focus of the other.
TPT 28(1),56 F&A, Hf-5	light the match transmission of radiant heat	4B40.10 4B40.10	5
Sut, H-150	light the match	4B40.10	•
Sprott, 2.14	light the match	4B40.10	
Disc 22-04	heat focusing	4B40.10	Light a match using a heater and concave reflectors. Animation.
Mei, 38-5.9	reflection of radiation	4B40.11	A beam from a heated metal ball in the focus of a parabolic mirror reflects off another parabolic or flat mirror to a thermopile.
Hil, H-3c	radiation reflector	4B40.11	A heat source at the focal point of one concave reflector directs heat at a radiometer at the focus of a second concave reflector.
Mei, 38-5.10	beakers of water at a distance	4B40.12	A thermopile mounted the at focus of a parabolic mirror detects radiation differences from different colored beakers of water at 20'.
Sut, H-149	reflection of radiation	4B40.13	Polished sheet metal is used to reflect radiation onto a thermopile. A plate glass mirror is less effective due to IR absorption.
PIRA 500	IR focusing	4B40.20	
Mei, 38-5.7	light the match	4B40.20	Focus an arc lamp on a match with and without filters, using CS2 and iodine in a round flask for a lens.
Sut, H-151	focusing IR radiation	4B40.20	A opaque flask of a solution of iodine in carbon disulfide serves as a lens to focus IR radiation.
Sut, L-113	infrared	4B40.20	lodine dissolved in alcohol gives a filter transmitting in the IR but absorbing in the visible. Ignite a match in the focus of an arc lamp.
Sut, H-152	ice lens	4B40.21	Form an ice lens between two watch glasses. Focus the light from an arc lamp on a match head.
PIRA 1000	Leslie's cube	4B40.30	
F&A, Hf-1	radiation from a black box	4B40.30	Radiation from Leslie's cube is measured with a thermopile.
Sut, H-156	Leslie cube	4B40.30	Relative radiation from various surfaces at the same temperature is shown with a Leslie cube and thermopile.
Disc 14-25	radiation cube	4B40.30	Fill a Leslie cube with hot water and use a thermopile to detect the radiation.
UMN, 4B40.32	Leslie's cube	4B40.32	
Mei, 38-5.8	Leslie's cube	4B40.32	Rotate the cube to demonstrate Lambert's law, move the thermopile away to demonstrate the inverse square law, measure at several temperatures to demonstrate the fourth power law.
Sut, H-163	radiation and absorption	4B40.33	Two Leslie cubes form a differential thermoscope with a third between. Orient faces shiny to black.
PIRA 1000	two can radiation	4B40.40	
AJP 58(3)244	cooling cans	4B40.40	
Disc 14-24	two can radiation	4B40.40	Shiny and flat black cans filled with cool water warm up, cool off when filled with boiling water.
F&A, Hf-4	radiation from a shiny and black surface	4B40.45	A paper held close to a stove element is not scorched where the element is painted white.
Mei, 38-5.3	stove element	4B40.45	A sheet of paper is held near a stove heating element painted half white and half black.
D&R, H-180	radiation on black and white surfaces	4B40.45	A card painted half black and half white has drops of wax applied. Wax on the black side melts first when heated with a heat lamp. Can also be done with a black and a white ball on some ice. When warmed with a heat lamp the black ball melt into the ice faster.
Mei, 38-5.6	hot wire in a tube	4B40.48	
PIRA 1000	selective absorption and transmission	4B40.50	

Demonstratior	n Bibliography	J	uly 2015 Thermodynamics
UMN, 4B40.50	selective absorption and transmission	4B40.50	
Sut, H-155	selective absorption	4B40.50	Various screens (black bakelite, Corex red-purple, glass, water, quartz, etc.) are placed between a heat source and a thermopile detector.
Hil, H-3b.2	absorption and transmission	4B40.50	Clear heat absorbing and opaque heat transmission glass filters are inserted between a heat lamp and a radiometer detector.
Sut, H-162	absorption of radiation	4B40.51	A white card with letters in India ink is exposed lettered side to a hot source charring it locally where the letters are.
Hil, H-3b.1	Leybold radiation screen	4B40.52	
Ehrlich 1, p. 119	thermal strips on a plate	4B40.53	Thermal strips glued to plates of wood and aluminum are used to show the thermal conductivity in those materials.
PIRA 1000 Mei, 38-5.2	black and white thermometers two thermoscopes	4B40.60 4B40.60	One thermoscope is painted white, the other black, and both are illuminated by a lamp.
Sut, H-159	surface absorption	4B40.60	A radiant heater is placed midway between two junctions of a demonstration thermocouple and the junctions are covered with black or white caps.
Sut, H-154	selective absorption	4B40.60	Focus a large light on a blackened match head, the clear glass bulb of a thermoscope, and the bulb covered with black paper.
Ehrlich 2, p. 116	black and silver thermometers	4B40.60	The rate of heating and cooling for black and silver bodies can be studied by placing a black thermometer probe and a silver themometer probe on an overhead projector. Take them out of boiling water for the cooling observation.
Sut, H-161	surface absorption	4B40.61	A Leslie cube with opposite faces blackened is placed between two bulbs of a differential thermoscope. Blacken one bulb.
Sut, H-160	surface absorption	4B40.62	Make a special thermocouple of a sheet of copper with constantan wires attached opposite blackened and whitened areas. Shine a light and expose to a hot water container to show different response at different wavelengths.
Hil, H-3a.3	radiation thermometers	4B40.64	A heat lamp directed at two thermometers will cause different temperature rises. One thermometer is in a glass chamber.
AJP 58(7),697	soot and flour - nonlinear absorption	4B40.70	Add different amounts of carbon to flour and measure the reflectivity.
PIRA 500	Heat Transfer Applications four thermos bottles	4B50.00 4B50.10	
UMN, 4B50.10	four thermos bottles	4B50.10	Monitor the temperatures of water in four thermos bottles with different combinations of vacuum and silvering.
F&A, Hd-3	thermal properties of dewars	4B50.10	Temperatures are recorded for cooling of four thermos bottles of different construction.
AJP 71(7), 678	heat flow in a thermos	4B50.10	Measurements and modeling of the temperature change in a thermos full of ice cold water as a function of both time and position in the thermos.
Disc 14-26 Sut, H-167	insulation (dewar flasks) bad dewar	4B50.10 4B50.11	Hot water is placed in the four thermos bottles. Evacuate a unsilvered dewar, pour in liquid air, let air into the space, see
Sut, H-166	four thermos bottles - LN2	4B50.15	frost form. Pour liquid air into four thermos bottles to sort out conduction, convection
F&A, Hd-4	insulation with asbestos	4B50.17	U
Mei, 38-5.1	radiation from different surfaces	4B50.17	asbestos, cool. Three cans, black, asbestos covered, and shiny, are filled with boiling water and left to cool.
Sut, H-157	surface radiation	4B50.17	
PIRA 200 - Old	boiling water in a paper cup	4B50.20	Burn one paper cup, boil water in another.
UMN, 4B50.20	boil water in a paper cup	4B50.20	Fill a KFC bucket 1/8 full of water, boil the water with a Bunsen burner, and burn away the top part of the bucket with a propane torch.
Sut, H-147 Ehrlich 1, p. 118	boil water in a paper cup boil water in a paper cup	4B50.20 4B50.20	Boil water in a paper container. A flame is applied to the bottom of paper and Styrofoam cups filled with water, sand, and copper shot. Also a piece of paper wrapped around a metal whinder does not hurn when a flame is applied.
Disc 14-19	boiling water in a paper cup	4B50.20	cylinder does not burn when a flame is applied. Burn one paper cup, boil water in another.
PIRA 200	water balloon and matches	4B50.25	
PIRA 1000 - Old	water balloon and matches balloon and matches	4B50.25	
UMN, 4B50.25 D&R, H-144	balloons and matches	4B50.25 4B50.25	A match is brought up to an air or water filled balloons. Only the air balloon will burst.

July 2015

Demonstration	Bibliography	J	uly 2015	Thermodynamics
Bil&Mai, p 230	water balloon and matches	4B50.25	Fill one balloon with air and one with water. Ligh flame against each balloon. Only the air balloon	
Disc 14-20 PIRA 1000	water balloon heat capacity Leidenfrost effect	4B50.25 4B50.30	Pop a balloon with a flame, then heat water in a	
Disc 14-22	Leidenfrost phenomenom	4B50.30	Drop water on a hot plate, liquid nitrogen on the	lecture table
Sut, H-136	spheroidal state	4B50.31	A nugget of silver heated red and plunged into w immediate boiling.	
Sut, H-134	spheroidal state	4B50.32	A drop of water suspended from a glass tube ab the plate cools.	ove a hot plate is stable until
Sut, H-105	Leidenfrost effect	4B50.32	Pour liquid air on your hand or roll it about on the	e top of your tongue.
Sprott, 2.10	Leidenfrost effect	4B50.32	Liquid nitrogen poured over the hand causes no	harm.
AJP 46(8),825	Leidenfrost phenomenom	4B50.33	Four demonstrations: floating liquid drops on the quenching, Boutigny bomb, and stick your finger	eir own vapor, delayed
PIRA 1000	finger in hot oil	4B50.35		
UMN, 4B50.35	finger in oil	4B50.35	Heat oil in a beaker, cut a potato and cook a free a beaker of water and stick it in the hot oil.	nch fry, then wet you finger in
Sut, H-135	spheroidal state	4B50.35	A wet finger can be dipped into molten lead.	
PIRA 1000	reverse Leidenfrost	4B50.40		
UMN, 4B50.40	reverse Leidenfrost	4B50.40		
Sut, H-106	reverse Leidenfrost effect	4B50.40	Place a brass ball into liquid air in a clear dewar leidenfrost effect. When the ball is cold, place it reverse leidenfrost effect as frost forms on the b	in a flame and observe the
Sut, H-127	insulators	4B50.50	Show commercial insulating materials. Heat a protected by 1/2" rock wool.	enny red hot on your hand
PIRA 1000	greenhouse effect	4B50.60		
Sut, H-153	greenhouse effect	4B50.60	The temperature of a closed bottle in direct sunl ambient temperature.	ight is compared to the
AJP 41(3),443	greenhouse effect chamber	4B50.61	A chamber with interchangeable windows and p	rovisions to introduce CO2.
AJP, 78 (5), 536	greenhouse effect	4B50.61	Shows how the wrong result can be achieved wh suppression of convective mixing with the ambie	-
F&A, Hd-7	Davy lamp	4B50.70	A Bunsen burner will burn on top and bottom of inches apart.	two copper screens a few
Sut, H-126	Davy safety lamp	4B50.70	Show that a Bunsen burner flame will not strike fine copper wire gauze. Direct a stream of gas a	
Sut, H-146	conduction and convection - Pirani	4B50.80	The basic principles of the Pirani vacuum gauge flask until it glows dull red, then evacuate the fla more brightly at the same voltage.	
TPT 28(6),420	forced air calorimeter	4B50.90	Fans on either side of a 48 quart styrofoam cool calorimeter used in this example to measure the	
	Mechanical Equivalent of Heat	4B60.00		
PIRA 200	dropping lead shot	4B60.10	Drop a bag of lead shot is dropped several times temperature rise.	s and measure the
UMN, 4B60.10	dropping lead shot	4B60.10	A bag of lead shot is dropped several times and measured.	the temperature rise is
F&A, He-1	work into heat	4B60.10	Drop lead shot in a bag several times and comp and after.	are the temperature before
Mei, 26-4.2	dropping lead shot	4B60.10	The temperature of a bag of lead shot is taken b dropped repeatedly. A diagram of a projection th	0
Ehrlich 1, p. 123	dropping lead shot	4B60.10	The mechanical equivalent of heat can be detern rise of a bag of lead shot that is dropped many t	mined from the temperature
PIRA 1000	invert tube of lead	4B60.11	5	
Sut, H-176	dropping lead shot	4B60.11	One or two Kg of lead shot in a mailing tube are	inverted 100 times and the
			temperature rise is measured.	
D&R, H-405	dropping lead shot	4B60.11	Invert a mailing tube containing several hundred hundred times and measure the temperature ris	e.
Bil&Mai, p 226	dropping lead shot	4B60.11	Measure the temperature of lead shot in a long t times allowing the lead shot to fall the full length Measure and record the final temperature.	
Disc 15-02	mechanical equivalent of heat	4B60.11	Flip a one meter tube containing lead shot ten til in one end measures the temperature.	mes. A thermistor embedded
Sut, H-174	heating mercury by shaking	4B60.12	A nichrome - iron wire thermojunction is inserted which is shaken vigorously.	l into a bottle of mercury

Demonstration	n Bibliography	J	uly 2015	Thermodynamics
PIRA 1000	hammer on lead	4B60.15		
UMN, 4B60.15	hammer on lead	4B60.15	Hammer on a piece of lead that	at has an embedded thermocouple.
Mei, 26-4.7	hammer on lead	4B60.15	Hammer on a piece of lead to	heat it. A simple air thermoscope is shown.
Sut, H-175	heating lead by smashing	4B60.15	Hit a 250 g lead block with a h	eavy hammer and show the temperature rise.
Bil&Mai, p 226	hammer on wood	4B60.15	•	Use heat sensitive liquid crystal film to see the the hammer struck the wood.
D&R, H-395	hammer on wood	4B60.15	•	and show temperature rise in struck area with a
Mei, 26-4.3	drop ball on thermocouples	4B60.16		anvil holding a set of thermocouples
PIRA 1000	copper barrel crank	4B60.20		
UMN, 4B60.20	copper barrel crank	4B60.20		s copper webbing wrapped around it while e temperature rise of the water inside the
F&A, He-3	mechanical equivalent of heat	4B60.20		parrel filled with water with a copper braid under neasured before and after cranking.
AJP 28(9),793	motorized mechanical equivalent of heat	4B60.22		h counter rotating turbines powered by an
Sut, H-177	Searle's apparatus	4B60.23	Searle's apparatus is used to Picture.	obtain a numerical value of Joule's equivalent.
Sut, H-178	mechanical equivalent of heat	4B60.24	Picture of an elaborate appara heat. Derivation.	atus to measure the mechanical equivalent of
Sut, H-172	heating by bending	4B60.41	Pass around a No. 14 iron wire	e for the students to bend.
PIRA 1000	bow and stick	4B60.50		
Sut, H-171	bow & stick	4B60.50	How to make a fire with a bow	and stick.
PIRA 500	boy scout fire maker	4B60.55		
UMN, 4B60.55	boy scout fire maker	4B60.55		handward dowel in hald a spinot a wood black
F&A, He-2	fire maker	4B60.55	A motor shaft extended with a	hardwood dowel is held against a wood block.
Sprott, 2.15	drill and dowel	4B60.55	Chuck up a dowel in an electri	c drill and make smoke by drilling a board.
Disc 15-01	drill and dowel	4B60.55	•	ic drill and make smoke by drilling a board.
Sut, H-170	flint and steel	4B60.60	Sparks from flint and steel or a	a grindstone show heat from work.
PIRA 1000	cork popper	4B60.70		
Sut, H-169	friction cannon	4B60.70		nto a tube, cork, and spin by a motor until the vapor pressure to blow the cork.
Hil, H-5a.3	ether friction gun	4B60.70	Heat ether by a motor driven f	riction device until a cork blows.
Disc 15-08	cork popper	4B60.70	cork blows.	d tube by a motorized friction device until the
Hil, H-5a.2	steam gun	4B60.75	Heat a tube until the cork pope	s off.
	Adiabatic Processes	4B70.00		
	fire syringe	4B70.10	Dut a small piece of asttop in	a global tube and puck down on the pictor to
UMN, 4B70.10	light the cotton		light it.	a glass tube and push down on the piston to
Sut, H-179	light the cotton	4B70.10	compress the air.	be will ignite when a plunger is used to quickly
Hil, H-5c	fire syringe	4B70.10	Three fire syringes are shown	
Disc 15-05	fire syringe	4B70.10	photography.	o light a tuft of cotton. Slow motion
F&A, He-5	match lighter	4B70.11	compressed.	nder lights when a tight fitting piston is quickly
Mei, 27-6.1	light a match head	4B70.11	Push down hard on a piston ir bottom.	a close fitting tube to light a match head at the
PIRA 200	expansion cloud chamber	4B70.20		
PIRA 500 - Old	expansion cloud chamber	4B70.20		
UMN, 4B70.20	expansion cloud chamber	4B70.20		water vapor with and without smoke particles.
F&A, HI-8 Sut, H-89	expansion chamber expansion cloud chamber	4B70.20 4B70.20		er bulb and an inlet for smoke. ttached to a squeeze bulb through a pitchcock.
D&R, H-360	expansion cloud chamber	4B70.20	Smoke provides nucleation sit	water vapor with and without smoke particles. es giving better fog formation when stopper
Bil&Mai, p 235	expansion cloud chamber	4B70.20	-	e with salt water and then pressurize with a sure suddenly and a cloud will be produced in

Demonstratio	n Bibliography	J	uly 2015	Thermodynamics
Sut, H-88	expansion cloud chamber	4B70.21	Put some smoke and alcohol in a sto stopper is released a fog forms.	oppered flask and shake. When the
D&R, H-230	cloud formation by cooling	4B70.23	Place warm water in a clear contained	er. Close with Saran wrap and place ice ation will collect on the underside of the in the container.
PIRA 1000 UMN, 4B70.25 Hil, M-22b.2 Disc 15-04	pop the cork cooling big expansion cloud chamber cloud chambers adiabatic cooling	4B70.25 4B70.25 4B70.25 4B70.25	Pump a one gallon jug with a bicycle	
AJP 58(11),1112	adiabatic decompression	4B70.26		d computer. d when an air filled chamber is pumped
F&A, He-6	adiabatic heating and cooling	4B70.30	down with a vacuum pump. An air cylinder moves a piston back the temperature.	and forth and a thermocouple measures
Sut, H-180	adiabatic compression	4B70.31	•	in the bottom of a tube in which air is
Bil&Mai, p 235	adiabatic compression	4B70.31	Place a liquid crystal thermometer in the bottle with a Fizzkeeper while ob	to a plastic soft drink bottle. Pressurize serving the temperature. Release the
Sut, H-181	expansion chamber	4B70.35	pressure and observe the temperature Directions for making a temperature warmed and cooled by compression	detector to insert into a flask that will be
Mei, 27-6.2	measuring adiabatic compression	4B70.36		ases undergoing adiabatic compression
Bil&Mai, p 233	measuring adiabatic compression	4B70.36	A large syringe which has a thermoor butane gas. Compress the syringe a	ouple inserted near the tip is filled with and see droplets of liquid form near the
Mei, 27-6.3	adiabatic cycles	4B70.37	bottom. Release and observe the di temperature during these operations A thermocouple connected to a lectu	ire galvanometer shows temperature
Mei, 27-6.4	Joule-Kelvin coefficients	4B70.40	cycles as air in a test tube is compre A thermocouple measures the temp	erature change as N2 cools on
PIRA 500	CHANGE OF STATE PVT Surfaces PVT surfaces	4C00.00 4C10.00 4C10.10	expansion and H2 heats on expansion	JII.
UMN, 4C10.10	PVT surfaces	4C10.10	Three dimensional models of PVT c	urves are shown for different substances.
Hil, H-5f D&R, H-320 AJP 30(12),870 F&A, Hg-2 Sut, H-94	thermodynamic surfaces PVT surfaces thermodynamic surfaces model of P-V-T surface PVT surfaces	4C10.10 4C10.10 4C10.11 4C10.20 4C10.30	Models of two thermodynamical surf Three dimensional model of PVT cu Pictures of p-v-T,f-p-T, and delta F-S A large P-V-T surface made with ber Use various charts and models.	rve for water is shown. S-r surfaces in a heavy duty article.
PIRA 1000	Phase Changes: Liquid-Solid supercooled water	4C20.00 4C20.10		
UMN, 4C20.10	supercooled water	4C20.10	A small test tube of water is cooled i followed with a thermocouple.	n a peltier device and the temperature is
Sut, H-71	supercooling water	4C20.11	Water in a small test tube is cooled to bath. Shake to freeze and the temper	to - 4 C by placing in a dry ice/alcohol erature will rise to 0 C.
AJP 39(10),1125	drop freezer	4C20.12		s placed in the copper plate and a mirror
Mei, 26-5.15 PIRA 500 UMN, 4C20.20 F&A, Hk-5	supercooling in four substances ice bomb in liquid nitrogen ice bomb in liquid nitrogen ice bomb	4C20.15 4C20.20 4C20.20 4C20.20	at 45 degrees allows easy observation Four methods are given for supercoor An ice bomb is placed in a beaker of An ice bomb is filled with water and	bling various substances. Ilquid nitrogen in a Plexiglas cage. blaced in a salt water bath.
Sut, H-56	ice bomb	4C20.20	of ice and salt.	preak when placed in a freezing mixture
Hil, H-2a.1 Disc 15-15	ice bomb ice bomb	4C20.20 4C20.20	Just a picture. An ice bomb is placed in a liquid nitr	ogen bath.
AJP 44(9),893	ice bomb - galvanized pipe	4C20.21		s for a bomb and liquid nitrogen for a fast
Sut, H-55 Hil, M-20a.5 Ehrlich 2, p. 101	expansion of freezing bismuth contraction of paraffin floating ice cubes - iceberg	4C20.22 4C20.23 4C20.25	A hummock rises on the surface of the Let a beaker of liquid paraffin freeze Float ice cubes in a cup of water fille	
PIRA 500	regelation	4C20.30	overflow when the ice cubes melt.	

Demonstratio	n Bibliography	J	uly 2015	Thermodynamics
UMN, 4C20.30	regelation	4C20.30	Cut through a block of ice with a wire from it.	loop that has a heavy mass hanging
F&A, Hk-4	regelation	4C20.30	A copper wire under tension cuts through	ugh a block of ice.
D&R, H-304	regelation	4C20.30	Cut through a block of ice with a wire end.	
Disc 15-16	regelation	4C20.30	A mass hanging from a loop of thin sta of ice.	ainless steel wire cuts through a block
TPT 3(7),301	regelation explained completely	4C20.31	The complexity of regelation is examin	ned by Mark Zemansky.
TPT 3(4),186	regelation	4C20.31	Explanation of regelation. Copper cuts	-
Sut, H-57	regelation	4C20.32	Substances that expand on freezing s pressure. Two blocks of ice, held toge directions for the standard demo.	how a lowering melting point under ther by hand, will freeze. Also complete
Sut, H-58	crushed ice squeeze	4C20.32	Crushed ice squeezed in a thick walle	
D&R, H-304	ice cube squeeze	4C20.32	Ice cubes that are pressed together w	
TPT 28(5),260	pressure and freezing point	4C20.33	0 C temperature in an ice bath.	out the difficulty in obtaining a uniform
PIRA 500	liquefying CO2	4C20.35	Dunne devue en e nieten en duvies in e	alaan tuba uutil at Cataooan banaa
UMN, 4C20.35	liquefying CO2	4C20.35	Press down on a piston on dry ice in a liquefication occurs.	
Sut, H-59	liquefying CO2	4C20.35	A strong bulb with a 1 cm square neck mass is added. The melting point of C weight slightly to freeze.	
AJP 47(3),287	CO2 syringe	4C20.36		syringe and squeeze to liquefy. Can be
PIRA 500	freezing liquid nitrogen	4C20.40		
UMN, 4C20.40	freezing liquid nitrogen	4C20.40	Put some liquid nitrogen in a clear dev	
AJP 35(6),540	freezing liquid nitrogen	4C20.40	In addition to the standard freezing by the cork when the nitrogen is solid and temperature remains below its boiling	d it will instantly turn to liquid while the
Sut, H-109	freezing liquid nitrogen	4C20.40		d nitrogen at -210 C. Air passed slowly
Sprott, 2.7	freezing liquid nitrogen	4C20.40	Put some liquid nitrogen in a flask and	pump until it freezes.
AJP 36(9),919	freezing nitrogen modification	4C20.42		n in the lower part to prevent the frozen
PIRA 500	CO2 expansion cooling - fire extinguisher	4C20.45		
UMN, 4C20.45	CO2 expansion cooling - fire extinguisher	4C20.45	Shoot off a CO2 fire extinguisher.	
Disc 15-03	CO2 expansion cooling - fire extinguisher	4C20.45	Shoot off a fire extinguisher at a test to	ube of water, freezing the water.
Sut, H-65	CO2 cylinder	4C20.46	Liquid CO2 from cylinder is released in stream by evaporative cooling.	nto a heavy bag, freezing the central
UMN, 4C20.50	heat of fusion of water	4C20.50	Melt ice in a beaker of water and mea	sure the temperature.
Sut, H-54	heat of fusion of ice	4C20.51	Melt some ice in a calorimeter with a l	
Mei, 26-5.2	freezing lead	4C20.52	Insert thermocouple into molten lead a recorder as it freezes.	and plot the temperature on an x-y
Sut, H-46	freezing tin	4C20.53	Tin is heated to 360 C and temperature until the temperature reaches 160 C. I at 230 C.	•
Mei, 26-5.1	heat of fusion of water	4C20.54	Place a thermocouple cooled in liquid temperature as ice forms and then me	
PIRA 1000	heat of solution	4C20.55		
Mei, 26-5.6	heat of solution	4C20.55	.	bo or ammonium chloride are added to ed. ALSO - equal weights of water and
Sut, H-50	heat of solution	4C20.56	-	solved in water. Cooling results if hypo
Mei, 26-5.3	latent heat heating	4C20.59	Two experiments that use the latent h heat another.	eat from one substance freezing to
PIRA 1000	heat of crystallization	4C20.60		
Sut, H-48	heat of crystallization	4C20.60	Prepare a supersaturated solution of s drop in a crystal to trigger crystallization change in temperature.	
AJP 76 (6), 547	heat of crystallization	4C20.60	How the flexing of a metal disk can trig acetate solution.	gger the crystallization of a sodium

Su, H-49 heat of crystallization 4C20.01 A manometer holdward into the jackat of a double walled flask is used to doted the change in temperature of a sodum thoulfate solution as it crystallization Su, H-44 project crystallization 4C20.02 Princet with crystallization cours in a thin fluin of melted sulfur or attruated solution as it crystallization Su, H-44 project crystallization 4C20.17 Crystallization cours in a thin fluin of melted sulfur or attruated solution as easier or socilum of attribute crystallization cours in a thin fluin of melted sulfur or attruated solution as easier or socilum assesses water crystal growth on the overhead projector. Mei, 26-5.12 water crystall growth on the overhead 4C20.17 Annoon properties from accesses fluin fluin of melted sulfur or attruated solution are used to above crystal growth on the overhead projector. Mei, 26-5.17 observing crystallization 4C20.73 Turtain acid and brancic acid are melted together and the crystal growth on coling is observed briverse moresed. AJP 45(4),385 hard sphere model 4C20.73 Turtain acid are meth hal hab been requenched from liquid to solid without crystallization trystallization JP 46(1),80 Medglas 2266 4C20.30 The recipication the systallization. JP 46(1),80 Medglas 2276 4C20.30 The recipication. JP 46(1),80 Medglas 2276 4C20.30 The recipication. JP 46(1),80 Medglas 2276 4C20.30 To recipic pere	I	Demonstration	Bibliography	Jı	uly 2015 Thermodynamics
detect the change in temperature of a softum thissulfate solution as it crystallization detect the change in temperature of a softum thissulfate solution are strated as constrained. Sur, H-4.4 project crystallization 4C20.62 A manometer indicates heating when a flask of supercooled type solution crystallization occurs in a thin film of meted sufficience of anomoun of constrained. Sur, H-4.5 crystallization 4C20.70 A film on a conce or constrained and sufficience of anomoun occurs in a thin film of meted sufficience of a software crystal growth on the overhead projector. Water crystal growth on the overhead projector. Mei, 26-5.13 crystallization 4C20.72 A film overhead projector. Mei, 26-5.14 crystallization 4C20.73 Various crystal crystallization Mei, 26-5.17 observing crystallization 4C20.74 Directions for building a microprojector useful for showing crystallization Al/P 46(1),90 Medgas 282.65 Ac20.80 Directions for building a microprojector useful for showing crystallization Moi, 28-5.17 observing crystallization 4C20.74 Directions for building a microprojector useful for showing crystallization Mark 46(1),90 Medgas 282.65 and show sum propaging holes or four or constraint for showing crystallization Mark 46(1),80 Medgas 282.65 and sh		Sut H-10	heat of crystallization	1020.61	A manameter backed into the jacket of a double walled flack is used to
Meil, 26:5.4 heat of crystalization 422.02 A manometer indicates heating when a flask of supercooled hype solution crystalization armonium chiende. Sut, H-44 project crystalization 422.07 Project while crystalization occurs in a thin film of melled sulfur or saturated solution of sadium acetate or solution. Sut, H-45 crystalization 422.07 Crystalization from a conc. solution of sodium acetate or solution. Meil, 26:5.13 crystal growth on the overhead projector. Water crystals form. A C20.77 Yantous organic compounds are used to show crystal growth on the overhead projector. Meil, 26:5.17 observing crystalization 42.02.77 Yantous organic compounds are used to show crystal growth on the overhead projector. Meil, 26:5.17 observing crystalization 42.02.74 Directions for huiding a microprojector useful for showing crystalization phenomana. ALP 45(4),395 hard sphere model 42.02.08 A two dimensional hard sphere model of a fluid shows propagating holes or flow if 45 of the sphere are removed. Sut, H-47 Wood's metal 422.08 A two dimensional hard sphere model of a fluid shows propagating holes or flow if 45 of the sphere are removed. Sut, H-47 Wood's metal 422.09 The respite of Wood's metal (meting point 65.5 C). PFRA 200		Sul, H-49		4020.01	detect the change in temperature of a sodium thiosulfate solution as it
Sur, H-44 project crystallization 4C20.70 Project while crystallization occurs in a thin film of meled suffur or saturated solution of armonium childred. Sur, H-45 crystallization 4C20.71 Crystallization from a conc. solution of sodum acetter or sodum hypocultis. See also E-186 (lead tree) and L-22 (polarization). Mei, 26-5.13 crystal growth on the overhead 4C20.72 A ring with a soap film is cooled in a chamber surrounded by dry ice on the overhead projector. Water crystals form the overhead projector. Mei, 26-5.14 crystal growth on the overhead 4C20.73 Taratic acid and barnotic and are matter dispather and the crystal growth on cooling is observed barded on the overhead projector. Mei, 26-5.17 observing crystallization 4C20.73 Directions for building a microprojector useful for showing crystallization promoreman. ALP 45(4),395 hard sphore model 4C20.93 Not dimensional hard sphore model of a fluid show propagating holes or flow if who the sphere are removed. Sut, H-47 Wood's metal 4C20.90 The crystallization. The machine is a cooled with experimental electronic crystallization. The machine is cooled with ice until boiling starts. Sut, H-47 Wood's metal 4C20.90 The crystallization. The machine is encoded with ice until boiling starts. Sut, H-47 Wood's metal 4C30.10		Mei, 26-5.4	heat of crystallization	4C20.62	A manometer indicates heating when a flask of supercooled hypo solution
Sut, H-45 crystallization 422.01 Crystallization from a conc. solution of sodium actuate or sodium hypopulate. See also E-159 (ead tree) and L-122 (polarization), Mel, 26-5.13 crystal growth on the overhead 422.07 X ring with a scap film is cooled in a chamber surrounded by dry ice on the coverhead pojector. Water crystals form. Mel, 26-5.14 crystal growth on the overhead 422.07 Various organic compounds are used to show crystall growth between cores crystall growth on the overhead 422.07 Various organic compounds are used to show crystall growth on core crystallization Mel, 26-5.17 observing crystallization 422.09 Therations for building a microprojector useful for showing crystallization phenomena. AJP 46(1),80 Metglas 282.6 422.09 The racipate for Wood's metal metal that has been quenched from liquid to solid without crystallization. The mechanical, electrical, and magnetic properties are four if 4% of the spheres are removed. Sut, H-47 Wood's metal 422.09 The racipate for Wood's metal file with warm water with ice unit boiling starts. Sut, H-75 boiling Droobing 423.01 Same as Hy4. 423.02 IVMA 403.010 boiling point 65.5 C). Bask with warm water is cooled with warm water with caroli boiling starts. Sut, H-76 boiling cod water		Sut, H-44	project crystallization	4C20.70	Project while crystallization occurs in a thin film of melted sulfur or saturated
Mei, 28-5.12 water crystals in scap film 4C20.72 A ring with a scap film is cooled in a chamber surrounded by dry loc on the convertead projector. Mei, 28-5.13 crystal growth on the overhead 4C20.73 Various organic compounds are used to show crystal growth between crosses and the crystal growth on consisted projector. Mei, 28-5.14 orystal growth on the overhead 4C20.73 Tatatic acid and benzoic acid are melled together and the crystal growth on consisted projector. Mei, 28-5.17 observing crystallization 4C20.74 Various organic hard sphere model of a fluid shows propagating holes or flow if 4% of the spheres are termoved. AJP 46(1),80 Metglas 2826 4C20.98 The recipe for Wood's metal (melting point 65.5 C). Phase Changes: Liquid-Gas Mood metal 4C20.90 The recipe for Wood's metal (melting point 65.5 C). Phase Changes: Liquid-Gas 4C30.10 Same as H_1. Alas with warm water is cooled with loc ound boiling starts. Sut, H-75 boiling by cooling 4C30.10 Bale with varm water is cooled with loc ound boiling starts. FPAA, H_14 boiling cold water 4C30.10 Bale water to show changes. Alas with varm water is cooled with loc ound boiling starts. Sut, H-76 boiling cold water 4C30.10		Sut, H-45	crystallization	4C20.71	Crystallization from a conc. solution of sodium acetate or sodium
Mel, 26-5.14 crystal growth on the overhead 4220.73 Tranta caid and bezola caid are melted together and the crystal growth on cooling is observed between crossed Polaroids on the overhead projector. Mel, 26-5.17 observing crystallization 4220.7 Directions for building a microprojector useful for showing crystallization phenomena. AJP 45(4),395 hard sphere model 4220.90 A two dimensional hard sphere model of a fluid shows propagating holes or floir 14% of the spheres are moved. AJP 46(1),80 Metglas 2826 a metal the sphere s		Mei, 26-5.12	water crystals in soap film	4C20.72	A ring with a soap film is cooled in a chamber surrounded by dry ice on the
Mel, 26-5.17 observing crystallization 4C20.74 Directions for building a microprojector useful for showing crystallization phenomena. AJP 45(4),395 hard sphere model 4C20.90 A two dimensional hard sphere model of a fluid shows propagating holes or for if 4% of the spheres are removed. AJP 46(1),80 Metglas 2826 a cost of if 4% of the spheres are removed. Sut, H-47 Wood's metal 4C20.90 A two dimensional hard sphere model of a fluid shows propagating holes or for if 4% of the spheres are removed. Sut, H-47 Wood's metal 4C20.90 The recipe for Wood's metal (melting point 65.5 C). PTRA 200 boiling by cooling 4C30.10 Col a stoppered flask filled with warm water with ice until boiling starts. Sut, H-75 boiling by cooling 4C30.10 Some as Hj-4. F8A, Hj-4 boiling by cooling 4C30.10 Fool a stopper difask filled with warm water with ice until boiling starts. Sut, H-75 boiling by cooling 4C30.10 Fool a stopper difask filled with warm water with ice until boiling starts. Synt, L-36 boiling cold water 4C30.10 Fool a stopper invert in a round bottom flask, stopper, invert, pour cold water water to show temperature. Hil, H-5d boiling port docressure 4C30.10 Fool a stopper invert in a round bottom flask, stopper, invert, apply cold towels or ice to the flask. Sprott, 2.8 boiling port docres		Mei, 26-5.13	crystal growth on the overhead	4C20.73	
AJP 45(4).395 hard sphere model 4C20.99 AJP 46(1).80 Metglas 2826 4C20.99 Wuod S metal 4C20.99 Wetglas 2826 is a metal that bas been quenched from liquid to solid without crystalization. The mechanical, electrical, and magnetic properties are demonstrated. Sut, H-47 Wood's metal 4C20.99 The recipe for Wood's metal (melting point 65.5 C). Phase Changes: Liquid-Gas 4C30.10 Coling by cooling 4C30.10 Sut, H-75 boling by cooling 4C30.10 Same as H_4. Sut, H-75 boling by cooling 4C30.10 Same as H_4. Sut, H-75 boling by cooling 4C30.10 Boli water vigorous'n in a firsk, stopper and remove from heat, cool with ice or water to show boling at reduced pressure A flask with warm water is cooled with ice until boling starts. BaR, H-260 boling by cooling 4C30.10 Boli water vigorous'n in a firsk, stopper and remove from heat, cool with ice or the micropulater in a round bottom flask, stopper, invert, apply cold towels or ice to the flask. DaR, H-260 boling at reduced pressure 4C30.10 Boli water in a round bottom flask, stopper and steam causes the water to bolin. Disc 5-10 boling at reduced pressure 4C30.15 Boli at reduced pressure 4C30.16 PIRA 1000		Mei, 26-5.14	crystal growth on the overhead	4C20.73	
AJP 46(1),80Metglas 28264C20 98Metglas 2826 is a metal that has been quenched from liquid to solid without crystalization. The mechanical, electrical, and magnetic properties are demonstrated.Sut, H-47Wood's metal Phase Changes: Liquid-Gas boling by cooling4C20.98The recipe for Wood's metal (melting point 65.5 C).PIRA 200boling by cooling boling by cooling4C30.10Cool a stoppered flask filled with warm water with ice until boling starts.Sut, H-75boling by cooling boling by cooling4C30.10A flask with warm water is cooled with ice until boling starts.Sut, H-75boling by cooling4C30.10A flask with warm water is cooled with ice until boling starts.Fill, H-5dboling cold water4C30.10A flask with warm water is cooled with ice until boling starts.Fill, H-5dboling cold water4C30.10Heat wolding water in a round bottom flask, stopper, invert, pour cold water or ver to boling na to round bottom flask, stopper, invert, pour cold water or ver to bolin.Disc 15-10boling at reduced pressure4C30.15Heat boling water in a round bottom flask with a dimple in the bottom, renove from heat, stopper, invert na dimple.PIRA 1000boling at reduced pressure4C30.15Boli at reduced pressure is boling at reduced pressureFV7 (4), F75boling of veduced pressure4C30.15Boli at reduced pressure is flask of water.FV7 (5), 6), 496superheating liquids4C30.25Boli at reduced pressure is flask of water.FV7 (6), 496superheating liquids4C30.25Fuencometer measures the boling point as a vacuum pump		Mei, 26-5.17	observing crystallization	4C20.74	
Sut, H-47Wood's metalcrystalization. The mechanical, electrical, and magnetic properties are demonstrated.PIA 200Phase Changes: Liquid-Gas boiling by cooling4C20.09The recipe for Wood's metal (melting point 65.5 C).PIRA 200boiling by cooling4C30.10Cool a stoppered flask filled with warm water with ice until boiling starts.Sut, H-75boiling by cooling4C30.10A flask with warm water is cooled with ice until boiling starts.Sut, H-75boiling by cooling4C30.10A flask with warm water is cooled with ice until boiling starts.Fill, H-5dboiling cold water4C30.10Boilwater vigorously in a flask, stopper, invert, pour cold water or water to boiling in a round bottom flask, stopper, invert, pour cold water or to maintain boiling.D&R, H-260boiling by cooling4C30.10Heat woling water in a round bottom flask, stopper, invert, apply cold towels or ice to the flask.Sprott, 2.8boiling by cooling4C30.15Hoid water in a round bottom flask with a dimple in the bottom, renove from heat, stopper, invert na dice to the dimple.PIRA 1000boiling at reduced pressure4C30.15Boil at reduced pressure with a flask of water.F8A, Hi-3boiling at reduced pressure4C30.15Boil at reduced pressure with a flask of water.F8A, Hi-76boiling at reduced pressure4C30.15Boil at reduced pressure with a flask of water.F8A, Hi-78boiling at reduced pressure4C30.15Boil at reduced pressure with a flask of water.F8A, Hi-76boiling at reduced pressure4C30.15Boil at reduced pressure with a		AJP 45(4),395	hard sphere model	4C20.90	
Phase Changes: Liquid-Gas boiling by cooling4C30.00PIRA 200boiling by cooling4C30.10F&A, H;4boiling by cooling4C30.10Sut, H-75boiling by cooling4C30.10Sut, H-75boiling by cooling4C30.10Bill water4C30.10Boil water vigorously in a fask, stopper and remove from heat, cool with ice or water to show boiling at reduced pressure. A thermometer or thermocouple can be added to show temperature.Hil, H-5dboiling cold water4C30.10Bar, H-260boil water at reduced pressure4C30.10Bar, H-260boil water at reduced pressure4C30.10Bar, H-260boil water under reduced pressure4C30.10Bar, H-260boil water under reduced pressure4C30.10Bar, H-260boil water under reduced pressure4C30.10Bar, H-260boiling at reduced pressure4C30.10Bar, H-260boiling at reduced pressure4C30.10Bar, H-270boiling at reduced pressure4C30.10Bar, H-280boiling at reduced pressure4C30.16Bar, H-30boiling at reduced pressure4C30.15Bar, H-31boiling at reduced pressure4C30.15Bar, H-32boiling at reduced pressure4C30.15Bar, H-33boiling at reduced pressure4C30.15Bar, H-76boiling at reduced pressure4C30.15Bar, H-76boiling at reduced pressure4C30.20Sut, H-76boiling at reduced pressure4C30.20Sut, H-76boiling at reduced pressure4C		AJP 46(1),80	Metglas 2826	4C20.98	crystallization. The mechanical, electrical, and magnetic properties are
PIRA 200 UMN, 4C30.10 boiling by cooling boiling by cooling boiling by cooling4C30.10 4C30.10Cool a stoppered flask filled with warm water with ice until boiling starts.Sut, H-75 boiling by cooling4C30.10A mea as Hj-4. 4C30.10A mea as Hj-4. A mea shi-4.Same as Hj-4. 4C30.10A mea shi-4. A mea shi-4.Sut, H-75 boiling cold water Hil, H-5dboiling cold water boiling cold water at reduced pressure boiling by cooling4C30.10A mea shi-4. A water to boiling at reduced pressure. A thermometer or thermocouple can be added to show temperature. Heat boiling water is a round bottom flask, stopper, invert, apply cold towels or ice to the flask.Sprott, 2.8 boiling by cooling4C30.10Heat water to boil. Heat boiling water in a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and steam causes the water to boil.Disc 15-10 boiling at reduced pressure boiling at reduced pressure to boiling at reduced pressure to boiling at reduced pressure 4C30.15Goil at reduced pressure water an a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.PiRA 1000 boiling at reduced pressure boiling at reduced pressure to boiling by reduced pressure4C30.15Boil water in a round bottom flask with a spirator.Mei, 27-3.6 boiling by reduced pressure boiling at reduced pressure4C30.15Boil water at come water with aspirator or vacuum pump until boiling starts.Mei, 26-5.16 superheated water4C30.25Auter at measures the boiling out as a vacuum pump is used to reduce the pressure in a flask of water.Mei, 26-5.16 <b< td=""><td></td><td>Sut, H-47</td><td></td><td></td><td>The recipe for Wood's metal (melting point 65.5 C).</td></b<>		Sut, H-47			The recipe for Wood's metal (melting point 65.5 C).
UNN, 4C30.10 boiling by cooling 4C30.10 Same as Hj-4. F8A, Hj-4 boiling by cooling 4C30.10 A flask with warm water is cooled with ice until boiling starts. Sut, H-75 boiling by cooling 4C30.10 Boil water vigorously in a flask, stopper and remove from heat, cool with ice or water to show boiling at reduced pressure. Hil, H-5d boiling cold water 4C30.10 Heat water to boiling in a round bottom flask, stopper, invert, pour cold water or thermocouple can be added to show temperature. D&R, H-260 boil water at reduced pressure 4C30.10 Heat water to boiling in a round bottom flask, stopper, invert, apply cold towels or ice to the flask. Sprott, 2.8 boiling point depression 4C30.10 Hold water in a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple. PIRA 1000 boiling at reduced pressure 4C30.15 Boil at reduced pressure using an aspirator. F8A, H-3 boiling at reduced pressure 4C30.15 Boil water is superheated in a very clean flask for water. Mei, 27-3.6 boiling at reduced pressure 4C30.15 Boil water is upperheated in a very clean flask free of flaws. A similar flask with boiling starts. Mei, 26-5.16 superheated water 4C30.20 Water is superheated in a very clean flask free of flaws. A similar fl		PIRA 200			Cool a stoppered flask filled with warm water with ice until boiling starts.
F&A, Hj-4 Sut, H-75boiling by cooling boiling by cooling4C30.10A flask with warm water is cooled with ice until boiling starts. Boil water vigorously in a flask, stopper and remove from heat, cool with ice or water to show boiling at reduced pressure. A thermometer or thermocouple can be added to show temperature.Hil, H-5dboiling cold water4C30.10Heat water to boiling in a round bottom flask, stopper, invert, pour cold water over to maintain boiling.D&R, H-260boil water at reduced pressure4C30.10Heat water to boil water in a round bottom flask, stopper, invert, apply cold towels or ice to the flask.Sprott, 2.8boiling by cooling4C30.10Holding ice against a sealed flask contain hot water and steam causes the water to boil.Disc 15-10boil water under reduced pressure4C30.10Boil water in a round bottom flask, with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.PIRA 1000boiling at reduced pressure4C30.15Boil at reduced pressure is an flask of water.F&A, Hj-3boiling by reduced pressure4C30.15Boil at reduced pressure in a flask of water.Wei, 26-5.16superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling at reduced pressureVLH, H-83bumping4C30.21Auer is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts.VL, H-75geyser4C30.25A simple experiment to verify the theory of water vaporization and measure the bubble radius under superh					
Sut, H-75boiling by cooling4C30.10Boil water vigorously in a flask, stopper and remove from heat, cool with ice or water to show bolling at reduced pressure. A thermometer or thermocoupic can be added to show temperature.Hil, H-5dboiling cold water4C30.10Heat water to boiling in a round bottom flask, stopper, invert, pour cold water over to maintain boiling.D&R, H-260boil water at reduced pressure4C30.10Heat water to a boiling water in a round bottom flask, stopper, invert, apply cold towels or ice to the flask.Sprott, 2.8boiling by cooling4C30.10Holding ice against a sealed flask contain hot water and steam causes the water to boil.Disc 15-10boil water under reduced pressure4C30.15Boil at reduced pressure4C30.15PIRA 1000boiling at reduced pressure4C30.15Boil at reduced pressure water in a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.PIRA 1000boiling at reduced pressure4C30.15Boil at reduced pressure water in a flask of water.Sut, H-76boiling at reduced pressure4C30.15Boil water at room temperature by evacuating.Sut, H-76superheating liquids4C30.20Vater is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts explosively.AJP, 75 (6), 496superheated water4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.PIRA 1000geyser4C30.25A conical tube 12 cm					•
Hil, H-5dboiling cold water4C30.10Heat water to boiling in a round bottom flask, stopper, invert, pour cold water over to maintain boiling.D&R, H-260boil water at reduced pressure4C30.10Heat water to boiling in a round bottom flask, stopper, invert, apply cold towels or ice to the flask.Sprott, 2.8boiling by cooling4C30.10Holding ice against a sealed flask contain hot water and steam causes the water to boil.Disc 15-10boil water under reduced pressure4C30.10Holding ice against a sealed flask contain hot water and steam causes the water to boil.PIRA 1000boiling at reduced pressure4C30.15Hold are touced pressure4C30.15PIRA 1000boiling breduced pressure4C30.15Hold memore the pressure in a flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.Mei, 27-3.6boiling breduced pressure4C30.15Hold meter imeasures the boiling point as a vacuum pump is used to reduce the pressure in a flask of water.Mei, 26-5.16superheating liquids4C30.20Vater is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts.Sut, H-83bumping4C30.21A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.Sut, H-80geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-83bumping4C30.25A long tapered tank is used to form a geyser.Sut, H-84geyser4C30.25A long tapered tan		•			5
Ower to maintain boiling.D&R, H-260boil water at reduced pressure4C30.10Heat boiling water in a round bottom flask, stopper, invert, apply cold towels or ice to the flask.Sprott, 2.8boiling by cooling4C30.10Holding ice against a sealed flask contain hot water and steam causes the water to boil.Disc 15-10boil water under reduced pressure4C30.10Boil water in a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.PIRA 1000boiling at reduced pressure4C30.15Boil at reduced pressure using an aspirator.FAA, Hj-3boiling by reduced pressure4C30.15Boil at reduced pressure in a flask of water.Mei, 27-3.6boiling at reduced pressure4C30.15Boil water at room temperature by evacuating.Sut, H-76boiling at reduced pressure4C30.15Boil water is nearby. Add chalk dust to the superheated water and boiling starts.Mei, 26-5.16superheated water4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling starts explosively.AJP, 75 (6), 496superheated water4C30.20Water an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.PIRA 1000geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A long tapered tank is used to form a geyser.Mi, H-75geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-80geyser4C30.25A long tapered tank is used to form a geyser. <td< td=""><td></td><td></td><td>boling by booling</td><td>1000.10</td><td>or water to show boiling at reduced pressure. A thermometer or</td></td<>			boling by booling	1000.10	or water to show boiling at reduced pressure. A thermometer or
or ice to the flask.Sprott, 2.8boiling by cooling4C30.10Holding ice against a sealed flask contain hot water and steam causes the water to boil.Disc 15-10boil water under reduced pressure4C30.10Boil water in a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.PIRA 1000boiling at reduced pressure4C30.15TPT 2(4),178boiling point depression4C30.15Boil y at reduced pressure4C30.15Kei, 27-3.6boiling by reduced pressure4C30.15Boil y at reduced pressure4C30.15Mei, 27-3.6boiling at reduced pressure4C30.15Boil water at room temperature by evacuating.Pump on a flask of warm water with aspirator or vacuum pump until boiling starts.Mei, 26-5.16superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts explosively.AJP, 75 (6), 496superheated water4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.PIRA 1000geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-83bumping4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.Sut, H-80geyser4C30.25Pitcure of a geyser demonstrator.Burth 11-5e		·	-	4C30.10	over to maintain boiling.
Water to boil.Water under reduced pressure4C30.10Boil water in a round bottom flask with a dimple in the bottom, remove from heat, stopper, invert and add ice to the dimple.PIRA 1000 TTPT 2(4),178 F8A, Hj-3boiling at reduced pressure boiling at reduced pressure4C30.15Boil at reduced pressure using an aspirator.F8A, Hj-3 Sut, H-76boiling by reduced pressure boiling at reduced pressure4C30.15A thermometer measures the boiling point as a vacuum pump is used to reduce the pressure in a flask of water.Mei, 27-3.6 Sut, H-76boiling at reduced pressure boiling at reduced pressure4C30.15Boil water at room temperature by evacuating.Mei, 26-5.16 Superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts explosively.AJP, 75 (6), 496 Sut, H-83superheated water4C30.20Water is nearby. Add chalk dust to the superheated the temp will rise above 100 C before a vapor bubble suddenly forms.PIRA 1000 Seysergeyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79 Seysergeyser4C30.25A long tapered tank is used to form a geyser.Sut, H-76 Sut, H-80geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-80 Beysergeyser4C30.25A long tapered tank is used to form a geyser.Sut, H-80 Beysergeyser4C30.25A long tapered tank is used to form a geyser.Sut, H-78 Steam bomb4C30.25A long tapered tube of none stea				4C30.10	or ice to the flask.
PIRA 1000 PIRA 1000 Bit and the set of the					water to boil.
TPT 2(4),178 F&A, Hj-3boiling point depression boiling at reduced pressure4C30.15Boil at reduced pressure using an aspirator.Mei, 27-3.6 Sut, H-76boiling by reduced pressure boiling at reduced pressure4C30.15A thermometer measures the boiling point as a vacuum pump is used to reduce the pressure in a flask of water.Mei, 26-5.16superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts.AJP, 75 (6), 496superheated water4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.Sut, H-83bumping4C30.21When an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.PIRA 1000geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.Sut, H-80geyser4C30.25A .5" brass tube 6' long soldered to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-56geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Kut, H-78steam bomb4C30.27Heat a corked test tube					
F&A, Hj-3boiling at reduced pressure4C30.15A thermometer measures the boiling point as a vacuum pump is used to reduce the pressure in a flask of water.Mei, 27-3.6boiling by reduced pressure4C30.15Boil water at room temperature by evacuating.Sut, H-76boiling at reduced pressure4C30.15Boil water at room temperature by evacuating.Mei, 26-5.16superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts explosively.AJP, 75 (6), 496superheated water4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.Sut, H-83bumping4C30.25A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.PIRA 1000geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-80geyser4C30.25A.5" brass tube 6' long soldered to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-5egeyser4C30.25A funnel placed mouth-down in a beaker of boiling water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.25A long tapered tube is					
Mei, 27-3.6 Sut, H-76boiling by reduced pressure boiling at reduced pressure4C30.15 Boil water at room temperature by evacuating.Mei, 26-5.16superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts superheated water actions.AJP, 75 (6), 496superheated water4C30.20Water is nearby. Add chalk dust to the superheated water and boiling starts explosively.AJP, 75 (6), 496superheated water4C30.21When an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.Sut, H-83bumping4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-78geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated gives a 3 ft. geyser.Hii, H-5egeyser4C30.25A funnel placed mouth-down in a beaker of boiling water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.		TPT 2(4),178		4C30.15	
Sut, H-76boiling at reduced pressure4C30.15Pump on a flask of warm water with aspirator or vacuum pump until boiling starts.Mei, 26-5.16superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts explosively.AJP, 75 (6), 496superheated water4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.Sut, H-83bumping4C30.21When an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.PIRA 1000geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated gives a 3 ft. geyser.Sut, H-80geyser4C30.25A conical tube 12 cm at the bottom and 4 the at the top of lilled with water and heated gives a 3 ft. geyser.Hil, H-5egeyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser lik action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.25Heat a corked test tube or make a bomb by sealing off some water in a glass					reduce the pressure in a flask of water.
Mei, 26-5.16superheating liquidsstarts.Mei, 26-5.16superheating liquids4C30.20Water is superheated in a very clean flask free of flaws. A similar flask with boiling water is nearby. Add chalk dust to the superheated water and boiling starts explosively.AJP, 75 (6), 496superheated water4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.Sut, H-83bumping4C30.20When an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.PIRA 1000geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-80geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-80geyser4C30.25A long tapered tank is used to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-5egeyser4C30.25Picture of a geyser demonstrator.D&R, H-264geyser4C30.25A lonnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		,			, , ,
AJP, 75 (6), 496superheated water4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.Sut, H-83bumping4C30.20A simple experiment to verify the theory of water vaporization and measure the bubble radius under superheating conditions.PIRA 1000geyser4C30.21When an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.PIRA 1000geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.Sut, H-80geyser4C30.25A .5" brass tube 6' long soldered to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-5egeyser4C30.25Picture of a geyser demonstrator.D&R, H-264geyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass					starts.
Sut, H-83bumping4C30.21When an open tube (H-82) containing water is heated the temp will rise above 100 C before a vapor bubble suddenly forms.PIRA 1000geyser4C30.25F&A, Hj-5geyser4C30.25Sut, H-79geyser4C30.25Sut, H-79geyser4C30.25Sut, H-80geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-80geysergeyser4C30.25Hil, H-5egeysergeyser4C30.25A long tapered tank is used of long soldered to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-5egeyserD&R, H-264geyserSprott, 2.6geyserSut, H-78geyserSut, H-78steam bomb4C30.27A long tapered tube is heated from below and erupts periodically.Heat a corked test tube or make a bomb by sealing off some water in a glass		Mei, 26-5.16	superheating liquids	4C30.20	boiling water is nearby. Add chalk dust to the superheated water and boiling
PIRA 1000geyser4C30.25F&A, Hj-5geyser4C30.25Sut, H-79geyser4C30.25Sut, H-79geyser4C30.25Sut, H-80geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.Sut, H-80geyserBurger4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.Hil, H-5egeyserBurger4C30.25Picture of a geyser demonstrator.D&R, H-264geyserSprott, 2.6geyserSut, H-78geyserSut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		AJP, 75 (6), 496	superheated water	4C30.20	
F&A, Hj-5geyser4C30.25A long tapered tank is used to form a geyser.Sut, H-79geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.Sut, H-80geyser4C30.25A .5" brass tube 6' long soldered to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-5egeyser4C30.25Picture of a geyser demonstrator.D&R, H-264geyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		Sut, H-83	bumping	4C30.21	
Sut, H-79geyser4C30.25A conical tube 12 cm at the bottom and 4 cm at the top, 2 m long, and heated at the bottom, models a geyser.Sut, H-80geyser4C30.25A .5" brass tube 6' long soldered to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-5egeyser4C30.25Picture of a geyser demonstrator.D&R, H-264geyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		PIRA 1000	geyser	4C30.25	
Sut, H-80geyser4C30.25A .5" brass tube 6' long soldered to a 4" tube 10"long filled with water and heated gives a 3 ft. geyser.Hil, H-5egeyser4C30.25Picture of a geyser demonstrator.D&R, H-264geyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		F&A, Hj-5	geyser	4C30.25	A long tapered tank is used to form a geyser.
Hil, H-5egeyser4C30.25Picture of a geyser demonstrator.D&R, H-264geyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		Sut, H-79	geyser	4C30.25	
D&R, H-264geyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		Sut, H-80	geyser	4C30.25	A .5" brass tube 6' long soldered to a 4" tube 10"long filled with water and
D&R, H-264geyser4C30.25A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get underneath.Sprott, 2.6geyser4C30.25A long tapered tube is heated from below and erupts periodically.Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass		Hil, H-5e	geyser	4C30.25	Picture of a geyser demonstrator.
Sut, H-78steam bomb4C30.27Heat a corked test tube or make a bomb by sealing off some water in a glass				4C30.25	A funnel placed mouth-down in a beaker of boiling water will display geyser like action. Place a coin under one edge of funnel to allow water to get
		Sprott, 2.6	geyser	4C30.25	A long tapered tube is heated from below and erupts periodically.
			• •	4C30.27	Heat a corked test tube or make a bomb by sealing off some water in a glass

Demonstration	Bibliography	J	uly 2015	Thermodynamics
PIRA 1000	helium and CO2 balloons in liquid N2	4C30.30		
F&A, Hk-3	change of volume with change of state	4C30.30	Balloons of CO2 and He are immersed in liquid r	nitrogen.
Disc 15-17	helium and CO2 balloons in liquid N2	4C30.30	Helium and CO2 balloons are immersed in liquid balloon to show solid carbon dioxide.	nitrogen. Cut open the CO2
Sut, H-102	ice stove	4C30.33	Boil away liquid air in a teakettle on a cake of ice	
PIRA 1000	liquid nitrogen in a balloon	4C30.35		
UMN, 4C30.35	liquid nitrogen in a balloon	4C30.35		
Sut, H-112	burst a balloon	4C30.35	A small amount of liquid air in a test tube blows u (800:1 volume ratio).	up a balloon until it bursts.
Disc 15-09	liquid nitrogen in balloon	4C30.35	Pour some liquid nitrogen in a small flask and ca	p with a balloon.
Mei, 27-10.2	gas and vapor under compression	4C30.36	A mercury piston applies equal pressure to air ar SO2 collapses into liquid at 2 1/2 atmospheres.	nd sulfur dioxide until the
UMN, 4C30.40	heat of vaporization of water	4C30.40	Boil water in a beaker while measuring the tempe	erature.
Mei, 26-5.11	bromine cryophorous	4C30.50	One end of an L-shaped evacuated tube contain dry ice/alcohol mixture.	ing bromine is immersed in a
Sut, H-60	bromine condensation	4C30.50	The color of bromine gas in one end of a tube is is cooled.	reduced when the other end
Sut, H-61	steam into calorimeter	4C30.60	Pass steam into a calorimeter to determine the h	
Mei, 27-10.1	making liquid oxygen	4C30.80	Liquid oxygen will drip from the outer surface of a liquid nitrogen.	
Mei, 27-10.3	heat exchanger oxygen liquifier	4C30.81	A heat exchanger is used to liquefy oxygen from Picture, Construction details in appendix, p. 1297	7.
Sut, H-110	liquification of air under pressure	4C30.82	A bicycle pump is used to put a test tube immers pressure. Liquification will continue as long as th	
Sprott, 2.12	liquid nitrogen cloud	4C30.90	liquid nitrogen induced to vaporize cools the air a	and creates a dense cloud.
	Cooling by Evaporation	4C31.00		
PIRA 500	cryophorous	4C31.10		
UMN, 4C31.10	cryophorous	4C31.10	One end of an evacuated glass tube with bulbs a nitrogen, water in the other end will freeze.	at each end is put in liquid
F&A, Hj-8	cryophorous	4C31.10	One end of a tube is stuck in a cold trap and wat	er in the other end freezes.
Sut, H-67	cryophorous	4C31.10	Water in one end of an evacuated J tube will free in a ice-salt mixture, alcohol-dry ice mixture, or lie	•
Disc 15-14	cryophorus	4C31.10	, , , , , , , , , , , , , , , , , , , ,	
Sut, H-68	cryophorous	4C31.11		
Mei, 26-5.10	cryophorous	4C31.12	inverted and a dry ice/alcohol mixture is placed in A Lucite assembly for the overhead projector with	h an evacuated chamber
		1001.00	holding water and an area for a dry ice/acetone r	mixture.
PIRA 1000	freezing by evaporation	4C31.20		d b at was a successful
AJP 32(11),xxii	freezing by evaporation	4C31.20	Evacuate a chamber with water on the overheard Polaroids.	
AJP 35(9),x	freezing by evaporation	4C31.20	For the overhead projector: make a hole for a sm bottom of a small test tube and pump on a small	amount of water.
Mei, 26-5.9	freezing by evaporation	4C31.20	Pump down some distilled water in a chamber or the water freezes. Crossed Polaroids make the e	effect more visible.
Disc 15-13	freezing by boiling	4C31.20	0	
Sut, H-70	freezing by evaporation		Freeze water in a watch glass over a dish of sulf	-
D&R, H-280	freezing by evaporation	4C31.21	5	uric acid in a bell jar. Also
Sut, H-69	freezing by evaporation	4C31.22	observe boiling before water freezes. Freeze water in a flask by pumping through a sul up to 10 C is possible.	lfuric acid trap. Supercooling
Sprott, 2.7	freezing by evaporation	4C31.22		then turns into ice when the
PIRA 200	drinking bird	4C31.30	Cooling causes vapor to condense, raising the content tips, lowering the center of gravity.	enter of gravity until the bird
UMN, 4C31.30	drinking bird	4C31.30	The drinking bird has a wet head which evaporat	es drawing liquid up his neck
F&A, Hj-7	drinking bird	4C31.30	and tipping him over. Cooling causes vapor to condense raising the ce	enter of gravity until the bird
D&R, H-240	drinking bird	4C31.30	tips. Dip head of bird in water. Cooling by evaporation into the bird until it tips because of the raised cer	
				nor of gravity.

Demonstration	Bibliography	J	uly 2015 Thermodynamics
AJP 74(8), 677	drinking bird	4C31.30	The motion and temperature of the drinking bird are monitored to determine
AU 74(0), 077		4031.30	the quantitative history of its motion over time and to determine the thermodynamic and mechanical constraints on its performance.
AJP 72(6), 782	drinking bird	4C31.30	A drinking bird system that obtains energy from the evaporation of water, but is not a heat engine.
AJP 71(12), 1264	drinking bird	4C31.30	Measurements on the drinking bird system which has the body heated instead of the head being cooled by evaporation.
AJP 71(12), 1257	drinking bird	4C31.30	Measurements and modeling of the drinking bird system with the head being cooled by evaporation. The effect of humidity is also shown.
Bil&Mai, p 231	drinking bird	4C31.30	Dip the head of the bird in water. Cooling by evaporation causes liquid to draw up into the bird until it tips because of the raised center of gravity.
Disc 15-12	drinking bird	4C31.30	Standard drinking bird. Includes animation.
Sut, H-66	CO2 cartridge cools	4C31.31	Puncture a CO2 cartridge and the steel bulb will cool enough to form frost but
Sut, H-64	evaporating carbon disulfide	4C31.32	there is not enough gas to produce snow. Evaporating carbon disulfide (highly inflammable and poisonous) is used to form frost.
Sut, H-63	evaporating ether	4C31.33	Evaporating ether in a watch glass freezes a drop of water between the bottom of the glass and a cork. A method for burning off the ether is shown.
Sut, H-62	evaporating ethyl chloride	4C31.34	Diagram. Ethyl chloride is used to freeze water in a small dish or cool a thermometer.
Mei, 26-5.5	cooling by evaporation	4C31.35	An attached manometer shows cooling when several drops of ether are placed in a flask.
Sut, H-73	pulse-glass engine	4C31.37	•
D&R, H-500	pulse glass engine	4C31.37	A pulse glass will oscillate when mounted on a pivot so that one side and then the other can come near a heat lamp.
	Dew Point and Humidity	4C32.00	
PIRA 1000	sling psychrometer	4C32.10	
UMN, 4C32.10	sling psychrometer	4C32.10	Use a commercial sling psychrometer to determine relative humidity.
F&A, HI-2	sling psychrometer	4C32.10	Two thermometers, one with a wet wick, are mounted on a device swung around the head.
Hil, M-22a.1	sling psychrometer	4C32.10	Two thermometers, one with a wet wick on the bulb, are rotated.
F&A, HI-1 Sut, H-92	wet and dry bulb thermometers humidity	4C32.11 4C32.11	Identical thermometers are mounted on a panel, one with a wet wick. Wet and Dry bulb readings.
Hil, M-22a.2	wet and dry bulb	4C32.11 4C32.11	Wet and dry bulb thermometers are mounted on a frame with a humidity
		1002.11	graph.
Hil, M-22a.3	dial hygrometer	4C32.15	A dial type hygrometer is pictured.
F&A, HI-3	demonstration hair hygrometer	4C32.16	•
F&A, HI-4	dew point measurement	4C32.20	Evaporating alcohol cools a shiny surface until dew forms.
F&A, HI-5	dew point	4C32.21	Evaporating ether cools a gold band until dew forms. Reflect a light beam off two bright plates, one cooled by ether.
Sut, H-93 Mei, 27-3.10	dew point dew point with evaporating ether		When the dew point is reached in a test tube of evaporating ether, water drops on the outside complete an electrical circuit, lighting a neon lamp.
F&A, HI-9	condensation and coalescence	4C32.24	Watch the shiny surface of a Frigister (thermoelectric cooler) as small water drops grow and coalesce.
PIRA 1000	condensation nuclei	4C32.40	
F&A, HI-6	condensation nuclei	4C32.40	Cigar smoke is introduced into a steam jet.
F&A, HI-7	condensation nuclei	4C32.41	An extinguished match is held in the steam from a tea kettle.
Mei, 27-3.11	fog in a bell jar	4C32.50	Place moistened cotton in a bell jar and evacuate until fog forms. After cleaning the air of dust, ions are introduced and a thick fog forms.
	Vapor Pressure	4C33.00	
PIRA 1000	vapor pressure in barometer	4C33.10 4C33.10	Incort water or cleand in a margury haramater
UMN, 4C33.10 F&A, Hj-1	vapor pressure in barometer vapor pressure of liquids	4C33.10 4C33.10	Insert water or alcohol in a mercury barometer. Set up a series of mercury barometers and insert a small amount of volatile
1 &A, 11j-1	vapor pressure or liquids	4055.10	liquid in each one.
Sut, H-81	vapor pressure in barometer	4C33.10	Place four mercury barometers in a line and introduce different liquids into three to show vapor pressure.
Mei, 27-3.7	vapor pressure with a manometer	4C33.11	Three flasks containing water, alcohol, and ether are connected by stopcocks to the evacuated side of a mercury manometer.
D&R, H-244	vapor pressure with a manometer	4C33.11	A small bottle containing 1/2 ml of methanol is connected to a water manometer.
F&A, HI-10	vapor pressure of water	4C33.12	
Sut, H-86	comparison of vapor and gas	4C33.13	Barometer tubes are moved up and down in a deep well of mercury. One
			contains air, the other alcohol vapor. The mercury level remains the same in the tube with alcohol vapor.

Demonstration Bibliography July 2015 Thermodynamics Sut, H-82 vapor pressure tube 4C33.13 Separate tubes are made up with a liquid sealed over mercury and with an evacuated tube extending out of the mercury to show the vapor pressure. **PIRA 1000** addition of vapor pressures 4C33.20 UMN, 4C33.20 addition of vapor pressures 4C33.20 Add water and then alcohol to a mercury barometer F&A, Hj-2 addition of partial pressures 4C33.21 Measure the pressure change with a manometer when a vial of ether is broken in a flask of air. Mei, 27-3.1 4C33.25 soda pop pressure Attach a pressure gauge to a soda pop bottle and measure the buildup of pressure. **PIRA 1000** 4C33.30 vapor pressure curve for water AJP 29(10), xiii vapor curve of water 4C33.30 Boil water in a flask attached to one side of a mercury manometer, remove the heat and seal off the flask from the atmosphere, take readings of the temp and pressure difference as the system cools. Mei, 27-3.8 vapor pressure curve for water 4C33.30 A flask of boiling water is stoppered with a thermometer and mercury manometer. Readings are taken as the water cools. Mei. 27-3.5 vapor pressure of water vs 4C33.31 Add a thermometer and pressure gauge to a pressure cooker the demonstrate the effect of temperature on partial pressure of water. temperature Sut, H-74 4C33.32 Insert a mercury filled J tube with water at the closed end into a boiling water vapor pressure of water at boiling bath and the mercury comes to the same level on both sides of the tube. TPT 2(4),178 vacuum by freezing 4C33.33 A table of vapor pressure values for water at standard bath temperatures down to -90 C. Some demo suggestions are included. AJP 43(10),925 vapor pressure curve for CCl4 4C33.35 Modification of a flexible tube manometer to measure the vapor pressure curve of CCI4. **PIRA 500** 4C33.50 pulse glass Sut, H-72 pulse glass 4C33.50 A tube with a small bulb on each end partially filled with a volatile liquid is held by one bulb in the palm forcing the liquid into the other bulb. Hil, H-2a.2 4C33.50 pulse glass Just a picture. Sut, H-85 vapor pressure fountain 4C33.55 Ether is introduced into a stoppered flask half full of water with a nozzle extending to near the bottom of the flask. The vapor pressure forces the water out the nozzle. Diagram. Mei. 27-3.9 4C33.56 addition of vapor pressure with An apparatus is constructed of glass tubing to allow one to add ether to ether entrapped air at atmospheric pressure and measure the increased pressure. Reference: AJP 13(1),50. Mei, 27-3.4 flask inverted over ether 4C33.57 When a flask is inverted over ether, bubbles form due to the partial pressure of ether. Sut, H-84 retarded evaporation 4C33.58 Introduce a volatile liquid into two flasks connected to mercury manometers, one evacuated and the other full of air. The final pressure is the same but the time to get there differs. Mei, 27-3.3 beakers in a bell jar 4C33.60 Beakers of water and brine are placed in a bell jar and left for weeks. The brine gains water. 4C33.61 A manometer separates water and a salt solution in a closed system. F&A, Hj-6 lowering of vapor pressure by dissolved salt Sut, H-87 4C33.62 vapor pressure of solutions Aqueous solutions of salt or sugar have a higher boiling point than water. Sublimation 4C40.00 **PIRA 500** 4C40.10 sublimation of carbon dioxide UMN. 4C40.10 carbon dioxide 4C40.10 Watch carbon dioxide sublimate. Sut, H-51 carbon dioxide 4C40.10 Evaporation of "dry ice". Disc 15-18 sublimation of CO2 Small solid carbon dioxide flakes are generated by cooling a CO2 balloon in 4C40.10 liquid nitrogen. 4C40.11 Sut. H-95 carbon dioxide Show chattering due to formation and escape of vapor. D&R, H-220 carbon dioxide - make dry ice 4C40.11 Show the formation of dry ice by the rapid cooling of the gas upon expansion using a carbon dioxide fire extinguisher. Sut, H-52 4C40.12 Detect the evaporation of gas by the high pitched rocking motion of one end carbon dioxide rocker of an iron rod placed on "dry ice". **PIRA 1000** blow up balloon with CO2 4C40.15 Sut, H-97 blow up a balloon with CO2 4C40.15 Attach a balloon to a test tube with dry ice and when the balloon is inflated immerse the tube in liquid air. F&A, Hk-1 change of volume with change of 4C40.16 Dry ice blows up a balloon. state Mei. 26-5.8 iodine 4C40.20 Place melted iodine crystals in a partially evacuated tube and heat. Mei, 26-5.7 ammonium chloride 4C40.30 Heat ammonium chloride in a test tube and it evaporates without melting, coating the cool sides of the tube. ALSO- solidify CO2. Sut, H-53 camphor 4C40.40 Heat camphor in one end of a tube and the vapors will condense on the

cooler end. Project.

Demonstrati	on Bibliography	J	uly 2015	Thermodynamics
TPT 3(7),322	sublimation of ice and snow	4C40.50	Freeze water in a large dish, then cover foil. After three weeks, the uncovered	er portions with rectangles of aluminum areas have sublimed about a half inch.
PIRA 1000	Phase Changes: Solid-Solid phase change in iron	4C45.00 4C45.10		
UMN, 4C45.10 F&A, Es-7	phase change in iron phase change in iron	4C45.10 4C45.10	A long iron wire heated to 1000 K will	sag as it goes through a phase change.
TPT 30(1), 42	nitinol wire	4C45.15	A nitinol wire returns to a preformed sl transition from the low temperature ma austenite phase.	hape when it undergoes a phase artensite phase to the high temperature
AJP 72(5), 599	nitinol wire	4C45.15	The ability of nitinol wire to remember three dimensional folding structure. U and DNA of RNA hybridization, geome	seful when looking at protein folding
AJP 43(7),650	solid-solid phase projection	4C45.20	The salt ammonium nitrate exhibits fiv -16C. Heat the salt on a microscope s coating on one side.	e phase transitions between 169 C and lide with an electrically conducting
PIRA 1000	polymorphism	4C45.30		
Mei, 26-5.18	polymorphism	4C45.31	Mercury iodide changes from red to ye five solid phases at transformation ten demonstrated between crossed Polare	peratures of -16, 35, 83, 125 C. Best
AJP 59(3),260	phase transitions - magnetic model	4C45.35	A magnetic model demonstrates phas molecular crystals. Construction detail	e transitions and excitations in s and hints included along with theory.
	Critical Point	4C50.00		
PIRA 500	critical point of CO2	4C50.10		
UMN, 4C50.10		4C50.10	The meniscus in a tube containing liqu when warmed.	id CO2 at high pressure disappears
F&A, Hk-6	critical point of carbon dioxide	4C50.10	Gently heat a glass tube containing liq atmospheres and 31.6 C.	uid CO2. The critical point is 73
Sut, H-90	critical point of CO2	4C50.10	Liquid CO2 in a heavy wall glass tube the meniscus.	is heated to show disappearance of
Disc 15-11	CO2 critical point	4C50.10	Warm a tube containing liquid CO2. To 31.6 C.	
Mei, 27-2.9	critical point of CO2	4C50.11	Tubes filled with liquid CO2 at, above, prepared to demonstrate behavior of a instructions.	•
AJP 34(1),68	citical state analog	4C50.15	Use the critical solution of aniline and critical state.	cyclohexane as an analog of the
PIRA 1000	critical opalescence	4C50.20		
UMN, 4C50.20	•	4C50.20	A sealed chamber containing freon is	
Sut, H-91	critical temperature of ethyl chloride	4C50.30	Directions for making an ethyl chloride	apparatus (187.2 C, 52 atmos).
PIRA 1000	triple point of water cell	4C50.40		
AJP 29(8),iii	triple point of water cell	4C50.40	A real triple point of water cell designe	d for use as a temperature reference.
	KINETIC THEORY Brownian Motion	4D00.00 4D10.00		
PIRA 200	Brownian motion cell	4D10.10	View a smoke cell under a microscope).
UMN, 4D10.10	Brownian motion smoke cell on T	V 4D10.10	Look through a microscope at a small	illuminated cell filled with smoke.
F&A, Hh-3	Brownian motion	4D10.10	Observe the motion of particles in a sr	noke cell through a microscope.
Sut, A-48	Brownian motion smoke cell	4D10.10	Observe the Brownian motion smoke	cell through a low powered microscope.
Hil, M-22j	Brownian motion cell	4D10.10	Observe a small smoke cell through a	
Hil, A-1b	Brownian motion cell	4D10.10	View a smoke cell under a microscope	
AJP 78 (12), 12	278 Brownian motion	4D10.10	A look at Robert Brown's original obse misinterpretations.	rvations and some of his
Disc 16-07	brownian motion	4D10.10	A smoke cell is viewed under 100X ma	
Sut, A-51 AJP 44(2),188	Brownian motion - virtual image Brownian motion	4D10.11 4D10.12	The optical setup for viewing Browniar Use a laser beam to illuminate a smol	
Mei, 27-8.1	smoke cell	4D10.12	TV Project the Brownian motion smoke ce	ell with TV. Picture.

Demonstration	n Bibliography	J	uly 2015 Thermodynamics
TPT, 36(6), 342	Brownian motion using a laser pointer	4D10.12	Demonstration of Brownian motion using a microvideo camera connected to the eyepiece of a microscope, and with a laser illuminating the smoke cell.
AJP 41(2),278	smoke cell for TV	4D10.13	Modifications to the standard Welch smoke tube for use with television projection.
AJP 40(5),761	Brownian motion - macroscopic cell	4D10.15	
PIRA 1000	Brownian motion simulator	4D10.20	
UMN, 4D10.20	Brownian motion simulation	4D10.20	Place many small and a few large balls on a vibrating plate on an overhead projector.
Disc 16-08	Brownian motion simulation	4D10.20	A large disc is placed in with small ball bearings in the shaker frame on the overhead projector.
Mei, 27-7.6	Brownian motion simulation	4D10.21	A Brownian motion shaker for the overhead projector. Includes the original references to Brown and Einstein.
AJP 47(9),827	Brownian motion simulation	4D10.25	The Cenco kinetic theory apparatus is modified by mounting a baffle in the center of the tube to reduce the spinning of the particles, and suspending a 1 cm bead in one half of the chamber.
AJP 31(12),922	Brownian motion of a galvanometer	4D10.28	An optical-lever amplifier for studying the Brownian motion of a galvanometer.
PIRA 1000	colloidal suspension	4D10.30	
Sut, A-49	Brownian motion - colloidal	4D10.30	Place a colloidal metal suspension made by sparking electrodes under water on a microscope slide.
Mei, 27-8.5	formation of lead carbonate crystals	4D10.31	•
Sut, A-50	rotary Brownian motion	4D10.31	Observe a dilute suspension of flat lead carbonate crystals under low magnification.
Mei, 27-8.2	Brownian motion in TiO2 suspension	4D10.33	6
AJP 32(7),vi	Brownian motion corridor demonstration	4D10.34	Dow latex spheres in water through a 1900 power projection microscope, mechanical analog with a 2" puck and 1/4" ball bearings.
Mei, 27-8.4	Brownian motion corridor demonstration	4D10.34	A corridor demonstration of Brownian motion of Dow latex spheres using a projection 1900 power microscope.
PIRA 1000	Dow spheres suspension	4D10.40	
AJP 37(9),853	Brownian motion - light scattering	4D10.40	Pass a laser beam through a cell with a suspension of polystyrene spheres. Hold a card up and show the fluctuations of the scattered light.
AJP 71(6), 568	Brownian motion - video microscopy	4D10.40	Measuring Boltzmann's constant using video microscopy of Brownian motion of polystyrene spheres in water.
AJP 55(10),955	Brownian motion on TV	4D10.40	Polystyrene microspheres are used in place of the smoke cell, the eyepiece of the microscope is removed and the image is formed on the shielded TV tube.
AJP, 75 (2), 111	Brownian motion with microspheres	4D10.40	Using a CCD camera to study the dependence of the Brownian motion of microspheres on their radius, the time, the viscosity of the suspension liquid, or temperature.
Mei, 27-8.3	Brownian motion with Dow spheres	4D10.40	Small polystyrene spheres made by Dow are suspended in water for illustrating Brownian motion.
	Mean Free Path	4D20.00	
PIRA 200	Crookes' radiometer	4D20.10	The fake radiometer is evacuated until the mean free path is about the dimension of the system.
UMN, 4D20.10	Crookes' radiometer	4D20.10	The radiometer spins in the wrong direction.
F&A, Hh-6	radiometer	4D20.10	The fake radiometer is evacuated so the mean free path is about the dimension of the system.
D&R, H-188	radiometer	4D20.10	A radiometer heated with a lamp or cooled in a freezer.
Sprott, 1.13	Crooke's radiometer	4D20.10	A difference in kinetic energy of molecules leads to unequal forces and resultant rotation.
Ehrlich 1, p. 117	radiometer	4D20.10	The radiometer and sunlight or a bright light source.
Disc 14-23	radiometer	4D20.10	•
AJP 45(5),447	radiometer analysis	4D20.11	
Sut, H-164	Crookes' radiometer	4D20.11	When the pressure of the Crookes' radiometer is about 1 mm it works well. Place it near dry ice and it will run backwards.
AJP 53(11),1105	Crookes' radiometer backwards	4D20.12	Put your radiometer in the refrigerator, also try an interesting liquid N2 demo.
AJP 54(9),776 AJP 54(6),490	Crookes' radiometer backwards Crookes' radiometer backwards	4D20.12	Use liquid N2 or freon to cool the radiometer so it will run backwards. A letter calling attention to the Woodruff (TPT,6,358) article.
AJP 54(6),490 AJP 51(7),584	heating the radiometer	4D20.12 4D20.13	Heat the glass of the radiometer until it is motionless and as it cools it will run
, or or(r), our		+020.10	backwards.

July 2015

Thermodynamics

Sut, H-165	radiation and convection	4D20.14	Put a hot metal object in a smoke filled projection cell and a clear space will appear around the metal object caused by the radiometric repulsion of the smoke particles. Convection will cause the clear space to extend upward.
AJP 72(6), 843	acoustic radiometer	4D20.14	Construction of a simple acoustic radiometer that DOES rotate by radiation pressure.
AJP 35(12),112 PIRA 1000	0 calorotor mean free path and pressure	4D20.15 4D20.20	Vanes rotate in a tube filled with 20 mTorr helium warmed on one end.
F&A, Hh-7	mean free path and pressure	4D20.20 4D20.20	Aluminum evaporated in high vacuum forms a shadow of a Maltese cross on
Mei, 27-8.7	Maltese Cross	4D20.20	the side of the bell jar. Evaporating aluminum atoms plate a bell jar except in the shadow of a Maltese Cross.
PIRA 1000	mean free path pin board	4D20.30	
Mei, 27-8.6	mean free path pinboard	4D20.30	Steel balls are rolled down a pinboard and the number of collisions is
Mei, 10-3.1	velocity distribution and path length	4D20.31	compared with theory. Take pictures of air table pucks and plot velocity distribution and path length.
AJP 34(12),114		4D20.40	A set of cusps is formed in a curve with height representing energy levels. The assembly is driven by a shaker.
AJP 52(1),54	computer Maxwell-Boltzmann	4D20.45	A FORTRAN program available from the author that shows the evolution of speed distributions.
AJP 58(11),107	3 computer many particle systems	4D20.46	Computer simulations with a billiard table model and a particle moving in a regular array of hard discs.
	Kinetic Motion	4D30.00	
TPT 28(7),441	on the meaning of temperature	4D30.05	Many comments on the TPT 28(2),94 article on temperature.
PIRA 500	Cenco kinetic theory apparatus	4D30.10	
UMN, 4D30.10	Cenco kinetic theory apparatus	4D30.10	The Cenco apparatus with lead shot in a piston.
F&A, Hh-5	mechanical model of kinetic motion	4D30.10	The Cenco molecular motion simulator with lead shot in a piston.
Mei, 27-7.7	Cenco kinetic theory apparatus	4D30.10	A discussion of the Cenco kinetic theory apparatus.
PIRA 1000	big kinetic motion apparatus	4D30.11	
UMN, 4D30.11	big kinetic motion apparatus	4D30.11	Scale up the balls in a piston using a 16" diameter tube and 1/2" diameter balls.
Hil, M-22b.1	mechanical gas model	4D30.12	The details are not clear from this picture of a mechanical gas model.
Sut, A-42	kinetic theory models	4D30.13	Drive small steel balls in a small chamber with a tuning fork.
PIRA 200	molecular motion simulator	4D30.20	
PIRA 500 - Old	molecular motion simulator	4D30.20	
UMN, 4D30.20	molecular motion simulator	4D30.20	Ball bearings on a vibrating plate on the overhead projector.
-		4D30.20 4D30.20	
TPT 2(2),81	kinetic theory demonstrator		A 2-D ball shaker for the overhead projector.
F&A, Hh-4	two dimensional kinetic motion	4D30.20	Balls on a vibrating plate are used with the overhead projector for many molecular simulations.
D&R, H-440	molecular motion simulator	4D30.20	Ball bearings on a vibrating plate on the overhead. Commercial model.
Sprott, 2.15	molecular motion simulator	4D30.20	Drive small steel balls in a small chamber with a mechanical oscillator.
Ehrlich 1, p. 116		4D30.20	BB's bouncing in a hand agitated frame on an overhead projector show temperature and pressure effects on volume.
PIRA 1000	equipartition of energy simulator	4D30.21	
Mei, 27-7.8	simple equipartition model	4D30.21	Jostle two different sized marbles by hand in a large tray to show different velocities.
Sut, A-46	kinetic theory models	4D30.21	A large and small version of balls on a horizontal surface agitated by a hand frame.
Disc 16-05	equipartition of energy simulation	4D30.21	Use different size balls in the shaker frame on the overhead.
PIRA 1000	pressure vs. volume simulator	4D30.22	
Disc 16-04	pressure vs. volume simulation	4D30.22	Change the size of the entrained area of the shaker frame on the overhead projector.
PIRA 1000	free expansion simulation	4D30.23	
Disc 16-13	free expansion simulation	4D30.23	Balls are initially constrained to one half of the shaker frame and then the bar
-		,	is lifted.
PIRA 1000	temperature increase simulation	4D30.24	
Disc 16-03	temperature increase simulation	4D30.24	A shaker frame on the overhead projector is shown with different shaking
	·		rates.
Mei, 27-7.3	mechanical shaker	4D30.25	Determine the distribution of velocities produced by an overhead projector shaker. Picture, Diagrams, Construction details in appendix, p.1294.
AJP 45(11),103		4D30.26	Cylindrical rollers in a pentagon configuration produce random motion.
Mei, 27-7.5	driven steel cage	4D30.27	
			several models of kinetic motion. Pictures, Construction details in appendix,
			p.1295.

Demonstration	Bibliography	J	uly 2015	Thermodynamics
Mei, 27-7.1	hard sphere model	4D30.30	A bouncing plate with balls. The free space ra gas through crystal behavior. Pictures, Consti 1292.	
AJP 52(1),68	speaker shaker	4D30.31	Steel balls in a container on a speaker show b	ooth fluid and solid state
AJP 41(4),582	shaking velcro balls	4D30.32	phenomena. Attach velcro to spheres and shake. "Bonding	" will vary with the vigor of
AJP 38(12),1478	air table molecules	4D30.32	agitation. Four magnets placed on the Plexiglas discs p demonstrations of molecular kinetics.	provide the attraction for many
Mei, 27-7.2	drop formation shaker	4D30.34		causes steel balls to act like
Sut, A-41	kinetic theory models	4D30.37	A fan propels several hundred small steel ball Brownian motion.	ls in a container. Also shows
Sut, A-43	kinetic theory models	4D30.38	Compressed air drives ping pong balls in a la	rge container.
PIRA 1000	glass beads	4D30.40		
F&A, Hh-1	model for kinetic theory of gases	4D30.40	An evacuated tube containing mercury and so a Bunsen burner.	
Sut, A-44	kinetic theory models	4D30.40	Mercury heated in a evacuated glass tube can	uses glass beads to fly about.
Hil, M-22i	glass beads	4D30.40	Heat an evacuated tube with some mercury a projection system is shown.	nd glass chips. An optical
Disc 16-06	mercury kinetic theory	4D30.40	Glass chips float on a pool of mercury in an e mercury and the chips dance in the mercury w	
Sut, A-45	kinetic theory model	4D30.41	Mercury is heated in a large evacuated tube c	•
F&A, Hh-2	model of kinetic pressure	4D30.50	Balls drop from a funnel onto a pan balance.	
Sut, M-117	dropping shot	4D30.51	Pour lead shot onto the apex of a cone attach and velocity of shot.	ed to a float. Vary the number
AJP 28(7),666	stream of dropping balls	4D30.55	Apparatus Drawings Project No. 9: Drop 1/2" a massive damped balance and compare def theory.	
PIRA 1000	flame tube viscosity	4D30.60		
F&A, Hh-9	dependence of viscosity on temperature	4D30.60	See Fm-4.	
F&A, Fm-4	dependence of viscosity on temperature	4D30.60	As the tube on one side of a twin burner is he smaller.	ated, the flame becomes
Mei, 27-4.1	flame tube viscosity	4D30.60	One leg of a "T" tube is heated resulting in inc flame of illuminating gas.	creased viscosity and a smaller
Disc 14-04	gas viscosity change with temperature	4D30.60	Heat the gas flowing to one of two identical but	urners and the flame decreases.
F&A, Fm-3	viscosity of gas independent of pressure	4D30.71	The velocity of a precision ball falling in a pre- pressure as the tube is partially evacuated.	cision tube is independent of
F&A, Hh-8	viscosity independent of pressure	4D30.71	See Fm-3.	
Sut, A-58	viscosity and pressure	4D30.72	Oscillations in the quartz fiber radiation press frequency as it is evacuated.	ure apparatus change
Mei, 27-4.2	viscosity independent of pressure	4D30.75	A viscosity damped oscillator is placed into a various pressures to show viscosity independ Construction details in appendix, p. 1290.	
	Molecular Dimensions	4D40.00		
PIRA 1000	steric and oleic acid films	4D40.10		
Sut, A-53	stearic and oleic acid films	4D40.10	Films from drops of stearic or oleic acid are m	
Sut, M-221	alcohol slick	4D40.12	Place a drop of alcohol at the center of a petri water.	i dish containing a thin layer of
F&A, Fi-15	determination of drop size	4D40.13	A ring proportional to drop size forms when dr	
TPT 2(2),81	Avogadro's number	4D40.15	Use a BB's to model a drop spreading on the acid and do the real thing.	
Mei, 16-5.10	monomolecular layer	4D40.15	A "BB" model and the Oleic acid monomolecu	
Sut, A-52	films Diffusion and Osmosis	4D40.20	Measure gold leaf thickness and show the bla	ick of a soap film.
PIRA 500	Diffusion and Osmosis fragrant vapor - ethyl ketone	4D50.00 4D50.10		
Mei, 27-7.4	diffusion model on the overhead	4D50.15	Balls of two different colors are initially separativity vibrating table. Picture, Construction details in	-
PIRA 1000	diffusion through porcelain	4D50.20		
Sut, A-54	diffusion through porcelain	4D50.20	Different gases are directed around an unglaz manometer shows pressure. Diagram.	zed porcelain cup. A "J" tube

Demonstration	Bibliography	Jı	uly 2015 Thermodynamics
Disc 16-09	diffusion	4D50.20	
F&A, Hi-2	diffusion of CO2	4D50.20	extending down into a jar of water bubbles as an indicator. When the porcelain cup is surrounded by CO2, water is sucked up the tube.
1 0/ 0, 111 2		4000.21	
F&A, Hi-1	diffusion and hydrogen	4D50.22	When hydrogen is trapped around a unglazed porcelain cup attached to a tube leading to a beaker of water, it bubbles out; when the trap is removed, water is sucked up the tube.
AJP 35(11),1026	diffusion in a discharge tube	4D50.30	Mercury is collected in the refrigerated end of a discharge tube containing neon. When the cold end is warmed and ac is applied, the diffusion of mercury can be followed by the spectral change. Also works with a germicidal lamp.
Sut, A-56	diffusion and pressure	4D50.40	Two 1 L round flasks are joined by a small tube. One is attached to a vacuum pump while the crystals are heated in the other.
F&A, Hi-3	diffusion of gases	4D50.42	Hydrogen is allowed to diffuse down in a cylinder into air to form an explosive mixture.
PIRA 1000	bromine diffusion	4D50.45	
F&A, Hi-4	diffusion of bromine	4D50.45	Bromine diffuses out of a cylinder into air.
Disc 16-11	bromine diffusion	4D50.45	Glass tubes containing bromine and bromine/air are cooled in liquid nitrogen and allowed to warm back up to show diffusion.
Sut, A-55	bromine diffusion	4D50.46	A few drops of bromine are placed in cylinders containing hydrogen and air.
Mei, 27-9.1	bromine diffusion	4D50.47	Break bromine ampules in air filled and evacuated tubes.
PIRA 1000	bromine cryophorus	4D50.50	
UMN, 4D50.50	bromine cryophorus	4D50.50	Three different bromine tubes: with air, partial vacuum, and vacuum, are cooled in liquid nitrogen and allowed to warm.
F&A, Hj-9	bromine cryophorous	4D50.50	Tubes with bromine and air at different pressures are immersed in a cold trap to show different diffusion rates.
Mei, 27-9.2	ether vapor before diffusion	4D50.55	Pour ether vapor from a wide mouth bottle into a large beaker suspended from a scale. Shadow projection shows an interface before diffusion starts. Picture.
PIRA 1000	diffusion in liquids - CuSO4	4D50.60	
F&A, Hi-5	diffusion of liquids - CuSo4	4D50.60	Concentrated CuSO4 and water diffuse in a cylinder.
Sut, M-262	diffusion of liquids	4D50.60	A graduate 1/3 full of a saturated solution of copper sulfate and topped with water will show diffusion over time.
Sut, M-263	diffusion of liquids	4D50.60	A tube 2m long with saturated copper sulfate at the bottom can be displayed for decades.
Mei, 17-6.2	potassium permanganate in water	4D50.62	Drop potassium permanganate in a dish of water on the overhead projector.
Mei, 17-6.1	dissolving crystals	4D50.63	How to introduce crystals of potassium chromate or copper sulfate to the bottom of a long tube of water.
Mei, 17-6.3 PIRA 500	diffusion pressure in a bottle permeable membrane	4D50.65 4D50.70	Carbon tetrachloride or lemon oil diffuses out of polystyrene bottles.
UMN, 4D50.70	permeable membrane	4D50.70	Place a permeable membrane bag attached to a vertical tube and filled with a sugar solution in water.
Sut, M-265	permeable membrane	4D50.70	Place a saturated solution of salt or sugar in a thistle tube capped with a permeable membrane and insert into water.
F&A, Hi-6	osmotic pressure	4D50.71	Immerse a semipermeable membrane over a thistle tube in a CuSO4 solution.
AJP, 75 (11), 997	osmotic pressure	4D50.71	A discussion of osmosis which follows the discussion in Fermi's book on thermodynamics. The discussion is limited to verifying the equation for the
Sut, M-264	osmosis	4D50.72	ideal osmotic pressure. Stick a glass tube into a carrot or beet and put the veggie in water. Water will
Sut, M-266	optical osmometer	4D50.73	rise in the tube over several days. An optical lever shows bowing of a permeable membrane over the course of a lecture.
F&A, Hi-8	measurement of osmotic pressure	4D50.74	Immerse a solution sealed in a semipermeable porcelain cup in pure water
F&A, Hi-7	preparation of semi-permeably membrane	4D50.75	and read the pressure with a manometer. On forming a copper ferricynide precipitate permeable to water but not dissolved substances.
PIRA 1000	osmosis simulator	4D50.80	
UMN, 4D50.80	osmosis simulator	4D50.80	A vibrating plate on an overhead has a barrier sized so only one of two
Disc 16-10	diffusion simulation	4D50.80	diameter ball bearings will pass. A bar across the shaker frame on the overhead projector has a small hole that allows small but not larger balls to pass.
	GAS LAW	4E00.00	
	Constant Pressure	4E10.00	

July 2015 **PIRA 500** hot air thermometer 4E10.10 4E10.10 A large round flask is hooked to a manometer. UMN, 4E10.10 hot air thermometer **PIRA 1000** 4E10.11 thermal expansion of air Sut. H-3 Galileo's thermometer 4E10.11 D&R, H-018 Galileo's thermometer 4E10.11

- An inverted flask with a long slender stem is set in water. As the air in the flask cools, the water in the tube rises.
- A small diameter glass tube with a blackened bulb on one end is inverted into a beaker of water. Warm bulb to draw some liquid into the tube. Cooling or heating the bulb will raise or lower the liquid level in the tube.
- 4E10.11 Hold the inverted flask of Galileo's thermometer with the hands to heat the entrained air and force the water in the tube down.
- 4E10.12 A capillary tube with a bead of mercury is sealed at one end.
- 4E10.12 An air filled flask fitted with a long slender tube is held horizontally and a small globule of mercury moves in the tube as the air in the flask changes temperature.
- 4E10.13 A gas thermometer operated at reduced pressure.
- 4E10.14 Just an unclear picture - might be a balloon on a flask.
- 4E10.15 A flask with a balloon fitted on the neck is heated with hot water and immersed in dry ice/alcohol.
- 4E10.15 A balloon on the neck of a large flask changes volume when the flask is placed into hot water or dry ice/alcohol.
- 4E10.16 Two identical constant pressure gas thermometers are filled with different gases and immersed in a water bath to show the same volume increase.
- 4E10.16 Two bulbs connected by a "U" tube manometer are filled with different gases and heated the same amount by immersing in a water bath to show pressure increase is the same on both sides.
- Pour liquid nitrogen over an air filled balloon until it collapses and then let it 4E10.20 warm up again.
- 4E10.20 Pour liquid nitrogen over an air filled balloon and then let it warm up again.
- 4E10.20 The radius of a balloon is measured as it is cooled with liquid nitrogen. The volume decreases linearly with time.
- 4E10.20 A balloon shrinks when placed in liquid nitrogen. Liquid air can be seen inside the collapsed balloon. Try this when the balloon is filled with helium and see the balloon rise to the ceiling when it warms up.
- 4E10.21 A balloon partially inflated on the end of a glass rod is immersed in liquid nitrogen.
- 4E10.22 Cool balloons filled with carbon dioxide, argon, helium, pass them around the class.
- 4E10.30 Immerse the bulb of a small thermoscope in liquid air. 4E20.00
- A 50cc syringe has an area of .923 square inches. When lightly oiled, the 4E20.10 volume will decrease to half when 13 lbs. are applied.
- A glass syringe is mounted vertically with a weight holder attached to the 4F20.10 plunger.
- 4E20.10 A hypodermic syringe mounted vertically shows PV relations.
- 4E20.11 Stack weights on a piston and read the volume off a scale. Picture.

4E20.15 4E20.15 A pressure gauge is mounted on a glass syringe.

- 4E20.20 A mercury barometer attached with a heavy walled tube to an adjustable glass tube.
- 4E20.20 A flexible tube of mercury is used to apply pressure to a chamber of air. From Am.Jour.Sci. 32,329,1911.
- 4E20.21 A large Boyle's law apparatus. Diagram and construction hints.
- 4E20.22 A curved tube with air trapped in the shorter closed end by mercury is tipped to change the pressure from the mercury column.
- 4E20.25 A projection Boyle's law apparatus is shown. Includes a projection pressure meter.
- 4E20.26 A projection Boyle's law apparatus using a mercury plug in a capillary as an indicator.
- 4E20.30 4E20.30 Eliminate mercury with this tap water pressure apparatus.
- 4E20.31 "Lab-gas" units are a convenient source of low-pressure gas for Boyle's law demonstrations.

Thermodynamics

Demonstration Bibliography

thermal expansion of air

horizontal thermometer

gas thermometer

air thermometer

balloon on a flask

expansion of gases

expansion of gases

balloons in liquid nitrogen

balloon in liquid nitrogen

balloons in liquid nitrogen

balloon in liquid nitrogen

balloon in liquid nitrogen

balloons in liquid nitrogen

Constant Temperature

square inch syringe

square inch syringe

Boyle's law syringe

pressure vs. volume

Boyle's law apparatus

Boyle's law with tap pressure

Boyle's law with tap pressure

Boyle's law

Boyle's law

Boyle's law

air pressure at low temperature

gas law with hypodermic syringe

syringe and pressure gauge

4E20.10

4E20.20

temperature

capillary tube thermometer

change of volume with change of

Disc 14-12

Mei, 25-2.8

Mei, 25-2.4

Hil. H-2a.3

F&A, Hk-2

Mei, 27-2.7

Sut, H-34

Sut, H-33

PIRA 200

Sprott, 2.9

Mei, 27-2.8

Sut, H-98

PIRA 500

F&A, Hg-1

Mei, 27-2.1

PIRA 1000

Disc 16-01

PIRA 500

Sut, M-319

Mei, 27-2.3

Mei, 27-2.6

Mei, 27-2.4

Mei, 27-2.5

PIRA 1000

Mei, 27-2.2

AJP 44(5),493

UMN, 4E20.20

UMN, 4E20.10

AJP 29(10),706

AJP 39(7),844

UMN, 4E10.20

AJP 78 (12), 1312

Sut, H-4

Demonstration	Bibliography	J	uly 2015	Thermodynamics
PIRA 1000	balloon in a vacuum	4E20.40		
UMN, 4E20.40	balloon in a vacuum	4E20.40	Place a partially filled balloon marshmallow.	in a bell jar and evacuate. Also try a fresh
D&R, F-040	marshmallow, shaving cream in a vacuum	4E20.40		r shaving cream in a bell jar and evacuate.
Sprott, 2.3	marshmallow, shaving cream in a vacuum	4E20.40	expand when air is evacuated	shaving cream that are placed in a bell jar I and contract when it's readmitted. Water and pear to boil when put in a vacuum.
AJP 40(9),1342	Boyle's law - air track model	4E20.50	An air track glider represents	a one-molecule gas. The frequency of the ases if the track is made shorter.
	Constant Volume	4E30.00		
PIRA 200	constant volume bulb	4E30.10	Immerse a bulb with an absol and liquid nitrogen.	ute pressure gauge in boiling water, ice water,
UMN, 4E30.10	constant volume bulb	4E30.10	A bulb with an absolute press water, and liquid nitrogen.	ure gauge is immersed in boiling water, ice
F&A, Ha-4	constant volume thermometer	4E30.10	Immerse a tank bulb with an a water baths.	attached pressure gauge in various temperature
Mei, 25-2.7	constant volume bulb - He	4E30.10	A Bourdon pressure gauge is and immersed in boiling wate	attached to a toilet-tank bulb filled with helium r. dry ice, and liquid nitrogen.
Disc 16-02	pressure vs. temperature	4E30.10	A constant volume sphere wit	h a pressure gauge is shown at room ice water and boiling water baths.
F&A, Ha-2	gas thermometer	4E30.11	A bulb is connected to a merce	
Mei, 25-2.6	constant volume bulb	4E30.12		ercury pistons are attached to toilet-tank bulbs
PIRA 1000	constant volume thermometer	4E30.20		
F&A, Ha-3	constant volume thermometer	4E30.20	A bulb is connected to a merce keep the mercury on the bulb	cury manometer that can be raised or lowered to side at the same place
Sut, H-5	constant volume air thermometer	4E30.21	Looks like the Boyle's law app	baratus except the enclosed end has a small a cold water bath. Adjustments are used to
Mei, 16-2.9	light bulb pressure	4E30.30		ne glass is pushed in, then heat it while on and
Sut, E-54	heat generated by spark	4E30.40		in an enclosed container heated by sparking is
	ENTROPY & THE	4F00.00		
	SECOND LAW	4F10.00		
PIRA 500	Entropy time reversal	4F10.00		
UMN, 4F10.10	time reversal	4F10.10	An ink column in glycerine be to mix and unmix.	tween two concentric rotating cylinders appears
AJP 28(4),348	unmixing demonstration	4F10.10	The area between coaxial cyll suitable tracer. When the inner mixed but is distributed in a fi direction of inner cylinder rota	inders is filled with a Newtonian fluid and a er cylinder is rotated, the tracer appears to be ne one armed spiral sheet. Reversing the tion will cause the original tracer pattern to
F&A, Hm-2	order and disorder	4F10.10	reappear. Ink seems to be mixed in glyc	erine but can be unmixed
D&R, S-270	unmixing demonstration	4F10.10	• •	ween to concentric rotating cylinders appears
Ehrlich 1, p. 124	time reversal	4F10.10		cerin filled plastic box will appear to mix or
Disc 13-08	un-mixing	4F10.10	Glycerine between two conce	
AJP 54(8),742	capacitor charging entropy change		A simple demonstration-expe	in a capacitor in many steps or one step.
PIRA 1000	balls in a pan	4F10.20		
UMN, 4F10.20 AJP 41(11),1284	balls in a pan communication time and entropy	4F10.20 4F10.25	.,	time it takes a student to communicate the dered playing cards, and a salt crystal model,
Bil&Mai, p 236	entropy - playing cards	4F10.25		s Demon model are used to enhance
PIRA 500	Hilsch tube	4F10.30		
UMN, 4F10.30	Hilsch tube	4F10.30		
F&A, Hm-3 PIRA 500	Hilsch tube dust explosion	4F10.30 4F10.40	The Hilsch tube is a sort of do	puble vortex that separates hot and cold air.

Demonstration	Bibliography	J	uly 2015	Thermodynamics
UMN, 4F10.40	dust explosion	4F10.40		
F&A, Hm-1	dust explosions	4F10.40	Disperse dust in a can with a squeeze b explosion.	ulb and use a spark to set off the
Mei, 26-4.5	dust explosion	4F10.40	Blow a teaspoon of lycopodium powder lighted candle inside.	into a covered can that contains a
Disc 14-15	dust explosion	4F10.40	Blow lycopodium powder into a can cont	taining a candle.
TPT 46(8), 477	cornstarch / coffee creamer explosion	4F10.42	Powdered coffee creamer or cornstarch can. A lit candle is also placed inside th cloud of dust rises which is then ignited	is placed in a cup inside a 1 gallon e can. Blow air into the cup and a
Mei, 26-4.6	gas explosion	4F10.45	Fill a can that has a hole on top and bott top hole. The flame burns low and then	tom with illuminating gas and light the
D&R, H-090	gas explosion	4F10.45	Fill a can that has a hole on top and both hole. The flame burns low and then the PROPANE.	tom with Natural gas and light the top
Sprott, 2.20	exploding balloons	4F10.50	Helium and Hydrogen-filled balloons bur	st when touched by a lighted match.
Sprott, 2.21	exploding soap bubbles	4F10.55	Soap bubbles blown with natural gas or	
oprott, 2.21	Heat Cycles	4F30.00		nyarogon aro igintoa.
ref.	Hero's engine	4F30.01	see 1Q40.80	
ref.	drinking bird	4F30.01	see 4C31.30	
PIRA 200	Stirling engine	4F30.10	Show both a working Stirling engine and	l a cutawav model.
UMN, 4F30.10	Stirling engine	4F30.10	Show both a working Stirling engine and	•
F&A, Hn-4	Stirling hot air engine	4F30.10	A Stirling hot air engine.	
Mei, 26-6.1	hot air engine	4F30.10	Pictures and diagram of a hot air engine	that can be run as a hot or cold
	-		engine or driven both ways.	
Disc 15-06	Stirling engine	4F30.10	Shows the standard Stirling engine, inclu	udes good animation.
TPT 28(4),252	the Stirling engine explained	4F30.11	An explanation of how the Stirling engine machine off the top half of one to convin	
PIRA 500	steam engine	4F30.20		
F&A, Hn-3	steam engine	4F30.20	A small steam engine runs from a small	alcohol lamp.
Hil, H-5b.3	steam engine	4F30.20	A small steam engine powers a small el	ectric generator.
AJP 41(5),726	room temperature steam engine	4F30.22	Place an inflated balloon on the end of a the tube in liquid N2. Place a weight on when the balloon warms up.	
F&A, Hn-2	Liquid nitrogen engine	4F30.25	Convert a small steam engine to run on	
Sut, H-113	liquid air steam engine	4F30.25	Run a model steam engine by connectir boiler.	ng a test tube of liquid air to the
Hil, H-5b.1	model steam engine	4F30.31	Picture of a model steam engine.	
F&A, Hn-1	compressed air engine	4F30.35	The parts of a steam engine that runs or	n compressed air.
PIRA 1000	refrigerator	4F30.40		
Sut, H-182	engine models	4F30.50	Models of different engines are shown.	
Hil, H-5b.2	model gasoline engine	4F30.52	A picture of a model gasoline engine.	
AJP 52(8),721	air/ocean uniform temperature engine	4F30.55	An experimental engine that shows that nonhomogeneous uniform temperature than 100% as evaporative cooling is use	reservoir. The humidity must be less
Mei, 26-6.2	ratchet and pawl model	4F30.56	Use of a ratchet and pawl model to disc Construction details in appendix, p.1287	uss the second law. Diagram,
PIRA 1000	Nitinol engine	4F30.60		
UMN, 4F30.60	Nitinol engine	4F30.60		
AJP 52(12),1144	Nitinol engine	4F30.60	Short thermodynamic discussion of the	Nitinol engine.
AJP 54(8),745	Nitinol engine comments	4F30.60	Comments on AJP 52(12),1144 taking is	
PIRA 1000	rubber band engine	4F30.70		
F&A, Hm-5	rubber band motor	4F30.70	A wheel with rubber band spokes turns v	when heated locally with a spotlight.
Mei, 26-4.1	rubber band motor	4F30.70	The spokes of a bicycle wheel are repla- lamp is focused on one area causing the Pictures.	
D&R, H-340	rubber band engine	4F30.70	An acrylic wheel with rubber band spoke heat lamp.	es turns when heated locally with a
AJP 43(4),349	rubber band motor thermodynamics	4F30.71	An analysis of the thermodynamics of a	simple rubber band heat engine.
AJP 46(11),1107	optimizing the rubber-band engine	4F30.76	An appropriate choice of dimensions ma rubber-band heat engine. Plenty of analy	
AJP 57(4),379	Buchner diagram extensions	4F30.90	Comments extending the Buchner diagr	
AJP 54(9),850	Bucher diagrams	4F30.91	A new diagram of the Carnot cycle to re	
AJP 34(10),979	Carnot cycle diagrams	4F30.95	A set of thirty different Carnot cycle diag	
TPT 21(7), 463	Carnot cycle diagrams	4F30.95	A dynamical model of a Carnot cycle.	

July	2015
------	------

AJP 70(1), 42	Carnot cycle	4F30.96	Sadi Carnot on Carnot's theorem.
AJP 76 (1), 21	Carnot cycle	4F30.96	A look at Sadi Carnot's contribution to the second law of thermodynamics.
			Discusses the first 12 pages of Carnot's own publication "Reflections on the
			Motive Power of Heat and the Machines Fitted to Develop that Power".
AJP 43(1), 22	Carnot engine	4F30.97	The efficiency of a Carnot engine at maximum power output.
AJP 70(11), 1143	Carnot Engine	4F30.97	The efficiency of nonideal Carnot engines with friction and heat losses.

		E 4 00 00	
	ELECTROSTATICS	5A00.00	
	Producing Static Charge	5A10.00	
ref.	piezoelectricity	5A10.01	
PIRA 200	rods, fur, and silk	5A10.10	
		544040	a charge indicator
UMN, 5A10.10	rods, fur, silk	5A10.10	
			electrophorus.
F&A, Ea-1	electrostatic charges	5A10.10	
D&R, E-015	electrostatic rods	5A10.10	00
Bil&Mai, p 240	electrostatic charges	5A10.10	, , , , , , , , , , , , , , , , , , ,
			opposite charges.
Disc 16-21	electrostatic rods	5A10.10	, , , , , , , , , , , , , , , , , , , ,
			show charges.
Sut, E-18	separating charge	5A10.11	Several common ways to separate charges. Scuff a rug and then discharge
			through a neon bulb.
Sut, E-16	charge the student	5A10.12	5
			student holds a key, sparks may be drawn without discomfort.
PIRA 1000	triboelectric series	5A10.15	
TPT 28(9),612	triboelectric series, halos	5A10.15	5 1 5 1 5
			way to charge yourself so you can levitate a thin metalized plastic hoop as a
			halo.
Sut, E-17	triboelectric series	5A10.15	
D&R, E-010	triboelectric series	5A10.15	
Sprott, 4.3	triboelectric series	5A10.15	5 1 5 5 1 5 5
Sut, E-24	identifying charges	5A10.16	Use an electroscope charged with known sign to test other charged objects.
AJP 35(6),535	electrification by rubbing	5A10.17	Some electrification by rubbing results that are not easily explained by the
			close contact theory.
AJP 29(12),857	discharges in gases	5A10.19	Rub various tubes with plastic foil to see spectacular discharges produced by
			the static electricity.
PIRA 500	electrophorus	5A10.20	
UMN, 5A10.20	electrophorus	5A10.20	Use a metal plate on a handle to transfer charge from a large charged
			surface.
F&A, Ea-19	electrophorus	5A10.20	Obtain charge by induction from an electrophorus.
Hil, E-1b	electrophorus, etc	5A10.20	An electrophorus is pictured along with a conducting sphere, an ellipsoidal
			conductor, a hollow cylinder, and a dissectible condenser.
D&R, E-140	electrophorus	5A10.20	An aluminum disk is used to transfer charge from a charged phonograph
			record.
Sprott, 4.3	electrophorus	5A10.20	A static electric charge on a large insulator surface can repeatedly induce a
			charge in a conducting plate.
Disc 17-03	electrophorus	5A10.20	Repeat charging a metal plate many times. Animation sequence shows
			movement of charges.
Mei, 29-1.12	electrophorus, etc.	5A10.21	Describes using Lucite or polystyrene as the electrophorus sole and a
			cylindrical electrophorus with a built in neon lamp. Diagram. ALSO - newer
			rod and fur material, a shielding demo.
Sut, E-10	electrophorus	5A10.21	Directions for making an electrophorus from sealing wax. Use a neon
			discharge tube to show a flash by holding one end on the electrophorus and
			then touching the other end.
TPT 2(1),32	electrophorus, etc	5A10.22	Four demos: one illustrating the action of an electrophorus, another showing
			the reaction of a charged balloon to a paddle charged positive, negative, or
			neutral, and more.
AJP 28(8),724	cylindrical electrophorous	5A10.23	A copper tube on a handle fits over a 1" polystyrene cylinder mounted
			vertically. Some discussion about how electricity is transferred on rubbing
			that contradicts standard approaches.
AJP 30(1),69	electrophorus - neon wand	5A10.24	A neon wand flashes as polystyrene/metal electrophorus is opened and
			closed.
PIRA 1000	electret	5A10.30	
Sut, E-12	electret	5A10.30	Directions for making an electret. Used the same as an electrophorus except
			it is permanently charged. References.
PIRA 1000	equal and opposite charges	5A10.35	
Mei, 29-1.14	equal and opposite charge	5A10.35	Two electroscopes are charged equal and opposite, then the charge is
	··· •		transferred from one to the other. If tape is pulled off an electroscope plate,
			charge will result and the tape will also charge a second electroscope with
			the opposite charge. Picture.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Bil&Mai, p 243	equal and opposite charges - tape	5A10.35		roscope to determine its relative charge.
Sut, E-14	equality of charges	5A10.36	Repeat the demonstration with other Rub a rubber rod against a similar ro pail. The electroscope shows no cha Or, rub them together outside the pait together.	d covered with wool in a Faraday ice rge unless either of the rods is removed.
AJP, 75 (9), 861	equality of charge - charge conservation	5A10.36	A quantitative demonstration of charge room audiences that addresses some	-
PIRA 1000	electrostatic rod and cloth	5A10.37		
Disc 16-22	electrostatic rod and cloth	5A10.37	Rub a rod with a cloth, place on a piv cloth.	ot, show attraction between rod and
PIRA 1000	mercury-glass charging wand	5A10.40		
AJP 42(5),424	shake mercury in a bottle	5A10.40	Put some mercury in a plastic bottle stopper. Shake the mercury and inve charge, invert a second time for nega	
Sut, E-21	mercury-glass charging wand	5A10.40	A glass tube containing some mercu Either positive or negative charge ma	ry is covered with tin foil on one end.
Sut, E-20	mercury tube	5A10.43	Directions for making a mercury tube Optionally neon is introduced to prod	that emits light when shaken.
PIRA 1000	cyrogenic pyroelectricity	5A10.50		-
TPT 28(7),482	cyrogenic pyroelectricity	5A10.50	The polarization of some pyroelectric temperatures.	crystals increases dramatically at low
PIRA 1000	heating and cooling tourmaline	5A10.55		
Sut, E-189	heating and cooling tourmaline	5A10.55	Heat a long thin crystal of tourmaline charges develop on the ends large e	over a flame and when it cools opposite nough to deflect an electroscope.
Sut, E-190	cooling and heating tourmaline	5A10.55	A long thin crystal of tourmaline that opposite charges on the ends upon v	has been immersed in liquid air will form varming.
Sut, E-22	charge by freezing sulfur	5A10.56	Allow molten sulfur to solidify on a gla	ass rod, check with an electroscope.
Sut, E-19	stretched rubber band	5A10.76	A stretched rubber band becomes ch can be removed by sliding along the	narged positively. Any amount of charge band.
AJP 52(1),86	electrostatics in a hot box	5A10.90	Perform electrostatics demonstration relative humidity.	s in a heated box to decrease the
	Coulomb's Law	5A20.00		
PIRA 200	rods and pivot	5A20.10	to show attraction or repulsion.	another of the same or opposite charge
UMN, 5A20.10	rods and pivot	5A20.10	to show attraction or repulsion.	another of the same or opposite charge
Sut, E-1	rods and pivot	5A20.10	Show attraction or repulsion with rod	
PIRA 200 - Old	pith balls	5A20.20	Suspend two small pith balls and sho	ow either attraction or repulsion.
UMN, 5A20.20	Coulomb's law with pith balls Coulomb's law with pith balls	5A20.20 5A20.20	Charge two nith halls with an electron	static generator, project on the wall and
AJF 40(11), 1131	Coulomb's law with pith bails	JA20.20	measure, discharge one ball, and rer typically 2%.	
F&A, Ea-5	pith balls	5A20.20	Suspend two small pith balls from a c	common support.
Sut, E-7	pith balls	5A20.20	Charge pith balls.	and an an of the strategic former we'
Ehrlich 2, p. 146	Coulomb's law with pith balls	5A20.20	a pair of pith balls as the point charge	endence of the electrostatic force using
Mei, 29-1.20	Coulomb's law on the overhead	5A20.21	Demonstrate Coulomb's law on the c	
Mei, 29-1.4	pith balls on overhead	5A20.21	Suspend two pith balls coated with A overhead projector.	
TPT 28(9),607	hollow aluminum foil balls	5A20.22	Hollow aluminum foil balls are charge	ed with a Van de Graaff generator.
Mei, 29-1.8	hollow aluminum balls	5A20.22	Wrap aluminum foil around a marble ball to make a replacement for a light	or ping-pong ball and then remove the tpith ball.
Sut, E-2	pith balls & variations	5A20.22	Metal painted ping pong balls, gas fil charge indicators.	led balloons, pith balls are used as
D&R, E-040	pith ball variations	5A20.22	line.	paint and hang on monofilament fishing
Bil&Mai, p 240	pith ball variations	5A20.22	8 inch balloons are hung on 1 meter	•
Mei, 29-1.21	repelling balls	5A20.23	A small charged pith ball is repelled f	
Sut, E-56	electric potential	5A20.23	Bring a charged pith ball close to a lil repulsive force.	ke charged conductor and note the
PIRA 1000 AJP 35(7),iii	ping pong ball electroscope ping pong balls	5A20.25 5A20.25	Paint a ping pong ball with silver prin	ter circuit paint.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
F&A, Ea-6	ping pong pith balls	5A20.25	Two silver coated ping pong balls are	suspended from separate supports.
Mei, 29-1.2 Mei, 29-1.3	ping-pong ball electroscope ping-pong ball electroscope	5A20.25 5A20.25	Repulsion of two charged ping-pong be Hang an electroscope made from alu welding rod. Picture.	palls hung from nylon cord. minized ping-pong balls from aluminum
Disc 16-23 AJP 30(12),926	electrostatic ping-pong deflection ping pong ball electroscope	5A20.25 5A20.26	Attraction and repulsion between cha	rged conductive ping pong balls. ping pong balls on the ends of hanging
AJP 31(9),xi	image charge	5A20.27	A large metalized styrofoam ball is mand air bearing at the midpoint. Bring charged metal plate near.	•
TPT 1(5),225	counterweighted balls	5A20.27	Polystyrene spheres (3" dia.) are mou	unted on counterweighted Lucite rods.
Mei, 29-1.11 PIRA 1000	counterweighted balls beer can pith balls	5A20.27 5A20.28	Pith balls are replaced by balls pivotir	ng on counterweighted rods.
UMN, 5A20.28	beer can pith balls	5A20.28	Aluminum beer cans are used instead charges.	d of pith balls to show repulsion of like
PIRA 1000	mylar balloon electroscope	5A20.30		
AJP 31(2),135	balloon electroscope	5A20.30	and charged with a Van de Graaff.	r normal, can be painted with aluminum
TPT 28(2),103 Mei, 29-1.9	balloons on Van de Graaff	5A20.30 5A20.30	Tape mylar balloons on conducting st An aluminized balloon is hung from a	
Wei, 29-1.9	Van de Graaff repulsion	5A20.50	electrode to demonstrate repulsion of	
Bil&Mai, p 240	mylar balloon electroscope	5A20.30	An aluminized balloon is hung from the balloons to demonstrate like and opper	ne ceiling and used with acrylic rods and osite charges.
PIRA 1000	electrostatic spheres on air table	5A20.32		
AJP 38(11),1349	Coulomb's law balance	5A20.35	The PSSC soda straw balance is ada balance.	
Mei, 29-1.5	aluminum sheet electroscope	5A20.40	Two squares of aluminum foil are sus	pended from wires across a glass rod.
D&R, E-137	aluminum foil and straw electroscope	5A20.40	A simple electroscope made from cop straws.	oper wire, aluminum foil, and drinking
Mei, 29-1.6 Mei, 29-1.19	large leaf electroscope measuring Coulomb's law	5A20.41 5A20.50	A 15" length of 1 1/2" mylar tape is su An optical lever and damper make thi Coulomb's law. Diagram, Constructio	s apparatus useful to demonstrate
	Electrostatic Meters	5A22.00	Coulomb o latt. Diagram, conoridatio	
PIRA 500	Braun electroscope	5A22.10		
F&A, Ea-3	Braun electrostatic voltmeter	5A22.10	A well balanced needle measures vol	
Mei, 29-1.1 Hil, E-1f	large Braun electroscope the Leybold Braun electroscope	5A22.10 5A22.10	Build this Braun electroscope with a 2 Show the Leybold Braun electroscope apparatus.	
Sut, E-4	electroscopes and electrometers	5A22.12		Zeleny oscillating-leaf electroscope are
Hil, E-1a Bil&Mai, p 243	electroscopes simple tape electroscope	5A22.22 5A22.24	Four types of electroscopes are pictu A 30 cm piece of tape is hung over a upside down "V". The tape will develo	wooden dowel in the shape of an
			Use a negatively charged PVC rod ar determine the charge that is on the ta	nd a positively charged acrylic rod to
PIRA 200	soft drink can electroscope	5A22.25		
PIRA 1000 - Old	soft drink can electroscope	5A22.25		
TPT 28(9),620	simpler soft-drink-can electroscope	5A22.25	version.	the electroscope leaves in this simple
AJP 40(12),1870	leaf electrometer	5A22.26	Modify a leaf electroscope so it discri	minates polarity of charge.
PIRA 500	gold leaf electroscope	5A22.30	A gold loof electropeope is prejected	with a paint course
F&A, Ea-2 Sut, E-3	gold leaf electroscope projection electroscopes	5A22.30 5A22.30	A gold leaf electroscope is projected Lantern and shadow projecting a gold electroscope.	
AJP 36(8),752	vibrating reed electrometer	5A22.41	•	ectrometer. Ten demonstrations using
AJP 46(2),190	oscillating electroscope	5A22.45		d by corona and rises until it touches a
PIRA 1000	Kelvin electrostatic voltmeter	5A22.50		
F&A, Ea-4	Kelvin electrostatic voltmeter	5A22.50	A rotating vane electrostatic voltmete	r.
Mei, 29-3.3	electrostatic voltmeter	5A22.51	Measure voltage with a rotor and van Construction details in appendix, p.13	e electrostatic voltmeter. Picture,

I	Demonstration	Bibliography	Ju	ıly 2015	Electricity and Magnetism
	Sut, E-71	condensing electroscope	5A22.60	Charges too small to be detected by a the addition of a variable capacitor. Dir	•
	AJP 33(4),340	electrometer with concentric capacitors	5A22.65	Concentric capacitors are mounted on grounded. Insert samples in the inner t	an electrometer with the outer
	PIRA 1000	electrometer	5A22.70	grounded. meen eamplee in the inner	le medeure enarge.
	Hil, E-1d	Pasco equipment	5A22.70	A Pasco electrometer along with the w	hale kit of Pasca accessories
				-	
	Hil, E-1e	Pasco projection meter	5A22.71	A remote projection meter for the Pase	co electrometer.
	PIRA 1000	electric field mill	5A22.80		
	F&A, Ed-5	electric field mill	5A22.80	Contains short explanation of an instru field.	ment used to measure the electric
	AJP 43(11),942	simple field mill	5A22.81	A circuit used in a simple field mill.	
	Mei, 29-1.7	electroscope on a diode tube	5A22.90		d to the plate of a rectifier diode tube is
	AJP 28(7),679	triode electroscope relay	5A22.91	An antenna is hooked to a grid of a tric	
	Hil, E-1k	negative charge detector	5A22.95	The neon light goes out in a triode circ close to a wire connected to the grid.	uit when negative charge is brought
	PIRA 500	Conductors and Insulators wire versus string	5A30.00 5A30.10	Ĵ	
	UMN, 5A30.10	wire versus string	5A30.10	Connect two electroscopes together w electroscope.	ith wire or string and charge one
	Sut, E-5	wire versus string	5A30.10	Connect a wire or silk thread to an elec conductivity. ALSO - some on capacita	•
	PIRA 1000	condicional cluminum horo	EA20 1E	conductivity: ALGO - Some on capacita	ance.
		acrylic and aluminum bars	5A30.15		
	Disc 16-25	conductors and insulators	5A30.15	Aluminum and acrylic rods are mounter charged rod close to each rod.	ed on a Braun electroscope. Bring a
		Induced Charge	5A40.00		
	PIRA 200	charging by induction	5A40.10	Charging by induction using two balls of charge indicator.	on stands with an electroscope for a
	Hil, E-1g	charging by induction	5A40.10	Charging by induction using two balls of	on stands.
	Disc 17-01	electrostatic induction	5A40.10	Use two metal spheres, a charged rod shows charges.	
		induced chorge	5A40.12	0	above oborging by induction
	Sut, E-9	induced charge		Use electroscopes and proof planes to	
	F&A, Ea-16	methods of electrostatic induction	5A40.13	Various forms of conductors are separ	ated in an electric field.
	PIRA 1000	electroscope charging by induction	5A40.15		
	UMN, 5A40.15	electroscope charging by induction	5A40.15	Use conductors on the top of two elect	
	F&A, Ea-11	induction charging	5A40.15	contact to demonstrate charging by inc Large metal bars on two electroscopes	
	Bil&Mai, p 240	induction charging	5A40.15	An aluminized balloon is hung from the balloons to demonstrate charging by ir	
	TPT 3(1),29	charging electroscope by induction	5A40.16	Touch the plate of an electroscope wh month may contain answers to imperti	ile holding a charged rod nearby. Next
	TPT 3(4),185	charging electroscope by induction	5A40.16	students. Answer to the question of an earlier Ph	nysics Teacher. Diagrams show how
				an electroscope is charged when touch near.	
	Sut, E-23	charging electroscope by induction	5A40.16	Charge an electroscope by touching w	hile holding a charged rod near.
	D&R, E-135	charging electroscope by induction	5A40.16	Charge an electroscope by induction. than that of an electroscope charged b	•
	Sut, E-8	electrostatic charging by induction	5A40.17	Pith balls touching both ends of a cond is brought toward one end. Use anothe each end.	ductor are charged when a charged rod er test charge to show the polarity at
	PIRA 200 UMN, 5A40.20	can attracted to charged rod charge propelled cylinder	5A40.20 5A40.20	A hoop of light aluminum is attracted to	o a charged rod.
	F&A, Ea-15	can attracted to charged rod	5A40.20	A hoop of light aluminum is attracted to	a charged rod
	D&R, E-085	can attracted to charged rod	5A40.20	A metal soda can is attracted to a char	•
	Christ 4 = 140	oon ottrootool to shares due d	E A 40.00	work best.	harred abject
	Ehrlich 1, p. 149	can attracted to charged rod	5A40.20	An aluminum soda can rolls toward a c	• •
	Mei, 29-1.15	charged ball attracted to ground	5A40.23	A metalized ball is attracted to a groun applied to the ball.	aea aluminum sheet when a charge is

Demonstration Bibliography July 2015 **Electricity and Magnetism** Sut, E-11 suspended electrophorus disc 5A40.23 Raise an electrophorus disc off the plate with a helical spring, touch the disc to remove induced charge, and show the spring lengthens. AJP 44(6),606 blow soap bubbles at Van de 5A40.24 Blow neutral soap bubbles at a Van de Graaff generator for intriguing Graaff induction effects. Try double bubbles. **PIRA 1000** paper sticks on board 5A40.25 Sut, E-15 paper sticks on the board 5A40.25 Hold a piece of paper on a slate blackboard and rub it with fur. Hil, E-5b rub paper 5A40.25 Rub paper with cat fur while holding it on the board. Sut, E-6 familiarity breeds contempt 5A40.26 Cork filings are first attracted to a charged rod by induced charge, then repelled as they become charged by conduction. **PIRA 500** 2" x 4" 5A40.30 UMN, 5A40.30 2" x 4" 5A40.30 Induced charge is used to move a 2x4 balanced on a watch glass. F&A, Ea-17 conductivity of a "two by four" 5A40.30 Rotate a 2x4 by bringing a charged rod close. D&R, E-085 5A40.30 Induced charge is used to move a 2X4 balanced on a watch glass 2" X 4" Bil&Mai, p 245 2" X 4" 5A40.30 A charged balloon is used to move a 2X4 balanced on a watch glass. Disc 17-06 wooden needle 5A40.30 The "needle" is a six foot 2X4. **PIRA 500** metal rod attraction 5A40.35 Disc 17-02 metal rod attraction 5A40.35 Place a metal rod on a pivot and show attraction to both positive and negative charged rods. F&A, Ec-5 forces between electrodes 5A40.36 A ball on a flexible rod is attracted to an electrostatic generator by the induced charge. **PIRA 500** deflection of a stream of water 5A40.40 UMN, 5A40.40 deflection of a stream of water 5A40.40 A charged rod deflects a stream of water. F&A, Ea-12 deflection of a water stream 5A40.40 A charged rod is held near a stream water flowing from a nozzle. D&R. E-090 deflection of a water stream 5A40.40 A charged rod is held near a fine stream of water flowing from a faucet. Sut, E-41 deflection of water stream 5A40.42 At different ranges the water stream 1) the jet is smooth from nozzle to sink, 2) is attracted to the rod, 3) breaks up into small drops. F&A, Ea-13 5A40.43 Raleigh fountain A charged rod held near a stream of water directed upward breaks it into drops. TPT, 37(4), 208 coalescence of raindrops in an 5A40.44 Holding a charged rod near a fine spray of water causes an enlargement of electrostatic field the drop sizes. PIRA 1000 electrostatic generator principles 5A40.60 5A40.60 UMN, 5A40.60 electrostatic generator principles Same as AJP 37(10),1067. electrostatic generator principles 5A40.60 Manipulate two metal cans and move a metal ball back and forth to show AJP 37(2),225 how charging by induction and charge transfers build up charge. AJP 37(10),1067 electrostatic generator principles 5A40.60 Two cans and two balls and cross your hands. **PIRA 500** Kelvin water dropper 5A40.70 UMN, 5A40.70 Kelvin water dropper 5A40.70 Sparks are produced by falling water. AJP, 68(12), 1084 Kelvin water dropper 5A40.70 Optimizing the Kelvin water dropper by using a conducting rod on the axis of the charged ring. A simple experiment that gives reliable measurements. F&A, Ea-14 Kelvin water dropper 5A40.70 Sparks are produced by water falling through two rings connected by an "x" arrangement to opposite receivers. Mei, 29-1.24 Kelvin water dropper 5A40.70 A simple Kelvin water dropper made with shower heads enclosed in cans. Diagram. Mei, 29-1.23 Kelvin water dropper 5A40.70 Explanation of and directions for building a Kelvin water dropper. Picture, construction details in appendix, p.1311. Sut, E-25 A diagram and some construction details are given for the Kelvin water Kelvin water dropper 5A40.70 dropper. A "dry water dropper" using steel balls is mentioned. Disc 17-05 5A40.70 Kelvin water dropper A Kelvin water dropper discharges a small neon lamp. Animation sequence shows principles of operation. 5A40.72 AJP 41(2),196 Kelvin water dropper - ac The Kelvin water dropper is extended to multiphase, multifrequency operation by considering N streams and N cans. A five can version is shown. 5A40.73 Water drops through a paraffin coated funnel into a brass cup. The funnel Mei, 29-1.22 almost Kelvin water dropper and cup are connected to a electroscope. 5A50.00 **Electrostatic Machines** Sut. E-26 electrostatic generators 5A50.05 General discussion of electrostatic machines. PIRA 200 - Old Wimshurst machine 5A50.10 Crank a Wimshurst generator. F&A, Ea-22 Wimshurst machine 5A50.10 An explanation of how the Wimshurst charges by induction. Wimshurst machine Sprott, 4.1 5A50.10 A wimshurst electrostatic generator producing high voltages at moderate currents is used to show principles of electrostatics. Disc 17-04 induction generator 5A50.10 Shows Wimshurst machine. Animation sequence shows principles of operation. 5A50.11 Hil. E-1i Wimshurst machine Picture of a small Wimshurst machine. AJP 42(4),289 ac Wimshurst 5A50.12 The Wimshurst design is extended to produce three phase ac at 18 kV and 2 Hz.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
PIRA 1000	Toepler-Holtz machine	5A50.15		
Hil, E-1j	Toepler-Holtz machine	5A50.15	A large antique Holtz machine used to machines. Will produce a 10" spark.	o generate high voltages for old X-ray
AJP 51(5),472	two-inductor electrostatic generator	5A50.16	A Wimshurst type generator simplified purposes. The references for this artic	
TPT 3(5),227	fur and record generator	5A50.17		tion of a simple electrostatic generator
PIRA 500	dirod electrostatic machine	5A50.20		
Mei, 29-1.25	dirod electrostatic machine	5A50.20	A rotating electrostatic machine made Diagrams, Construction details in app	
D&R, E-180	dirod electrostatic machine	5A50.20	Discussion on the use of the "Dirod" n	•
PIRA 200	Van de Graaff generator	5A50.30	Show sparks from a Van de Graaff ge	nerator to a nearby grounded ball.
AJP 35(11),1082	Van de Graaff	5A50.30	Design of a good size Van de Graaff.	
Sut, E-27	electrostatic generating machines	5A50.30	Directions for building a Van de Graaf	f generator. Reference.
D&R, E-160	Van de Graaff generator	5A50.30	Belts from common materials and the	ir maintenance.
Sprott, 4.2	Van de Graaff generator	5A50.30	A Van de Graaff generator is used for demonstrations.	a variety of electrostatics
Bil&Mai, p 246	Van de Graaff generator	5A50.30	Show sparks from a Van de Graaff ge	enerator to a nearby grounded wand.
PIRA 1000	Van de Graaff principles	5A50.31		
AJP 43(12),1108	Van de Graaff theory	5A50.31	A note on the theory of the Van de Gr	aaff.
TPT 28(5),281	electrostatic generator	5A50.31	A very practical article covering theory	, maintenance, and belt fabrication.
F&A, Ec-1	electrostatic generator	5A50.31	An explanation of the Van de Graaff g	enerator.
Disc 17-07	Van de Graaff generator	5A50.31	Shows a Van de Graaff with paper strusequence on the principles of operation	
AJP 30(5),333	Van de Graaff vs. Simon	5A50.32	Theories of Van de Graaff and Simon and experiments yield results in accor	(AJP 22,318 (1954)) are compared
AJP 32(5),xiii	improvements to toy Van de Graaff	5A50.34	Double the length of the spark with tw	
Mei, 29-1.26	improvements on the toy Van de Graaf	5A50.34	Two improvements to the toy Van de	Graaff generator.
PIRA LOCAL	Fun Fly Stick	5A50.35	A toy that is really a small battery ope	rated Van de Graaff generator.
PIRA 1000	Franklin's electrostatic machines	5A50.50		<u> </u>
AJP 39(10),1139	Franklin's electrostatic motors	5A50.50	Models of Franklin's first two electric r	notors are shown.
F&A, Eb-5	electrostatic motor	5A50.51	A polyethylene bottle spins as a Wims alongside the bottle.	shurst is connected to brushes
Mei, 29-1.27	electrostatic motor	5A50.52	A motor operated by electrostatic cha generator. Picture.	rges drawn from an electrostatic
Sut, E-117	electrostatic motor	5A50.52	Use a large static machine to drive a s	smaller one as a motor.
AJP 45(2),218	elecrostatic motor	5A50.53	An electrostatic motor with a vane typ	e rotor.
AJP 39(7),776	atmospheric electric field motor	5A50.55	Report on the construction of an elect operation from the Earth's electric field	
	ELECTRIC FIELDS &	5B00.00		
	POTENTIAL Electric Field	5B10.00		
PIRA 200	hair on end	5B10.10	While standing on an insulated stool, generator.	charge yourself up with a Van de Graaff
UMN, 5B10.10	hair on end	5B10.10	•	charge yourself up with a Van de Graaff
Sut, E-46	hair on end	5B10.10	Stand on an insulated stool and hold of Disconnect the condensers.	on to a terminal of a static machine.
Sprott, 4.2	hair on end	5B10.10	An individual standing on an insulating	g stand puts a hand on a Van de Graaff
Bil&Mai, p 246	hair on end	5B10.10	-	charge yourself up with a Van de Graaff
F&A, Ec-4	pithball plate and flying balls	5B10.13	generator. Place a plate with pith ball hanging on Also place a cup filled with styrofoam	•
PIRA 500	Van de Graaff streamers	5B10.15		
UMN, 5B10.15	Van de Graaff streamers	5B10.15	Attach ribbon streamers to the top of a	a Van de Graaff generator.
F&A, Ec-3	Van de Graaff streamers	5B10.15	A small stand with thin paper strips is	÷
Disc 17-08	Van de Graaff with streamers		Show Van de Graaff with paper strear	
AJP 42(2),166	recoiling tentacles	5B10.16	Place the electrostatic plume made or of the Wimshurst machine.	ut of nylon rope near the other terminal

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Sut, E-42	electric rosin	5B10.21		ich to a static machine. When the machine ured out, jets of rosin follow the electric
AJP 46(4),435	electrostatic painting	5B10.22	Clip the can to ground and a meta	l object to be painted to the Van de Graaff goes around to the back too, and it is
AJP 34(11),1034	MgO smoke	5B10.23	Fill an unevacuated bell jar with M	
AJP 32(1),xiv	orbiting foil	5B10.23	dimensional chain-like agglomerat Throw a triangle of aluminum foil in comes to equilibrium mid-air. Give horizontal circle below the sphere.	nto the field of a Van der Graaff and it
Mei, 29-1.28	charge motion in an electric field	5B10.24	A charged ball on a dry ice puck is generator. The motion is recorded	
PIRA 200 - Old	confetti (puffed wheat)	5B10.25	-	peanuts) flies off the ball of an electrostatic
UMN, 5B10.25	styrofoam peanuts	5B10.25	0	
F&A, Ec-2	confetti on electrostatic generator	5B10.25	Confetti flies off the ball of an elec	trostatic generator.
Sprott, 4.2	confetti or aluminum plates	5B10.25	Puffed rice or a stack of aluminum charged.	plates on a Van de Graaff will fly off when
Bil&Mai, p 246	confetti (puffed rice) and pie plates	5B10.25		all of an electrostatic generator. Place a ball of the generator and watch them fly off
PIRA 1000	electrified strings	5B10.26		
UMN, 5B10.26	electrified strings	5B10.26	A bunch of hanging nylon strings a causing repulsion.	are charged by stroking with cellophane
F&A, Ea-8	electrified strings	5B10.26	Charge a mop of insulating strings	
Mei, 29-1.18	streamers	5B10.26		and charge with an electrostatic machine
F&A, Ea-10	shooting down charge	5B10.26	Use the piezoelectric pistol to disc	harge the electrified strings.
PIRA 1000	electric chimes	5B10.30		
F&A, Eb-9	electric chimes	5B10.30	A ball bounces between charged n	netal chimes.
Sut, E-39	electric chimes	5B10.30	A small metal ball hangs on a thre electrostatic machine.	ad between two bells attached to an
AJP 69(1), 50	electric chimes	5B10.30	Franklin's Bells are used to demor the laboratory.	strate and measure charge transport in
Sut, E-43	jumping particles	5B10.31	Aluminum powder bounces betwee	en two horizontal plates 1 cm apart Ilized pith balls bounce between an d the plate.
AJP 45(8),772	Van de Graaff chime	5B10.32		sphere (see AJP 32(1),xiv - 5B10.33) and
F&A, Ec-6	electrostatic ping pong - cotton	5B10.33		d forth between an electrostatic generator
PIRA 500	electrostatic ping pong	5B10.35		
UMN, 5B10.35	electrostatic ping pong	5B10.35	Bounce a conducting ball hanging Wimshurst.	between two plates charged with a
D&R, E-060	electrostatic ping pong	5B10.35	Suspend a metal hemisphere, bell are connected to an electrostatic of	, or ball between two parallel plates that generator.
Mei, 29-1.13	electrostatic ping pong ball	5B10.35		between two highly charged metal plates.
Disc 16-24	electrostatic ping pong balls	5B10.35	Conductive ping pong balls bounce Wimshurst.	e between horizontal plates charged with a
PIRA 200	fuzzy fur field tank	5B10.40		
PIRA 500 - Old	fuzzy fur field tank	5B10.40		
UMN, 5B10.40	fuzzy fur field tank	5B10.40	"Fur" in mineral oil aligns along fie	
AJP 32(5),388	"velveteens"	5B10.40	electrodes.	oil are used to show electric field between
F&A, Eb-1	electric fields between electrodes	5B10.40	Charged electrodes are placed in a and the pattern is projected on the	a tank of mineral oil containing velveteen overhead.
Mei, 29-2.1	fuzzy fur field tank	5B10.40		lign with an applied electric field. Several
D&R, E-065	electric field	5B10.40		vill align with the field between electrodes.
Ehrlich 1, p. 148	electric field	5B10.40	Show electric field lines between the supply and grass seed.	wo electrodes using a high voltage power

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Disc 17-10	electric field	5B10.40	A pan on the overhead projector conta the electric field.	ains particles in a liquid that align with
Mei, 29-2.2	repelled air bubbles	5B10.41	A stream of air bubbles in an oil bath inhomogeneous field.	are repelled in the region of an
Sut, E-44	epsom salt on plate	5B10.42	Sprinkle Epson salt on a glass plate v align the crystals.	vith two aluminum electrodes. Tap to
AJP 39(3),350	ice filament growth	5B10.43	An ice filament pattern shows the electronsducer on a block of dry ice.	ctrical field configuration. Place a PZT
TPT 31(4), 218	electrorheological liquids	5B10.45	A liquid whose viscosity is affected by of corn starch in vegetable oil. Let thi Bring a charged rod close to the botto	s run out of the bottom of a funnel.
Sut, E-45	mapping force with "electric doublet	5B10.50	Two pith balls charged oppositely and out the field in the region of charged o	
Mei, 29-3.1	plotting equipotential lines	5B10.51	A method for plotting equipotential line	
AJP 30(1),71	finger on the electrophorus	5B10.52	Charge an electrophorus, then trace a the resulting field with a pith ball on a	a circle on it with your finger and probe
Sut, E-52	extent of electric field	5B10.53	Hold an electroscope leaves rise and fall a	ay from a static machine and observe
AJP 31(2),xii	mapping field potential, voltage	5B10.54		nd attached to a grounded electroscope r. Mount two candles on an insulator
Sut, E-57	mapping potential field	5B10.54	A small alcohol lamp attached to an e map potential fields.	lectrostatic voltmeter can be used to
AJP 41(12),1314	liquid crystal mapping	5B10.55	An electrode configuration is painted temperature sensitive encapsulated li color changes.	
AJP 42(12),1075	liquid crystal mapping	5B10.55		314) of preparing liquid crystal displays
Mei, 29-2.3	double brass plate measurement	5B10.57		asured by separating two brass plates listic galvanometer.
F&A, Ec-7	electric field indicator	5B10.58		istor connects to a neon bulb in parallel
AJP 30(1),19	electric fields of currents	5B10.60		
AJP 38(6),720	electric fields of currents	5B10.61	Draw a circuit on glass or mylar with a glass with small fibers while the curre	a soft lead scoring pencil. Dust the
Mei, 29-2.4	water drop model of charged particle	5B10.62	A water drop model demonstrates the particles in an electric field.	
ref.	other surfaces	5B10.70	see 8C20.20,1L20.10	
PIRA 1000 AJP 28(7),644	rubber sheet field model rubber sheet model for fields	5B10.70 5B10.70		etched rubber surface, distorting it with
Sut, E-58	model of field potential	5B10.70	dowels to represent charges. A sheet of rubber is pushed up and do	own with dowels to represent positive
Mei, 29-5.1	stretched membrane field model	5B10.71	and negative charges. A rubber sheet stretched over a large	quilting hoop models electric fields.
PIRA 200	Gauss' Law Faraday's ice pail	5B20.00 5B20.10	With a proof plane and electroscope,	show charge is on the outside of a
Sut, E-28	Faraday's ice pail	5B20.10	hollow conductor. With a proof plane and electroscope,	-
Disc 17-15	Faraday ice pail	5B20.10	hollow conductor. ALSO, "Faraday's to Charge a bucket with a Wimshurst and and outside of the bucket to an electro outside of a hollow conductor.	d try to transfer charge from the inside
AJP 35(3),227 Hil, E-1h	big Faraday ice pail Faraday ice pail	5B20.11 5B20.12	A 55 gal. drum Faraday ice pail and o	ther stuff. ntric wire mesh cylinders connected to
PIRA 1000	Faraday's ice pail on electroscope	5B20.15		
UMN, 5B20.15	Faraday's ice pail on electroscope	5B20.15	A charged metal pail sits on an electro transfers charge from the inside or ou electroscope. Only the outside of the	tside of the pail to another

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
D&R, E-115	Faraday's ice pail on electroscope	5B20.15	A charged metal pail sits on a Braun e show that charge is only removed fron	
F&A, Ea-7	Faraday's ice pail on electroscope	5B20.15	A charged copper beaker placed on a outside or inside with a proof plane.	•
Sut, E-13	Faraday's ice pail - induction	5B20.17		
F&A, Ea-21	butterfly net experiment	5B20.20	Turn a charged butterfly net inside out	
PIRA 500	electroscope in a cage	5B20.30		
F&A, Ea-20	shielded electroscope	5B20.30	A charged rod is brought close to a go cage.	ld leaf electroscope in a wire mesh
Sut, E-31	electroscope in a cage	5B20.30	Enclose an electroscope in a cage of l	
Sprott, 4.7	Faraday cage	5B20.30	that one cannot detect an electric field	5
Disc 17-14	Faraday cage	5B20.30	Bring a charged rod near a Braun elec with a wire mesh cage and repeat.	troscope, then cover the electroscope
PIRA 1000	electroscope in a cage/Wimshurst			<i>.</i>
UMN, 5B20.31	electroscope in a cage on Wimshurst	5B20.31	A screen cage shields an electroscope	-
Sut, E-30	pith balls in a cage	5B20.33	Metal coated pith balls are suspended cylinder attached to a electrostatic ma	
PIRA 200	radio in a cage	5B20.35	Place a wire mesh cage over a radio.	
UMN, 5B20.35	radio in a cage	5B20.35		innel. Diese the media inside a neurob
Bil&Mai, p 248	radio in a cage - cell phone	5B20.35	Tune a radio to a station with a clear s made from aluminum window screen a Next place a cell phone in the pouch a in aluminum foil.	•
Ehrlich 1, p. 174	radio in a cage	5B20.35	A wire mesh will eliminate reception of	f a radio just as effectively as opaque o waves must have a wavelength longer
Disc 21-17	radio in Faraday cage	5B20.35	Place a wire mesh cage over a radio.	
Mei, 29-1.29	VTVM in a cage	5B20.36	Mount the inputs to a VTVM in a Farac plastic strips.	day cage. Show charge transfer from
	Electrostatic Potential	5B30.00		
PIRA 500	surface charge density - balls surface charge density - balls	5B30.10	Concrete acueral pairs of halls of diffe	reat diameters attached to a
UMN, 5B30.10	surface charge density - bails	5B30.10	Separate several pairs of balls of diffe Wimshurst by the same distance.	rent diameters attached to a
F&A, Ea-23	surface charge density	5B30.10	Sets of balls of different radius but the attached to a Wimshurst.	same separation are simultaneously
Bil&Mai, p 252	surface charge density - balloons	5B30.10	Inflate a balloon but do not tie if off. U then observe how puffed rice jumps to Release the air in the balloon and obs with greater fury.	
PIRA 1000	charged ovoid	5B30.20		
UMN, 5B30.20	charged ovoid	5B30.20	Proof planes of the same area take ch	harge off the round or pointed end of a
F&A, Ea-18	surface charge density	5B30.20	zeppelin shape. Proof planes of the same area take ch charged zeppelin shaped conductor.	arge from the flat or pointed end of a
Sut, E-29	charged Zeppelin	5B30.20	Use a proof plane and electroscope to points on a egg shaped conductor.	compare charge densities at different
Bil&Mai, p 250	charged Zeppelin	5B30.20		•
Sut, E-60	charge distribution on spheres	5B30.22	Read this one. Determine the charge of close to a charged sphere.	distribution as spheres are brought
Mei, 29-2.8	surface charge density with cans	5B30.24	•	n on a source to the inside of a second
Sut, E-61	charge on spheres	5B30.25		ught to the same potential and inserted nt charges.
Sut, E-49	spark gaps	5B30.26	Connect an electrostatic voltmeter to t observe the voltage while varying the	he terminals of a static machine and
Mei, 29-3.2	measure the second derivative of potential	5B30.27	A two point probe measures potential, second derivative of potential. Diagram	and a five point probe measures the

Demonstratior	n Bibliography	J	uly 2015	Electricity and Magnetism
Sut, E-59	potential during discharge	5B30.28	An electroscope is conne	cted to the ball of the electric chime to observe the
TPT, 37(1), 10	"crying" electrostatics	5B30.29	•	bus apparatus with a foam board, aluminum pie on bulb, amplifier and speakers to produce
PIRA 200 - Old	lightning rod	5B30.30		of the same height between horizontal metal plates
UMN, 5B30.30	lightning rod	5B30.30		of the same height between horizontal metal plates
F&A, Eb-7	lightning rod	5B30.30	0,	ane to a sphere will stop when a point is inserted.
Disc 17-11	lightning rod	5B30.30		large ball suspended over a model house with a until a point is raised above the small ball.
PIRA 200	point and ball with Van de Graaff	5B30.35	,	
PIRA 500 - Old UMN, 5B30.35	point and ball with Van de Graaff point and ball with Van de Graaf	5B30.35 5B30.35	Hold a ball close to a Var	de Graaff generator and then bring a point close.
Disc 17-09	Van de Graaff and wand	5B30.35	With paper streamers as Van de Graaff.	a field indicator, bring a ball and point close to the
PIRA 500	electric wind	5B30.40		
UMN, 5B30.40 F&A, Eb-3	electric wind electric wind	5B30.40 5B30.40	•	nshurst blows a candle flame. I and plane electrodes attached to a Wimshurst will
Tan, Eb o		5050.40	blow the flame.	
Sut, E-37	electric wind	5B30.40		a point connected to the positive side of an Il repel the flame as if there is a breeze of ions.
D&R, E-185	electric wind	5B30.40		arallel plates will blow a candle flame when
Bil&Mai, p 246	electric wind	5B30.40		the dome of a Van de Graaff generator will be
Disc 17-13	point and candle	5B30.40	-	he terminal of a Toepler-Holtz generator and point it
AJP 30(5),366	history of the electric wind	5B30.41	Covers discovery and ear studies and applications.	ly investigations, the dust controversy, and recent
Sut, A-6	corona discharge in air	5B30.42		m a point towards a candle flame and a pinwheel
F&A, Eb-6	cooling with electric wind	5B30.43		edle points cools a glowing nichrome wire heater.
Sut, E-36	corona current	5B30.44	A 1/2 Meg resistor in seri corona discharge from ar	es with a galvanometer measure the current in a electrostatic machine.
F&A, Eb-2	corona discharge	5B30.45	-	with a needle at one end will charge a nearby the needle is pointed to the sphere and with
Sut, E-32	escape of charge from a point	5B30.45	escape and the charge of	edle is pointed away. on an electrode with a point, the induced charge will n the induced electrode will be the same as on the
Sut, E-35	charge by pointing	5B30.45	inducing electrode. Charge a conductor by pr	oximity to a point attached to a static machine.
Mei, 29-1.10	discharging from a point	5B30.46	Three balloons filled with	illuminating gas are suspended from a point and
			discharges the balloons w	•
Sut, E-33	darning needle discharge	5B30.46	electroscope and the electrosc	
Sut, E-34	collapse the field	5B30.47	The point of a grounded r the tassel collapses.	needle is brought near a charged tinsel tassel and
F&A, Eb-13	electrical discharge from water drop	5B30.48		the positive electrode of a Wimshurst will form a hen placed on the negative electrode.
AJP 32(9),713	point cathode effect	5B30.49	A point is biased to 1200	V in a Wilson cloud chamber.
PIRA 500	pinwheel	5B30.50	A ninwhool oning when of	tached to a Wimchurst generator
UMN, 5B30.50 F&A, Eb-10	pinwheel electrostatic pinwheel	5B30.50 5B30.50		tached to a Wimshurst generator. ins when connected to a Wimshurst.
Sut, E-38	pinwheel	5B30.50	• • •	connected to either terminal of a static machine.
D&R, E-185	pinwheel - ionic drive	5B30.50	•	an electrostatic generator shows the principle of an
Disc 17-12	pinwheel	5B30.50	Place a pinwheel on a Va	n de Graaff generator.
F&A, Eb-11	electrostatic solar system	5B30.51	-	s when connected to a Wimshurst.
PIRA 500	Cottrell precipitator	5B30.60		
UMN, 5B30.60	Cottrell precipitator	5B30.60		

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
F&A, Eb-12 Mei, 30-4.5 Sut, A-5	electrostatic precipitator Cottrell precipitator smoke precipitation	5B30.60 5B30.60 5B30.60	Clear a smoke filled tube by a dise Demonstrate smoke particles pred	ints that are connected to a Wimshurst. charge from wire points. cipitating in a strong electric field in an
D&R, E-190	smoke precipitator	5B30.60	artificial chimney. A large plastic soft drink bottle fille the electrodes are connected to a	ed with smoke. Precipitation occurs when
Disc 17-16	smoke precipitation	5B30.60		t each end of a glass tube filled with
Sut, E-53	energy in the discharge	5B30.90		urner with the spark from a static machine.
Sut, E-55	gas explosion by spark	5B30.91	A spark plug hooked to a static m hydrogen and oxygen in a closed	achine is used to explode a mixture of container.
Sprott, 2.23	gas explosion by spark	5B30.91	A small amount of ethanol placed	in a plastic bottle with nails in the sidewall k a considerable distance. A Tesla coil
Sut, E-48	the human discharge chain	5B30.95		student holding one knob of a static netal rod near the other knob.
AJP, 65(6), 553- 555	the human discharge chain	5B30.95	A discussion of the "kids holding h	from the point of view of each person
Sut, E-47	discharge through body	5B30.96	•	uches other students standing on insulated s of a static machine.
	CAPACITANCE Capacitors	5C00.00 5C10.00		
PIRA 500	sample capacitors	5C10.10	-	
UMN, 5C10.10	sample capacitors	5C10.10	Show many capacitor examples.	
Hil, E-4a	capacitors	5C10.10	Several types of capacitors are sh	
Bil&Mai, p 249	simple capacitor - Leyden jars	5C10.10	Charge a Leyden jar with a PVC r charge is stored, and can be adde	od. Use an electroscope to show that ad to the Leyden jar.
Bil&Mai, p 260	sample capacitors	5C10.10		 Dissect one capacitor and pull out the ly unroll to show the capacitor is composed
Bil&Mai, p 254	capacitor model	5C10.12	A model capacitor is constructed tubing.	using plastic cups, a balloon, and Tygon
Sut, E-62	simple spherical capacitor	5C10.15	0	with an electrophorus, then repeat with a beat with a grounded conductor near. The b a potential varies
PIRA 200	parallel plate capacitor	5C10.20		parallel plate capacitor while it is attached
UMN, 5C10.20	parallel plate capacitor	5C10.20	•	parallel plate capacitor while attached to an
F&A, Ed-1	field and voltage	5C10.20	•	allel plate capacitor while the voltage is
Sut, E-69	parallel plate capacitor	5C10.20		parallel movable plates and the divergence he plates are moved.
Hil, E-4d	capacitance and voltage	5C10.20	Separate charged plates while an	
AJP 70(5), 502	parallel plate capacitor	5C10.20		ouside a parallel plate capacitor and
Bil&Mai, p 258	parallel plate capacitor	5C10.20	A parallel plate capacitor is constr	ucted from wooden dowels and pie plates. eter to explore the capacitance / distance
Disc 18-19	parallel plate capacitor	5C10.20		watch the electroscope as the distance nimation sequence.
PIRA 1000	battery and separable capacitor	5C10.21	g	
Disc 18-22	battery and separable capacitor	5C10.21	Charge a parallel plate capacitor t an electroscope deflects.	o 300 V, then move the plates apart until
PIRA 1000	dependence of capacitance on area	5C10.30		
Sut, E-73	dependence of capacitance on area	5C10.30	As a chain is lifted out of a hollow deflection decreases. When let ba	charged conductor on an electroscope, the ick down, it increases again.
Sut, E-74	dependence of area on capacitance	5C10.31	A long rectangular sheet of charge electroscope.	ed tin foil is rolled up while attached to an
Sut, E-75	dependence of capacitance on area	5C10.32	Hook up a charged radio tuning co	ondenser to an electroscope.

Demonstration	n Bibliography	J	uly 2015	Electricity and Magnetism
Mei, 29-4.5	Chinese lantern capacitor	5C10.33	Vary the length of an aluminum painte of capacitance.	ed Chinese lantern to show the change
PIRA 1000 Disc 18-21	rotary capacitor rotary capacitor	5C10.35 5C10.35	•	rod and watch an electroscope as the
AJP 28(7),675	C=i/(dv/dt) demonstrator	5C10.40		nt current is maintained while charging
Mei, 29-1.30	inducing current with a capacitor	5C10.50	a capacitor from a 90 volt battery. Mea A charged ball moving between the pl induce a current in the external circuit	ates of a parallel plate capacitor will
	Dielectric	5C20.00	induce a current in the external circuit	
PIRA 200	capacitor with dielectrics	5C20.10	Insert and remove a dielectric from a is attached to an electroscope.	charged parallel plate capacitor while it
UMN, 5C20.10	capacitor with dielectrics	5C20.10	Insert and remove a dielectric from a attached to an electroscope.	charged parallel plate capacitor while
F&A, Ed-2	dielectrics	5C20.10	The voltage is measured with an elect between parallel plates of a charged of	•
Sut, E-70	capacitor with dielectrics	5C20.10	Various dielectrics are inserted betwe the difference in deflection on an elec	en two charged metal plates to show
Disc 18-20	parallel plate capacitor dielectrics	5C20.10		a rod, insert dielectrics and observe the
Mei, 29-4.1	capacitor with dielectrics	5C20.11	Six demonstrations with a parallel plat	te capacitor and dielectrics.
AJP 73 (1), 52	capacitor with dielectrics	5C20.11	Using a parallel plate capacitor to dete different materials.	
Hil, E-4b	equation Q=CV	5C20.12	The bottom of a parallel plate capacitor charge the top plate, touch the bottom	
Hil, E-4c	C-V relationships	5C20.13	An automated device to charge a cap Reference: AJP 22(3),146.	acitor and separate the plates.
Sut, E-40	intervening medium	5C20.14	Bring a charged rod close to an electr between the two.	oscope and interpose various materials
PIRA 1000	helium dielectric	5C20.17		
UMN, 5C20.17	helium dielectric	5C20.17	Helium is blown into a charged paralle	el plate capacitor.
PIRA 1000	force on a dielectric	5C20.20		
Disc 18-24	force on a dielectric	5C20.20	A counterbalanced acrylic dielectric is when they are charged with a small W	
AJP 59(8),763	force on a dielectric - glass plate	5C20.21	A microscope slide is pulled into the g capacitor.	ap between parallel plates of a
Mei, 29-4.14	force on a dielectric	5C20.22	A elongated paraffin ellipsoid in a para is turned on, kerosene climbs between	allel plate capacitor turns when the field n parallel plates.
PIRA 1000	attraction of charged plates	5C20.25		
Mei, 29-4.12	attraction of charged plates	5C20.25	when 300 V dc is applied.	handle can lift a lithographic stone plate
Mei, 29-4.13	attraction of charged plates	5C20.26	The top plate of a parallel plate capac balance so the force can be measured voltage is varied. Pictures, Construction	d with and without dielectrics as the
AJP 43(10),924	attraction of charged plates	5C20.27	The permittivity of free space is meas determine the force between the plate	ured using a Mettler balance to
PIRA 200 - Old	dissectible condenser	5C20.30	A capacitor is charged, disassembled discharged with a spark.	
UMN, 5C20.30	dissectible condenser	5C20.30	Same as Ed-3.	
F&A, Ed-3	dissectible condenser	5C20.30	A capacitor is charged, disassembled discharged with a spark.	, passed around, assembled, and
Sut, E-64	dissectible condenser	5C20.30	The inner and outer conductors of a c	harged Leyden jar are removed and ed and discharged in the usual manner.
Disc 18-25	dissectible capacitor	5C20.30	Charge a capacitor and show the disc apart. Handle it, try to discharge it, rea	
PIRA 1000	bound charge	5C20.35		
UMN, 5C20.35	bound charge	5C20.35	_	
Sut, E-65	bound charge	5C20.35	The two coatings of a Leyden jar can much loss of charge. When the two co discharge.	oatings are connected, there is a
Mei, 29-4.8	impedance of a dielectric	5C20.40	Place a small parallel plate capacitor Insert different dielectrics. High dielect	trics have low impedance.
F&A, Ed-4	breath figures	5C20.50	Blow on a glass plate that has been p	olarized with the image of a coin.

Demonstratio	n Bibliography	J	uly 2015 Electricity and Magnetism
Sut, E-66	Lichtenberg figures	5C20.51	A pattern is traced on a dielectric from the two polarities of a charged Leyden jar. Litharge and flowers of sulfur sprinkled on adhere to the areas traced out with the different polarities.
PIRA 1000 AJP 42(3),246	displacement current displacement current	5C20.60 5C20.60	A toroidal coil is either placed around a wire leading to a large pair of capacitor plates to demonstrate Ampere's law or inserted between the capacitor plates to demonstrate displacement current.
AJP 32(12),916 AJP 33(6),512	displacement current displacement current comment	5C20.61 5C20.61	Measure the displacement current in a barium titanate capacitor. The experiment in AJP 32,916,(1964) has nothing to do with displacement current in Maxwell's sense.
AJP 33(6),512	displacement current comment comment	5C20.61	More semantics.
Mei, 33-4.1	displacement current	5C20.61	Measure the displacement current in a barium titanate capacitor. Diagrams, Derivation.
PIRA 1000	Energy Stored in a Capacitor Leyden jar and Wimshurst	5C30.00 5C30.10	
F&A, Eb-8	Leyden jar	5C30.10	Sparks from a Wimshurst are no longer but are much more intense when a Leyden jar is connected.
D&R, E-210	Leyden jar	5C30.10	Sparks from an electrostatic generator are intensified when a Leyden jar or aluminum plates are connected in parallel with spark gap.
Disc 18-18	Leyden jars on Toepler-Holtz	5C30.10	The Toepler-Holtz produces weak sparks without the Leyden jars and strong less frequent sparks with the jars connected.
Disc 18-26	grounded Leyden jar	5C30.15	Charge a capacitor with a Wimshurst, ground each side separately, spark to show the charge is still there.
PIRA 1000 PIRA 200	exploding capacitor short a capacitor	5C30.20 5C30.20	Charge a large electrolytic (5000 mfd) capacitor to 120 V and short with a screwdriver.
UMN, 5C30.20 Disc 18-23	short a capacitor exploding capacitor	5C30.20 5C30.20	A 5600 microF capacitor is charged to 120 V and shorted.
AJP 37(5),566	capacitor and calorimeter	5C30.25	Discharge a capacitor into a resistor in an aluminum block with an embedded thermistor to measure the temperature increase.
ref. PIRA 200 UMN, 5C30.30	light the bulb light a bulb with a capacitor light the bulb	5C30.30 5C30.30 5C30.30	see 5F30.10 Charge a large electroylitic capacitor and connect it to a lamp.
PIRA 1000 F&A, Ed-8 AJP 72(5), 662 AJP 68(7), 670	lifting weight with a capacitor energy stored in a capacitor energy stored in a capacitor energy stored in a capacitor	5C30.35 5C30.35 5C30.35 5C30.35	A capacitor is discharged through a small motor lifting a weight. Further study and results for the two-capacitor problem. A discussion of the puzzle of the missing energy in a capacitor that is charged from a power supply, battery, or another capacitor, with neither resistance or inductance in the circuit.
AJP 70(4), 415	energy stored in a capacitor	5C30.35	The puzzle of the missing energy in a capacitor that is charged from another capacitor. In a zero-resistance circuit it can be shown that radiation accounts for the energy loss.
Mei, 29-4.10 Bil&Mai, p 263	lifting a weight with a capacitor lift a weight with a capacitor	5C30.35 5C30.35	A DC motor, powered by a charged capacitor, lifts a weight.
Mei, 29-4.11	discharge a capacitor thru wattmeter	5C30.36	A high impedance low rpm dc motor (wattmeter) is used to discharge a capacitor.
F&A, Ed-7 Sut, E-262	charge on a capacitor capacitors and ballistic galvanometer	5C30.37 5C30.37	A capacitor is discharged through a ballistic galvanometer.
Ehrlich 2, p. 149	generator and capacitor	5C30.38	
PIRA 1000 Sut, E-67	series/parallel Leyden jars addition of potentials	5C30.40 5C30.40	Charge Leyden jars in parallel and discharge, charge in parallel again and connect in series before discharging. Compare length and intensity of the sparks.
Sut, E-68	series and parallel condensers	5C30.41	Charge four Leyden jars in parallel and discharge singly and with three together. Next charge three in series with one in parallel and discharge singly and three in series. Compare length and intensity of sparks.
PIRA 1000	series/parallel capacitors	5C30.42	and another borroo. Compare longer and intensity of sparks.

	acitor, two series capacitors, and two parallel capacitors al and discharge through a ballistic galvanometer.
	tage models of the Marx generator and the Cockroft- the waveforms to be shown as a demonstration without or danger
F&A, Ep-1 Marx generator 5C30.50 Switching capacitors	s from parallel to series to generate high voltages. d capacitors from parallel to series.
PIRA 1000 residual charge 5C30.60	
Sut, E-63 residual charge 5C30.60 Charge and discharg again.	ge a Leyden jar, Wait a few seconds and discharge it
	Leyden jar, light a neon tube up to 100 times. Also - show e on the dielectric with a triode.
RESISTANCE 5D00.00	
Resistance Characteristics 5D10.00	
PIRA 500 resistor assortment 5D10.10	
UMN, 5D10.10 resistor assortment 5D10.10	
Mei, 30-1.1 scaled up resistor box 5D10.11 Rebuild an old resist	tance box with larger numbers.
TPT 33(6), 340 tapered resistors 5D10.15 Resistors whose resi Commonly found on	sistance per unit length varies along the resistor. batteries as the "test strip" for checking the battery's e computer applications.
TPT 37(7), 400 tapered resistors 5D10.15 Tapered resistors ma	ade with a # 1 pencil.
TPT 28(8), 570 tapered resistors 5D10.15 More about the liquic packs.	d crystal tester that comes on batteries or with battery
TPT 34(5), 276 tapered resistors 5D10.15 Temperature profile of	of the Duracell test strip.
TPT 34(1), 16 tapered resistors 5D10.15 Does a test strip mea	easure voltage or current?
PIRA 500 characteristic resistances 5D10.20	
UMN, 5D10.20 characteristic resistances 5D10.20 Connect one meter lo voltage across each.	lengths of various wires in series and measure the
	n a commercial board with seven one meter lengths of es so all carry the same current.
	et of wires of different lengths and/or diameters and
	and potential across a small arc as the series resistance
	esistance by holding the probes of a multimeter.
PIRA 200 resistance model 5D10.40	
PIRA 500 - Old resistance model 5D10.40	
	n an incline with pegs.
,	a board with randomly spaced nails.
	d down a board with nails scattered in an almost random
	led down an inclined bed of nail to simulate current flow
Bil&Mai, p 270 resistance model 5D10.40 Two soda bottles are and resistance.	e connected together one inside the other to model EMF
Disc 17-22 electron motion model 5D10.40 Ball bearings are sim one without.	nultaneously rolled down two ramps, one with pegs and
PIRA 1000 current model with Wimshurst 5D10.50	
Bil&Mai, p 268 burn a resistor 5D10.60 Voltage is increase s	slowly through a resistor until it bursts into flames to ship between voltage, current, and resistance in simple
Resistivity and Temperature 5D20.00	
PIRA 200 wire coil in liquid nitrogen 5D20.10 A lamp glows brighte nitrogen.	er when a series resistance coil is immersed in liquid
	er when a series resistance coil is immersed in liquid air.
Disc 17-21 cooled wire 5D20.10 A copper coil in serie	es with a battery and lamp is immersed in liquid nitrogen.
Sut, H-104 resistance at low temperature 5D20.11 A "C" battery, 3 V fla temp coefficient of re	ashlight bulb, and a copper wire coil make a hand held esistivity apparatus.
	d into liquid nitrogen is part of a voltage controlled

Demonstration	h Bibliography	JI	uly 2015 Electricity and Magnetism
Sut, E-164	cooling	5D20.12	Current is increased in a long U of iron wire until it glows, then half is inserted into a beaker of water.
AJP 48(11),940	superconducting wire	5D20.14	
PIRA 1000	flame and liquid nitrogen	5D20.15	
UMN, 5D20.15	flame and liquid nitrogen	5D20.15	Resistance coils are heated and cooled with a test light bulb in series.
F&A, Eg-4	temperature dependence of resistance	5D20.15	Two sets of bulbs in series with coils, one put in liquid nitrogen and the other in a flame.
D&R, E-280, H- 010	temperature dependence of resistance	5D20.15	A filament from a 200 W bulb with glass envelope removed is connected to a digital meter. Heat it with a heat lamp.
Sut, E-166	temperature coefficent of resistance	5D20.16	Two coils of different material but the same resistance are placed in a Wheatstone bridge and either is heated or cooled.
PIRA 200 - Old	iron wire in flame	5D20.20	Heat a coil of iron wire in series with a battery and a lamp and the lamp will dim.
Mei, 30-1.4	iron wire in a flame	5D20.20	A coil of forty turns of iron wire is heated in a flame while connected in series with a light bulb circuit.
Sut, E-165	putting the light out by heat	5D20.20	A coil of iron wire wound on a porcelain core in series with a lamp and battery is heated until the lamp goes out.
Disc 17-20	heated wire	5D20.20	Heat a coil of iron wire in series with a battery and a lamp.
Sut, E-163	flame	5D20.21	A coil of nickel wire connected to a battery and galvanometer is heated in a flame.
Ehrlich 1, p. 167	Eddy current tube	5D20.25	A disc magnet is dropped through tubes of copper or aluminum. Drop a nonmagnetic disc through for comparison.
PIRA 500	carbon and tungsten light bulbs	5D20.30	
F&A, Eg-5	positive and negative resistance coefficients	5D20.30	Measure current and resistance at various voltages for a carbon and tungsten bulb.
Disc 18-09 UMN, 5D20.31	carbon and tungsten lamps resistance of light bulbs	5D20.30 5D20.31	Plot current vs. voltage for carbon and tungsten lamps. The V/I curves for tungsten and carbon filament lamps are shown on a dual trace storage oscilloscope.
D&R, E-450, E- 470	resistance of light bulbs	5D20.31	The V/I curves for a variety of bulbs are plotted to show resistance is inversely proportional to power.
AJP 53(6),546	temperature of incandescent	5D20.32	Two silicon solar cells with interference filters measure the light at different
	lamps		wavelengths for use in determining the temperature of the filament.
Sut, E-169	resistance thermometer	5D20.40	Attach No. 14 copper leads to a platinum coil and use with a Wheatstone bridge.
PIRA 1000	thermistors	5D20.50	
Mei, 40-1.4	thermistors	5D20.50	Use a good kit of commercial thermistors and display the differential negative resistance of a fast thermistor on a transistor curve tracer.
Disc 16-17	thermistor	5D20.50	Show the resistance of a thermistor placed in an ice water bath.
PIRA 200	conduction in glass at high temperature	5D20.60	
PIRA 500 - Old	conduction in glass at high temperature	5D20.60	
UMN, 5D20.60	conduction in glass	5D20.60	
AJP 58(1),90	conduction in glass at high temperature	5D20.60	A simple version of glass conduction using binder clips and window glass.
Mei, 30-1.3	conduction in glass at high temperature	5D20.60	Heat a capillary tube in a Bunsen burner until it is hot enough to sustain a current that maintains a bright glow.
Sut, E-168	conduction in glass	5D20.60	Heat a glass tube with a flame until it is hot enough to sustain conduction. Vary the current by changing the ballast resistance.
Sut, E-167	negative temperature coefficient of resistance	5D20.61	A Nerst glower must be heated with a flame until the resistance is low enough to sustain electrical heating.
	Conduction in Solutions	5D30.00	
PIRA 500	conduction through electrolytes	5D30.10	
F&A, Ef-1	conductivity of solutions	5D30.10	Dip two metal electrodes in series with a light bulb in various solutions.
Sut, E-193	conduction through electrolytes	5D30.10	Immerse two copper plates in series with a lamp in distilled water, add barium hydroxide, then sulfuric acid.
Sut, E-192	conduction through electrolytes	5D30.10	Put two copper plates in series with a lamp in distilled water and salt or acid is added.
D&R, E-260	conductivity of solutions	5D30.10	A pigtail socket connected to an AC line cord testing the conductivity of salt water, sugar water, tap water, and distilled water.
Disc 18-13	conductivity of solutions	5D30.10	Two electrodes in series with a 110 V lamp are dipped into distilled water, salt water, a sugar solution, a vinegar solution, and tap water.
PIRA 1000	salt water string	5D30.13	

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
AJP 32(9),713	electrolytic conduction on chamios	5D30.15	Suspend a chamois between ringstands resistor, meter. Soak in distilled water, r	
PIRA 1000	migration of ions	5D30.20		
F&A, Ef-3	speed of ions	5D30.20 5D30.20	Show KMnO4 migrating with current tow	vards the positive electrode in KNO3.
Mai 20 2 2	migration of iona	5020.20	Permanganate ions migrate in an electr	in field
Mei, 30-3.2 Sut, E-206	migration of ions ionic speed	5D30.20 5D30.21	Dip two platinum electrodes into an amr containing some phenophthalein.	
Sut, E-207	ionic speed	5D30.22	Blue moves from the anode of in a pota applied.	ssium chloride gel when 120 volts is
Sut, E-208	ionic speed	5D30.23	Measuring the speed of hydrogen and h gel.	ydroxyl ions in a potassium chloride
PIRA 1000	pickle glow	5D30.30	5	
Disc 18-15	pickle frying	5D30.30	Apply high voltage across a pickle and i	t lights at one end.
	Conduction in Gases	5D40.00		
PIRA 200	Jacob's ladder	5D40.10	A arc rises between rabbit ear electrode transformer.	s attached to a high voltage
UMN, 5D40.10	Jacob's ladder	5D40.10	A arc rises between rabbit ear electrode transformer.	s attached to a high voltage
F&A, Em-3	Jacob's ladder	5D40.10	A spark forms across "rabbit ears" on a	15 KV transformer.
Sut, A-7	Jacob's ladder	5D40.10	Jacob's ladder and other spark demons	trations. Diagram.
Hil, E-11b	climbing spark	5D40.10		
Sprott, 4.5	Jacob's ladder	5D40.10	A rising electrical discharge occurs with connected to a pair of conducting bars of farther apart at the top.	
Disc 25-08	Jacob's ladder	5D40.10	Apply high voltage AC to rabbit ears.	
PIRA 1000	conduction of gaseous ions	5D40.20	11, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
Sut, E-50	conduction of gaseous ions	5D40.20	A nearby flame will discharge an electro	scope.
D&R, S-130	conduction of gaseous ions from a flame	5D40.20	A nearby flame will discharge an electro	scope.
F&A, Eb-4	discharge with flame	5D40.21	A flame connected to a high voltage sou parallel plates.	urce is inserted between charged
Mei, 30-4.6	blowing ions by a charged plate	5D40.25	Compressed air blows ions from a flame parallel plates onto a mesh hooked to a	
Mei, 30-4.7	discharge by ions in a tube	5D40.25	Electrodes at the bottom, middle, and to electrometer while a Bunsen flame is bu	•
Sut, A-4	recombination of ions	5D40.27	lons from a flame are drawn past a serie Zeleny electroscope.	es of charged plates attached to a
Sut, E-51	separating ions from flame	5D40.28	Shadow project a flame between two ch separation of gas into two streams of op	
PIRA 1000	ionization by radioactivity	5D40.30		
Sut, A-112	ionization by radioactivity	5D40.30	Discharge an electroscope with a radioa	active source.
D&R, S-130	ionization by radioactivity	5D40.30	Discharge an electroscope with a weak	
Sut, A-1	ionization in air	5D40.32	Various sources of ionization are brough 100 V battery and a Zeleny electroscope	ə.
Sut, A-2	saturation	5D40.33	The voltage across a plate close to a wi radioactive source nearby and the curre electroscope.	
Sut, A-3	ion mobilities	5D40.34	A second mesh is inserted into the appa potential increased until the electroscop	
Mei, 30-4.3	conduction in air by ions	5D40.35	An electrometer measures the current b burned between them or an alpha source	etween parallel plates as a flame is
Mei, 30-4.8	Cerberus smoke detector	5D40.36	Combustion products decrease conduct source.	
PIRA 1000	conduction from a hot wire	5D40.40		
Mei, 30-4.4	conduction from hot wire	5D40.40	A constantan wire held near a charged e it is heated red hot.	electroscope causes discharge when
ref.	thermionic effect	5D40.41	see 5M20.15	
Sut, A-77	thermionic effect in air	5D40.41	A Zeleny electroscope indicates electron heated.	n emission from a wire when it is
PIRA 1000	thermionic emisson	5D40.42		
Disc 25-03	thermionic emission	5D40.42	A commercial tube. Apply 90 V forward	and reverse and monitor the current.
PIRA 1000	neon bulb	5D40.50		
Disc 18-08	neon bulb resistivity	5D40.50	A neon lamp lights at about 80 V and sh	nuts off at about 60 V.

PIRA 1000 xi-ray ionization 504.08.0 Stut. A 103 tionization by X-rays 504.08.0 Disc 34-20 Xi-ray ionization 504.08.0 Stut. A 103 tionization by X-rays 504.08.0 AJP 43(7).895 electrolydindynamics 504.08.0 F8A, E1-2 electrolysis of water 520.00 F8A, E1-2 electrolysis of water 520.10 F8A, E1-3 electrolysis of water 520.10 F8A, E1-4 electrolysis of water 520.10 F8A, E1-3 electrolysis of water 520.10 F8A, E1-4 electrolysis of water 520.10 F8A, E1-5 electrolysis of water 520.10 F8A, E1-2 electrolysis of water 520.10 F8A, E1-3 electrolysis of water 520.10 F8A, E1-4 electrolysis of water 520.10 F8A, E1-5 electrolysis of water 520.10 F8A, E1-4 electrolysis of water 520.10 F8A, E1-4 electrolysis of water 520.10 </th <th>Demonstration</th> <th>Bibliography</th> <th>J</th> <th>uly 2015</th> <th>Electricity and Magnetism</th>	Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Sur. A103 Ionization by X-rays ED4 above ED4 above ED4 above Sur, A104 Ionization by X-rays 504.08 Discharge an electroscope with X-rays. Sur, A104 Ionization by X-rays 504.08 Nork-ray beam is passed through a simple ionization chamber. AJP 40(7),655 electrohysin draws 520.00 For X-ray beam is passed through a simple ionization chamber. ELECTROMOTIVE FORCE 4 520.00 For X-ray beam is passed through sliphtly acidic water evolves hydrogen and oxygen at the electrohysin of water F6A, EF-2 ges coulombmeter 520.01 Do passed through sliphtly acidic water evolves hydrogen and oxygen at the electrohysin of water S016 2-12 electrohysin of water 520.01 Do the standard commercial electrohysin is measured. S016 2-12 electrohysin of water 520.01 The standard commercial electrohysin is of water and blow them to indicator in electrohysin of water and blow them to indicator in electrohysin of water and blow them to copies. S016 2-23 electrohysin of water and blow them to indicator in electrohysin of scalum sulfate. 520.02 Phenophthalein electrohysin is fated on the inside of a largn inserted into mostano. S016 2-23 electrohysin of socium sulfate. 520.02 Scalus rupite cabbage as an indica	PIRA 1000	x-ray ionization	5D40.80		
Dies 24:20 Sur, 4:104 X-ray ionization ionization by X-rays electrolysis of values 550.08 SUR, 4:104 X-ray beam is passed through simple ionization chamber. AIP 49(7),695 ELECTROMOTIVE FORCE & CURRENT 550.00 Feed this again - practical examples are ink jet printing and electrically driven convection. FRA 50- 0. ELECTROMOTIVE FORCE & CURRENT 550.00 Discharge an electrolysis of water 550.00 FRA 51-2 electrolysis of water 552.010 DC passed through slightly acidic water evolves hydrogen and oxygen at the electrolysis of water 552.010 Sul, E-102 electrolysis of water 552.010 The volume of gas from electrolysis of vater. Sul, E-201 electrolysis of water 552.012 Pherophthalein is used as an indicator for electrolysis of water and blow them to droples. Sul, E-203 explosion of hydrogen and oxygen 552.024 Pherophthalein is used as an indicator for electrolysis demonstrations. indicator 552.025 Neasure the current while transferring mass from electrolysis demonstrations. indicator Sul, E-211 electrolysis of vater 552.025 Sodum sulfate 552.025 Sul, E-213 mass of Na atom by electrolysis 552.025 Sodum of the franday. Sul, E-214 electrolysis of vater </td <td>Sut. A-103</td> <td></td> <td></td> <td>Discharge an electroscope with X-rays</td> <td></td>	Sut. A-103			Discharge an electroscope with X-rays	
Sul, A.104 ionization by X-rays 5D40.9 A.X -ray beam is passed through a simple ionization chamber. AJP 49(7),895 electrolysis of water 5E00.0 convection. FBA, EF-4 gas coulombmeter 5E20.00 CCRRENT FBA, EF-4 gas coulombmeter 5E20.10 DC passed through slightly acidic water evolves hydrogen and oxygen at the electrolysis of water FBA, EF-4 gas coulombmeter 5E20.10 The Hoftman apparatus for electrolysis of water. FBA, EF-4 gas coulombmeter 5E20.10 The Hoftman apparatus for electrolysis of water. FBA, EF-2 electrolysis of water 5E20.10 The Hoftman apparatus for electrolysis of water. Sut, E-202 electrolysis of water 5E20.11 The Hoftman apparatus for electrolysis of water. Sut, E-203 electrolysis of water 5E20.21 The Hoftman apparatus for electrolysis of water. Sut, E-204 electrolysis of water 5E20.22 2 Appleition electrolysis of water and blow them to completion electrolysis of water. Sut, E-211 electrolysis of sodium sulfate 5E20.22 Use purple cabbage as an indicator in electrolysis demonstrations. Sut, E-211 electrolys				, , , , , , , , , , , , , , , , , , ,	
AJP 49(7):695 electrolysis 550.09 read this again - practical examples are ink jet printing and electrically driven covercion. PIRA 500 ELECTROMOTIVE FORCE & 5E0.00 552.00 DC passed through slightly acidic water evolves hydrogen and oxygen at the electrolysis of water 552.00 F&A, EI-6 gas coulombmeter 552.01 DC passed through slightly acidic water evolves hydrogen and oxygen at the electrolysis of water 552.01 The volume of gas from electrolysis of vater. JBis F1-6 gas coulombmeter 552.01 The standard commercial electrolysis of vater. 552.01 JBis F1-6 gas coulombmeter 552.01 The standard commercial electrolysis of vater. 552.01 Sut, E-201 electrolysis of water modification 552.01 The standard commercial electrolysis of vater. 552.02.1 Wei, 30-3.3 phenolphthalein electrolysis 552.02.1 Phenolphthalein is used as an indicator for electrolysis demonstrations. indicator 552.02.2 Vargetrain electrolysis demonstrations. Sut, E-211 electrolysis of Na ions through glass 552.02.2 Sodum sulfate 552.02.2 Sut, E-213 mass of Na atom by electrolysis 552.02.5 Sodum is jalated on the inside of a lamp insended in a sumated					
ELECTROMOTIVE FORCE & CURRENT 5E0.00 FEA. PIRA 500 F8A, EF2 electrolysis of water 5E2.00 FEA. F8A, EF2 electrolysis of water 5E2.01 FEA. F8A, EF2 electrolysis of water 5E2.01 FEA. F8A, EF4 gas coulombmeter 5E2.01 FEA. The volume of gas from electrolysis is measured. SUL E-202 electrolysis of water SE2.01 FEAC Type tubing over the wire coming out the bottom to protect it from the acid. JP 31(2),139 electrolysis of water SE2.01 FEAC Type tubing over the wire coming out the bottom to protect it from the acid. SUL E-201 electrolysis of water SE2.01 The standard commercial electrolysis of water and blow them to droplets. SUL E-203 explosion of hydrogen and oxygen thicks of the protection electrolysic cell for showing the evolution of gas. SUL E-204 electrolysis of sodium sulfate SE2.01 Vhe projection electrolysis of sodium sulfate. Sul, E-211 electrolysis of sodium sulfate. SE2.02 Vhe purple cabbage as an indicator in electrolysis of sodium sulfate. Sul, E-213 mass of Na atom by electrolysis of sodium sufface in electrolysis. SE2.02 Vhe purple cabbage as an indicator in a starting disting or porter to the starting. Sul, E-213 mass of Na atom by electrolysis. SE2.02 Siz.				read this again - practical examples ar	•
Electrolysis 6520.00 6520.10 FRA, E1-2 electrolysis of water 5520.10 FRA, E1-2 electrolysis of water 5520.10 FRA, E1-6 gas coulombmeter 5520.10 FRA, E1-6 gas coulombmeter 5520.10 Disc 18-16 electrolysis of water 5520.10 Disc 18-16 electrolysis of water 5520.10 SUL E-202 electrolysis of water 5520.10 SUL E-203 electrolysis of water 5520.10 SUL E-203 electrolysis of water 5520.12 SUL E-203 explosion of hydrogen and oxygen 5520.12 Mei, 30-3.3 phenophthalieni electrolysis 6520.12 Mei, 30-3.4 purple cabbage electrolysis 6520.22 Sul, E-209 electrolysis of sodium sulfate 5520.22 Sul, E-211 electrolysis of sodium sulfate 5520.20 Sul, E-213 mass of Na atom by electrolysis 5520.20 Sul, E-214 electrolysis of sodium sulfate 5520.20 Sul, E-213 mass of Na atom by electrolysis 5520.20 <td< td=""><td></td><td></td><td>5E00.00</td><td>convection.</td><td></td></td<>			5E00.00	convection.	
PIRA 500 electrolysis of water 5E20.10 FAA, EF-2 electrolysis of water 5E20.10 FAA, EF-6 gas coulombreter 5E20.10 Sut, E-202 electrolysis of water 5E20.10 Disc 18-16 electrolysis of water 5E20.10 Disc 18-16 electrolysis of water 5E20.10 Sut, E-203 electrolysis of water 5E20.10 Sut, E-203 explosion of hydrogen and oxygen 5E20.12 Ap 31(2),133 electrolysis of water 5E20.12 Ap 32(2),133 electrolysis of water 5E20.12 Ap 33.3 phenophthalen electrolysis 5E20.21 Ap 34.3.3 phenophthalen electrolysis 5E20.22 Velacity and a start 5E20.22 Use purple cabbage as an indicator for electrolysis of sodium sulfate Sut, E-214 electrolysis of sodium sulfate 5E20.22 Use purple cabbage as an indicator to show electrolysis of sodium sulfate. Sut, E-214 electrolysis of Sodium sulfate 5E20.22 Sodium is plated on the inside of a lamp inserted into molten sodium nitrate. Sut, E-214 electrolysis 5E20.25 Sodium is plated on the inside of a lamp inserted into molten sodium sulfate. Sut, E-214 electrolysis 5E20.26 Sodium is plated in a strunt sed solution of sodium sulfate.			5520.00		
FAA, EF-2 electrolysis of water 5E2.01 DC passed through slightly acidic water evolves hydrogen and oxygen at the electrolysis of water FAA, EF-6 gas coulombmeter 5E2.01 The volume of gas from electrolysis of water. Disc 18-16 electrolysis of water 5E2.01 The standard commercial electrolysis of water. Disc 18-16 electrolysis of water 5E2.01 The standard commercial electrolysis of water. Sut, E-201 electrolysis of water 5E2.01.0 The standard commercial electrolysis of water and blow them tacid. Sut, E-203 explosion of hydrogen and oxygen 5E20.21 Make scap bubbles with the gases from electrolysis demonstrations. indicator in dicator in electrolysis of water and blow them to droplets. Mei, 30-3.4 purple cabbage electrolysis 5E20.22 Use purple cabbage as an indicator in electrolysis demonstrations. indicator in gas. Sut, E-211 electrolysis of sodium sulfate 5E20.22 Sodium is plated on the inside of a lamp inserted into molten sodium nitrate. gass Sut, E-213 mass of Na atom by electrolysis 5E20.22 Sodium is plated on the inside of a lamp inserted ind solution of sodium sulfate. Sut, E-214 electrolysis of ion 5E20.24 A method determining the mass of a scalurated solution. Sut, E-213 mass of Na atom by electrolysis 5E20.26 A method determining the mass of a scalurated solution.		-			
FAA, E1-6 gas coulombmeter electrolysis measured. Sut, E-202 electrolysis of water 6E20.10 The volume of gas from electrolysis is measured. AJP 31(2),139 electrolysis of water 6E20.10 The standard commercial electrolysis of water. Sut, E-201 electrolysis of water 6E20.10 The standard commercial electrolysis of water. Sut, E-203 explosion of hydrogen and oxygen 6E20.12 A projection electrolysic cell for showing the evolution of gas. Sut, E-203 phenolphthalein electrolysis 5E20.12 A projection electrolysic cell for showing the evolution of gas. Sut, E-203 explosion of hydrogen and oxygen 5E20.22 Use purple cabbage as an indicator in electrolysis demonstrations. indicator in electrolysis of sodium sulfate. Sut, E-214 electrolysis of sodium sulfate 5E20.22 Use purple cabbage as an indicator to show electrolysis of sodium sulfate. Sut, E-213 mass of no strough glass 5E20.23 Sodium is plated on the inside of a lamp inserted into molten sodium nitrate. Sut, E-214 electrolysis 6E20.26 Secture while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday. Sut, E-213 mass of no atom by electrolysis. 5E20.26 Meethoof determining the m		-		DC passed through alightly asidia wate	ar evolution budrogen and evurgen at the
Sut, E-202 electrolysis Generallysis Generallysis AUP 31(2),139 electrolysis of water modification GE2.0.10 The standard commercial electrolysis apparatus. Sut, E-203 explosion of hydrogen and oxygen GE2.0.12 Place Tygon tubing over the wire coming out the bottom to protect it from the acid. Sut, E-203 explosion of hydrogen and oxygen SE2.0.12 A projection electrolytic cell for showing the evolution of gas. Mei, 30-3.3 phenophthalein electrolysis SE2.0.22 Veneophthalein is used as an indicator in electrolysis demonstrations. Indicator Mei, 30-3.4 purple cabbage electrolysis SE2.0.22 Use purple cabbage as an indicator for electrolysis demonstrations. Indicator Sut, E-211 electrolysis of values SE2.0.23 Sodium is plated on the inside of a lamp inserted into molten sodium sulfate. Sut, E-213 mass transfer in electrolysis SE2.0.24 A method of determining the mass of a sodium ator by electrolysis. Sut, E-213 mass of Na atom by electrolysis SE2.0.25 Sodium is plated on the inside of a lamp inserted into molten sodium thrate. Mei, 30-3.6 oxidation of ferous to ferric iron SE2.0.26 Meature the current while transfering mass by plating optor to obtain a sami quantitative determin				electrodes.	
Disc 18-16 electrolysis 5E20.10 The standard commercial electrolysis of water modification AJP 31(2),139 electrolysis of water modification FE20.11 Place Tygo with with e coming out the bottom to protect it from the acid. Sut, E-201 electrolysis of water SE20.11 Place Tygo with the gases from electrolysis of water and blow them to droptels. Mei, 30-3.3 phenolphthalein electrolysis 5E20.22 Use purple cabbage as an indicator in electrolysis demonstrations. indicator Mei, 30-3.4 purple cabbage electrolysis 5E20.22 Use purple cabbage as an indicator for electrolysis demonstrations. indicator Sut, E-201 electrolysis of sodium sulfate 5E20.22 Use purple cabbage as an indicator to show electrolysis of sodium sulfate. Sut, E-211 electrolysis of Na ions through glass 5E20.23 Measure the current while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday. Sut, E-213 mass of Na atom by electrolysis 5E20.23 A method of determining the mass of a sodium atom by electrolysis. Sut, E-214 electrolytic rectifier 5E20.30 Electrodes of aluminum and lead in a storage data and heat. Sut, E-215 electrolytic rectifier 5E20.40 Put ferrous iron in hot wate		•			
AJP 31(2),139electrolysis of water modification5E20.11Place Tygon tubing over the wire coming out the bottom to protect it from the acid.Sut, E-201electrolysis of waterSE20.12A projection electrolysic cell for showing the evolution of gas.Sut, E-203explosion of hydrogen and oxygenSE20.15Make scap bubbles with the gases from electrolysis of water and blow them to droplets.Mei, 30-3.4purple cabbage electrolysisSE20.17Phenophthalein electrolysis demonstrations.indicatorSE20.17SE20.12Use purple cabbage as an indicator in electrolysis demonstrations.indicatorSE20.15Se20.22Use purple cabbage as an indicator in show electrolysis of sodium sulfate.Sut, E-211electrolysis of Na ions through glassSE20.23Sodium is plated on the inside of a lamp inserted into molten sodium nutrate.glassmass transfer in electrolysisSE20.24Sodium is plated on the inside of a lamp inserted into molten sodium nutrate.Sut, E-213mass of Na atom by electrolysisSE20.29Method determining the mass of adum heat.Sut, E-214electrolytic rectifierSE20.30SE20.30PIRA 1000copper flashing of ironSE30.10FRA, E-4copper flashing of ironSE30.10PIRA 1000copper flashing of ironSE30.20Copper aduating copperSE30.20Copper aduating copperSE30.20Copper aduating copperSE30.20Copper aduating copperSE30.20Copper aduating copperSE30.20Couper flashing of ironSE30.10		-			
Sut, E-203 electrolysis of water 5E20.12 A projection electrolytic cell for showing the evolution of gas. Sut, E-203 explosion of hydrogen and oxygen 5E20.15 Make scap bubbles with the gases from electrolysis of water and blow them to droplets. Mei, 30-3.3 penolphthalein electrolysis 5E20.21 Phenophthalein is used as an indicator in electrolysis demonstrations. indicator Mei, 30-3.4 purple cabbage electrolysis 5E20.22 Use purple cabbage as an indicator in otherolysis of sodium sulfate. Sut, E-201 electrolysis of sodium sulfate 5E20.22 Use purple cabbage as an indicator to show electrolysis of sodium sulfate. Sut, E-211 electrolysis of Na ions through giass 5E20.22 Sodium is plated on the inside of a lamp inserted into molten sodium nitrate. giass divertolysis Sut, E-213 mass of Na atom by electrolysis 5E20.28 Measure the current while transferring mass by plating copper to obtain a serial quantitative determination of the as aturated solution of sodium bicarbonate form a rectifier. Sut, E-213 mass of Na atom by electrolysis 5E20.28 Measure the current while transferring mass by plating copper to obtain a serial quantitative determination of the a saturated solution of sodium bicarbonate form a rectifier. Sut, E-210 electrolytic rectifier 5E20.40 Put ferrous iron in hot water with hitric solution. <			5E20.10		
Sut, E-203 explosion of hydrogen and oxygen 5E20.15 Mike soap bubbles with the gases from electrolysis of water and blow them to droplets. Mei, 30-3.3 phenolphthalein electrolysis 5E20.21 Phenophthalein is used as an indicator in electrolysis demonstrations. indicator Mei, 30-3.4 purple cabbage electrolysis 5E20.22 Use purple cabbage as an indicator for electrolysis demonstrations. indicator Sut, E-201 electrolysis of sodium sulfate 5E20.22 Use purple cabbage as an indicator to show electrolysis of sodium sulfate. Sut, E-211 electrolysis of Na ions through glass 5E20.22 Use purple cabbage as an indicator to show electrolysis of sodium sulfate. Sut, E-213 mass transfer in electrolysis 5E20.28 Measure the current while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday. Sut, E-214 electrolysis of ferrous to ferric inno 5E20.40 Put ferrous irron in the water with nitric acid and heat. St, E-210 electrolysing or 5E20.40 Put ferrous irron in the water with nitric acid and heat. St, E-214 electrolysing or 5E20.40 Pole ferrous irron in the water with nitric acid and heat. St, E-216 electrolysing or 5E20.40 Pole for a carbon electrode in a strong sodium sulfate solution. FAA, E-14 electroplating or 5	AJP 31(2),139	electrolysis of water modification	5E20.11		ng out the bottom to protect it from the
Mei, 30-3.3phenophthalein electrolysis indicator5E20.21Phenophthalein is used as an indicator in electrolysis demonstrations. indicatorMei, 30-3.4purple cabbage electrolysis indicator5E20.22Use purple cabbage as an indicator to electrolysis demonstrations. indicatorSut, E-209electrolysis of sodium sulfate5E20.22Use purple cabbage as an indicator to show electrolysis of sodium sulfate.Sut, E-211electrolysis of Na ions through glass5E20.25Sodium is plated on the inside of a lamp inserted into molten sodium nitrate.AJP 29(5),ximass transfer in electrolysis5E20.28Measure the current while transfering mass by plating copper to obtain a semi quantitative determining the mass of a sodium atom by electrolysis.Sut, E-213mass of Na atom by electrolysis5E20.29A method of determining the mass of a sodium atom by electrolysis.Sut, E-214electrolytic rectifier5E20.20A method of determining the mass of a sodium atom by electrolysis.Sut, E-210electrolytic roctifier5E20.20Put ferrous iron in hot water with nitric acid and heat.Sut, E-210electroplating opper5E30.10SE30.10PIRA 1000copper flashing of iron5E30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-195electroplating copper5E30.20Copper in plated onto a carbon electrodes in a sourcate solution ofPIRA 1000silver coulomb meter5E30.40Current is passed between lead electrodes in a sourcate solution ofSut, E-197electroplating - lead tree5E30.28Current is passed between	Sut, E-201	electrolysis of water	5E20.12	A projection electrolytic cell for showing	g the evolution of gas.
Mei, 30-3.3phenolphthalein electrolysis indicator5E20.21Phenophthalein is used as an indicator in electrolysis demonstrations. indicatorMei, 30-3.4purple cabbage electrolysis5E20.22Use purple cabbage as an indicator for electrolysis demonstrations. indicatorSut, E-209electrolysis of sodium sulfate5E20.22Use purple cabbage as an indicator to show electrolysis of sodium sulfate.Sut, E-211electrolysis of Na ions through glass5E20.25Sodium is plated on the inside of a lamp inserted into molten sodium nitrate. semi quantitative determination of the Faraday.AuP 29(5),ximass transfer in electrolysis5E20.28Measure the current while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday.Sut, E-214electrolytic rectifier5E20.20A method of determining the mass of a sodium atom by electrolysis. SE20.40Sut, E-214electrolytic rectifier5E20.40Put ferous iron in hot water with nitric acid and heat. SE20.40Sut, E-216electrolyting of ron5E30.40Polshed iron is plated in a strong sodium sulfate solution.Plating5E30.20Copper flashing of iron5E30.40Pikt 100copper flashing of iron5E30.40Copper ral carbon electrodes in a strong sodium.Jick 2.F195electroplating copper5E30.20Copper ral carbon electrodes in a strated solution.Pikt 300electroplating opper5E30.20Copper ral carbon electrodes in a strated solution of lead acctate causing fern like clusters to form on the cathode.Sut, E-195electroplating - tin tree	Sut, E-203	explosion of hydrogen and oxygen	5E20.15	Make soap bubbles with the gases from	
Mei, 30-3.4 indicatorpurple cabbage electrolysis indicator5E20.22Use purple cabbage as an indicator for electrolysis demonstrations. indicatorSut, E-209electrolysis of sodium sulfate5E20.22Use purple cabbage as an indicator to show electrolysis of sodium sulfate.Sut, E-211 glasselectrolysis of Na ions through glass5E20.22Use purple cabbage as an indicator to show electrolysis of sodium sulfate.Sut, E-213 with E-213 sut, E-214mass of Na atom by electrolysis5E20.28Measure the current while transferring mass of a sodium atom by electrolysis. SE20.29Sut, E-214 electrolytic rectifier5E20.20Electrolowes of alumin mand lead in a saturated solution of sodium bicarbonate form a rectifier.Sut, E-210 sut, E-210electrolytic rectifier5E20.40PUE troows to in the vater with intic acid and heat. 5E20.405E20.40PUE troows to in the vater with intic acid and heat. 5E20.405E20.40PUE troows to in the vater with intic acid and heat. 5E20.405E30.10PRA 1000 Disc 18-17electrolplating copper5E30.20PRA 500 Ext, E-195electrolplating copper5E30.20Coper Ilashing of iron 15c 30.205E30.20Copper and carbon electrodes in a copper sulfate bath. Sut, E-195Sut, E-196electroplating copper5E30.20Sut, E-197electroplating opper5E30.20Sut, E-197electroplating5E30.40Sut, E-197electroplating5E30.40Sut, E-197electroplating5E30.40Silver coulomb meter sisver	Mei, 30-3.3		5E20.21	•	r in electrolysis demonstrations.
Sut, E-209electrolysis of sodium sulfate5E20.22Use purple cabbage as an indicator to show electrolysis of sodium sulfate.Sut, E-211electrolysis of Na ions through glass5E20.25Sodium is plated on the inside of a lamp inserted into molten sodium nitrate.AJP 29(5),ximass transfer in electrolysis5E20.25Sodium is plated on the inside of a lamp inserted into molten sodium nitrate.Sut, E-213mass of Na atom by electrolysis5E20.29A method of determining the mass of a sodium atom by electrolysis.Sut, E-214electrolytic rectifier5E20.00Electrodes of aluminum and lead in a saturated solution of sodium bicarbonate form a rectifier.Wei, 30-3.6oxidation of ferrous to ferric iron electric forge5E20.00Electrodes of aluminum and lead in a copper sulfate solution.Plating5E30.005E30.01F68A, EF-1copper flashing of iron5E30.20F&A, EF-1copper flashing of iron5E30.20Copper is plated on to a carbon electrode in a copper sulfate bath.Disc 18-17electroplating copper5E30.20Copper is plated on to a carbon electrode in a copper sulfate bath.Sut, E-196electroplating5E30.20Copper is plated on to a carbon electrodes in a copper sulfate bath.Sut, E-197electroplating5E30.20Current is passed between electrodes of copper and tin in a acid solution of stannic chroinde. With copper or silver by connecting the object to the negative terminal and using copper soliate bath onto a platium cup.F&A, E-196electroplating5E30.40Sut, E-197electroplating5E30.40 <td< td=""><td>Mei, 30-3.4</td><td>purple cabbage electrolysis</td><td>5E20.22</td><td>Use purple cabbage as an indicator for</td><td>r electrolysis demonstrations.</td></td<>	Mei, 30-3.4	purple cabbage electrolysis	5E20.22	Use purple cabbage as an indicator for	r electrolysis demonstrations.
glassStart of the current while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday.Sut, E-213mass of Na atom by electrolysisSE20.28Measure the current while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday.Sut, E-214electrolytic rectifierSE20.30EE20.30Electrodes of aluminum and lead in a saturated solution of sodium bicarbonate form a rectifier.Mei, 30-3.6oxidation of ferrous to ferric ionSE20.30EE20.40Put ferous ion in hot water with nitric acid and heat.Sut, E-210electrolytic rectifierSE20.00SE20.10Put ferous ion in hot water with nitric acid and heat.Out copper flashing of ironSE30.10SE30.10Polished iron is plated in a storng sodium sulfite solution.PIRA 1000copper flashing of poperSE30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-196electroplating copperSE30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-197electroplating - lead treeSE30.20Corper is plated onto a carbon electrodes in a copper and tin in a acid solution of lead acetate causing fem like clusters to form on the cathode.Sut, E-197electroplatingSE30.28Plate with copper or silver by connecting the object to the negative terminal and using copper silver oulomb meterF&A, EF-5silver coulomb meterSE30.40Silver is plated in a silver nitrate solution.PIRA 1000silver coulomb meterSE30.40Silver is plated in a silver nitrate bath onto a platinum cup.Mei, 30-3.1silver cou	Sut, E-209		5E20.22	Use purple cabbage as an indicator to	show electrolysis of sodium sulfate.
AJP 29(5),ximass transfer in electrolysis5E20.28Measure the current while transferring mass by plating copper to obtain a semi quantitative determination of the Faraday.Sut, E-213mass of Na atom by electrolysis5E20.29SE20.29SE20.29SE20.20SE20.20Mei, 30-3.6oxidation of ferrous to ferric iron electric forge5E20.40Put ferrous iron in hot water with nitric acid and heat.SE20.40PIRA 1000copper flashing of iron5E30.10Put ferrous iron in hot water with nitric acid and heat.SE20.20F&A, E-4electroplating oroper5E30.10Polished iron is plated in a copper sulfate solution.PIRA 500electroplating copper6E30.20Copper and carbon electrodes in a copper sulfate bath.Disc 18-17electroplating copper6E30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-195electroplating - lead tree5E30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-196electroplating - tin tree5E30.20Corper is plated onto a carbon electrodes or copper and it in a acid solution of stannic chloride. With copper as the cathode, tin crystallizes as long needlesSut, E-197electroplating5E30.20Current is passed between lead electrodes or opper and the in a acid solution.PIRA 1000silver coulomb meter5E30.40Silver is plated in a silver nitrate solution.F&A, EI-5silver coulomb meter5E30.40Silver is plated or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver c	Sut, E-211		5E20.25	Sodium is plated on the inside of a larr	np inserted into molten sodium nitrate.
Sut, E-213mass of Na atom by electrolysis5E20.29A method of determining the mass of a sodium atom by electrolysis.Sut, E-214electrolytic rectifier5E20.30Electrodes of aluminum and lead in a saturated solution of sodium bicarbonate form a rectifier.Mei, 30-3.6oxidation of ferrous to ferric iron sut, E-210electric forge5E20.40Put ferrous iron in hot water with nitric acid and heat.PHA 1000copper flashing of iron5E30.10Fels. (a copper flashing of iron5E30.10PIRA 500electroplating copper5E30.20Copper and carbon electrodes in a copper sulfate bath.Disc 18-17electroplating5E30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-195electroplating - lead tree5E30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-196electroplating - in tree5E30.20Current is passed between lead electrodes in a caturated solution of lead acetate causing fern like clusters to form on the cathode.Sut, E-197electroplating5E30.28Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver coulomb meter5E30.40Silver coulombmeter stanceSut, E-197electroplating5E30.40Silver coulomb meter5E30.40Silver coulombmeter stanceSut, 30-3.1silver coulombmeter5E30.40Silver coulomb meter5E30.40Silver coulombmeter stanceSut, 30-3.1silver coulombmeter5E40.00Ap 44(5),464contact	AJP 29(5),xi	0	5E20.28	-	
Sut, E-214electrolytic rectifier5E20.30Electrodes of aluminum and lead in a saturated solution of sodium bicarbonate form a rectifier.Mei, 30-3.6oxidation of terrous to ferric iron electric forge5E20.40Put ferrous iron in hot water with nitric acid and heat.Sut, E-210electric forge5E20.40Put ferrous iron in hot water with nitric acid and heat.PIRA 1000copper flashing of iron5E30.10SE30.00F&A, E+1electroplating copper5E30.20Copper and carbon electrodes in a copper sulfate solution.Disc 18-17electroplating copper5E30.20Copper is plated on a carbon electrode in a copper sulfate bath.Sut, E-195electroplating - lead tree5E30.20Copper is plated on a carbon electrodes of copper and tin in a acid solution of lead acetate causing fern like clusters to form on the cathode.Sut, E-196electroplating - tin tree5E30.28Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate bath onto a platinum cup.PIRA 1000silver coulomb meter5E30.40Silver is plated in a silver nitrate bath onto a platinum cup.PIRA 1000silver coulomb meter5E30.40Silver is plated in a silver nitrate bath onto a platinum cup.ALP 48(5),405Volta's EMF concept5E40.00The distinction between EMF and electrostatic potential difference is discussed.AJP 44(5),464contact potentials: history, etc5E40.00The distinction between metals.Bil&Mai, p 271battery potential model5E40.01The distinction between metals. <td>Sut. E-213</td> <td>mass of Na atom by electrolysis</td> <td>5E20.29</td> <td></td> <td>•</td>	Sut. E-213	mass of Na atom by electrolysis	5E20.29		•
Mei, 30-3.6oxidation of ferrous to ferric iron stut, E-210SE20.40bicarbonate form a rectifier. Put ferrous iron in hot water with nitric acid and heat. SE20.40PIRA 1000copper flashing of iron sE30.10SE30.00SE30.00PIRA 1000copper flashing of iron sE4x, Ee-1 electroplating copper electroplating copperSE30.20Pollshed iron is plated in a copper sulfate solution.PIRA 500electroplating copper sE30.20SE30.20Copper and carbon electrodes in a copper sulfate bath. SE30.20Sut, E-195electroplating - lead treeSE30.20Copper and carbon electrodes in a copper sulfate bath. SE30.20Sut, E-196electroplating - tin treeSE30.20Current is passed between lead electrodes in a copper sulfate bath. Setter to form on the cathode. Current is passed between lead electrodes in a copper sulfate bath. stannic chloride. With copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver coulomb meter silver coulomb meterSE30.40F&A, EF-5silver coulomb meter sessed.40SE30.40Sut, E-197electroplatingSE30.40PIRA 1000silver coulomb meter silver coulomb meterSE30.40Suty er coulomb meter saved or 1000 silver coulomb meterSE30.40Silver coulomb meter saved or 1000 sec.SE40.00AJP 44(5).464contact potentials: history, etcSE40.00AJP 44(5).464contact potentials: history, etcSE40.00AJP 44(5).464contact potential modelSE40.01PIRA 500<				-	
Mei, 30-3.6oxidation of ferrous to ferric iron electric forge5E20.40Put ferrous iron in hot water with nitric acid and heat.Sut, E-10electrole forge5E30.00PIRA 1000copper flashing of iron5E30.10F&A, Ee-1copper flashing of iron5E30.10Polished iron is plated in a copper sulfate solution.F&A, Ef-4electroplating copperF&A, E1-7electroplating copperSut, E-195electroplating - lead treeSut, E-196electroplating - lead treeSut, E-197electroplating - lead treeSut, E-197electroplatingPIRA 1000silver coulomb meterSut, E-197silver coulomb meterSilver coulomb meter5E30.40Sut, E-197silver coulomb meterSilver coulomb meter5E30.40Silver coulomb mete					
Sut, E-210electric forge Plating5E20.60Melt an iron rod cathode in a strong sodium sulfite solution.PIRA 1000copper flashing of iron5E30.10F&A, Ee-1copper flashing of iron5E30.10PIRA 500electroplating copper5E30.20F&A, Ef-4electroplating copper5E30.20Copper sulfate bath.Se30.20Sut, E-195electroplating - lead tree5E30.20Sut, E-196electroplating - tin tree5E30.28Sut, E-197electroplating5E30.20F&A, Ef-5silver coulomb meter5E30.40Sut, E-197electroplating5E30.20PIRA 1000silver coulomb meter5E30.40F&A, Ef-5silver coulomb meter5E30.40Silver coulomb meter5E30.40Sut, E-197contact potentials: history, etcAJP 48(5),405Volta's EMF conceptAJP 44(5),464contact potentials: history, etcAJP 44(5),464EMF conceptAJP 44(5),464EMF conceptUMN, 5E40.10EMF dependence on electrode materialUMN, 5E40.10EMF dependence on electrode materialUMN, 5E40.10EMF dependence on electrode materialEAEHF dependence on electrode materialEAEMF dependence on electrode materialEAEA	Mei 30-3.6	oxidation of ferrous to ferric iron	5E20 40		acid and heat
Plating5E30.00PIRA 1000copper flashing of iron5E30.10F&A, Ee-1copper flashing of iron5E30.10F&A, Ee-1copper flashing of iron6E30.20F&A, Ef-4electroplating copper5E30.20F&A, Ef-4electroplating copper5E30.20Cope rand carbon electrodes in a copper sulfate bath.Disc 18-17electroplatingElectroplating - lead tree5E30.22Sut, E-196electroplating - tin treeSut, E-197electroplatingElectroplating5E30.28Sut, E-197electroplatingSut, E-15silver coulomb meterF&A, Ef-5silver coulomb meterSE30.40Silver coulomb meterF&A, Ef-5silver coulomb meterSE30.40Sead of 1000 sec.Cells and BatteriesSE40.00AJP 48(5),405Volta's EMF conceptAJP 44(5),464contact potentials: history, etcAJP 44(5),464EMF conceptUMN, 5E40.10EMF dependence on electrode materialUMN, 5E40.10EMF dependence on electrode materialUMN, 5E40.10EMF dependence on electrode materialEVAEMF dependence on electrode sE40.10EVAEMF dependence on electrode sE40.10FRA 500EMF dependence on electrode materialEVAEMF dependence on electrode sE40.10EVAEMF dependence on electrode sE40.10EVAEMF dependence on electrode sE40.10EVAEMF dependence on electrode material <td></td> <td></td> <td></td> <td></td> <td></td>					
PIRA 1000copper flashing of iron5E30.10F&A, Ee-1copper flashing of iron5E30.10PIRA 500electroplating copper5E30.20F&A, Ef-4electroplating copper5E30.20Disc 18-17electroplating5E30.20Copper is Jlated onto a carbon electrode in a copper sulfate bath.Sut, E-195electroplating - lead tree5E30.20Sut, E-196electroplating - tin tree5E30.20Current is passed between lead electrodes of copper and tin in a acid solution of lead acetate causing fem like clusters to form on the cathode.Sut, E-197electroplatingPIRA 1000silver coulomb meterF&A, Ef-5silver coulomb meterF&A, Ef-5silver coulomb meterF&A, Ef-5silver coulomb meterSE30.40F&A, Ef-5Silver coulomb meterSE30.40Cells and BatteriesSE40.00AJP 48(5),405Volta's EMF conceptSE40.00AJP 44(5)	Out, E 210	-			
F&A, Ee-1copper flashing of iron5E30.10Polished iron is plated in a copper sulfate solution.PIRA 500electroplating copper5E30.20F&A, Ef-4electroplating copper5E30.20Copper and carbon electrodes in a copper sulfate bath.Sut, E-195electroplating - lead treeSut, E-196electroplating - tin treeSut, E-197electroplatingPIRA 1000silver coulomb meterF&A, Ef-5silver coulomb meterSalver coulomb meter5E30.40Sut, B-197electroplatingSut, E-197electroplatingSut, E-197electroplatingSut, E-197electroplatingSut, E-197electroplatingSut, E-197electroplatingSut, E-197silver coulomb meterSE30.40F&A, Ef-5silver coulomb meterSut, E-197silver coulomb meterSE30.40Sut, E-197silver coulomb meterSE30.40Sut, E-197electroplatingSut, E-197silver coulomb meterSE30.40Sut, E-197silver coulomb meterSE30.40Sut, E-197silver coulomb meterSE30.40Sut, E-197silver coulomb meterSE30.40Sut, E-197silver coulomb meterSE30.40Sut E-197silver coulomb meterSE30.40Sut E-197silver coulomb meterSE30.40Sut E-198SE40.00AJP 48(5),405Volta's EMF conceptS					
PIRA 500electroplating copper5E30.20F&A, Ef-4electroplating copper5E30.20Disc 18-17electroplating - lead tree5E30.20Sut, E-195electroplating - lead tree5E30.24Current is passed between lead electrodes in a saturated solution of lead acetate causing fem like clusters to form on the cathode.Sut, E-196electroplating - tin tree5E30.28Current is passed between electrodes of copper and tin in a acid solution of stannic chloride. With copper as the cathode, tin crystallizes as long needlesSut, E-197electroplating5E30.28PIRA 1000silver coulomb meter5E30.40F&A, Ef-5silver coulomb meter5E30.40Silver coulombmeter5E30.40Sut, 3:0-3.1silver coulombmeter5:530.40Silver is plated in a silver nitrate bath onto a platinum cup.Mei, 30-3.1silver coulombmeterSilver coulombmeter5E40.00AJP 48(5),405Volta's EMF concept5E40.00AJP 44(5),464contact potentials: history, etc5E40.00Bil&Mai, p 271battery potential model5E40.07PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10FBR 450.10EMF dependence on electrode material5E40.10FBR 450.10EMF dependence on electrode material5E40.10FBR 450.10EMF dependence on electrode material5E40.10FBR 450.10EMF dependence on electrode material5E40.10 </td <td></td> <td></td> <td></td> <td>Polished iron is plated in a conner sulf</td> <td>ate solution</td>				Polished iron is plated in a conner sulf	ate solution
F&A, Ef-4 Disc 18-17electroplating copper electroplating5E30.20Copper and carbon electrodes in a copper sulfate bath. Copper is plated onto a carbon electrode in a copper sulfate bath.Sut, E-195electroplating - lead tree5E30.20Copper and carbon electrodes in a saturated solution of lead acctate causing fern like clusters to form on the cathode.Sut, E-196electroplating - tin tree5E30.26Current is passed between electrodes of copper and tin in a acid solution of stannic chloride. With copper as the cathode, tin crystallizes as long needlesSut, E-197electroplating5E30.28Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver coulomb meter5E30.40Silver is plated in a silver nitrate bath onto a platinum cup.F&A, Ef-5silver coulomb meter5E30.40Silver coulombmeter shows a 1 g change in anode weight when 1 amp is passed for 1000 sec.AJP 48(5),405Volta's EMF concept5E40.005E40.00The distinction between EMF and electrostatic potential difference is discussed.Bil&Mai, p 271battery potential model5E40.07Two soda bottles connected by aquarium tubing are used to model the high- potential and low-potential and low-potential is of a battery.PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10				i olisilea ilorris platea il a copper suit	
Disc 18-17 Sut, E-195electroplating5E30.20 5E30.24Copper is plated onto a carbon electrode in a copper sulfate bath. Current is passed between lead electrodes in a saturated solution of lead acetate causing fern like clusters to form on the cathode.Sut, E-196electroplating - tin tree5E30.26Current is passed between electrodes of copper and tin in a acid solution of stannic chloride. With copper as the cathode, tin crystallizes as long needlesSut, E-197electroplating5E30.28Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver coulomb meter silver coulombmeter5E30.40F&A, Ef-5silver coulombmeter5E30.40Mei, 30-3.1silver coulombmeter5E30.40AJP 44(5),464contact potentials: history, etc5E40.01AJP 44(5),464contact potentials: history, etc5E40.05Bil&Mai, p 271battery potential model5E40.10VIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10				Conner and carbon electrodes in a cor	oper sulfate bath
Sut, E-195electroplating - lead tree5E30.24Current is passed between lead electrodes in a saturated solution of lead acetate causing fern like clusters to form on the cathode.Sut, E-196electroplating - tin tree5E30.26Current is passed between electrodes of copper and tin in a acid solution of stannic chloride. With copper as the cathode, tin crystallizes as long needlesSut, E-197electroplating5E30.28Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver coulomb meter silver coulombmeter5E30.40Silver is plated in a silver nitrate bath onto a platinum cup.F&A, Ef-5silver coulombmeter5E30.40Silver is plated in a silver nitrate bath onto a platinum cup.Mei, 30-3.1silver coulombmeter5E40.00Silver is plated for 1000 sec.AJP 48(5),405Volta's EMF concept5E40.00The distinction between EMF and electrostatic potential difference is discussed.AJP 44(5),464contact potentials: history, etc5E40.00The history, concepts, and persistent misconceptions on the contact potentials between metals.Bil&Mai, p 271battery potential model5E40.07Two soda bottles connected by aquarium tubing are used to model the high- potential and low-potential terminals of a battery.PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10					
Sut, E-196electroplating - tin tree5E30.26acetate causing fern like clusters to form on the cathode. Current is passed between electrodes of copper and tin in a acid solution of stannic chloride. With copper as the cathode, tin crystallizes as long needlesSut, E-197electroplating5E30.28Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver coulomb meter5E30.40F&A, Ef-5silver coulombmeter5E30.40F&A, 5F.5silver coulombmeter5E30.40Suty a coulombmeter5E30.40Sulver coulombmeter5E30.40Sulver coulombmeter5E30.40Sulver coulombmeter5E30.40Sulver coulombmeter5E30.40Sulver coulombmeter5E30.40Sulver coulombmeter5E30.40Sulver coulombmeter5E30.40Sulver coulombmeter5E30.40AJP 48(5),405Volta's EMF conceptAJP 44(5),464contact potentials: history, etcSulver coulombmeter5E40.00Bil&Mai, p 271battery potential modelSulver coulombmeter5E40.07PIRA 500EMF dependence on electrode materialUMN, 5E40.10EMF dependence on electrode materialUMN, 5E40.10EMF dependence on electrode materialSulver coulomb5E40.10Sulver coulomb eter5E40.10Sulver coulomb eter5E40.10Sulver coulomb eter5E40.10Sulver coulomb eter5E40.10Sulver coulomb eter <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
Sut, E-197electroplating5E30.28Plate with copper or silver by connecting the object to the negative terminal and using copper sulfate or silver nitrate solution.PIRA 1000silver coulomb meter silver coulombmeter5E30.40F&A, Ef-5silver coulombmeter5E30.40Mei, 30-3.1silver coulombmeter5E30.40AJP 48(5),405Volta's EMF concept5E40.00AJP 48(5),405Volta's EMF concept5E40.00Bil&Mai, p 271battery potential model5E40.07Bil&Mai, p 271battery potential model5E40.07VINN, 5E40.10EMF dependence on electrode material5E40.10UMNN, 5E40.10EMF dependence on electrode material5E40.10		1 3		acetate causing fern like clusters to for	rm on the cathode.
PIRA 1000 F&A, Ef-5 Mei, 30-3.1silver coulomb meter silver coulombmeter5E30.40 5E30.40Silver is plated in a silver nitrate bath onto a platinum cup. 5E30.40AJP 48(5),405Silver coulombmeter5E40.00 5E40.01Silver coulombmeter shows a 1 g change in anode weight when 1 amp is passed for 1000 sec.AJP 48(5),405Volta's EMF concept5E40.00 5E40.01The distinction between EMF and electrostatic potential difference is discussed.AJP 44(5),464contact potentials: history, etc5E40.05 5E40.05The history, concepts, and persistent misconceptions on the contact potentials between metals.Bil&Mai, p 271battery potential model5E40.07 5E40.00Two soda bottles connected by aquarium tubing are used to model the high- potential and low-potential terminals of a battery.PIRA 500EMF dependence on electrode material5E40.10 5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10 5E40.10	Sut, E-196	electroplating - tin tree	5E30.26	•	••
F&A, Ef-5 Mei, 30-3.1silver coulombmeter5E30.40 SE30.40Silver is plated in a silver nitrate bath onto a platinum cup. A silver coulombmeter shows a 1 g change in anode weight when 1 amp is passed for 1000 sec.AJP 48(5),405Volta's EMF concept5E40.00 SE40.01The distinction between EMF and electrostatic potential difference is discussed.AJP 44(5),464contact potentials: history, etc5E40.05The history, concepts, and persistent misconceptions on the contact potentials between metals.Bil&Mai, p 271battery potential model5E40.07Two soda bottles connected by aquarium tubing are used to model the high- potential and low-potential terminals of a battery.PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10	Sut, E-197	electroplating	5E30.28		
Mei, 30-3.1silver coulombmeter5E30.40A silver coulombmeter shows a 1 g change in anode weight when 1 amp is passed for 1000 sec.AJP 48(5),405Volta's EMF concept5E40.00The distinction between EMF and electrostatic potential difference is discussed.AJP 44(5),464contact potentials: history, etc5E40.05The history, concepts, and persistent misconceptions on the contact potentials between metals.Bil&Mai, p 271battery potential model5E40.07Two soda bottles connected by aquarium tubing are used to model the high- potential and low-potential terminals of a battery.PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10	PIRA 1000	silver coulomb meter	5E30.40		
AJP 48(5),405Volta's EMF concept5E40.00AJP 44(5),464contact potentials: history, etc5E40.05Bil&Mai, p 271battery potential model5E40.07PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10	F&A, Ef-5	silver coulombmeter	5E30.40	Silver is plated in a silver nitrate bath of	onto a platinum cup.
AJP 48(5),405Volta's EMF concept5E40.01The distinction between EMF and electrostatic potential difference is discussed.AJP 44(5),464contact potentials: history, etc5E40.05The history, concepts, and persistent misconceptions on the contact potentials between metals.Bil&Mai, p 271battery potential model5E40.07Two soda bottles connected by aquarium tubing are used to model the high- potential and low-potential terminals of a battery.PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10	Mei, 30-3.1	silver coulombmeter	5E30.40		ange in anode weight when 1 amp is
AJP 48(5),405Volta's EMF concept5E40.01The distinction between EMF and electrostatic potential difference is discussed.AJP 44(5),464contact potentials: history, etc5E40.05The history, concepts, and persistent misconceptions on the contact potentials between metals.Bil&Mai, p 271battery potential model5E40.07Two soda bottles connected by aquarium tubing are used to model the high- potential and low-potential terminals of a battery.PIRA 500EMF dependence on electrode material5E40.10UMN, 5E40.10EMF dependence on electrode material5E40.10		Cells and Batteries	5E40.00		
AJP 44(5),464 contact potentials: history, etc 5E40.05 The history, concepts, and persistent misconceptions on the contact potentials between metals. Bil&Mai, p 271 battery potential model 5E40.07 Two soda bottles connected by aquarium tubing are used to model the high-potential and low-potential terminals of a battery. PIRA 500 EMF dependence on electrode material 5E40.10 UMN, 5E40.10 EMF dependence on electrode material 5E40.10	AJP 48(5),405	Volta's EMF concept	5E40.01		trostatic potential difference is
Bil&Mai, p 271 battery potential model 5E40.07 Two soda bottles connected by aquarium tubing are used to model the high-potential and low-potential terminals of a battery. PIRA 500 EMF dependence on electrode material 5E40.10 UMN, 5E40.10 EMF dependence on electrode material 5E40.10	AJP 44(5),464	contact potentials: history, etc	5E40.05	The history, concepts, and persistent r	nisconceptions on the contact
PIRA 500 EMF dependence on electrode 5E40.10 material MN, 5E40.10 EMF dependence on electrode 5E40.10 material SE40.10 SE40.10	Bil&Mai, p 271	battery potential model	5E40.07	Two soda bottles connected by aquari	
UMN, 5E40.10 EMF dependence on electrode 5E40.10 material	PIRA 500		5E40.10		
	UMN, 5E40.10	EMF dependence on electrode	5E40.10		
F&A, Ee-2 dependence of EMF on electrode 5E40.10 Two stands each hold several strips of different metals which can be paired and dipped into a dilute acid bath.	F&A, Ee-2	dependence of EMF on electrode	5E40.10	•	different metals which can be paired

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
AJP 76 (3), 218	battery effect - battery discharge model	5E40.10	A simple model that yields behavior s discharging voltaic cell.	imilar to what is observed by a single
Disc 18-14	battery effect	5E40.10	0 0	nd iron are dipped into a dilute sulfuric
Sut, E-72	contact potential difference	5E40.15	The contact potential difference betwee demonstrated using a condensing ele	
PIRA 1000	voltaic cell	5E40.20	0 0	
Sut, E-198	voltaic cell	5E40.20	A voltaic cell is made with copper and solution.	
D&R, E-360	human battery	5E40.20		ninum sheet electrode are connected to lectrode and observe the voltage (you
Sut, E-119 Ehrlich 1, p. 147	voltaic cells human battery	5E40.20 5E40.20	Short a few voltaic cells in series thro A copper sheet electrode and a zinc s voltmeter. Place a hand on each elec the electrolyte).	
AJP 77 (10), 889	voltaic cell - voltaic pile	5E40.20	Picture and description of a 19th cent	ury voltaic pile that has survived intact.
Sut, E-199	cardboard model voltaic cell circuit		A cardboard model illustrates potentia a voltaic cell circuit.	al difference and electromotive force in
PIRA 200 PIRA 500 - Old	lemon battery/voltaic cell lemon battery/voltaic cell	5E40.25 5E40.25		
UMN, 5E40.25	lemon battery/voltaic cell	5E40.25	Stick copper and galvanized steel ele	ctrodes into a lemon and attach a
TPT 28(5),329	lemon screamer,lasagna cell	5E40.25	voltmeter. A little tutorial on electrochemistry for other interesting cells.	those using the lemon screamer and
Mei, 30-3.5	lemon battery	5E40.25	Zinc and copper strips are hooked to and vegetables.	a galvanometer and stuck into fruits
D&R, E-320, E- 360	lemon battery	5E40.25		s in a lemon are connected to a digital
Ehrlich 1, p. 146	lemon battery	5E40.25	A lemon with zinc and copper electron buzzer.	des inserted will run a low voltage piezo
Sut, E-200	voltaic cell polarization	5E40.26	Heat the copper cathode in a Bunsen	
F&A, Ee-3	Crowsfoot or gravity cell	5E40.40	A zinc-zinc sulfate/copper-copper sul	
Sut, E-115	adding dry cells dry cell terminals	5E40.50	Charge an electroscope with a number	a condensing electroscope, remove the
Sut, E-116 PIRA 500	lead acid simple battery	5E40.51 5E40.60	capacitance and test polarity with cha	• • •
UMN, 5E40.60	lead acid simple battery	5E40.60	A simple lead acid battery with two el	ectrodes is charged for a short time and
0		02.000	discharged through a bell.	
F&A, Ee-4	storage battery	5E40.60	Two lead plates in a sulfuric acid solu through a doorbell.	tion are charged and then discharged
Sut, E-204	storage cells	5E40.60	The elementary lead storage cell is cl table.	harged and discharged on the lecture
Sut, E-120	simple battery	5E40.60	Charge two lead plates in 30% sulfuri flashlight bulb.	c acid and discharge through a
Sut, E-205	storage cells	5E40.61	Melt nails with a storage battery.	
AJP 30(6),470	lead-salt cell	5E40.62	Instead of acid, use a saturated salt s magnesium sulfate.	solution of sodium dicarbonate and
TPT 46(9),544	aluminum-air battery	5E40.62	How to make a battery using aluminu as the electrolyte.	m and copper electrodes with salt water
PIRA 500	internal resistance of batteries	5E40.70		
UMN, 5E40.70	internal resistance of batteries	5E40.70		
PIRA 1000	weak and good battery	5E40.75		leadies leading betteries and they each.
Disc 18-03	internal resistance of batteries	5E40.75		lentical looking batteries and then apply te in voltage between a good and weak
	Thermoelectricity	5E50.00		
PIRA 200	thermocouple	5E50.10	Two iron-copper junctions, one in ice to a galvanometer.	and the other in a flame, are connected
UMN, 5E50.10	thermocouple	5E50.10	Attach a voltmeter to the iron wires of are differentially heated.	two copper-iron junctions while they
F&A, Et-1	thermocouple	5E50.10	Two iron-copper junctions, one in ice to a galvanometer.	and the other in a flame, are connected
D&R, H-014	thermocouple	5E50.10	Heat a junction of two dissimilar meta voltmeter. A collection of such junction	

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Disc 16-20	thermocouple	5E50.10	Place a twisted wire thermocouple in a lecture table galvanometer.	a flame and observe the current on a
Hil, H-1a AJP 29(4),273	thermocouples thermoelectric generator	5E50.11 5E50.12	Heating two metals causes a deflection Review of a commercial thermoelectric constantan/nickel-molybdenum thermo	c generator made from 150
Sut, E-179 Sut, E-181	Seebeck effect Seebeck and Peltier effects	5E50.15 5E50.17	The thermoelectric effect of copper-irc Send current through a copper-iron-co immediately disconnect and switch to	on junctions. opper circuit for several seconds and
Mei, 30-5.3	copper-iron junctions ring	5E50.18	Sixty copper-iron junctions in series and simultaneously with a Bunsen burner	re arrayed in a ring heated
Sut, E-183	thermoelectric compass	5E50.19	Bars of copper and iron are joined to f	orm a case for a compass needle. The e current as one or the other junction is
Hil, E-6a.1	thermocouple coil magnet	5E50.19	Heat a thermocouple loop and the cur be detected by a compass needle.	rent produces a magnetic field that can
Sut, E-184	thermoelectric effect in a wire	5E50.20	Show that a piece of soft iron wire con thermoelectric effect until the wire is l	-
Sut, E-185	Thompson effect	5E50.25	A flame moved along a long wire will	'push ahead" current.
PIRA 500	thermoelectric magnet	5E50.30		
UMN, 5E50.30	thermoelectric magnet	5E50.30	Heat one side of a heavy copper loop generate thermoelectricity for an elect	romagnet.
F&A, Et-3	thermoelectric magnet	5E50.30	A ring of copper shorted by iron forms electromagnet when one end is in wat	
Sut, E-182	thermoelectric magnet	5E50.30	One end of a heavy copper bar bent in nickel alloy is heated, the other cooled iron shell can support 200 lbs. Picture	d. An electromagnet made with a soft
Hil, H-1b	thermocouple magnet	5E50.30	A Bunsen burner heats one side of a t 10 Kg.	
D&R, E-340, H- 374	thermoelectric magnet	5E50.30	5	et is produced by heating one side of a
Disc 16-18	thermoelectric magnet	5E50.30	Heat and cool opposite sides of a larg weight from an electromagnet powere	· · · · · · · · · · · · · · · · · · ·
F&A, Et-4	3M Aztec lamp	5E50.36	A thermocouple is built into a kerosen	
PIRA 1000	Peltier effect	5E50.60		
F&A, Et-2	thermoelectric cooler	5E50.60	A Peltier device is used to cool a drop	of water.
D&R, H-374	Peltier effect	5E50.60	A discussion of the Peltier effect.	
Disc 16-19	thermoelectric heat pump	5E50.60	Mount aluminum blocks with digital the device. Run the current both ways.	ermometers on either side of a Peltier
Sut, E-180	Peltier effect	5E50.61	Directions for making an antimony-bis show heating and cooling.	muth junction and an apparatus to
Mei, 30-5.1	Peltier effect	5E50.62	Directions for building a Peltier effect	device.
Mei, 30-5.2	pyroelectric crystals	5E50.90	Demonstrate the temperature effect o crystals. Picture.	n the polarization of pyroelectric
Mei, 30-6.6	domains of electric polarization	5E50.93	Tiny BaTiO3 crystals are heated on a disappear.	microscope slide until the domains
	Piezoelectricity	5E60.00		
Mei, 30-6.4	piezoelectric model	5E60.05	A ball and spring model of the piezoel	ectric effect.
PIRA 500	quartz crystal scraped	5E60.10		
Mei, 30-6.3	Rochelle salt demos	5E60.12		t, and the direct piezoelectric effect are agrams, Construction and Preparation
Sut, E-186	piezoelectric effect - Rochelle salt	5E60.13	A Rochelle salt is hooked to a neon la	mp or electrostatic voltmeter.
Mei, 30-6.8	piezoelectric sheets	5E60.15	Make sheets of polycrystalline Rochel	le salt that show piezoelectric effects.
AJP 29(7),iv	PZT sources	5E60.16	Two sources for ceramic lead-zirconation	te-titnante (PZT), 1961.
PIRA 500	piezoelectric sparker	5E60.20		
Disc 16-26	piezoelectric sparker	5E60.20	Attach the commercial piezoelectric s	
AJP 45(2),218	piezoelectric gas lighter modified	5E60.21	Mount a sphere on the end of a piezo	electric gas lighter.
PIRA 1000	piezoelectric gun	5E60.25		
UMN, 5E60.25	piezoelectric gun	5E60.25	A piezoelectric gun is used to discharge	
F&A, Ea-9	piezoelectric pistol	5E60.25	One end of a piezoelectric crystal is a	ttached to a needle point in the pistol.
PIRA 1000	stress vs. voltage	5E60.30		

Demonstration	n Bibliography	J	uly 2015	Electricity and Magnetism
Mei, 30-6.1	stress vs. voltage	5E60.30	Measure the voltage of a Seignette sa produced by a mass on a lever arm.	alt crystal under various stresses
PIRA 1000	piezoelectric speaker	5E60.40		
Mei, 30-6.2	piezoelectric speaker	5E60.40	Excite a Seignette salt crystal with an sounding board.	audio voltage and couple it to a
Sut, E-187	converse piezoelectric effect	5E60.41	Connect an audio oscillator to a large be distinctly heard.	Rochelle salt crystal and the sound can
Mei, 30-6.9	piezoelectric speaker	5E60.42	Apply an audio oscillator to a Rochelle board.	e salt and amplify with a wood sounding
Mei, 30-6.7	resonating capacitor	5E60.45	A HYK capacitor (containing BaTiO3) frequencies in the audio range.	resonates mechanically at a number of
Sut, E-188	piezoelectric oscillator	5E60.47		ed at the center of a long square cross it. Circuit diagrams.
Mei, 30-6.5	hysteresis in barium titanate	5E60.60	A circuit for showing hysteresis in ferr	
AJP 53(6),552	DC CIRCUITS Ohm's Law charge density in circuits	5F00.00 5F10.00 5F10.05	Two demonstrations: first, an electros density along a large resistance attacl example where current is flowing throu	hed to a 5 KV supply, and second, an
PIRA 200	Ohm's law	5F10.10	potential. Measure current and voltage in a simp resistance.	ble circuit. Change the voltage or
UMN, 5F10.10	Ohm's Law	5F10.10	An ammeter, voltmeter, rheostat, and demonstrate Ohm's law.	battery pack are connected to
F&A, Eg-2	Ohm's law	5F10.10	A battery, rheostat, and meters in a ci	rcuit.
F&A, Eo-1	Ohm's law	5F10.10	5 1	
D&R, E-380	Ohm's law	5F10.10	Measure current and voltage of a simple	
Disc 17-19	Ohm's law	5F10.10	Place 2, 4, and 6 V across a resistor a	and measure the current, then graph.
Mei, 30-2.1	water analogy circuit	5F10.12	A water analogy illustrates voltage dro	ops across a dc circuit.
PIRA 1000	water Ohm's law analog	5F10.15		
Sut, E-114	water analog	5F10.15	A water analog of Ohm's law.	
Sut, E-159	IR drop in a wire	5F10.15	Clip wires from the terminals of flashli stretched wire carrying 2 - 5 amps.	ght lamps at various points along a
PIRA 1000	potential drop along a wire	5F10.20	Lester achieve a terr a Course les	
Sut, E-158	potential drop along a wire	5F10.20	Lecture galvanometers configured as current and voltage on several sample clip can be used to vary length.	
Disc 18-01	voltage drop along wire	5F10.20	Measure the voltage at six points on a	a long resistance wire.
PIRA 1000	potential drop with Wimshurst	5F10.25	5 1	5
Sut, E-113	potential drop with static machine	5F10.25	A 3 m long wood bar is attached at or machine. The other end can be groun electroscopes along the bar to show fi	ded or insulated. Attach several
Sut, E-153	high voltage Ohm's law	5F10.26	Two ends of a dry stick are attached t electrostatic voltmeter and microamm	o a static machine. Measure with an
	Power and Energy	5F15.00		
PIRA 1000	electrical equivalent of heat	5F15.10		
F&A, He-4	electrical equivalent of heat	5F15.10	Measure the voltage and current to a	heating coil in a calorimeter.
F&A, Eh-3	heat and electrical energy	5F15.10	A heating coil in a calorimeter.	
Mei, 26-4.4	electrical equivalent of heat	5F15.10	Voltage, current to a heater and temp	
Sut, E-178	electrocalorimeter	5F15.10	to that computed from voltage, curren	
Ehrlich 1, p. 152	electrical equivalent of heat	5F15.10	Submerge an immersion heater in a S voltage, current, time, and temperatur	e rise of the water.
F&A, He-7 Sut, E-118	flow calorimeter heating by current from a static	5F15.11 5F15.12	Water is heated electrically as it flows The ends of a piece of wood sealed in	÷
Sul, E-110	machine	5F15.12	•	ats the air and an attached manometer
UMN, 5F15.15	KWH meter and loads	5F15.15	Measure the power consumed by an a	assortment of household appliances.
Bil&Mai, p 282	meters and loads	5F15.15		ed to measure the power consumed by es. A voltmeter and an amp meter are
Sut, E-171	heating with current	5F15.16	Large currents are passed through No amps are measured.	b. 18 nichrome wire and the volts and

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
AJP 77 (6), 516	heating with current	5F15.16	Current, voltage, and resistance meas conducting wire show a nonlinear com be modeled using principles of heat tra	ponent. The nonlinear behavior can
Sut, E-174	heating wires in series	5F15.17		e same length are soldered together in om each by soft wax. As current is
PIRA 500	hot dog cooker	5F15.20		
UMN, 5F15.20	hot dog/pickle cooker	5F15.20		
Sut, E-176	hot dog cooker	5F15.20	Hook nails to 110V and place them or	
D&R, E-425	hot dog cooker	5F15.20 5F15.20	Insert aluminum nails in a hot dog and	
Disc 18-07 PIRA 1000	hot dog frying fuse with 30v lamp	5F15.20 5F15.30	Apply 110 V through a hot dog and co	OK II.
Sut, E-173	fuse-wire problem	5F15.31	With fuse wires of different diameters	connected in parallel which will burn
			out first?	
Mei, 30-1.6	vaporize wire with 500 amp surge	5F15.32	Short a low voltage high current transf	ormer with zinc coated fron wire.
Sprott, 4.4	vaporize wire - exploding wire	5F15.32	A thin wire or strip of aluminum foil va discharges through it.	porizes when a large capacitor
Sut, E-172	fuse wire	5F15.33	Fuse wire is used with a miniature hou	use circuit.
F&A, Eh-5	fuses	5F15.34	Fuse wire of different sizes are connect	cted across a heavy copper buss.
PIRA 200	fuse with increasing load	5F15.35	A fuse wire will eventually fail when the	
PIRA 1000 - Old	fuse with increasing load	5F15.35	A fuse wire will eventually fail when the	e load on the circuit is increased.
PIRA 1000	voltage drops in house wires	5F15.40		
Disc 18-05	voltage drops in house wires	5F15.40	Two resistance wires substituting for h load of lamps and heaters.	nouse wiring glow when they power a
PIRA 1000	I2R losses	5F15.45		
Disc 18-06	I2R losses	5F15.45	Copper and nichrome wires in series s to current. A paper rider on the nichron	6
	Circuit Analysis	5F20.00		
PIRA 200	Kirchhoff's voltage law	5F20.10	Measure the voltages around a three i	resistor and battery circuit.
UMN, 5F20.10	Kirchhoff's voltage law	5F20.10	Same as Eo-2.	
F&A, Eo-2 Bil&Mai, p 278	Kirchhoff's voltage law Kirchhoff's voltage law	5F20.10 5F20.10	Measure the voltages around a three I Glowing resistors (light bulbs) are use and parallel circuits.	resistor and battery circuit. d to visually compare voltages of series
Disc 18-02	sum of IR drops	5F20.10	Measure the voltages across three res	sistors and a battery in a series circuit.
F&A, Eo-3	voltage divider	5F20.13	A simple series circuit of a battery and	two resistors.
PIRA 500	continuity of current	5F20.15		
UMN, 5F20.15	continuity of current	5F20.15	Same as Eo-4.	
F&A, Eo-4	continuity of current	5F20.15	An ammeter can be inserted into any	branch of a circuit to show currents in
			and out of a node.	
Disc 17-27	conservation of current	5F20.16	Measure the currents entering and lea	iving a node.
PIRA 1000	superposition of current	5F20.20		
UMN, 5F20.20	superposition of current	5F20.20	Same as Eo-7.	
F&A, Eo-7	superposition of currents	5F20.20	Measure the current from one battery,	a second in another position, and the
Mai 20.2.6	auparpasition	5520.20	combination in a circuit.	•
Mei, 30-2.6 PIRA 1000	superposition reciprocity	5F20.20 5F20.25	Shows a standard superposition circui	ι.
Mei, 30-2.7	reciprocity	5F20.25	Shows a standard reciprocity circuit.	
PIRA 1000	potentiometer	5F20.30	chews a standard recipieony choun.	
UMN, 5F20.30	potentiometer	5F20.30	A slide wire potentiometer is used with	a battery and demonstration
	•	5F20.30	galvanometer. A slide wire potentiometer with a stand	
F&A, Eg-7 Bil&Mai, p 275	potentiometer potentiometer	5F20.30	A homemade slide wire potentiometer	
			used as the visual indicator of voltage	
Sut, E-160	rheostat as potential divider	5F20.31	Contrast the slide wire rheostat when	used as a rheostat or potential divider.
Sut, E-161	long potentiometer	5F20.32	Use a ten foot length of nichrome wire	·
Hil, E-3c	rheostat potential divider	5F20.33	A rheostat and six volt battery demonst	strate a potential divider.
PIRA 1000	Wheatstone bridge	5F20.40		
F&A, Eg-6	Wheatstone bridge - slide wire	5F20.40	The slide wire Wheatstone bridge.	
Sut, E-156	Wheatstone bridge - slide wire	5F20.40	Two nichrome wires are stretched acro connected to a galvanometer are used	•

July 2015

Electricity and Magnetism

Demonstration	Bibliography	Jı	uly 2015	Electricity and Magnetism
Sut, E-157	Wheatstone bridge - human galvanometer	5F20.41	Stretch a loop of clothesline previously parallelogram and hook the ends to a 1 same potential without shock.	
Hil, E-3b	Wheatstone bridge	5F20.42	A demonstration Wheatstone bridge wi resistors.	th a built in meter and several plug in
PIRA 1000	light bulb Wheatstone bridge	5F20.45		
UMN, 5F20.45	lightbulb Wheatstone bridge	5F20.45	A Wheatstone bridge configuration with	
F&A, Eh-2	light bulb Wheatstone bridge	5F20.45	Four light bulbs in a Wheatstone bridge	e arrangement with light bulb indicator.
Mei, 30-2.3	light bulb Wheatstone bridge	5F20.45	A light bulb Wheatstone bridge using 1	
Sut, E-155	Wheatstone bridge	5F20.45	Four 60 W lamps in a diamond bridge wadditional 6 V lamp can be switched in	when the circuit is balanced.
Disc 17-25	Wheatstone bridge	5F20.45	Three 110 V lamps and a rheostat mak bridge and a small lamp serves as an in	ndicator.
PIRA 200	series and parallel light bulbs	5F20.50	A light bulb board with switches allows of series and parallel lamps.	configuration of several combinations
UMN, 5F20.50	series and parallel light bulbs	5F20.50		<i></i>
F&A, Eh-1	series and parallel light bulbs	5F20.50	A light bulb board with switches allows	-
Sut, E-177	parallel and series light bulbs	5F20.50	Three similar wattage lamps in series, t	
Hil, E-3a.1	series-parallel circuits	5F20.50	A series-parallel circuit with three bulbs 14 ways.	
D&R, E-430	series and parallel light bulbs	5F20.50	Series-parallel circuits with three light b	
Bil&Mai, p 273	series and parallel light bulbs	5F20.50	A light bulb board with switches allows	configuration of several combinations.
Bil&Mai, p 276	series and parallel light bulbs	5F20.50	Two 3-wire outlets are wired to allow co of series and parallel light bulbs.	onfigurations of several combinations
Ehrlich 1, p. 149	series and parallel light bulbs	5F20.50	Three similar wattage light bulbs conne in series, parallel, or a combination of b	
Disc 17-24	series/parallel light bulbs	5F20.50	Three 110 V lamps are wired in series	and three are wired in parallel.
PIRA 1000	light bulb board - 12 V	5F20.51		
UMN, 5F20.51	light bulb board - 12 V	5F20.51	A board with 12V bulbs and a car batte series or three parallel loads.	ry allow combinations of up to three
PIRA 1000	series and parallel resistors	5F20.55		
Disc 17-23	series/parallel resistors	5F20.55	Measure the current flowing through a series and parallel combinations.	wire resistor with 6 V applied and then
Sut, E-175	wire combinations	5F20.56	A wire circuit is arranged so a segment parallel. Drawing.	of n length can have 1 or n wires in
Ehrlich 2, p. 147	wire combinations - 3-4-5 triangle	5F20.56	A 3-4-5 triangle made from nichrome w resistance combinations.	ire is used to show series and parallel
PIRA 1000	equivalent resistance	5F20.60		
F&A, Eo-5	equivalent series resistance	5F20.60	A series of resistors in a circuit are repl	
TPT 2(3),131	parallel resistance - integral value		A formula for obtaining integral values of integral equivalent resistance.	
F&A, Eo-6	equivalent parallel resistance	5F20.61	Parallel resistors are replaced by a sing	
Mei, 30-2.4	Thevenin's equivalent resistance	5F20.63	A Wheatstone bridge resistance circuit combinations to an equivalent resistance	ce.
AJP 46(7),762	equivalent circuit flasher	5F20.64	A neon flasher circuit shows the combin combinations of resistance and capacit	•
AJP 32(12),967	large circuit boards	5F20.71	A modular circuit board made for 500 s	
Hil, E-2b	general circuits board	5F20.72	A circuit board laid out so meters can b demonstrations of series-parallel circuit	
Hil, E-3d	three-way switch	5F20.75	A large circuit board demonstrates a th	ree way switch.
Hil, E-3e	one boat, river, six people	5F20.79	An electrical circuit for solving the prob	
Mei, 30-2.5	equivalent resistance analog computer	5F20.95	Using the equivalent resistance of a cir the focal length of an optical problem.	cuit as an analog computer for finding
	RC Circuits	5F30.00		
PIRA 200	capacitor and light bulb	5F30.10	A large electrolytic capacitor, a light but show a long time constant.	
UMN, 5F30.10	capacitor and light bulb	5F30.10	A 5600 microF capacitor is charged an light bulbs.	d discharged through 7.5 and 40 W
F&A, En-11	long RC time constant	5F30.10	A 5600 microF capacitor, a light bulb, a long time constant where the bulb dims	
Ehrlich 1, p. 150	capacitor and light bulb	5F30.10	A one farad capacitor is charged with a capacitor through miniature light bulbs.	

Mei, 29-4.2light the bulb5F30.11Charge a capacitor with DC and discharge through a light bulb, try the thing with AC.Bil&Mai, p 265light the bulb5F30.11A capacitor is charged and discharged through a light bulb. Use a 9 w battery.F&A, Ed-6discharge a capacitor5F30.12PIRA 1000RC time constant on galvanometer5F30.15Sut, E-259RC time constant on galvanometer5F30.15A series RC circuit with a galvanometer. Diagram.	/olt
Bil&Mai, p 265light the bulb5F30.11A capacitor is charged and discharged through a light bulb. Use a 9 we battery.F&A, Ed-6discharge a capacitor5F30.12Discharge a capacitor through a resistor. Read the voltage with a metPIRA 1000RC time constant on galvanometer5F30.15	
F&A, Ed-6discharge a capacitor5F30.12Discharge a capacitor through a resistor. Read the voltage with a metPIRA 1000RC time constant on galvanometer 5F30.15	er.
Sut, E-259 RC time constant on galvanometer 5F30.15 A series RC circuit with a galvanometer. Diagram.	
Ehrlich 1, p. 151 RC time constant on voltmeter 5F30.15 Discharge a capacitor through a voltmeter to measure the time consta observe exponential time dependence.	ant and
AJP 41(5),745RC voltage follower5F30.16Use a voltage follower to isolate the circuit from the display.PIRA 500RC time constant on scope5F30.20	
UMN, 5F30.20 RC time constant on scope 5F30.20 A circuit with a slow time constant (.1 - 10 sec.) is charged and discharged and the current and voltage are displayed on a dual trace storage sco	-
D&R, E-405 RC time constant on scope 5F30.20 A square wave charges and discharges a capacitor and the charging observed on the oscilloscope.	time is
Disc 18-28 RC charging curve 5F30.20 Show charging and discharging an RC circuit with a battery on an oscilloscope.	
F&A, En-10RC time constant5F30.21Show the time constant from an RC circuit on an oscilloscope.	
F&A, Eo-12 RC time constant 5F30.21 A plug in circuit board for showing RC time constants on the oscillosc	
F&A, En-8 time constant of an capacitive 5F30.22 The time constant of a RC circuit driven by the calibration signal is sh circuit an oscilloscope.	own on
Mei, 30-2.2 finding R from time constant 5F30.28 A circuit to measure high resistances by using an RC charging time.	
PIRA 1000 series and parallel capacitors 5F30.50	
Sut, E-261 series and parallel capacitors 5F30.50 Two 2 microF capacitors in series or parallel with a 40 W lamp.	
Bil&Mai, p 261 series and parallel capacitors 5F30.50 6 capacitors are connected to a test board in parallel and series arrangements. Use a capacitance meter to explore the relationships.	
PIRA 1000 neon relaxation oscillator 5F30.60	
Mei, 29-4.3 blinking neon bulb 5F30.60 A neon bulb in parallel with a capacitor will light periodically as the cap charges and discharges.	cacitor
Mei, 33-1.2 RC relaxation oscillator 5F30.60 An RC relaxation oscillator has a neon lamp across the capacitor provisible discharge.	/iding a
Sut, E-263 RC flasher circuit 5F30.60 A neon lamp in parallel with the capacitor in a series RC circuit.	
Hil, E-4fflashing neon light5F30.60A battery powered neon light oscillator.Hil, E-4eneon relaxation oscillator5F30.60A circuit for a neon relaxation oscillation oscillator. Reference: AJP	
13(12),415.	
D&R, E-240 neon relaxation oscillator 5F30.60 A simple neon relaxation oscillator with circuit diagram. D&R, E-400 relaxation oscillator 5F30.60 A relaxation oscillator with an oscilloscope connected across the capa monitor charging time. Many neon or argon bulbs will work.	acitor to
Disc 18-29 relaxation oscillator 5F30.60 An RC neon light relaxation oscillator.	
Mei, 33-1.3 relaxation siren oscillator 5F30.61 A double RC relaxation oscillator with slow and fast periods gives a si waveform.	ren
AJP 40(5),763 backward and forward waves 5F30.68 RC circuits are used to get a wave in neon bulbs that goes from the s the source.	ink to
Hil, E-4g capacitance operated relay 5F30.71 References but no information on the circuit. Bring your hand close to aluminum plate and the relay triggers.	а
Hil, A-10a fun circuit 5F30.80 One box has switches that control two lights in another box but only o connects the two boxes.	ne wire
Instruments 5F40.00	
PIRA 1000 sensitivity and resistivity of a 5F40.10 galvanometer	
AJP 29(6),373 sensitivity and resistance of a 5F40.10 A circuit for the determination of galvanometric constants. galvanometer	
F&A, Ej-5 sensitivity and resistance of galvanometer 5F40.10 Use external resistors to measure the resistance and sensitivity of a galvanometer.	
Sut, E-154 voltmeter and electroscope 5F40.15 Connect series resistance to a galvanometer to make a voltmeter with sensitivity and measure several dry batteries in series with both the vo and an electroscope.	
PIRA 1000 galvanometer as ammeter and 5F40.20 voltmeter	
F&A, Ej-6 converting a galvanometer to a 5F40.20 Knowing the resistance and sensitivity of a galvanometer, add a serie resistance and check with a voltage.	S
Disc 17-26 galvanometer as voltmeter and 5F40.20 A galvanometer is used with shunt and series resistors. ammeter	

Demonstration	Bibliography	J	uly 2015 Electricity and Magnetism
PIRA 1000	loading by voltmeter	5F40.21	
Disc 18-04	loading by a voltmeter	5F40.21	Measure the voltage across a high resistance circuit with high and low impedance voltmeters.
F&A, Ej-7	converting a galvanometer to a ammeter	5F40.25	Knowing the resistance and sensitivity of a galvanometer, add a shunt resistance and measure a current.
F&A, Ej-3	hot wire ammeter	5F40.30	A crude hot wire galvanometer.
Sut, H-11	hot wire ammeter	5F40.30	Diagram of a hot wire ammeter. (E-171).
F&A, Ej-4	iron vane meter	5F40.35	Repulsion from induced magnetism in two soft iron bars in a solenoid forms the basis of a heavy current ammeter.
Hil, E-2d	multimeters	5F40.50	A couple multimeters are pictured.
	MAGNETIC MATERIALS	5G00.00	
	Magnets	5G10.00	
PIRA 500	magnet assortment	5G10.10	
	0	5G10.10	
UMN, 5G10.10	magnet assortment		Diago diag magnete the same note down on the swerhood projector. Motoh
Ehrlich 2, p. 151	magnets	5G10.10	Place disc magnets the same pole down on the overhead projector. Watch the motion of one of the magnets as you push another magnet close to it.
AJP 55(1),10	letters on magnets	5G10.13	Remarkably, the letters on the magnet, are two of the three that can be read from either end or in a mirror.
Hil, E-6c	various magnets	5G10.14	
Hil, E-6d	strong magnets		Various strong magnets are shown.
PIRA 1000	lodestone	5G10.14	valious strong magnets are shown.
UMN, 5G10.15	lodestone		Show that the lodestone attracts small nails.
,		5G10.15	
AJP 77 (8), 729	lodestone		, ,
Bil&Mai, p 288	lodestone	5G10.15	Hang a piece of lodestone from the ceiling with a piece of string or thread. Notice that it will always come to rest pointing in the same direction.
PIRA 1000	lodestone suspended	5G10.16	Magnatite is supported in a magnatic field
F&A, Er-5	lodestone	5G10.16	Magnetite is suspended in a magnetic field.
Sut, E-84	permanent magnets	5G10.16	
Sut, E-77	lodestone	5G10.16	Two pieces of magnetite in paper stirrups come to rest on the magnetic meridian. Poles are identified and repulsion and attraction are demonstrated.
Disc 19-02	lodestone	5G10.16	A large lodestone is suspended in a cradle with the south pole painted white. A bar magnet is used to show attraction and repulsion.
PIRA 200	break a magnet	5G10.20	
PIRA 500 - Old	break a magnet	5G10.20	
UMN, 5G10.20	break a magnet	5G10.20	Show a magnet attracts nails, break it and repeat.
F&A, Er-12	forming new magnetic poles	5G10.20	Break a magnet.
Sut, E-93	break a magnet	5G10.20	Magnets of hard or hardened steel are broken and the pieces shown to be magnetized.
Disc 19-05	broken magnet	5G10.20	A broken magnet still exhibits north and south poles.
PIRA 1000	Which is a magnet?	5G10.30	
F&A, Es-9	magnet and non-magnet	5G10.30	Two bars look alike, one is a magnet and the other is not.
Sut, E-85	Which is a magnet?	5G10.30	With two similar bars of iron, one magnetized, use the end of one to lift the middle of the other.
Sut, E-79	two south pole magnet	5G10.35	How to induce four poles in a knitting needle, the same poles at each end.
Mei, 32-3.5	no pole magnet	5G10.36	Make a circularly polarized magnet in a steel ring and then break it in half.
PIRA 1000	lowest energy configuration of magnets	5G10.50	
AJP 33(4),346	magnetic interactions	5G10.50	Magnets float in water with the north pole up constrained by a ring magnet. Place up to 22 magnets in the tub and show equilibrium configurations.
Disc 19-06	lowest energy configuration	5G10.50	Magnets held vertically in corks are placed in a dish of water. When a coil around the dish is energized, the magnets move to the lowest energy
TPT 41(3), 158	Gauss Accelerator - Gauss Rifle	5G10.55	configuration. A Gauss rifle made from 4 square neodymium magnets and 5/16 inch ball bearings. The energy analysis shows the change in potential energy of the rifle as a function of the accumulated displacement of the ball bearings.
TPT 42(1), 24	Gauss Accelerator - Gauss Rifle	5G10.55	Measurements of both the change in potential energy and the change in
Bil&Mai, p 108	Gauss accelerator - Gauss rifle	5G10.55	bearings. Add two more stages of magnets and balls to observe an
TPT 3(5),226	cast magnetic field	5G10.90	increased effect. Iron filings are cast in gelatin.

	······································	-	
F&A, Er-13 Sut, E-81	magnetic monopole isolated pole	5G10.90 5G10.90	
	Magnet Domains &	5G20.00	needle through a cork and floating it on water.
	Magnetization	5000 40	
PIRA 500	Barkhausen effect	5G20.10	
UMN, 5G20.10	Barkhausen effect	5G20.10	Amplify the signal from a small coil as it is flipped in a magnetic field with copper, soft iron, and steel cores.
F&A, Es-1	Barkhausen effect	5G20.10	Magnetic domains in the core of a small coil can be heard flipping as a magnet is moved by using and an audio amplifier.
Mei, 32-3.10	Barkhausen effect	5G20.10	Insert various cores into a coil connected to an audio amplifier and spin a magnet around it.
Mei, 32-3.11	Barkhausen effect	5G20.10	0
Sut, E-94	Barkhausen effect	5G20.10	Soft iron and hard steel cores are placed in a small coil attached to an audio amplifier and the assembly is inserted into a magnetic field.
AJP 73 (4), 367	Barkhausen effect	5G20.10	A Barkhausen demonstration where the noise is converted to a voltage that is monitored with a data acquisition system.
Hil, E-10d	Barkhausen effect	5G20.10	A soft iron core inserted in a small coil connected to the input of an audio amplifier.
Disc 19-19	Barkhausen effect	5G20.10	Pulses from moving a magnet near a coil wrapped around a soft iron core
	onin flon transition model	EC 00 4 F	are amplified.
AJP 39(7),832	spin-flop transition model	5G20.15	A mechanical model of the spin-flip transition in antiferromagnets.
PIRA 500	ferro-optical garnet	5G20.20	
UMN, 5G20.20	ferro-optical garnet	5G20.20	View a commercial ferro-optical garnet between crossed Polaroids with a color TV on a microscope as the field in the coil is changed.
Mei, 32-3.8	ferromagnetic garnet	5G20.21	Examine a crystal of M3Fe2(FeO4)3 in a polarizing microscope. Diagrams, Reference: AJP,27(3),201.
Mei, 32-3.9	Weiss domains	5G20.22	Examine a Gadolinium-Iron-Garnet crystal in a polarizing microscope as the magnetic field and temperature are changed. Picture, Reference: AJP,27(3),201.
AJP 29(11),789	optical ferromagnetic domains	5G20.23	Examine thin polished crystals under a low powered microscope in polarized light. Add a small coil to change the field.
Mei, 32-3.2	iron filing domains	5G20.27	
PIRA 200	magnetic domain model	5G20.30	•
	-		
F&A, Es-2	magnetic domains	5G20.30	An array of small compass needles shows domain structures.
Disc 19-16	magnetic domain model	5G20.30	A set of compass needles on pins.
UMN, 5G20.31	compass arrays	5G20.31	
Mei, 32-3.7	compass array	5G20.31	An array of compass needles made of spring steel strip stock shows domains under different magnetic field conditions.
Sut, E-91	compass array	5G20.31	A set of magnetic needles on pivots orients randomly until a magnet is brought close. Barkhausen model - A compass array above an electromagnet will show that the needles align discontinuously as the field is increased.
AJP 54(12),1130	Heisenberg anitferromagnet mode	5G20.36	A simple mechanical model demonstrates phase transitions in a Heisenberg antiferromagnet.
PIRA 1000	induced magnetic poles	5G20.45	3
Sut, E-82	induced magnetic poles	5G20.45	A chain of nails is supported by a magnet, each becoming a magnet by induction.
Sut, E-88	magnetic induction	5G20.46	A soft iron bar held colinear with a permanent magnet will become magnetized by induction. Use a compass needle to show the far pole of the bar is the same as the near pole of the magnet.
PIRA 500	pound iron bar	5G20.50	sar le alle same de alle nour pole er alle magnet.
	•	5G20.50 5G20.50	
UMN, 5G20.50	pound iron bar		The second state and the second base is the second state of the se
F&A, Er-8	magnetization in the Earth's field	5G20.50	6
Mei, 32-3.4	pound iron bar	5G20.50	Pound a soft iron bar held in the Earth's field, a permalloy bar does not need to be pounded.
Sut, E-80	hammer an iron bar	5G20.50	Hammer a soft iron bar held parallel to the field of the Earth. A bar of permalloy is magnetized by simply holding it in the Earth's field.
Sut, E-112	magnetic induction in Earth's field	5G20.50	Hammer the end of a soft iron rod held parallel to the Earth's field. Hold a permalloy rod parallel while picking up pieces of permalloy ribbon, then turn perpendicular.
D&R, B-370	hammer an iron bar	5G20.50	Hammer the end of a soft iron reinforcing rod in the Earth's magnetic field.
PIRA 500	permalloy bar	5G20.55	
UMN, 5G20.55	permalloy bar	5G20.55	
	-		

Demonstration	Bibliography	Ju	uly 2015 Electricity and Magnetism
F&A, Er-9	permalloy bar	5G20.55	Iron filings stick to a permalloy bar held parallel to the Earth's magnetic field but fall off when it is held perpendicular.
Disc 19-21	permalloy in Earth's field	5G20.55	A small strip of iron sticks to a permalloy rod when it is held in the direction of the Earth's field.
Hil, E-6a.2	permalloy rod	5G20.56	Hold a permalloy rod near a compass needle.
PIRA 1000	magnetization by current	5G20.60	
Sut, E-127	magnetization and	5G20.60	Place an iron core in a solenoid. Magnetize with direct current and
Out, L 127	demagnetization	0020.00	demagnetize by reducing alternating current to zero.
Sut E 02	magnetization by current	5G20.60	Place a piece of steel in a solenoid connected to a direct current source.
Sut, E-83	0		
Disc 19-17	magnetizing iron	5G20.60	Place an iron bar in a solenoid and pulse a large current.
PIRA 1000	magnetization by contact	5G20.61	Otesta a sellar a seconda esta esta esta d'Aradilla ista esta filia es
Disc 19-15	magnitizing iron by contact	5G20.61	Stroke a nail on a permanent magnet and it will pick up iron filings.
PIRA 1000	demagnitization by hammering	5G20.62	
Sut, E-78	magnetization and	5G20.62	Stroke a steel needle with a permanent magnet to magnetize and pass it
D' 40 40	demagnetization	5000.00	through an AC solenoid to demagnetize.
Disc 19-18	demagnitizing iron by hammering	5G20.62	Magnetize an iron bar in a solenoid, then pound it to demagnetize.
PIRA 500	electromagnet - lift a person	5G20.70	
F&A, Es-5	electromagnet	5G20.70	A simple electromagnet.
Disc 19-12	electromagnet with 1.5 V battery	5G20.70	A magnet powered by a 1.5 V battery lifts a large weight.
PIRA 1000	electromagnet	5G20.71	
UMN, 5G20.71	electromagnet	5G20.71	
Sut, E-126	electromagnet	5G20.71	An electromagnet with 25 turns of wire and one dry cell can lift over 200 lbs.
PIRA 1000	large electromagnet	5G20.72	
F&A, Es-11	magnet holding with small battery	5G20.72	An electromagnet energized with a small battery holds several Kg.
AJP 29(2),86	large electromagnet	5G20.72	Apparatus Drawings Project No. 13: A simple low cost electromagnet with 4"x4" pole faces, field of 1 weber/m2 with a .5 cm gap.
Disc 19-11	large electromagnet	5G20.72	This magnet is made with 3000 turns and carries 25 amps.
PIRA 1000	magnetically suspended globe	5G20.73	
Sprott, 5.5	magnetically suspended globe	5G20.73	Alternating current in a pair of magnet coils produces a magnetic field of a shape and strength that can levitate an aluminum ball.
AJP 44(5),478	magnetically suspended globe	5G20.73	A hollow iron globe is suspended from a solenoid with an iron core using a feedback system based on the height of the ball.
AJP 34(7),623	magnetic circuit	5G20.74	An iron loop with a coil on one side, a flux meter on the other, and a removable section for substituting various materials.
Mei, 32-3.16	measuring magnetic flux	5G20.74	Measure magnetic flux with and without a iron path. Not a good description.
PIRA 1000	retentivity	5G20.75	
UMN, 5G20.75	retentivity	5G20.75	
Sut, E-96	retentivity	5G20.75	Two soft iron cores form a split toroid with a few turns of wire around one
,			half. When the coil is energized the iron is strongly magnetized. When the current is off, the two pieces are still difficult to separate but once apart no longer attract.
Sut, E-95	retentivity	5G20.75	A soft iron bar will cling to a "U" shaped electromagnet when the current is turned off but no longer attract after it is pulled away.
Mei, 32-3.26	different cores	5G20.76	An electromagnet is made with replaceable yoke to show the effect of different materials on lifting strength.
	Paramagnetism and	5G30.00	
	Diamagnetism		
PIRA 200	paramagnetism and diamagnetism	5G30.10	
PIRA 500 - Old	paramagnetism and diamagnetism	5G30.10	
UMN, 5G30.10	paramagnetism and diamagnetism	5G30.10	Paramagnetic and diamagnetic crystals are inserted between the poles of a
Mei, 32-2.1	paramagnetism and diamagnetism	5G30.11	large electromagnet. Small samples of bismuth, aluminum, glass, etc between the poles of a
Mei, 32-3.12	paramagnetic and ferromagnetic	5G30.13	strong electromagnet with an inhomogeneous magnetic field. Picture. A small sphere of Pyrothit suspended near one pole of a horseshoe magnet will show paramagnetic and ferromagnetic behavior in different orientations.
PIRA 1000	pull the sample	5G30.15	
UMN, 5G30.15	John Davis setup	5G30.15	
Disc 19-22	paramagnetism and diamagnetism		Samples of bismuth and copper sulfate are suspended by threads. A large horseshoe magnet attracts the copper sulfate and repels the bismuth.
AJP 28(7),678	dollar bill attraction	5G30.16	A dollar bill is attracted by a magnet.

I	Demonstration	Bibliography	JL	ily 2015	Electricity and Magnetism
	AJP 28(7),678	paramagnetism and diamagnetism in a level	5G30.16	Pull the bubble in a carpenter's level wi around on a sheet of paper.	th a magnet. Also, pull liquid air drops
	AJP 30(6),453	pole faces for big electromagnet	5G30.17	Apparatus Drawings Project No. 29: La of four. Plans for pole faces to go on th in para and diamagnetism demonstration	e electromagnet from No. 13 for use
	Sut, E-102	paramagnetism and diamagnetism	5G30.18	Specifications are given for building an demonstration. Paramagnetic and diam	electromagnet suitable for the
	TPT, 36(9), 553	inexpensive demonstration of the magnetic properties of matter	5G30.19	Qualitative discussion of magnetic prop general-purpose way to demonstrate the matter.	perties presents a simple,
	PIRA 1000 Sut, H-111	paramagnetism of liquid oxygen	5G30.20	Liquid ovugon sticks to the pole pieces	of a atrong alactromagnet until it
	Sul, H-111	paramagnetism of liquid oxygen	5G30.20	Liquid oxygen sticks to the pole pieces evaporates.	or a strong electromagnet until it
	F&A, Es-3	paramagnetism	5G30.21	A test tube of liquid oxygen swings into	
	F&A, Es-4	paramagnetism	5G30.25	Copper sulfate and bismuth crystals are	
	Hil, E-10b	paramagnetism of bismuth	5G30.25	A bismuth crystal is suspended betwee	
	Mei, 32-2.2	para and dia in para and dia solutio	5G30.30	A paramagnetic body is suspended in a with diamagnetic.	a paramagnetic solution. Repeat same
	TPT 40(7), 440	diamagnetic grapes	5G30.35	Observe the diamagnetic or paramagne as grapes, rosin, salt, aluminum foil, et a sensitive pivot.	
	TPT 41(2), 75	diamagnetic water	5G30.40	Cover a neodymium magnet with about diamagnetism of water can be easily of	•
	TPT 41(2), 122	diamagnetic levitation of graphite	5G30.45	A diamagnetic levitator using 4 or 9 - or magnets and a thin square of pyrolite g	ne half inch square neodymium
	AJP 69(6), 702	diamagnetic graphite	5G30.50	Discussion and analysis of commercial levitators. The levitators all have the baneodymium magnet between two slabs	and homemade diamagnetic asic design of levitating a small
	AJP 70(2), 188 TPT 35(8), 463	diamagnetic graphite diamagnetic bismuth	5G30.50 5G30.55	More comments on AJP 69(6), 702. Place a bismuth sample on an electron	
				positive "mass" when a neodymium ma	agnet is brought near the top.
		Hysteresis	5G40.00		
	PIRA 500 UMN, 5G40.10	hysteresis loop on scope hysteresis loop on scope	5G40.10 5G40.10	Show the hysteresis loops for laminate is reached.	d steel and ferrite cores as saturation
	F&A, Es-10	hysteresis loop	5G40.10	The hysteresis loop of a core is display	ed on an oscilloscope.
	Disc 20-28	hysteresis curve	5G40.10	The Leybold setup shown on a scope.	
	Sut, E-101	hysteresis loop on scope	5G40.11	The hysteresis loop for the iron core of oscilloscope. Diagram and circuit hints.	
	Mei, 32-3.17	hysteresis on the scope	5G40.12	A circuit for showing the hysteresis cur oscilloscope. Also modifications for usi	
	AJP 55(10),933	improved hysteresis loop on scope	5G40.13	A circuit, Hall probe, and storage oscille loop point by point or automatically.	
	AJP 34(10),960	hysteresis without induction	5G40.14	Two coils are mounted on a rotating dis As the field is varied, the hysteresis loo	
	AJP 58(8),794	hysteresis loop	5G40.15	This circuit makes it possible to display only one winding.	
	AJP 39(8),964	hysteresis on x-y	5G40.16	An op amp circuit for plotting the hyster	resis curve slowly on an x-y recorder.
	Sut, E-100	magnetization and hysteresis	5G40.20	A small mirror on a compass needle is the current to a solenoid containing an stepwise.	•
	Hil, E-10C	simple hysteresis	5G40.21	Parallel iron bars suspended in a coil si magnetized and demagnetized.	how hysteresis when slowly
	Mei, 32-3.13	hysteresis plot	5G40.25	A ballistic galvanometer search coil giv residual magnetization of a sample as i and a plot is generated.	
	Mei, 32-3.25	plotting hysteresis	5G40.27	A core with a removable link and built in hysteresis curve.	n flux meter are used to plot a
	Mei, 32-3.15	hysteresis in a motor	5G40.31	The I V curve from a generator is propo curve.	ortional to the normally obtained B H
	Mei, 32-3.14	hysteresis loop with old TV	5G40.41	The hysteresis loop of a sample placed old TV tube.	I in one deflection coil is traced on an
	PIRA 1000	hysteresis waste heat	5G40.50		
	Disc 20-29	hysteresis waste heat	5G40.50	Water is boiled by magnetic hysteresis	waste heat.

	2	•	
	Magnetostriction and Magnetoresistance	5G45.00	
PIRA 1000 Mei, 32-4.1	magnetostrictive resonance magnetostrictive resonance	5G45.10 5G45.10	Drive a nickel rod by a coil at one end at a frequency that corresponds to a
Mei, 32-4.2	magnetostrictive Newton's rings	5G45.20	natural harmonic of sound waves. One end of a ferromagnetic rod in a coil touches one plate of a Newton's
PIRA 1000	magnetostriction of nickel wire	5G45.30	rings apparatus.
Mei, 32-4.3	magnetostriction of nickel wire	5G45.30	An optical lever arrangement shows magnetostriction of nickel wire.
	•		
Sut, E-109	magnetostriction	5G45.31	Nickel constricts and cobalt steel lengthens when magnetized. Place sample rods in a solenoid and show the effect by optical lever.
Mei, 32-4.5	inverse magnetostrictive effect	5G45.35	The inverse magnetostrictive effect in nickel wire.
Mei, 32-4.4	delta E effect	5G45.40	The magnetostrictive resonance is measured with and without an external field.
Mei, 32-4.6	Bi-spiral	5G45.60	The magnetoresistance of a Bi-spiral in a magnetic field. Picture.
PIRA 1000	magnetoresistance	5G45.70	
Mei, 40-1.14	magnetoresistance	5G45.70	Measure the magnetoresistance of a bismuth spiral placed in a large
Mei, 40-1.15	corbino disk	5G45.80	electromagnet. A corbino disk (InSb) in one arm of a Wheatstone bridge is placed in a large
-,	Temperature and Magnetism	5G50.00	electromagnet.
PIRA 200	Curie point	5G50.10	
PIRA 500 - Old	Curie point	5G50.10	
			Iron under magnetia attraction is booted until it falls away. I han easting it is
UMN, 5G50.10	Curie point	5G50.10	again attracted.
F&A, Es-8	Curie temperature	5G50.10	flame.
F&A, Es-6	Curie point	5G50.11	A long soft iron wire held up by a magnet falls off when the wire is heated past the Curie point.
Sut, E-104	Curie Point	5G50.11	A length of soft iron wire heated with 110 V DC through a rheostat shows loss of magnetic properties when it passes through recalescence.
Mei, 32-3.20	Curie point	5G50.12	A pendulum bob with iron wire tips is attracted to a magnet where it is heated until it loses its magnetism and falls away. The cycle repeats. Picture, Diagram.
AJP 73(12), 1191	Curie point with Monel metal	5G50.13	•
AJP 37(3),334	Curie point with Monel metal	5G50.13	o i
Hil, E-10a.1	Curie temperature	5G50.14	A nickel wire falls away from a magnet when heated.
PIRA 1000	Curie nickel	5G50.15	, C
Sut, E-103	Curie point of nickel	5G50.15	A rod of nickel is attracted to a magnet when cool but swings away when heated. Many hints and diagram.
D&R, B-390	Curie temperature of nickel	5G50.15	Canadian quarters or dimes hanging in series from a magnet are heated until they fall away.
Disc 19-24	Curie Nickel	5G50.15	
AJP 56(1),45	nickel hysteresis surface	5G50.16	-
PIRA 1000	thermomagnetic motor	5G50.10	
Mei, 32-3.22	thermomagnetic motor	5G50.20	Local heating of permalloy tape or nickel rings in a magnetic field will cause rotation. AJP 5(1).40.
Mei, 32-3.21	Monel wheel	5G50.20	The rim of a wheel of Monel tape is placed in the gap of a magnet and heat is applied to one side to make the wheel turn.
Sut, E-110	magnetic heat motor	5G50.20	
Disc 19-25	Curie temperature wheel	5G50.20	A rim of nickel on a wheel is heated just above the point where the rim passes through the gap of a magnet.
AJP 58(6),545	magnetic heat engine	5G50.22	A gadolinium strip forming the rim of a Plexiglas wheel is heated and cooled on opposite sides of a magnetic field, and a weight is lifted by the resulting
Hil, E-10a.2	Curie temperature motor	5G50.23	rotation. A soft iron disk heated on an edge turns very slowly when a magnet is
AJP 55(1),48	Curie point engine	5G50.24	oriented correctly. Use the Curie point engine as a simple demonstration of the Carnot principle.
PIRA 1000	dysprosium in liquid nitrogen	5G50.25	

Demonstratior	n Bibliography	J	uly 2015	Electricity and Magnetism
Disc 19-23	dysprosium in liquid nitrogen	5G50.25	A piece of dysprosium is attracted	ed to a magnet when cooled to liquid nitrogen
Mei, 32-3.19	phase change and susceptibility	5G50.30	temperatures but drops away wh	hen it warms up. h the sag. A ferrite ring and coil connected to
Mei, 32-3.18	hysteresis breakdown at Curie temperature	5G50.35		steresis loop and breakdown at Curie Materials list in appendix, p. 1333.
Mei, 32-5.1	adiabatic demagnetization	5G50.40		adolinium is measured with a thermocouple
PIRA 200	Meissner effect	5G50.50	•	agnet floats over it due to magnetic repulsion.
UMN, 5G50.50 Sprott, 5.6	Meissner effect superconductors	5G50.50 5G50.50	High- temperature superconduct the Meissner effect.	ors used with permanent magnets illustrate
AJP 76 (2), 106	superconductivity	5G50.50	This Resource Letter provides a	guide to the literature on superconductivity.
Ehrlich 1, p. 153	superconductivity	5G50.50	Levitate a small magnet above a nitrogen temperature.	superconducting disc that is cooled to liquid
Disc 16-14	superconductors	5G50.50	Place a small powerful magnet of cooled to liquid nitrogen temperative	over a disc of superconducting material ature.
TPT 28(4),205	levitating magnet	5G50.51	A long article on levitation over s	uperconductors showing several variations.
AJP 72(2), 243	levitating magnet	5G50.51	Investigates why a cylindrical pe above a superconductor.	rmanent magnet rotates when levitated
AJP 56(7),617	Meissner effect	5G50.52	Repulsion of the magnet and sup levitation of the magnet over the	perconductor hanging from threads. Also, superconductor.
AJP 56(11),1039	Meissner effect with a cork and salt	5G50.53	A magnet/cork in a vial filled with over the superconductor.	n salt water so the float just sinks is placed
AJP 39(1),113 TPT 28(6),395	Meissner effect with liquid He floating magnet demonstration	5G50.55 5G50.55	(5l/hr) lead plate in a supercoole	et over liquid He. uspended 2 cm above a liquid helium cooled d container. Students can play with the ission of what the Meissner effect really is.
AJP 59(1),16	detailed explanation of levitation	5G50.56		of levitation and other effects using in thin conducting sheets instead of the
AJP 57(10),955	Meissner oscillator	5G50.58	A pivoting needle with magnets of superconducting discs.	on the ends oscillates between two
	MAGNETIC FIELDS &	5H00.00		
	FORCES			
PIRA 500	Magnetic Fields magnetic paper clip arrow	5H10.00 5H10.10		
F&A, Er-6	compass	5H10.11	A compass is used to find poles.	
Sut, E-76	compass needles & magnet	5H10.11		eedle is used as an indicator of magnetic
D&R, B-115	homemade compass	5H10.11	a	e through a cork, and float on water.
Mei, 32-3.1	magnetoscope	5H10.12	brass disc.	by hanging needles from the edge of a small
D&R, B-010	paper clip detector	5H10.12	A magnetoscope is constructed	from hanging paper clips.
PIRA 500	dip needle dip needle	5H10.15	A dip poodlo is used to show the	inclination of the Earth's magnetic field
F&A, Er-7 Sut, E-111	dip needle	5H10.15 5H10.15	Use a dip needle to find the loca	inclination of the Earth's magnetic field.
Hil, E-6b	dip needle	5H10.15	•	next to the standard catalog size. Check it
D&R, B-115	dip needle	5H10.15		e direction of Earth's field relative to
Disc 19-03	dip needle	5H10.15	Turn a compass on its side. Anir	nation.
PIRA 200	Oersted's effect	5H10.20		•
UMN, 5H10.20	Oersted's effect	5H10.20	carrying a heavy current.	th a compass needle and a long wire
F&A, Ei-8	Oersted's effect	5H10.20		plore the field around a long wire.
Hil, E-7b	Oersted's effect	5H10.20	wire.	below a current carrying wire. ALSO- jumping
D&R, B-105	Oersted's effect	5H10.20	A compass needle is used to exp	plore the field around a current carrying wire.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Disc 19-08	Oersted's needle	5H10.20	Hold a current carrying wire over a ba moves perpendicular to the wire.	r magnet on a pivot and the magnet
Mei, 31-1.18	Oersted's effect on the overhead projector	5H10.22	Four compass needles are arrayed ar Plexiglas for use on the overhead proj	
Hil, E-7c	Oersted's effect on the overhead projector	5H10.22	Adapting the Oersted effect to the over	
Sut, E-122	Oersted's effect	5H10.23	A current of 50 amps is passed throug investigated using a compass needle.	
Sut, E-191	magnetic field of current through electrolyte	5H10.23	A compass needle detects the magne electrolyte.	
Mei, 31-1.19	field independent of conductor type	5H10.25	-	copper, electrolyte, and a gas discharge
Sut, E-121	Oersted's effect	5H10.25	A heavy current from a storage cell is	
Mei, 31-1.25	carrying large currents	5H10.26	Use flat braided brass cable instead o	of copper wire to carry large currents.
PIRA 200 UMN, 5H10.30	magnet and iron filings magnet and iron filings on the overhead projector	5H10.30 5H10.30	Sprinkle iron filings on a glass sheet p	
F&A, Er-4	field of a magnet	5H10.30	Iron filings are sprinkled on a sheet of	•
Sut, E-89	iron filings on the overhead projector	5H10.30	Sprinkle iron filings on a magnet betw	
D&R, B-110	magnet and iron filings on the overhead projector	5H10.30	Iron filings are sprinkled on an acrylic	
Disc 19-04	magnetic fields around bar magnets	5H10.30	Sprinkle iron filings on a glass sheet of	
AJP 36(11),1015	particles in oil	5H10.31	A suspension of carbonyl nickel powd of magnetic field.	
AJP 38(6),777 Sut, E-90	iron filings in glycerine iron filings in glycerin	5H10.31 5H10.31	A sandwich of iron filings in glycerine Soft iron bars extend the poles of a pe with iron filings in a equal mixture of g	ermanent magnet into a projection cell
Bil&Mai, p 290	iron filings in oil	5H10.31	Fill a small soda bottle with mineral oi test tube into the neck of the bottle an test tube and observe the three dimen	d secure. Slide a cow magnet into the
AJP 41(4),566	iron bars & 83 ton magnet	5H10.32	Students gather around a large electro	•
AJP 42(3),259	comment	5H10.32		
AJP 42(3),259	reply to comment	5H10.32	Reply to the comment on the health h gradient is 1000 times weaker than ex	
TPT 3(7),320	iron filings on glass plate stack	5H10.33	Make a 3-D view of magnetic fields by stacked glass plates.	
PIRA 1000	area of contact	5H10.50	3	
Sut, E-97	area of contact	5H10.50	One end of a magnet 1 cm in diameter lifts a much larger piece of iron than the	
Sut, E-98	area of contact	5H10.51	An electromagnet supports less weigh the pole than when the curved edge is	5 5
Sut, E-99	area of contact	5H10.52	A soft iron truncated cone will support contact with the face of an electromage	
PIRA 1000	gap and field strength	5H10.55		
Mei, 32-3.23	gap and field strength	5H10.55	Vary the gap of a magnet and measur	5
TPT 28(2), 124	field strength and gaussmeter	5H10.55	A mechanical device for measuring th magnets.	-
TPT 40(5), 288	field strength and gaussmeter	5H10.55	The magnetic field along the axis of a gaussmeter.	C .
TPT 40(5), 308	magnetic fields with an IC chip	5H10.57	Measuring the fields of disk magnets	
AJP 54(1), 89	magnetic fields with an IC chip	5H10.57	Measuring magnetic fields with an IC	chip probe in the introductory lab.
PIRA 1000 Sut, E-108	shunting magnetic flux shunting magnetic flux	5H10.60 5H10.60	Pick up a steel ball with a bar magnet	· · · · · · · · · · · · · · · · · · ·
PIRA 1000	magnetic shielding	5H10.61	magnet toward the ball until it drops o	
Disc 19-20	magnetic shielding	5H10.61	Slide sheets of copper, aluminum, and	d iron between an electromagnet and
			an acrylic sheet separating nails from	•
Sut, E-107	magnetic screening	5H10.62	Displace a hanging soft iron bar by att sheet of iron.	-
Mei, 32-3.6	magnetic shielding	5H10.63		elding properties of a soft iron tube with

Demonstratior	n Bibliography	J	uly 2015 Electricity and Magnetism
PIRA 1000	magnetic screening	5H10.65	
Sut, E-106	magnetic screening	5H10.65	Hold a magnet above a nail attached to the table by a string, then interpose a sheet of iron.
Sut, E-105	magnetic screening	5H10.65	Two horizontal sheets of glass separated by an air space intervene between an electromagnet and collection of nails being held up. Insert a sheet of iron into the space and the nails drop.
Mei, 29-4.7	Compass in a changing magnetic field	5H10.75	Meiners places this demonstration in the Capacitors and Dielectrics section. (????) A compass is placed in the gap of an electromagnet and the field is reversed at various rates.
Mei, 31-1.22	sensitive magnetometer	5H10.80	Building and operating a sensitive magnetometer.
PIRA 200	Fields and Currents iron filings around a wire	5H15.00 5H15.10	Iron filings are sprinkled around a vertical wire running through the center of a Plexiglas sheet.
UMN, 5H15.10	field of wire and iron filings	5H15.10	
F&A, Ei-9	magnetic field around a wire	5H15.10	Iron filings show the field of a wire passing through a sheet of Plexiglas.
Mei, 31-1.17	iron filings around a wire	5H15.10	Iron filings are sprinkled around a vertical wire running through Plexiglas.
D&R, B-110	iron filings around a wire	5H15.10	Iron filings are sprinkled around a current carrying wire, single loop, and solenoid.
Bil&Mai, p 301	magnetic field around a wire	5H15.10	Iron filings are sprinkled around a current carrying solenoid.
Ehrlich 1, p. 157	magnetic field around a wire	5H15.10	Iron filings are used to map the magnetic field of a straight wire passing through a piece of Plexiglas.
Ehrlich 1, p. 159	magnetic field around a wire	5H15.10	Iron filings are used to map the magnetic field of a current carrying solenoid.
Disc 19-09	magnetic fields around currents	5H15.10	Iron filings around a current carrying wire, loop, coil, and solenoid.
Sut, E-130	uniform and circular fields	5H15.12	Use iron filings to show the resultant of a vertical wire passing through a uniform field.
PIRA 1000	right hand rule	5H15.13	
Disc 19-07	right hand rule	5H15.13	Move a compass around a vertical wire with a current, reverse the current. Animation of the right hand.
PIRA 1000	Biot-Savart law animation	5H15.15	
Disc 19-14	Biot-Savart law	5H15.15	Animation.
PIRA 1000	parallel wires and iron filings	5H15.20	
UMN, 5H15.20	parallel wires and iron filings	5H15.20	
PIRA 1000	anti-parallel wires and iron filings	5H15.25	
UMN, 5H15.25	anti-parallel wires and iron filings	5H15.25	
PIRA 200	solenoid and iron filings	5H15.40	A solenoid is wound through a piece of Plexiglas for use with iron filings on the overhead projector.
UMN, 5H15.40	solenoid and iron filings	5H15.40	
F&A, Ei-10	field of a solenoid	5H15.40	Iron filings show the field of a solenoid wound through a sheet of Plexiglas.
Mei, 31-1.20	solenoid and iron filings		A solenoid is wound through a piece of Plexiglas for use with iron filings on the overhead projector.
TPT 28(4),244	iron filings in a ziploc bag	5H15.41	Seal an iron filing/glycerol mixture in a ziploc bag.
Sut, E-129	iron filings in glycerin	5H15.41	A glass cylinder filled with iron filings in a solution of glycerin and alcohol is inserted into a solenoid.
Mei, 31-1.21	length of a solenoid	5H15.43	A large solenoid is constructed to make it easy to change the spacing of turns and therefore the length. A magnetometer or coil is used to show field strength, Picture, Diagrams.
Sut, E-92	small coils in a solenoid	5H15.45	A no iron magnetism model. An array of small coils is mounted inside a large solenoid. Small springs keep the small coils aligned randomly when no current is applied.
AJP 56(5),478	demountable Helmholtz coils	5H15.46	On making large square demountable Helmholtz coils.
Hil, E-9d	Helmholtz coils	5H15.46	
Hil, E-9c	long solenoid	5H15.47	The long solenoid used in the e/m experiment is shown.
PIRA 200 - Old	field of a toroid	5H15.50	Iron filings show the field of a toroid which is wound through a sheet of Plexiglas.
UMN, 5H15.50	torroid and iron filings	5H15.50	Same as Ei-11.
F&A, Ei-11	field of a toroid	5H15.50	Iron filings show the field of a toroid wound through a sheet of Plexiglas.
Mei, 32-1.1	iron filings on the overhead	5H15.60	Iron filings in a viscous liquid permit field configurations to be shown. More.
Sut, E-123	iron filings on the overhead	5H15.60	Iron filings are sprinkled on glass plates that have a single wire, parallel wires, and a solenoid passing through holes.
Mei, 32-3.3	filings in castor oil	5H15.61	Small iron filings are sprinkled onto a thin layer of castor oil and a magnetic field is applied.
AJP 28(2),147	quantitative field of a coil	5H15.65	Apparatus Drawings Project No. 2: A search coil is mounted on a movable arm with provision for reading angle and distance.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
	Forces on Magnets	5H20.00		
PIRA 200	magnets on a pivot	5H20.10	One magnet is placed on	a pivot, the other is used to attract or repel the first.
UMN, 5H20.10	magnets on a pivot	5H20.10	A magnet is placed in a c the first.	radle. A second magnet is used to attract and repel
F&A, Er-2	interaction between bar magnets	5H20.10	Bar magnets on pivots.	
Disc 19-01	magnetic attraction/repulsion	5H20.10	•	a pivot, the other is used to attract or repel the first.
PIRA 1000	snap the lines of force	5H20.15		
UMN, 5H20.15	snap the lines of force	5H20.15		
PIRA 500	levitation magnets	5H20.20		
UMN, 5H20.20	levitation magnets	5H20.20	Two ring magnets are pla	ced on an upright test tube with like poles facing.
0	ie malien magnete	0.120120		
F&A, Er-11	levitation of magnetic discs	5H20.20	Two disc magnets are sus tube.	spended with like poles facing on an inverted test
D&R, B-060	levitation by repulsion	5H20.20	Ring magnets on a vertica	al rod will form an oscillating system.
F&A, Er-10	magnetic suspension	5H20.21		are held with like poles facing.
AJP, 65(4), 286-	spin stabilized magnet levitation.	5H20.22	-	consists of a spinning magnet that levitates itself
292	The Levitron toy.		above a large circular ma	
PIRA 1000	centrally levitating magnets	5H20.23		<u></u>
PIRA 1000	linearly levitating magnets	5H20.24		
PIRA 1000	inverse square law	5H20.30		
UMN, 5H20.30	inverse square law	5H20.30	Same as AJP 31(1),60.	
AJP 41(12),1332	inverse square law - magnetism	5H20.30		repulsion of two bar magnets. See AJP 31(1),60.
AJP 31(1),60	inverse square law - magnetism	5H20.30	pole of another similar ma	a meter stick with a magnet on one end facing the agnet. Adjust the distance between the magnets nce along the meter stick until equilibrium is
Sut, E-86	magnetic balance	5H20.30	Use a bar magnet brough	t near a second bar magnet counterweighted and verify the inverse square law.
Ehrlich 2, p. 150	inverse cube law - magnetism	5H20.31	A transparent compass a	nd a small disc magnet on the overhead are used to ationship of the magnetic field on distance.
Sut, E-87	hanging magnets	5H20.33		ntally and parallel. Use the inverse square law to a from the length of the suspension, the saturation,
PIRA 1000	inverse square law balance	5H20.35		
UMN, 5H20.35	inverse square law	5H20.35		
AJP 51(11),1023	inverse squared power -	5H20.35	Three simple variations of	magnets levitating in a glass tube are used to
/ 101 0 1 (1 1), 1020	magnetism	0.120100		the inverse of the distance squared.
PIRA 1000	inverse fourth law - dipoles	5H20.40		···· ··· ··· · · · · · · · · · · · · ·
AJP 74(6), 510	inverse fourth law - dipoles	5H20.40	The paper extends previo	us work on the inverse fourth law dipole-dipole
/ (0), 010		0201.10		owerful rare earth magnets.
Mei, 32-1.2	inverse fourth power - magnetism	5H20.40		e between two dipoles varies as the inverse fourth
PIRA 1000	inverse seventh law - magnet/iron	5H20.50		
Mei, 32-1.3	inverse seventh power - magnetism	5H20.50		ce between a magnet and a piece of soft iron venth of the separation. Diagram, Picture.
	Magnet / Electromagnet Interaction	5H25.00		
PIRA 1000	magnet in a coil	5H25.10		
UMN, 5H25.10	magnet in a coil	5H25.10		
F&A, Er-1	interaction of magnet and coil	5H25.10	A solenoid on a pivot and	a magnet on a pivot interact.
F&A, Ei-7	interaction of flat coil & bar magnet		A bar magnet is mounted	•
Sut, E-124	magnet in a coil	5H25.10	of the Earth field's magne	ed in the center of a large coil oriented in the plane tic meridian. The current in the coil is proportional a through which the needle is deflected.
D&R, B025, B- 030, & B-230	magnet in a coil	5H25.10	A large compass, magnet Helmholtz coils.	, or solenoid shows the field inside a set of
Disc 19-10	solenoid bar magnet	5H25.10		acts with a bar magnet only when the current is on.

Demonstration	Bibliography	J	uly 2015 Electricity and Magnetism
F&A, Er-3	period of a bar magnet	5H25.15	A magnet oscillates in a coil proportional to the square of the current in the coil.
PIRA 1000	jumping magnet	5H25.20	
UMN, 5H25.20	jumping magnet	5H25.20	Place a bar magnet in a vertical transformer and apply DC with a tap switch.
PIRA 1000	force on a solenoid core	5H25.25	
Sut, E-128	force on solenoid core	5H25.25	When a solenoid is energized a iron core is violently drawn into the coil.
Sut, E-137	unipolar motor	5H25.60	Two magnetized knitting needles mounted as the legs of an "H" suspended by a string rotate when a current flows upward through a rod.
TPT, 36(8), 474	a different twist on the Lorentz force and Faraday's law	5H25.65	An analysis of the interplay between rotating magnets and currents is illuminated using a homopolar magnet structure.
Mei, 31-1.30	floating magnetic balls	5H25.70	Thousands of small magnetic balls floating freely on the surface of water form hills and hollows when excited by an AC magnetic field. Pictures.
AJP 43(1),111	Ampere's ants	5H25.75	A fun hall display: hide a pushbutton controlled magnetic stirrer under a dish of iron filings.
	Force on Moving Charges	5H30.00	or non-nings.
PIRA 200	cathode ray tube	5H30.10	Deflect the beam in an open CRT with a magnet.
UMN, 5H30.10	cathode ray tube	5H30.10	A magnet or battery connected to the plates is used to deflect the beam of an open CRT.
F&A, Ep-11	e/m for electrons	5H30.10	Deflect the beam in an open CRT with a magnet.
D&R, B-015	cathode ray tube	5H30.10	Deflect the beam on the tube face of an old CRT with a magnet.
Sprott, 5.1	cathode ray tube	5H30.10	
Ehrlich 1, p. 160	field of a magnet	5H10.30	displacement or distortion of the pattern on the fluorescent screen. Place a transparent plastic dish on top of a magnet. Sprinkle iron filings in
Ennien 1, p. 100	heid of a magnet	51110.50	the dish to show the magnetic field of the magnet.
Ehrlich 1, p. 161	cathode ray tube	5H30.10	The beam of a cathode ray tube is deflected when a magnet is brought near.
Sut, A-72	measurement of e/m	5H30.11	Use the Earth's field to deflect the beam in an oscilloscope.
Sut, A-73	measurement of e/m	5H30.12	1 0
Sut, A-74	measurement of e/m	5H30.13	the tube.
Mei, 31-1.11	another tube	5H30.14	A Hg tube producing a visible beam is deflected by external magnetic field. Pictures.
PIRA 1000	bending an electron beam	5H30.15	
UMN, 5H30.15 F&A, Ep-8	bending an electron beam bending of an electron beam	5H30.15 5H30.15	An electron beam hitting a fluorescent screen in a tube is bent by a magnet.
	-		
Sut, A-71	deflection of cathode rays		
D&R, B-015	bending an electron beam		An electron beam hitting a fluorescent screen in a tube is bent by a magnet.
Disc 20-03	deflected electron beam	5H30.15	A thin electron beam made visible by a fluorescent screen is bent when a magnet is brought near.
AJP 51(6),572	induced charges and the Crookes tube	5H30.16	A discussion of unwanted deflections of the beam in the Crookes' tube due to induced charge.
AJP 29(10),708	CRT and Earth's field	5H30.17	A CRT is mounted so it can be oriented in any direction and rotated about its axis. Find the position that results in no deflection from the Earth's field, turn 90 degrees.
AJP 38(9),1133	analog computer simulation	5H30.19	The motion of a charged particle in a magnetic field is investigated with an analog computer. Circuit diagram for the computer is given.
PIRA 200 - Old	e/m tube	5H30.20	Show the beam of the small e/m tube in Helmholtz coils on TV. A hand held magnet gives a corkscrew.
UMN, 5H30.20	e/m tube	5H30.20	The beam of the small e/m tube in Helmholtz coils is shown on TV. A hand held magnet gives a corkscrew.
F&A, Ei-18	forces on an electron beam	5H30.21	A beam of free electrons is bent in a circle by large Helmholtz coils.
AJP 77 (12), 1102	forces on an electron beam	5H30.21	Two methods for measuring the charge to mass ratio e/m of the electron using thermionic emissions as that exploited in vacuum tube technology.
Sut, A-20	magnetic deflection of cathode rays	5H30.22	A beam from a lime-spot cathode in a large bulb is made circular by Helmholtz coils.
Sut, A-19	"Aurora Borealis"	5H30.22	
AJP 29(1),26	Classen's e/m	5H30.24	Apparatus Drawings Project No. 11: for the advanced undergraduate laboratory.
PIRA 1000	magnetic mirror	5H30.25	
AJP 31(5),397	magnetic mirror	5H30.25	The effect is better with the Leybold tube.

		•	
AJP 31(6),459	Van Allen belt	5H30.25	Use the tube and magnets to demonstrate trapping of charged particles by the Earth's magnetic field.
Disc 20-04	fine beam tube	5H30.25	•
AJP 30(12),867	magnetic mirror effect	5H30.26	Bring a bar magnet near the Cenco e/m tube causing charges to spiral into a
			converging magnetic field.
AJP 35(10),968	e/m modificaton	5H30.29	Use a half wave rectifier for filament heating.
AJP 35(2),157	e/m modification - Welch	5H30.29	Use ac instead of dc to heat the filament.
PIRA 1000	rotating plasma	5H30.30	
F&A, Ei-17	rotating plasma	5H30.30	A plasma tube powered by an induction coil is placed over an electromagnet.
raa, LFT7	Totating plasma	51150.50	A plasma tube powereu by an induction coil is placed over an electromagnet.
Sut, E-151	pinching mercury	5H30.40	, , , ,
			current and the conductor.
Mei, 31-1.8	bending arc	5H30.41	A dc arc bends and may break as a bar magnet is brought close and closer.
	0		, , , , , , , , , , , , , , , , , , , ,
PIRA 1000	electromagnetic pump	5H30.50	
	• • •		Manager is supported in a type built as support flagge at visit analysis to the
F&A, Ei-14	electromagnetic pump	5H30.50	Mercury is pumped in a tube built so current flows at right angles to the
			applied magnetic field.
Mei, 31-1.9	electromagnet pump	5H30.50	Current flowing in mercury while in a magnet field causes the mercury to
			move through a channel. Also shows a paddlewheel version.
Mei, 31-1.10	electromagnetic pump	5H30.50	A closed circuit version of the electromagnetic mercury pump.
	• • •		
Hil, E-7g.2	magnetic pump	5H30.51	Copper sulfate solution flows in a circle when placed between the poles of a
			magnet with a current from the center to edge.
AJP 38(3),389	MHD pump	5H30.52	Three versions of MHD pumps: the one for lecture demonstration consists of
			a loop of Pyrex tubing with NaK as the fluid.
PIRA 1000	ion motor	5H30.55	
Mei, 31-1.13	ion motor	5H30.55	An ion motor for the overhead projector with cork dust in a copper sulfate
Mei, 51-1.15		51150.55	
			solution.
Sut, E-194	rotation of an electrolyte in a	5H30.55	Cork dust floating on a solution of zinc chloride in a circular container rotates
	magnetic field		when current is passed through the solution in the presence of a magnetic
	-		field.
AJP, 75 (4), 361	rotation of an electrolyte -	5H30.55	Description of the magnetohydrodynamic flow of an electrically conducting
//01 , //0 (4), 001	-	01100.00	
	magnetic field		fluid between two stationary coaxial cylindrical electrodes. A neodymium -
			iron - boron magnet is used.
Disc 20-06	ion motor	5H30.55	Cork dust shows the motion of copper sulfate an ion motor. Animation.
F&A, Ei-13	force on a conducting fluid	5H30.56	Salt solution rotates when placed in a circular dish over a magnet with
,	0		electrodes at the center and edge.
	Force on Current in Wires	5H40.00	
PIRA 200	parallel wires	5H40.10	Long vertical parallel wires attract or repel depending on the current direction.
UMN, 5H40.10	parallel wires	5H40.10	Long vertical parallel wires attract or repel depending on the current direction.
F&A, Ei-1	force between parallel wires	5H40 10	Current can be passed parallel or antiparallel in long hanging wires.
	•		
Sut, E-148	parallel wires	5H40.10	Two heavy vertical wires 1 cm apart pass 15 - 20 amps in the same or
			opposite directions.
Hil, E-9b	parallel conductors	5H40.10	Vertical parallel wires pass 15 amps.
Bil&Mai, p 295	parallel wires	5H40.10	Long vertical parallel wires attract or repel depending on the current direction.
AJP 31(1),59	parallel wires, etc	5H40.11	Rectangular loops of solid wire hang on pivots from two stands. Used
AJF 31(1),39	paraller wires, etc	51140.11	
			together, demonstrate parallel wires, or one stand alone can be used for wire
			in a magnetic field or induced emf.
Mei, 31-1.26	parallel wires	5H40.12	Parallel wires with one being a loop free to turn in pools of mercury.
AJP 45(1),106	parallel wires ammeter	5H40.13	
F&A, Ei-4	force between parallel wires	5H40.14	
	•		
PIRA 200	interacting coils	5H40.15	Two hanging loops attract or repel depending on current direction.
Sut, E-149	parallel wires and loops	5H40.15	
			passed. Two loops in proximity attract or repel depending on current
			direction.
Ehrlich 1, p. 156	interacting coils	5H40.15	Two coils are free to move on a cylinder made from a transparency sheet.
Limon 1, p. 100		0.140.10	
		F 1110	The coils repel when connected to a battery.
PIRA 500	pinch effect simulation	5H40.20	
UMN, 5H40.20	pinch effect simulation	5H40.20	Same as AJP 32(11),xxiv.
AJP 32(11),xxiv	pinch effect simulation	5H40.20	Six no. 18 wires are connected loosely between two terminals. Pass 20 amps
	-		
			and the bundle is attracted.
Mei, 31-1.27	pinch effect	5H40.20	

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Disc 19-13	pinch wires	5H40.20	Six wires in parallel attract when currer direction. Then sets of three wires each three wi	
Mei, 31-1.28	pinch effect	5H40.21	directions. A high voltage capacitor is discharged strips.	through a cylinder of aluminum foil
PIRA 1000	filament and magnet with AC/DC	5H40.23	ompo.	
Sut, E-139	vibrating lamp filament	5H40.23	A tube lamp with a straight filament on the poles of a magnet.	AC will vibrate when placed between
Hil, E-7d	vibrating lamp filament	5H40.23	A magnet is brought near carbon filam other by DC. The images are projected	
D&R, B-020	vibrating lamp filament	5H40.23	A lamp filament on AC will vibrate whe	
Ehrlich 1, p. 161	vibrating lamp filament	5H40.23	The flexible filament of a light bulb will if the bulb is powered by AC.	
Disc 20-07	AC/DC magnetic contrast	5H40.23	A magnet is brought near a carbon lan	np filament powered by DC, then AC.
Sut, E-140	AC driven sonometer	5H40.24	A sonometer tuned to resonate at a ha AC through the wire while between the	
PIRA 1000	dancing spiral	5H40.25		
F&A, Ei-2	dancing spiral	5H40.25	Current is passed through a limp copport causing it to dance.	er spring dangling in a pool of mercury
Sut, E-150	dancing spring	5H40.25	A helix of fine wire hanging vertically in breaks contact repeatedly.	to a pool of mercury contracts and
D&R, B-120	dancing Slinky	5H40.25	Pass a current through a small Slinky of contraction.	on the overhead and watch
PIRA 200	jumping wire	5H40.30	A wire is placed in a horseshoe magne jumps out of the magnet.	at and connected to a battery. The wire
F&A, Ei-12	magnetic force on a wire	5H40.30	A wire is placed in a horseshoe magne	t and connected to a battery.
Bil&Mai, p 292	jumping wire	5H40.30	A wire is place between the poles of a battery. The wire will either jump into a current direction in the wire.	horseshoe magnet and connected to a
F&A, Ei-20	jumping wire	5H40.31	A large heavy wire clip rests in pools o strong magnet.	f mercury between the poles of a
Sut, E-132	aluminum bar in a magnet	5H40.32	An aluminum bar in a magnet has its e pools to a storage battery and the alum	
Sut, E-141	electomagnetic circuit breaker	5H40.33	A wire hangs into a pool of mercury an magnet. As current is passed through and breaks the circuit.	d between the poles of a "U" shaped
Sut, E-131	lead foil in magnet	5H40.34	A strip of lead foil is supported verticall so it is free to move a few cm when a f reversing switch.	
PIRA 1000	jumping wire coil	5H40.35		
UMN, 5H40.35	jumping wire	5H40.35	A coil of wire wound around one pole c energized.	f a horseshoe magnet jumps off when
D&R, B-020	jumping wire	5H40.35	Connect a battery to a wire hanging in	• •
Disc 20-01	jumping wire coil	5H40.35	Run twenty amps through a wire in a h	orseshoe magnet.
PIRA 1000	long wire in field	5H40.36		
UMN, 5H40.36	long wire in field	5H40.36	-	
umn, 5H40.37- Pira Local	take apart speaker	5H40.37	Take apart an old speaker saving the r assembly. Place the coil cone assemb The coil/cone will jump out of the mag	bly over or into the magnet assembly.
TPT 45(5), 274	Lorentz force - jumping wire with a twist	5H40.38	The Lorentz force on a current carrying Demonstrates a slow varying alternatir	-
PIRA 500	current balance	5H40.40		
Sut, E-138	current balance	5H40.40	An open rectangle of aluminum wire is magnet until current is passed through	
Mei, 31-1.2	triangle on a scale in a magnet	5H40.42	A triangular loop of wire is hung from a electromagnet and the current in the lo	
AJP 53(12),1213	improved current balance	5H40.43	Improvements on the Sargent-Welch c 20 A.	
AJP 45(6),590 F&A, Ei-5	modified current balance current balance	5H40.43 5H40.43	Add molten Wood's metal contacts to the Welch current balance.	the Sargent Welch current balance.
TPT 2(3),128	current balance	5H40.44	Design of a current balance with a rect stationary windings with parallel condu	

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Sut, E-152	Maxwell's rule	5H40.46	maximum possible magnetic	uit that can change shape to include the flux. A heavy wire connects two metal boats
AJP 31(1),xiii	CERN floating wire pulley	5H40.48		g wire" technique of simulating a beam of he method can be adapted to measure the
PIRA 500 F&A, Ei-15	Barlow's wheel Barlow's wheel	5H40.50 5H40.50		ving from the center to a pool of mercury at the
Mei, 31-1.5	Barlow's wheel	5H40.50	A potential is applied from the	ween the poles of a horseshoe magnet. axle of a wheel to a pool of mercury at the rim
Sut, E-136	Barlow's wheel	5H40.50		e poles of a magnet. ings of a copper wheel mounted vertically to a \ "U" shaped magnet is mounted so the current
Hil, E-7g.1 Disc 20-05	Barlow's wheel Barlow's wheel	5H40.50 5H40.50	is perpendicular to the magne A picture of the standard verti Current flows radially in a disc	
Mei, 31-1.6	Barlow's wheel			heel is replaced by a cylindrical Alnico magnet
AJP 29(9),635	homopolar motor	5H40.53	Variation of Barlow's wheel. A	n Alnico disk, magnetized in the direction of the when a current is made to flow from the axis to
AJP 70(10), 1052	homopolar motor	5H40.53	An argument for the relativeis	tic viewpoint for a homopolar motor.
AJP 38(11),1273	conducting spiral	5H40.55		cted as a simplified unipolar machine.
Sut, E-133	electromagnetic swing	5H40.60	a vertical bar magnet to build	
Sut, E-134	magnetic grapevine	5H40.61	around the magnet when ther	
Sut, E-142	electromagnetic conical pendulum	5H40.62		posely from above a vertical solenoid into a current is passed through the wire, it rotates in
PIRA 1000	Ampere's motor	5H40.70		
Sut, E-143	Ampere's frame	5H40.70	A coil on a reversing switch is	placed between the poles of strong magnets.
Disc 20-02	Ampere's frame	5H40.70	A magnet is brought near and	rotates a large current carrying loop.
Mei, 31-1.3	Ampere's motor	5H40.71	A copper rod rolls along two e between steel plates.	lectrified rails over ring magnets sandwiched
Mei, 31-1.4	Ampere's motor	5H40.71		er a large vertical field produced by I forth depending on the current direction.
Sut, E-135	Ampere's motor	5H40.71	As the current is reversed in a poles of a strong magnet, the	a rod rolling horizontally on a track between the direction of motion reverses.
Bil&Mai, p 297	Ampere's motor	5H40.71		two electrified rails that have flat ceramic . The magnets must all have the same poles
	Torques on Coils	5H50.00		
PIRA 200	model galvanometer	5H50.10		
PIRA 500 - Old	model galvanometer	5H50.10		
UMN, 5H50.10	model galvanometer	5H50.10	essentials.	arge coil and magnet demonstrates the
F&A, Ej-2	galvanometer with permanent magnet	5H50.10	An open galvanometer with a	
F&A, Ej-1 Sut, E-145	elements of a galvanometer d'Arsonval galvanometer	5H50.10 5H50.10	A large working model of a ga	anometer is constructed from a coil and a large
Bil&Mai, p 299	model galvanometer	5H50.10	"U" shaped magnet.	arge coil and magnets demonstrates the
	D'Arsonval meter		essentials.	
Disc 20-08 PIRA 1000	force on a current loop	5H50.10 5H50.20	A large open galvanometer.	
UMN, 5H50.20	force on a current loop	5H50.20		
Hil, E-7a	Joseph Henry	5H50.20	A rectangular loop of wire alig Reference: TPT 3(1),13.	ns perpendicular to a magnetic field.
PIRA 1000	short and long coils in a field	5H50.25		
UMN, 5H50.25	short and long coils in a field	5H50.25		
UMN, 5H50.30	interacting coils	5H50.30		
F&A, Ei-6	interaction of flat coils	5H50.30	A small free turning coil is mo	unted in a larger coil.

Demonstratior	n Bibliography	J	uly 2015	Electricity and Magnetism
Mei, 31-1.29	interacting coils	5H50.30	Two horizontal coaxial coils, the inner s suspended freely, interact when current	
			opposite directions.	
UMN, 5H50.30 - PIRA LOCAL	interacting rotating coils	5H50.30	A tap switch energizes both coils at the wired so that the current flows in the sa	
Mei, 31-2.11	coil in coils	5H50.31		nted in a large open Helmholtz coils
D&R, B-035	torques on plane coils	5H50.31	Flat and solenoid coils are suspended in	
F&A, Ei-3	interacting solenoids	5H50.32	Two heavy copper horizontal solenoids axis.	pivot in mercury cups about a vertical
PIRA 1000	dipole loop around a long wire	5H50.35		to of a barrier and an 't
Sut, E-125 Sut, E-144	solenoid in a magnetic field floating coil	5H50.40 5H50.41	Suspend a solenoid and show the effect A vertical coil energized by a flashlight of	•
PIRA 1000	spinning coil over a magnet	5H50.45	magnet to move the coil.	cen noats in a large part. Ose a bai
UMN, 5H50.45	spinning coll over a magnet	5H50.45		
	INDUCTANCE	5J00.00		
	Self Inductance	5J10.00		
PIRA 500	inductor assortment	5J10.10		
Hil, E-12a	inductor assortment	5J10.10	Sample inductors are shown.	
PIRA 500	back EMF - light bulb	5J10.20		
UMN, 5J10.20	back EMF	5J10.20	A 20 Henry inductor energized by a 12 when the circuit is opened.	
Mei, 31-3.6	back EMF	5J10.20	When current is cut off in the primary, a current in the primary.	
Sut, E-252	self inductance	5J10.20	Open the switch of a large electromagn	
Sut, E-254	back EMF	5J10.21	A 4.5 V battery lights a neon bulb when disrupted.	
Sut, E-253	neon back EMF	5J10.22	The coils of a electromagnet are conne	
Hil, E-12d	neon self induction	5J10.23	A neon lamp across an inductor will glo will flash on the other when the current	is interrupted.
Sut, E-255	inductance and the wheatstone bridge	5J10.25	The galvanometer in a Wheatstone brid reach steady state or at the same time	-
AJP 58(3),278	simulating ideal self-induction	5J10.26	A nulling circuit compensates for the ste	eady state current in a coil.
PIRA 1000 Hil, E-12b	back EMF - spark back EMF spark	5J10.30 5J10.30	A one inch spark is produced when the	awitch of a large electromagnet in
	·		opened.	ç ç
Disc 21-01	back EMF spark	5J10.30	Disconnect a 6 V battery from a 2000 tu an iron core.	
Sut, E-256	electromagnetic inertia	5J10.32	A spark will jump across an almost clos when attached to a Leyden jar.	ied loop of wire rather than go around
PIRA 200	LR Circuits RL time constant on scope	5J20.00 5J20.10	Show the RL time constant on a scope.	
UMN, 5J20.10	RL time constant on scope	5J20.10	The current and voltage of a slow time of	
F&A, Eo-11	RL time constant	5J20.10	dual trace storage oscilloscope. A plug in circuit board with a make befo	bre break switch for showing slow RL
F&A, En-6	RL time constant	5J20.10	time constants on the oscilloscope. The RL time constant is shown on a sco	
D&R, B-315, B- 320	RL time constant	5J20.10	Show RL time constant with a projection	•
F&A, En-7	time constant of an inductive circuit	5J20.11	Compare the time constant of an induct oscilloscope.	tor using different cores on an
PIRA 200	lamps in series or parallel with an inductor	5J20.20	Hook light bulbs in series with a large e	lectromagnet.
F&A, En-5	current in an inductive circuit	5J20.20	Light bulbs across and in series with a l in an inductive circuit.	arge electromagnet show the current
Mei, 31-3.5	lamps in series and parallel with an electromagnet	5J20.20	Two lamps are used to indicate voltage electromagnet.	across and current through a large
Hil, E-12c	series lamps with an electromagnet	5J20.20	Light bulbs are hooked up in series with	a large electromagnet.
D&R, B-310	current in an inductive circuit	5J20.20	Light bulbs across and in series with a l inductive circuit. Also flash due to back	
Disc 21-03	lamps in parallel with a solenoid	5J20.20	Apply 110 V to a large solenoid with inc parallel. The neon lamp flashes on the	andescent and neon lamps in
Mei, 31-3.1	lights in series and parallel	5J20.21	A circuit with a 5 H inductor has neon la	

Demonstration	n Bibliography	J	uly 2015 Electricity and Magnetism
Mei, 33-5.1	inductor characteristics	5J20.25	A bulb in parallel with a coil does not burn when powered by dc, but does
Sut, E-257	RL time constant	5J20.30	when coupled to a high frequency source. Substitute an inductor and a resistor of the same R in a circuit that lights a
			neon bulb.
PIRA 500	RLC Circuits - DC RLC ringing	5J30.00 5J30.10	
UMN, 5J30.10	RLC ringing	5J30.10	The voltages across the L and C of a slow RLC circuit are displayed on a dual trace storage oscilloscope while the circuit is energized and de-energized.
F&A, Eo-14	characteristic times in a parallel	5J30.10	Slow parallel RLC ringing on an oscilloscope.
F&A, En-9	ringing circuit	5J30.10	Ringing from an RLC circuit is shown on an oscilloscope.
F&A, Eo-13	characteristic times in a series RLC	5J30.10	Slow series RLC ringing on an oscilloscope.
Hil, A-8c	RLC ringing	5J30.10	A circuit for showing LC ringing on a oscilloscope.
Disc 21-05	damped RLC oscillation	5J30.11	Discharge a capacitor through a series RLC circuit. Vary the capacitance and resistance.
Mei, 33-1.1	RLC ringing	5J30.15	A motor driven commutator switches a circuit from charging to discharging so RLC ringing decay can be observed on an oscilloscope. Picture, Diagram, Construction details in appendix, p.1334.
Sut, E-267	RLC ringing	5J30.20	A DC circuit with RC charging and RLC discharging.
Sut, E-266	RLC ringing	5J30.21	A circuit to charge a capacitor either with or without an inductance in series.
Sut, A-10	singing arc ELECTROMAGNETIC	5J30.30 5K00.00	A ordinary carbon arc is shunted by a series LC circuit.
	INDUCTION	5K10.00	
PIRA 500	Induced Currents and Forces sliding rail	5K10.00	
UMN, 5K10.10	sliding rail	5K10.10	Slide a brass bar riding on two brass rails out of the mouth of a horseshoe magnet and display the current on a galvanometer.
F&A, Eq-1	sliding rail inductor	5K10.10	Slide a bar on rails attached to a galvanometer through the mouth of a horseshoe magnet.
F&A, Eq-2	mu metal shield	5K10.11	The sliding rail with a mu-metal shield gives the same result.
F&A, Eq-3	mu metal shield and insulator	5K10.12	The sliding rail with an insulated mu metal shield still gives the same result.
Sut, E-218	motional EMF	5K10.13	Directions on making an apparatus for demonstrating motional EMF. Reference: Am. Phys. Teacher, 3,57,1935.
PIRA 500	wire, magnet, and galvanometer	5K10.15	
Sut, E-215	moving wire with magnet	5K10.15	A straight wire connected to a galvanometer is moved rapidly through the poles of a strong magnet.
Disc 20-11	wire and magnet	5K10.15	Move a wire connected to a galvanometer in and out of a horseshoe magnet.
PIRA 1000	tape head model	5K10.16	
Mei, 31-1.1	swinging bar in a magnet	5K10.17	A bar connected to a galvanometer is swung in and out of a permanent magnet. ALSO - two other demonstrations.
AJP 49(1),90	coil pendulum in a magnet	5K10.18	A 1 second pendulum with a coil for a bob swings with small amplitude within a uniform magnetic field. All sorts of variations demonstrating forced, free, and damped oscillations are mentioned.
AJP 28(8),745	measuring magnetic induction	5K10.19	A rectangular coil in a magnetron magnet is rotated on one side and the other is suspended from a balance. Change the current in the coil and measure the force with the balance.
PIRA 200	induction coil with magnet, galvanometer	5K10.20	A magnet is moved in and out of a coil of wire attached to a galvanometer.
UMN, 5K10.20	induction coil with magnet, galvanometer	5K10.20	A magnet is moved in and out of a coil of wire attached to a galvanometer.
AJP 48(8),686	big coil	5K10.20	Make the coil large enough for the instructor to walk, run, etc. through.
AJP 72(3), 376	induction coil, magnet, PC interface	5K10.20	A magnet oscillating through a coil attached to a PC interface. Use this to investigate Lenz's law and the conservation of energy.
AJP 70(4), 424	induction coil, magnet, PC interface	5K10.20	A magnet oscillating through a coil attached to a PC interface. Induction or damping can be accurately plotted.
AJP 70(6), 595	induction coil, magnet, PC interface	5K10.20	The observed voltage is compared to that predicted by simple calculations when treating the magnet as an ideal dipole and the coil as having infinitesimally thin windings.
F&A, Ek-3	galvanometer, coil and magnet	5K10.20	Move a magnet through a coil connected to a galvanometer.
F&A, Ek-3	direction of induced currents	5K10.20	Use each end of a magnet with a coil and galvanometer.
Sut, E-216	induction coil and magnet	5K10.20	Move a bar magnet in and out of a coil connected to a galvanometer. Turn the coil with a fixed magnet.

Demonstration Bibliography July 2015 Hil, E-8a induction coil, magnet, 5K10.20 A many turn coil attached to a projection galvanometer is flipped over or a galvanometer magnet is thrust through.

galvanometer, coil, and magnet

galvanometer, coil and magnet

string and copper induction coils

number of turns and induced EMF 5K10.24

improved flashbulb demonstration 5K10.25

induction effects of hitting the bar

induction with coils and battery

induction with coils and battery

galvanometer, coils and battery

induction with coils and battery

induction coils and battery

induction coils and battery

induction coils and battery

induction coils and battery

discovering induction

ramp induction coils

changing the air gap

two coils on a toroid

large mutual inductance

current coupled pendula

insert core

two coils

5K10.25

coil, magnet, and compass

10/20/40 coils with magnet

10/20/40 coils with magnet

coil, magnet, and voltmeter

multiple induction coils

coil and lamp, magnet

coil and lamp, magnet

coil and LED, magnet

inductive coil with lamp

of Faraday's law

D&R, B-205

Bil&Mai, p 304

Ehrlich 1, p. 165

PIRA 1000

Disc 20-12

Mei, 31-2.1

D&R, B-207

AJP 28(1),81

Sut, E-217

PIRA 500

Disc 20-17

Sut, E-224

PIRA 200

F&A, Ek-4

Mei, 31-2.2

Disc 20-20

Sut, E-219

Sut, E-220

Mei, 31-2.3

Mei, 31-2.4

Mei, 31-3.7

Mei, 32-3.24

PIRA 1000

F&A, Ek-7

Sut, E-221

Mei, 31-3.2

Mei, 31-3.3

PIRA 1000

AJP 49(6),603

350

D&R, B-220, B-

UMN, 5K10.30

UMN, 5K10.25

Ehrlich 2, p. 149

TPT, 36(6), 370

5K10.20 Move a magnet through a coil or coil through a magnet while coil is connected to a galvanometer.

5K10.20 Move a magnet through a coil while the leads of the coil are wrapped 4 times around a compass.

5K10.20 Move a magnet through a coil that is connected to a galvanometer.

- 5K10.21 5K10.21 Coils of 10, 20, and 40 turns are attached to a galvanometer.
- 5K10.22 A magnet is passed in and out of a copper coil hooked to a millivoltmeter and string loop hooked to an electrometer.
- 5K10.22 A plastic tube has an 80 turn coil wrapped on it. Hook this to a voltmeter, place the magnets in the tube, and shake. Observe the meter readings.
- 5K10.23 Wind coils 1:2:4:4:4 with the 2nd and 4th in the opposite sense, all in series. Use with a single pole, then use two poles of a horseshoe magnet in two adjacent coils.
 - Combine coils of 5 cm diameter with 1,2,5,10,15 turns in various ways to show induced EMF proportional to number of turns.
- 5K10.25 5K10.25 Move a magnet into and out of a coil connected to two different color LED's which are installed with opposite polarities. An upgraded version of this would use a single bi-colored LED. 5K10.25
 - Swing a coil attached to a lamp through the gap of a horseshoe magnet. A coil, which is connected to a flashbulb, is inserted between the poles of a large permantent magnet and rapidly pulled out. Current induced by the rapid change in the flux of the magnetic field through the coil fires the flashbulb.
- 5K10.26 Put a 600 turn coil connected to a galvanometer around a soft iron bar and hit the bar while oriented parallel and perpendicular to the Earth's field.
- 5K10.30 Attach one coil to a galvanometer, another to a battery and tap switch. Use a core to increase coupling.
- Two coils face each other, one attached to a galvanometer, the other to a 5K10.30 battery and tap switch. Coupling can be increased with various cores.
- 5K10.30 Two coils are in proximity, one attached to a galvanometer, the other to a switch and battery.
- 5K10.30 Change the position of the secondary as the current is interrupted in the primary.
- 5K10.30 Primary and secondary coils, one attached to a galvanometer, the other to a battery and switch. Try various core sizes to increase coupling.
- 5K10.30 Changing the current in one coil causes a current in the other.
- Two coils are wound on an iron ring, one connected to a galvanometer, the 5K10.31 other to a battery and switch.
- 5K10.32 Two coils, one connected to a galvanometer, the other to a battery through a rheostat to allow continuous variation of current.
- 5K10.33 The voltage to a long three layered solenoid is interrupted with various layers active and various sensor loops inside.
 - 5K10.36 Repeat the original Faraday experiment and no one realizes the galvanometer twitch is meaningful.
 - 5K10.37 A galvanometer detects a steady current from one Helmholtz coil as a second coil is excited with a voltage ramp.
- 5K10.38 Change the air gap between two coils and show the induced voltage.
- current from changing air gap 5K10.39 Change the size of the air gap in an electromagnet and observe a transient change in the current energizing the coil.
- induction coils with core 5K10.40 iron core in mutual inductance 5K10.40 The effect of an iron core is demonstrated as a battery is connected to the primary. 5K10.41 While one coil has a continuous current, insert and remove cores of iron,
 - copper, and brass.
 - 5K10.42 Two coils wound on opposite sides of a toroidal core show inductive coupling when current is switched in one coil.
 - 5K10.45 Change the current steadily in a large transformer and watch the voltage in the secondary.

5K10.48

Electricity and Magnetism

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Disc 20-16	current coupled pendula	5K10.48		hung as pendula in the gaps of two horseshoe ging and the other swings.
F&A, Ek-5	time integral of induced EMF	5K10.50	The induced current from	a coil is displayed on a storage oscilloscope while various rates in a second coil.
TPT, 36(7), 416	modulated coil	5K10.51		nodulated with the output from a radio after it is
Bil&Mai, p 311	modulated coil	5K10.51	A 14 turn coil is connecte or CD player. Another ic	ed to the headphone output of a radio, tape player, entical coil connected to a mini amplifier with transmission. Use an iron core to enhance the
AJP 43(6),555	induction on the air track	5K10.52	A loop of wire on an air g	lider passes through a magnet. Show on a scope.
AJP 53(1),89	HO car in a magnetic tunnel	5K10.55	The induced EMF is obs car passes along a track	erved on an oscilloscope as a brass wheeled train through a large magnet.
PIRA 500	Earth inductor	5K10.60		
F&A, Ek-6	Earth inductor	5K10.60	The deflection of a ballis standard flux.	ic galvanometer from a flip coil is compared to a
Disc 20-13	Earth coil	5K10.60	Flip the standard Earth c	oil attached to a galvanometer.
Sut, E-222	Earth inductor	5K10.61	Several variations. A larg	e (1.5 m x 6 m) single wire loop, collapse a flexible ng flexible wire swung like a jump rope are attached le damping turn removed. ALSO the commercial
AJP 29(5),329	rotating coil magnetometer	5K10.62	Orient a motor driven coi is displayed on an oscillo	I in various ways in the Earth's field while the output scope.
AJP 44(9),893 AJP 57(5),475	Earth inductor integrating amp Earth inductor with VFC	5K10.62 5K10.62	A voltage-to-frequency c	anometer with an integrating amp (circuit given). powerter replaces the ballistic galvanometer in the
AJP 52(3),279	Earth inductor on oscilloscope	5K10.62	Earth inductor demonstra Subsititute an oscillosco voltage versus time.	ition. be for the galvanometer and look at the induced
AJP 55(4),379	Earth inductor integrator	5K10.62	Replace the galvanomet	er with an integrator and voltmeter.
AJP 29(5),333	rotating coil magnetometer	5K10.63	Display the signal from a	motor driven coil on an oscilloscope.
Sut, E-223	Earth inductor compass	5K10.63	A motor driven coil of se deflection depending on	veral hundred turns gives a different galvanometer the orientation.
PIRA 1000	jumping rope	5K10.65		
UMN, 5K10.65	jumping rope	5K10.65		
TPT 37(6), 383	Earth inductor jump rope	5K10.65	galvanometer.	ong wire attached to an oscilloscope or
D&R, B-210, B- 405	Earth inductor jump rope	5K10.65	galvanometer.	ong wire attached to an oscilloscope or
Bil&Mai, p 306	Earth inductor jump rope	5K10.65	Play "jump rope" with a 5 The cord must have an E	0 foot extension cord attached to a galvanometer. ast-West alignment.
PIRA 1000	What does a voltmeter measure?	5K10.70		
UMN, 5K10.70	What does a voltmeter measure?	5K10.70	Same as AJP 50(12),108	
AJP 50(12),1089	what do voltmeters measure?	5K10.70	long solenoid give differe	•
AJP 49(6),603	paradox	5K10.71	Feynman - "When you fig principle of electromagne	gure it out, you will have discovered an important tism".
AJP 51(12),1067	what does a voltmeter measure - letter	5K10.71	Add a third voltmeter tha	t can be moved for continuously varying readings.
AJP 37(2),221	Faraday's Law teaser	5K10.71	Measure the voltage betw through different paths.	veen two points at the end of an electromagnet
AJP 38(3),376	Faraday's Law teaser - addendum	5K10.71	Clears up ambiguities in	AJP 37(2),221.
AJP 45(3),309	induced current liquid crystal	5K10.78	Liquid crystals placed ov various configurations.	er laminated copper conductors show heating of
AJP 41(1),120	Faraday's homopolar generator	5K10.80	•	heel by hand with the edge of the wheel and a e poles of a magnet. Show the induced current on a
Mei, 31-2.12	homopolar generator	5K10.80	A homopolar generator s fields. Not the most obvio	hows the relation between electric and magnetic ous demonstration.
AJP 56(9),858 AJP 43(4),368	radial homopolar generator Rogowski coil	5K10.81 5K10.85		eld homopolar motor (Barlow's wheel). Ampere's circuital law using a flexible toroidal coil.
AJP 45(11),1128 Mei, 31-1.24	magnetic wheel Rogowski coil	5K10.85 5K10.85	A flexible coil hooked to	nipolar machine using a magnetic wheel. a ballistic galvanometer is used to give a direct netic potential between two points.

Demonstratior	n Bibliography	J	uly 2015 Electricity and Magnetism
Mei, 31-1.23	Ampere's law	5K10.85	Use the Rogowski coil to examine the magnetic field produced by current in a single wire, or two wires of parallel and opposing current. Picture, theory.
Mei, 31-1.7	rocking plates	5K10.99	Demonstrates some difficult concepts of flux linkages using sheets of metal instead of wires.
	Eddy Currents	5K20.00	A conner sheet and comb rise and broken rise, are surved through a large
PIRA 200	Eddy currents in a pendulum	5K20.10	A copper sheet and comb, ring and broken ring, are swung through a large electromagnet.
UMN, 5K20.10	pendulum in a big electromagnet	5K20.10	Pendula of solid and comb-like copper plates, solid and slit copper rings, are swung through a large electromagnet.
AJP 30(6),453	Eddy current pendulum	5K20.10	Apparatus Drawings Project No. 29: Large electromagnet accessories, one of four. Plans for a large eddy current pendulum to go on the large electromagnet from No. 13.
F&A, EI-3	Eddy currents in a pendulum	5K20.10	A copper sheet and comb, ring and broken ring, are swung through a large electromagnet.
TPT 25(4), 223	Eddy current pendulum	5K20.10	Pendulums of solid copper, sliced copper, aluminum, and Lucite swing through the poles of a large permanent horn magnet.
Ehrlich 1, p. 166	Eddy current pendulum	5K20.10	A bar magnet is tied to a string and swung as a pendulum over a sheet of copper.
Disc 20-24 Sut, E-227	Eddy current pendulum magnetic brake	5K20.10 5K20.11	Copper, wood, etc. bobs are swung in a large permanent magnet. A heavy copper disk swings as a pendulum between the poles of an electromagnet.
Hil, E-8d.2	Eddy current pendulum	5K20.11	A pendulum with a copper plate bob is swung through a big electromagnet.
D&R, B-285	magnetic brake	5K20.11	Solid and slotted copper or aluminum sheets are swung through the poles of a permanent or electromagnet.
PIRA 1000	Eddy damped pendulum	5K20.15	
UMN, 5K20.15	Eddy damped pendulum	5K20.15	A magnet pendulum bob is swung over copper, aluminum, and stainless plate.
F&A, EI-2	Eddy damped pendulum	5K20.15	A bar magnet suspended as a pendulum is damped as it swings over a copper plate.
PIRA 1000	falling aluminum sheet	5K20.20	A state of the sta
UMN, 5K20.20	falling aluminum sheet	5K20.20	An aluminum sheet is dropped through the poles of a large horseshoe magnet.
F&A, El-4	falling aluminum sheet	5K20.20	A strip of aluminum sheet is allowed to fall between the poles of a large Alnico magnet.
AJP 35(7),iv	Eddy current brake	5K20.22	Fasten a large aluminum disk to a 1/4 hp motor and then bring a magnetron magnet to the edge of the disk to slow the motor down.
ref.	plates and magnets, the Osheroff demo.	5K20.24	
Sprott, 5.2	plates and magnets, the Osheroff demo.	5K20.24	
TPT 38(1), 48	platae and meanate	5K20.24	
TPT 35(4), 212	plates and magnets plates and magnets	5K20.24	with strong cylindrical magnets. Lenz's law with money and a neodymium magnet. Use aluminum, copper,
TPT 37(5), 268	plates and magnets	5K20.24	nickel, silver, and zinc coins. Float an aluminum can in water. Turn and brake it with a neodymium
			magnet on a string.
TPT 43(4), 248 Bil&Mai, p 310	plates and magnets plates and magnets	5K20.24 5K20.24	Cylindrical neodymium magnets rolling down an aluminum incline. Cylindrical neodymium magnets and coins are rolled down an aluminum
		01120.24	incline at the same time.
PIRA 200	magnets in Eddy tubes	5K20.25	Drop a magnet and a dummy in glass and aluminum tubes, then switch. The magnet in aluminum falls slowly.
UMN, 5K20.25	magnets and Eddy tubes	5K20.25	
D&R, B-280	Eddy current tubes	5K20.25	Drop a powerful magnet through copper and aluminum tubes.
AJP 74(9), 815	Eddy current tubes	5K20.25	A calculation is presented that quantitatively accounts for the terminal velocity of a magnet falling through a copper or aluminum tube.
AJP 73(1), 37	Eddy current tubes	5K20.25	Dimensional analysis is used to analyze the demonstation of the magnet falling through the copper tube.
AJP, 75 (8), 728	Eddy current tube analysis	5K20.25	Revisits a time of fall analysis of a magnet through a conducting tube taking into account the effect of thickness of the tube.
Disc 20-26	Eddy current tubes	5K20.25	Drop a magnet and a dummy in glass and aluminum tubes, then switch.
PIRA 200	Faraday repulsion coil	5K20.26	- · · ·
PIRA 1000 - Old	Faraday repulsion coil	5K20.26	
F&A, Ek-1	forces due to induced current	5K20.26	Pull a light bifilar suspended aluminum ring with a magnet.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
D&R, B-280	Faraday repulsion coil	5K20.26	-	wn from a solid and split ring on a bifilar
Ehrlich 1, p. 165	Faraday repulsion coil	5K20.26	suspension. It is possible to "pun Move the pole of a bar magnet in suspension.	and out of a coil of wire on a bifilar
Disc 20-19	Faraday repulsion coil	5K20.26	Thrust the pole of a magnet in an suspension.	d out of a copper ring on a bifilar
PIRA 200 - Old	jumping ring	5K20.30	•	ical transformer jumps while a split ring
UMN, 5K20.30	jumping ring	5K20.30		er solid, are placed around the core of a coil
F&A, Em-12	jumping ring	5K20.30	An aluminum ring jumps off the in	on core of a vertical inductor.
Sut, E-236	jumping ring	5K20.30	Solid and split aluminum rings on	
D&R, B-260, B-	jumping ring on an Elihu	5K20.30	Solid, split, and multiple rings on	
270	Thompson apparatus	0		
D&R, B-265	jumping ring on an Elihu Thompson apparatus	5K20.30	Multiple rings of various cross see	ctions on an Elihu Thompson coil.
Sprott, 5.3	jumping ring	5K20.30	A coil of wire around an iron core up to the ceiling.	is energized to propel a ring of aluminum
AJP 69(8), 911	jumping ring analysis	5K20.30		d by a capacitor bank is needed for a Lenz's
Disc 20-18	Thompson's flying ring	5K20.30		um ring flies off, a slit ring does nothing,
AJP 39(3),285	jumping ring analysis	5K20.31	An analysis of the role of phase d demonstration.	ifferences in the levitating ring
AJP 54(9),808	jumping ring analysis	5K20.31	An analysis of the role of phase d demonstration.	ifferences in the levitating ring
AJP 68(3), 238	jumping ring analysis	5K20.31	Measurements of the phase delay were performed for phase angles	y of the current and force on a floating ring from 12 degrees to 88 degrees.
Mei, 31-2.9	jumping ring analysis	5K20.31	Be careful how you analyze the ju	imping ring. References.
F&A, EI-5	frying egg	5K20.35		re of a large solenoid gets hot enough to fry
Sut, E-237	boil water on the vertical transformer	5K20.36	Boil water in a ring shaped trough	on the vertical transformer.
D&R, B-260 PIRA 500	boiling water on a transformer Eddy current levitator	5K20.36 5K20.40	Steam from a water filled ring on	an Elihu Thompson coil.
UMN, 5K20.40	Eddy current levitator	5K20.40		
F&A, El-1	Eddy current levitation	5K20.40	A strong coromic magnet is lovita	ted over a spinning aluminum disc.
D&R, B-290	Eddy current levitation	5K20.40	A magnet is levitated over a spinr	1 0
AJP 31(12),925	electromagnetic levitator		•	•
AJF 31(12),923 Mei, 31-2.22	large levitator	5K20.41 5K20.41	aluminum pan. Weighs 100 lbs, r	ator that lifts a 18" dia. 1/16" thick equires only 400 W at 110 V. tator. Diagrams, Construction details in
·	5		appendix, p. 1332.	
PIRA 1000	Arago's disk	5K20.42	Support the baraabaa magnet by	v a light stranded string and "wind wall the
AJP 28(8),748	Arago's disk	5K20.42	string to get a high spin rate.	y a light stranded string and "wind up" the
Sut, E-226	Arago's disk	5K20.42	A magnet suspended above a rot	ating horizontal copper disk will rotate.
Hil, E-8d.1	rotating magnet	5K20.42	A magnet needle over a rotating of	copper disk.
D&R, B-287	rotating an aluminum plate with a	5K20.42	Place an aluminum plate in a pie	pan and float in water. Rotate a strong
	magnet			te will start to spin. Try different magnets
Disc 20-25	Arago's disk	5K20.42	A bar magnet suspended above a	a spinning aluminum disc will start to rotate.
AJP 47(5),470	rotating vertical disc	5K20.43	A magnet hung by a quadrafilar re disk shows both repulsive and ret	olling suspension near a spinning aluminum arding forces.
PIRA 1000	rotating ball	5K20.50		
F&A, Em-13	rotating ball	5K20.50	A hollow aluminum ball rotates in transformer.	a watch glass atop a shaded pole
Mei, 31-2.18	spinning ball on a dish	5K20.50	A half disc of sheet aluminum pla rotating magnetic field that cause	ced on an AC excited coil produces a s a ball to spin.
D&R, B-275	shaded pole induction motor	5K20.50		a beaker atop a shaded pole transformer.
AJP 45(11),1020	magnetic stirrer demonstrations	5K20.51	•	ding a paradox: place a steel ball on a in one direction, but backwards when
Mei, 31-2.19	Eddy current motor	5K20.52	A metal 35 mm film canister spins an electromagnet.	s when mounted to one side of the pole of

Demonstratior	Bibliography	J	uly 2015	Electricity and Magnetism
Mei, 31-2.8	rotating aluminum disc	5K20.55		eld asymmetrically over a vertical solenoid
Mei, 31-2.6	spinning aluminum discs	5K20.56		ed by an aluminum plate. m discs in parallel planes on the same rigid ns when inserted into a magnetic field.
Mei, 31-2.7	rotating aluminum disc	5K20.57	•	ally between the poles of a vertically
AJP 46(7),729	one-piece Faraday generator	5K20.58	Instead of a conducting disk rotat	ing in an axial magnetic field, the disk is ent magnet that supplies its own magnetic
AJP 40(2),330	magnetic curl meter	5K20.59	Faraday's "electromagnetic rotation conducting fluid rotating continuo	on apparatus" shows a magnet in a usly when suspended in a region of evice measures the torque on such a
Sut, E-225	Eddy currents in Barlow's wheel	5K20.60	Attach the Barlow's wheel to a ga	
F&A, El-6 Mei, 31-2.5	money sorter rotating cores in magnet	5K20.62 5K20.63	Silver and ersatz quarters are dro	pped through a large magnet. and laminated iron cylinder, are each
			rotated while suspended in a mag	-
PIRA 1000 Sprott, 5.4	electromagnetic can breaker electromagnetic can breaker - can	5K20.65	A large capacitor discharged into	a low impedance coil of a few turns
Opfoll, 0.4	crusher	51120.00		enough to crush or break an aluminum soft
Disc 20-27	electromagnetic can breaker	5K20.65	A large pulse of induced current i	n a soda can blows it apart.
	Transformers	5K30.00		
PIRA 500 PIRA 1000	wind a transformer salt water string	5K30.10 5K30.13		
F&A, Em-10	single turn transformer	5K30.14	Probes of an oscilloscope are slic	all along the ring of a single turn secondary.
PIRA 200	dissectible transformer/light bulb	5K30.20		
PIRA 500 - Old	dissectible transformer/light bulb	5K30.20		
F&A, Em-5	dissectible transformer	5K30.20	Various cores are interchangeabl	e with the Leybold transformer.
Disc 20-23	transformers	5K30.20	Many variations with the Leybold	
Sut, E-240	toy transformer	5K30.21	a step down transformer. Then pl	h the input and a 6 V lamp on the output of ace an auto taillight lamp in series with the oss the output and increase the voltage with melts.
Sut, E-246	telephone and radio transformers	5K30.22	Using commercial transformers ir	n demonstrations.
AJP 54(6),528	magnetic losses in transformers	5K30.24	magnetic potential drop.	Leybold transformer to demonstrate the
Hil, E-11c	transformers	5K30.25		monstration transformers are shown.
D&R, B-435	transformers	5K30.25	Voltage and current of primary an series and as secondary load.	d secondary coils shown with light bulbs in
PIRA 1000	vertical transformer	5K30.30		
UMN, 5K30.30	vertical transformer	5K30.30		bulbs are placed over the core of a vertical
Sut, E-235	vertical transformer	5K30.30	•	ansformer using 110 V AC in the primary.
Hil, E-11d	Thompson vertical transformer	5K30.30	Includes directions for step up an A vertical transformer is shown w	•
Ehrlich 1, p. 164	vertical transformer	5K30.30		ht bulb is placed over the core of a vertical
		51/20 20	transformer.	
Disc 20-22	vertical primary and secondary coils	5K30.30		vith two coils, one with many turns powers a wer turns powers a flashlight lamp.
Sut, E-238	autotransformer	5K30.34		mer with 400 turns tapped every 50 turns 0 turns. Explore with a light bulb. See L-99.
PIRA 1000 UMN, 5K30.35	light underwater light underwater	5K30.35 5K30.35	The secondary coil and light bulb	are placed in a beaker of water and held
F&A, Em-7	light under water	5K30.35		rmer. aced in a beaker of water over a vertical
D&R, B-425	light underwater	5K30.35		e placed in a beaker of water and held over
PIRA 1000	weld a nail	5K30.40	the core of an Elihu Thompson co	л.
UMN, 5K30.40	weld a nail	5K30.40	Two nails attached to the second welded together upon contact.	ary of a large low voltage transformer are

Demonstratior	Bibliography	J	uly 2015 E	lectricity and Magnetism
F&A, Em-4	large current transformer	5K30.40	Nails connected to the secondary of a lar	ge current transformer are welded
Sut, E-239	dissectible transformer - welding	5K30.40	together. Two "L" shaped laminated iron cores with step down 110 V AC to melt an iron wire.	
D&R, B-445	weld a nail	5K30.40	Nails connected to the secondary of a ste 10.6 amps) are welded together on conta	ep-down transformer (6.3 volts at
AJP 36(1),x	simple spotwelder	5K30.43	Modify a heavy duty soldering iron to fund	
ref.	Jacob's ladder	5K30.50	see 5D40.10	
F&A, Em-11	induced EMF	5K30.51	An oscilloscope is connected to a wire in	
Sut, E-234	exploratory coil	5K30.52	Explore an alternating magnetic field with No. 30 wire connected to a 6 V lamp.	
Mei, 31-3.4	mutual inductance on a scope	5K30.53	The relationship between the current in o shown as a Lissajous figure on an oscillo	scope. Diagram.
Sut, E-243	magnetic shunt	5K30.54	An "E" core has two windings: 110V prim with a lamp on the middle. Bridge a yoke lights but when put over all three it doesn	over the windings and the lamp
PIRA 1000	reaction of a secondary on primary	5K30.60		
F&A, Em-2	primary current change with secondary load	5K30.60	A light bulb in series with the primary brig increases.	phtens as the load on the secondary
Sut, E-241	reaction of secondary on primary	5K30.60	Connect a 100 W lamp in series with the the secondary to light the lamp.	primary and increase the load on
Sut, E-242	reaction of secondary on primary	5K30.61	Vary the load on the secondary and the c observing the current in the primary.	oupling between the primary while
F&A, Em-9	shocker	5K30.81	A vibrator switches the current in a prima leads of the secondary while the coupling	
F&A, Em-6	phony health belt	5K30.84	A weird antique health belt.	,
Mei, 33-3.2	resonant Leyden jar detector	5K30.90	One Leyden jar with a loop of wire is drive	
Hil, A-8a	Leyden jar and loop	5K30.90	similar arrangement is used as a detecto When a spark jumps from a loop of wire jump in a similar device close by.	
	Motors and Generators	5K40.00	, , , , , , , , , , , , , , , , , , ,	
PIRA 1000	DC motor	5K40.10		
UMN, 5K40.10 F&A, Ei-19	DC motor DC motor	5K40.10 5K40.10	A coil is mounted between two magnetro A large open coil is mounted between the	•
Sut, E-147	DC motor	5K40.10	make a DC motor. A circular loop of heavy wire between two	solenoids with iron cores
Sut, E-146	DC motor	5K40.10	A coil in a "U" shaped magnet with a sim	
D&R, B-075	DC motor	5K40.10	Simple motor construction using a D batt	
Bil&Mai, p 308	DC motor	5K40.10	A simple motor construction using D batt magnet.	eries and a single neodymium
Ehrlich 1, p. 162	DC motor	5K40.10	A simple motor constructed from a "D" ce and some varnish coated copper wire.	ll battery, disc magnet, paper clips,
Disc 20-09	DC motor	5K40.10	A large model DC motor.	
F&A, Eq-5	DC motor and lamp	5K40.12	A DC motor has a light bulb in series with flow as the motor starts, comes up to spe	
F&A, Eq-6	DC series and parallel motors	5K40.13	A DC motor on a board allowing armature or parallel.	
PIRA 1000	Faraday motor	5K40.15		
AJP 31(1),42	Faraday motor	5K40.15	Apparatus Drawings Project No.33: A roc mercury and a parallel conducting coppe	
Hil, E-7e	Faraday motor	5K40.15	around the magnet. A model of the first electric motor develop	oed by Faraday
Disc 20-14	Faraday disc	5K40.15		a horseshoe magnet with brushes at
Hil, E-8c	simple motor	5K40.18	A two coil, two magnet assembly illustrate	es simple generator principles.
Sut, E-232	simple speed control for DC motor	5K40.19	A circuit to change speed and direction o	f a small DC motor.
PIRA 500	DC & AC generators on a galvanometer	5K40.20		
UMN, 5K40.20	DC & AC generators on a galvanometer	5K40.20	A coil mounted between two magnetron r commutator and slip rings.	nagnets is equipped with both
Sut, E-228	motor waveform	5K40.21	The armature of a generator is rotated 10 galvanometer and the result of 36 observ	•
PIRA 500	DC & AC generators on a scope	5K40.25		

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
UMN, 5K40.25	DC & AC generators on a scope	5K40.25	The waveforms from the DC/AC gener	ator are displayed on an oscilloscope.
AJP 49(7),701	AC and DC dynamo	5K40.26	Abstract from the 1981 apparatus com	petition.
Mei, 31-2.15	demonstration model generator	5K40.27	A generator built with a small motor sp shows operation of an AC generator.	un rotor in a large open solenoid
Mei, 31-2.10	light the bulb with a coil	5K40.28	A coil connected to a light bulb is mou poles of an electromagnet. Picture.	nted on a disk rotating between the
Mei, 31-2.14	generator on the overhead	5K40.29	A hand crank generator designed for u	se on the overhead projector.
Bil&Mai, p 313	AC motor	5K40.35	A simple AC motor constructed from the Completely remove the epoxy coating motor with a square wave generator.	•
PIRA 200	motor/generator	5K40.40	A large AC/DC motor/generator has be	oth slip and split rings.
UMN, 5K40.40	motor/generator	5K40.40		
F&A, Eq-4	motor generator	5K40.40	An armature with both slip rings and a between two magnets as either a AC of	•
Mei, 31-2.13	motor/generator	5K40.40	A coil mounted between the poles of a a generator or powered by a battery as	n electromagnet is rotated by hand as
Sut, E-229	AC and DC generators	5K40.40	Directions for making a large demonst	ration motor/generator. Picture.
D&R, B-405	AC and DC generators	5K40.40	Homemade and commercial AC and D	
Disc 20-15	AC/DC generator	5K40.40	A large AC/DC generator with slip and	split rings.
PIRA 1000	coupled motor/generator	5K40.45		
Mei, 31-2.16	coupled motor/generators	5K40.45	Two small permanent magnet DC mot mechanically, the other will spin. Pictu	
Ehrlich 1, p. 169	coupled motor/generator	5K40.45	Two small DC motors are connected to will drive the other motor connected to versa.	
Mei, 31-2.17	simple induction motor	5K40.50	Bring a coffee can on an axle near two AC with a capacitor in one line.	coils mounted at 90 degrees carrying
AJP 33(12),1082	induction motor model	5K40.53	Suspend a closed copper loop by a thr magnet and it will remain aligned with	
Sut, E-233	synchronous motor	5K40.55	Run an AC dynamo as a synchronous armature coils.	-
Mei, 31-2.20	synchronous and induction motors	5K40.56	Three pairs of coils in a circle produce permanent magnet or aluminum rotor. appendix, p. 1329.	a rotating magnetic field for use with a Picture, Construction details in
Sut, E-250	three phase	5K40.60	Directions for winding three coils of a t	hree phase rotator.
Sut, E-248	three phase	5K40.60	Directions for making a three phase wi	
Sut, E-249	three phase	5K40.61	Remove the rotor from a three phase i inside.	
Mei, 31-2.21	modified Rowland ring	5K40.64	An aluminum ring spins in the center of Picture.	f a three phase horizontal toroid.
Sut, E-251	two phase rotator	5K40.65	How to make a two phase rotator get t two phase. Diagram.	wo phase from either three phase or
Sut, E-230	counter EMF in a motor	5K40.70	A lamp in series with a motor does not motor slowing it down.	glow unless a load is placed on the
D&R, B-295	back EMF in a motor	5K40.70	Voltmeter and ammeter connected to a on current drawn under different load o	
Sut, E-231	counter EMF in a motor	5K40.71	Suddenly switch the armature of a shu while it is running.	nt wound DC motor to a voltmeter
Mei, 30-2.10	back EMF in a motor	5K40.72	The circuit that shows the effect of bac under various load conditions and afte	•
Sut, E-247	speed of AC motors under load	5K40.73	Slip speed and phase shift are shown increased on induction and synchronor	
Mei, 31-1.12	motor debunking	5K40.75	A copper conductor in an iron tube in a motors are not caused by magnetic fie	-
PIRA 200 - Old	hand crank generator	5K40.80	Use a hand cranked generator to light	an ordinary light bulb.
UMN, 1M50.30	hand crank generator	5K40.80	Light a bulb with a hand crank generat	
UMN, 5K40.80	hand crank generator	5K40.80	A hand crank generator made with a 1 bulbs.	20 V DC generator is used with light
F&A, Mv-4	hand crank generator	5K40.80	A hand cranked generator is used to li	
F&A, Eq-7	hand crank generator	5K40.80	Students light a bulb with a hand crank	5
Hil, E-8b	telephone generator	5K40.80	An AC generator from an early telepho loop model and another generator.	ne lights a 110 V lamp. Also, a single
D&R, B-250	hand crank generator	5K40.80	A Genecon generator is used to charg bulb, bi-color LED to show polarity reve	

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
Ehrlich 1, p. 170	hand crank generator	5K40.80	Crank a hand powered generator to lig	oht a bulb.
Disc 03-16	hand crank generator	5K40.80		in five seconds from internal friction or
Hil, E-7f	AC and DC generator	5K40.82	A small open hand crank generator.	
PIRA 1000	bicycle generator	5K40.83		
UMN, 5K40.83	bicycle generator	5K40.83	A 2KW generator mounted on a bicyc	le is used with big lamps.
PIRA 1000	generator slowed by load	5K40.85	··_··· g-·····	
Disc 03-17	generator driven by falling weight	5K40.85	A weight on a string wrapped around t slowly when there is an electrical load	
AJP 41(2),203	MHD power generator	5K40.99	Discharge a toy rocket motor between copper electrodes placed in the gas je	the poles of a magnet and attach
		5L00.00		
	Impedance	5L10.00		
PIRA 500	inductive choke	5L10.10	Manage and the second sector for a setting second	te e sudde e Protection
UMN, 5L10.10	inductive choke	5L10.10	Move a core in and out of a coil in ser	•
F&A, En-3	variable inductance	5L10.10	An inductor with a movable iron core i	-
Sut, E-258	inductive reactance	5L10.10	Pull a core in and out of a solenoid in lamp. Try with DC.	series with a 200W lamp, then a 10 W
Disc 21-02	inductor with lamp on AC	5L10.10	Place a large coil in series with a light and the light bulb dims.	bulb, then insert an iron core in the coil
PIRA 1000	capacitive impedance	5L10.20	-	
F&A, En-4	capacitive impedance	5L10.20	A variable capacitor is connected in se	eries with a light bulb.
PIRA 1000	capacitive reactance	5L10.30	·	ő
Mei, 30-2.9	capacitive reactance	5L10.30	A circuit to vary R through the value o things.	f the capacitive reactance, among other
Sut, E-260	capacitive reactance	5L10.35		s each element in a circuit with a 25W
Mei, 33-5.2	skin effect	5L10.40	Conductors of different dimensions ar high frequency circuit.	e connected to lamp indicators in a
AJP 44(10),978	skin effect	5L10.41	Stack metal plates between the prima bundle of wire is opened up to gain ac measurement.	
AJP 53(11),1089	phasemeter	5L10.50	Some phasemeter circuits are given s relationships for reactive elements.	uitable for showing current-voltage
Mei, 33-2.2	I-V curves on a scope	5L10.51	A circuit to generate I-V curves of vari Appendix: p. 1337.	ous electrical components. Diagram,
TPT 28(3),160	octopus	5L10.55	A simple circuit used by technicians to voltage in a circuit.	probe the relationship of current and
F&A, Eo-9	impedance bridge RLC Circuits - AC	5L10.55	Complex impedances are plugged into	o a Wheatstone bridge board.
TPT 20(3), 187	demonstration AC circuit board	5L20.00 5L20.01	A simple demonstration board with L, that are easily visible in the classroom	
PIRA 500	RLC - phase differences	5L20.10		
UMN, 5L20.10	RLC - phase differences	5L20.10	Applied voltage, R, L, and C are displaced and the circuit passes through	ayed on a four channel scope while L is
F&A, En-13	parallel resonance	5L20.10		in all elements of a parallel RLC circuit.
F&A, En-2	phase shift in an RLC circuit	5L20.10	The voltages across elements of a RL varied through resonance.	C circuit are shown as the inductor is
F&A, En-12	RLC series circuit	5L20.10	5	applied, R, L, and C simultaneously on ed through resonance
AJP 47(4),337	series RLC phase shift on scope	5L20.11	Simultaneous display of four traces of scope using a multiplexer. Circuit diag	the RLC circuit on a single channel
Mei, 33-2.3	RLC phase relationships	5L20.11	A circuit allows phase relationships be 80375 choke coil and resonance appa oscilloscope.	etween R and L or C of the Cenco
D&R, B-415	RLC phase relationships	5L20.11		os of various components shown on an
AJP 39(10),1133	RLC waveforms display	5L20.12	The Leybold double wire loop oscillog	raph is modified to project laser beams onships of a RLC (circuit given) circuit.
AJP 43(11),1011 AJP 29(8),546	RLC phase relationships phase shift in a fluorescent circuit	5L20.13 5L20.14	Show the input and output of an RLC Among other things, demonstrate the circuit.	

Demonstratior	n Bibliography	J	uly 2015	Electricity and Magnetism
AJP 40(4),628	LC op amp interface	5L20.14		the inductor and capacitor have high impedance and
Sut, E-269	RLC - phase differences	5L20.15		m. nining on a disk rotated by a synchronous motor s in a series RLC circuit driven by 110 V AC.
AJP 45(1),97	RLC vectors on CRO	5L20.16	Pulses are generated fr	om an RLC circuit to modulate the Z axis of a CRO. plied frequency is changed.
AJP 40(10),1529	seconds period RLC	5L20.17	Directions for building a	n underdamped RLC circuit with a period from .5 to 5 to 5 to with a electromechanical generator.
PIRA 1000	driven RLC circuit	5L20.18		-
Disc 21-04	driven RLC circuit	5L20.18	The voltage and current are shown in succession	across the capacitor, inductor, resistor, and supply n on an oscilloscope.
PIRA 200	RLC - resonance	5L20.20		
PIRA 500 - Old	RLC - resonance	5L20.20		
UMN, 5L20.20	RLC - resonance	5L20.20	resonance is achieved.	60 Hz 120 V RLC circuit when the L is changed and
F&A, En-1	series RLC circuit	5L20.20	resonance.	circuit glows when the inductor core is moved through
Hil, E-13b	series RLC resonance	5L20.20		itor, and variable inductor form a series circuit.
Hil, E-13c	series RLC resonance	5L20.20		n a RLC circuit with a light bulb resistance.
D&R, B-415	RLC - resonance	5L20.20	RLC resonance shown	
F&A, Eo-15	parallel AC resonance	5L20.21	series light bulb current	
Hil, E-13d	parallel resonance	5L20.21	indicators.	circuit with a variable inductor and light bulb
Sut, E-265	RLC - resonance	5L20.22	Short inductor or capaci	
TPT,37(3), 179	qualitative demonstrations of parallel/series resonance	5L20.23	resonance is described.	
Sut, A-26	resonance at 60 Hertz	5L20.24	The product of inductan be 7.	ce in henrys and capacitance in microfarads should
Hil, E-13e	LC parallel resonance	5L20.26	An LC circuit is driven b Reference: AJP 36(1),x	y coupling a second coil driven by an audio oscillator.
AJP 36(9),915	resonance curves on scope	5L20.30	frequency response cur	
Mei, 33-3.6	RLC resonance plot on scope	5L20.31		ance curve is generated by mechanically driving a pot the scope by a chain to the tuning knob of the signal ture.
Mei, 33-3.5	coupled RLC circuits	5L20.40	core. The two are show	its and a driving coil are coupled with a common n to resonate at the same frequency, then when both busly, there are two different frequencies at which ram, Picture.
AJP 36(1),x	air coupled circuit	5L20.41	Two coils are air couple	d, one is driven by an audio oscillator and various cross the other coil while the output is monitored on
Sut, E-268	high voltage RLC ringing	5L20.50	The secondary of a high	n voltage transformer is shunted across a spark gap, uctor made of several turns of heavy copper all in
Mei, 33-3.4	HF RLC resonance	5L20.51	A 30 MHz 500W genera	tor is coupled to a loop, light bulb, parallel plate RLC nce changed to find resonance. Picture.
PIRA 500	Filters and Rectifiers bridge rectifier	5L30.00 5L30.10		
UMN, 5L30.10	bridge rectifier	5L30.10	•	eatstone bridge circuit board are used to demonstrate nd full wave rectification. Show on an oscilloscope.
F&A, Eo-10	bridge rectifier	5L30.10	Half and full wave rectifi	cation with a plug in Wheatstone bridge board.
F&A, Eo-8	wheatstone bridge	5L30.10		pard with plug in elements.
Disc 18-11	rectifier circuit	5L30.10	-	bridge configuration followed by two low pass filters.
Mei, 33-2.4	bridge rectifier	5L30.11		g between unrectified, half, and full wave rectified et bob pendulum and pickup coil provide a slow AC
Sut, A-80	diode rectifier	5L30.12	•	ate rectification with a diode rectifier tube.
Sut, A-79	thermionic rectifier	5L30.14		ic rectifier using a switch to change polarity of DC
Sut, A-25	very low frequency rectification	5L30.16	Rectification can be der	nonstrated with a rotary potential divider and a he standard circuits. Other stuff too.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
PIRA 500	blinky whirligig	5L30.20		
	,		A small flooping light on the and of a	tring is whitled around
UMN, 5L30.20	blinky whirligig	5L30.20	A small flashing light on the end of a s	-
TPT 22(9),554	blinky whirlygig	5L30.20	An improvement on TPT,22(7),448, "A	
F&A, Mb-9	blinky whirligig	5L30.20	Blinking neon bulb on a cord is swung	
Mei, 7-2.4	blinky whirligig	5L30.20	Swing a light bulb around and take a p	icture of it with a fan strobed Polaroid
D&R, B-410, M- 198	blinky whirligig	5L30.20	Neon, argon, and bi-color LED's on the	e end of a whirling AC or DC cord.
Bil&Mai, p 284	blinky whirligig	5L30.20	Neon and bi-color LED's on the end of	a whirling AC or DC cord.
Ehrlich 1, p. 153	blinky whirligig	5L30.20	Alternating current from a wall outlet is the end of a line cord.	s shown when you twirl a neon lamp on
AJP 43(1),112	glow lamp swinger	5L30.21	Swing a GE A9A or Chicago Miniature radius circle. Use as a persistence of	
Hil, E-13a	whirling glow lamp	5L30.21	A two watt neon glow lamp is mounted	d on a hand rotator.
Mei, 30-1.2	AC and DC with starch and iodine	5L30.25	Drawing an electrode across a starch/	iodine solution gives a solid line with
TPT 19(8), 551	AC and RMS voltages	5L30.25	DC and a dashed line with AC. Measure across a 120 volt lamp simul	-
171 19(0), 331	AC and KWS Voltages	5150.25	an oscilloscope. The digital voltmeter oscilloscope will show about 170 volts ignition voltage for a neon lamp to the	will read 120 RMS volts while the peak to peak. Or compare the DC
Mei, 33-2.5	LC low pass filter	5L30.30	Ammeters measure the current before amplifier detects AC before and after a	and after a LC filter while an audio
Mei, 33-3.3	current in an LC circuit	5L30.31	Lamps are in series in each branch of distribution as inductance is changed.	
AJP 31(2),134	Fourier zeros LC circuit	5L30.34	•	high Q circuit at f=n/pulse width. Circuit
Mei, 33-3.1	mechanical analog of an LC filter	5L30.35	A string and pulley arrangement provid Reference: AJP 14(5),318.	des an analog of a parallel LC filter.
Mei, 33-2.6	RL and RC filters	5L30.36	A RLC parallel configuration with each used to show the effect of each compo- example of a low pass filter and the R	onent on audio frequencies. RL is an C is an example of a high pass filter
AJP 39(3),337	resonant cavity properties	5L30.50	while the RR configuration shows no fi Identical ultrasonic transducers are bo solid medium. One is pulsed with a rf frequency and the other is the receive Perot resonance.	nded to opposite parallel faces of a
TPT 3(5),199	many circuits	5L30.70		transistors covering from rectifiers to a
	SEMICONDUCTORS & TUBES	5M00.00		
	Semiconductors	5M10.00		
PIRA 200 - Old	Hall voltage	5M10.10	•	large rectangle of biased N-doped
UMN, 5M10.10	Hall effect	5M10.10	germanium in a magnetic field. The transverse potential of a large rec	tangle of biased N-doped germanium
F&A, Ei-16	Hall voltage	5M10.10	is measured when inserted into a mag Current is passed through a N doped	
Mei, 40-1.16	Hall effect	5M10 10	magnetic field and the voltage at the s Measure a voltage difference in a gerr	
			current flow when placed in a magneti details in appendix, p.1367.	
Disc 20-10	Hall effect	5M10.10	A Hall effect probe in a magnet, anima	ation.
AJP 29(1),29	Hall effect magnet	5M10.11		
Mei, 40-1.13	Lorentz force on conduction	5M10 10	A voltage is induced on a moving meta	al in a magnetic field
	electron	510110.12		
AJP 52(9),807	an electron in a periodic potential	5M10.15	The interaction of an electron with a cu demonstrated with an air track glider n array.	ystal periodic potential is nounted magnet moving past a magnet
Mei, 40-1.2	model of a semiconductor	5M10.19	A model made of pegboard and balls t preselected path.	that shows a hole moving along a
Mei, 40-1.3	hot point probe	5M10.20	A hot point probe consisting of a solde the two types of conductivity.	ering iron and a microammeter tests for
Mei, 40-1.5	color centers	5M10.30	Electrons or holes are injected into a la an oven resulting in the formation of correspondences: AJP 25,5,306.	•

Demonstration	Bibliography	J	uly 2015 Electricity and Magnetism
Mei, 40-1.6	color centers	EM10 22	Injection of electrone into a transportant patagoium ablarida arvetal at high
Mei, 40-1.7	Shockley-Haynes experiment		Injection of electrons into a transparent potassium chloride crystal at high temperatures results in the formation of color centers. Pictures. A difficult but worthwhile demonstration illustrates diffusion and drift
			phenomena.
AJP 41(7),878	Josephson weak link model	5M10.40	A rigid pendulum and aluminum disc are mounted on a shaft driven by a weight hanging on a thread wrapped around the shaft and damped by eddy currents.
PIRA 1000	diode	5M10.50	
Disc 18-10	diode	5M10.50	Positive and negative voltages are applied to a lamp in series with a diode.
TPT 52(2), 94	LED - Light Emitting Diodes	5M10.55	general physics course and not just for electronics applications.
Mei, 40-1.12	PN junction	5M10.60	Demonstrate a PN junction with a battery.
AJP 29(5),287	transistor curve tracer	5M10.61	oscilloscope.
AJP 78 (12), 1425	transistor curve tracer	5M10.61	A digital oscilloscope that can write to a USB device, combined with open source software is used to analyze transistor curves.
AJP 29(8),529	Fermi level model	5M10.62	A model with ball bearings representing electrons and holes in Plexiglas representing states.
AJP 53(1),90	brillouin	5M10.70	View a waveform on an oscilloscope through a cardboard with slots cut out.
PIRA 1000	brillouin/compass array	5M10.71	
UMN, 5M10.71	brillouin/compass array	5M10.71	
PIRA 1000	transistor amplifier	5M10.90	
Disc 18-12	transistor amplifier	5M10.90	A transistor circuit board shows simple amplification.
Hil, A-10b	integrated circuits	5M10.92	Show transistors and integrated circuits including slides of integrated circuit blow ups.
TPT 23(7), 448	operational amplifiers	5M10.95	Measurments and demonstrations with operational amplifiers.
TPT 25(1), 38	operational amplifiers	5M10.95	Elementary functions involving operational amplifiers.
AJP 40(4), 638	operational amplifiers	5M10.95	A circuit for integration with an operational amplifier.
AJP 73(9), 856	operational amplifiers	5M10.95	A simple Fermi-Dirac integrating circuit with an op amp to monitor the output voltage.
	Tubes	5M20.00	
PIRA 1000	glow discharge	5M20.10	
Sut, A-12	glow discharge	5M20.10	Various discharge phenomena are described from atmospheric to high vacuum.
Sut, A-11	glow discharge tube	5M20.10	The pressure is reduced on a large tube while high voltage DC is applied to the electrodes.
Hil, A-2c	gaseous discharge tube	5M20.10	Pump down a long discharge tube to show Crookes' dark space, negative glow, Faraday dark space, striations, etc.
Sprott, 4.8	gas discharge tube	5M20.10	A partially evacuated glass tube filled with various gases at low pressure and connected to a high-voltage electrical source.
D&R, S-150	glow discharge tube	5M20.10	The pressure is reduced in a long tube while high voltage from an induction coil is applied to the electrodes.
Sut, A-14	potential required for glow discharge	5M20.12	Show the minimum voltage for a neon glow tube to discharge.
Sut, A-78	thermionic effect	5M20.15	Use a tube to show the thermionic effect in a vacuum.
PIRA 1000	special purpose discharge tubes	5M20.20	
Sut, A-13	special purpose discharge tubes	5M20.20	wheel, etc. are mentioned.
Hil, A-2a	five cathode ray tubes	5M20.20	Special tubes that demonstrate five properties of cathode rays.
Sprott, 4.8	Geissler tubes	5M20.20	A set of special gaseous discharge lamps with different gases, different glowing surfaces, or fluorescent liquids.
D&R, S-150	special purpose discharge tubes	5M20.20	5
Sut, A-18	electron beams	5M20.25	oxides) hot cathode gives a brilliant beam. Diagram.
Sut, A-21	electron focusing	5M20.28	Three types of focusing of the beam: residual gas, electrostatic, and magnetic.
Sut, A-87	gas filled tubes - two element type		
Sut, A-16	hot-cathode discharges	5M20.31	the role of cathode emission in discharge.
Hil, A-9a	diode tubes	5M20.32	of the diode tube.
Sut, A-17	thyratron tube		The function of the grid in a discharge tube is shown with a thyratron.
Sut, A-88	gas filled tubes - grid controlled		A circuit for demonstrating the thyratron tube.
Sut, A-81	three element tube curves	5M20.40	A circuit for obtaining the characteristic curves of a triode.

model transmission line

transmission of power

high voltage line model

power loss in transmission line

model transmission line - phases

model transmission line - phases

wave propagation in aluminum

dispersion in non-inductive cable

dispersion of an EM pulse

H.T. transmission

wave propagation

dispersion circuit

voltage drop

drift velocity

model transmission line - lamps

model transmission line - lamps

Sut. A-82

Sut, A-83

Sut. A-84

Hil. A-9b

AJP 29(9),640

Mei, 33-2.1

PIRA 1000

F&A, Eh-4

Sut, E-162

AJP 55(1),22

PIRA 1000

Sut, E-244

Hil, E-3g

PIRA 1000

Mei, 33-6.1

AJP 53(6),563

AJP 48(5),417

AJP 47(5),429

AJP 37(8),783

Mei, 33-6.3

Hil. E-2c

UMN, 5N10.10

"fresh air three electrode tube" three electrode tube model three element tube - electrostatic the triode	5M20.42 5M20.43	Elements of a three electrode tube are placed in a bell jar. Steel balls represent electrons in a mechanical model of a triode. Picture. A circuit for controlling the plate current of a three or four element tube. A circuit for demonstration the principles of a triode tube. Reference: AJP 23(9),384.
triode demonstrator unit	5M20.46	Apparatus review of the Modern and Classical Instruments triode demonstrator board. (1961)
soap bubble model of tubes	5M20.50	Soap bubbles moving through plates connected to a Van de Graaff generator simulate behavior of electron tubes. Picture.
	5N00.00	
RADIATION Transmission Lines and Antennas	5N10.00	

July 2015

5N10.10

5N10.10

5N10.20

Electricity and Magnetism

5N10.10 Five 200 W bulbs connected in series along resistance wire. 5N10.10 Six lamps are connected across two thin wires strung along the lecture bench.

- Voltages are measured successively across four 300 W bulbs. 5N10.10
- Move a Hall specimen perpendicular to the magnetic field in the opposite 5N10.13 direction to the drift motion of carriers with exactly the drift velocity compensates for the Hall voltage.
- 5N10.15 5N10.15 A model transmission line with a lamp for a load that shows a loss unless transformers are used to boost voltage up and back.
- 5N10.16 A circuit demonstrates that the efficiency of power transmission increases with increased voltage. Variac, light bulb bank, meters, line resistance. Reference: AJP 21(2),110.
- 5N10.20 A model transmission line is made of a series of sixty series inductors and shunt capacitors. An oscilloscope is used to show delay times and phase relationships.
- 5N10.21 A demonstration of wave propagation in a toroidal transmission line with periodic variation of the wave phase velocity around the line.
- 5N10.22 Show amplitude decay and change in phase for waves propagating through an aluminum wedge or large sheet.
- 5N10.25 A model cable made of 150 series resistors and parallel capacitors shows delay and dispersion with meters at each end.
- 5N10.26 A set of T filters with the input and output impedances matched are used to show dispersion of a short pulse.
- 5N10.27 A microwave demonstration where as a sine wave burst is generated and the dispersion is observed in a slotted line waveguide with a sampling scope.
- **PIRA 500** reflections in a coax 5N10.30 UMN, 5N10.30 reflections in a coax 5N10.30 AJP 72(5), 671 propagation in a coax 5N10.30 Measuring the speed of radio waves along a homemade coaxial transmission line. AJP 29(2),123 5N10.30 A circuit using a wetted-contact mercury relay gives a pulse with a very fast propagation in a coax rise time. 5N10.30 Reflections in a coax using the Tektronix 545A delayed trigger. AJP 29(2),ix reflections in a coax 5N10.30 Mei, 33-6.2 Using a square wave generator and oscilloscope, propagation time in 1', 20', propagation velocity in coax and 40' of coax are compared. Diagrams **PIRA 500** Lecher wires 5N10.50 UMN, 5N10.50 Lecher wires 5N10.50 A 80 MHz generator is coupled to a long transmission line and standing waves are demonstrated with neon and filament lamp probes. F&A, Ep-13 Lecher wires 5N10.50 Standing waves are set up on parallel wires from an 80 MHz generator. Sut, A-37 Lecher wires 5N10.50 Standing electromagnetic waves are coupled from an UHF oscillator to parallel wires. Disc 21-13 Lecher wires 5N10.50 Standing waves are generated on parallel wires by a radio transmitter. An incandescent bulb placed across the wires indicates voltage maxima. Hil, S-2e.3 Lecher bars 5N10.52 Two six foot iron rods are used in a Lecher system with a fluorescent lamp detector. **PIRA 1000** microwave standing waves 5N10.55 Mei, 33-7.7 5N10.55 microwave standing waves Measure the wavelength of a microwave transmitter by using a movable mirror to set up standing waves.

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
D&R, W-140, O- 030	microwave standing waves	5N10.55	Measure the wavelength of a microwar reflector about 1 m from the transmitte	, ,
Disc 21-15	microwave standing waves	5N10.55	Standing waves are set up between a sheet. The receiver is moved between displayed on an LED bar graph.	microwave transmitter and a metal
TPT 28(7), 474	microwave oven standing waves	5N10.57	Standing waves in a microwave oven a paper.	are measured using cobalt chloride
TPT 32(4), 199	microwave oven standing waves	5N10.57	Standing waves in a microwave oven t	by heating Cream of Wheat.
AJP, 78 (5), 492	microwave oven standing waves	5N10.57	Three dimensional standing waves for examined.	med on cobalt chloride paper are
PIRA 500	radiation from a dipole	5N10.60		
UMN, 5N10.60	radiation from a dipole	5N10.60		
F&A, Ep-12	radiation from a dipole	5N10.60	A flashlight bulb on a dipole detects ra	diation from an 80Mhz generator.
D&R, O-030	radiation from a dipole	5N10.60	The Cenco microwave transmitter is use emitted by a dipole antenna	-
AJP 69(3), 288	radiation from a dipole	5N10.60	Discussion on how to teach about radi	ation from a dipole antenna.
AJP 70(8), 829	radiation from a dipole	5N10.60	The method of AJP 69(3), 288 is extern scattering of electromagnetic plane wa	nded to treat the reception and
A.IP 70(10) 1056	radiation from a dipole	5N10.60	Corrections to AJP 70(8), 829.	web by simple wire antennas.
. ,	radiation from a dipole	5N10.60	Derives analytical expressions in terms	s of elementary functions for the
		51110.00	electromagnetic fields of linear antenn	•
Disc 21-11	radio waves	5N10.60	Show radiation with a 100 MHz dipole receiver with a flashlight bulb detector.	transmitter and hand held dipole
Sut, A-38	radiation and polarization	5N10.61	Polarization of radiation from a dipole antenna with lamp indicator.	
AJP 52(12),1150	dipole radiation computer simulation	5N10.63	R.H Good report on his Apple II dipole free.	radiation simulation. Excellent and
Sut, A-39	directional antenna	5N10.65	A directional antenna for use with a UI	HF oscillator.
Ehrlich 1, p. 175	directional antenna	5N10.65	A radio tuned to an AM radio station is the transverse nature of radio waves.	
AJP 55(7),662	waveguide normal modes	5N10.70	Morie pattern type demonstration of no	ormal modes in a wavequide
PIRA 200	EM vectors	5N10.80	Mone patient type demonstration of he	
Mei, 6-4.2	EM vectors	5N10.80	A dynamic model for demonstrating el electromagnetic field. Picture, Diagram	•
D&R, O-O25	EM wave models	5N10.80	Ping Pong paddles or semi fixed wave of E and B in a plane EM wave.	
	Tesla Coil	5N20.00		
PIRA 200	induction coil	5N20.10	The small handheld induction coil.	
F&A, Em-8	induction coil	5N20.10	The small handheld induction coil.	
Disc 20-21	induction coil	5N20.10	A large induction coil, explained with the	ne aid of animation.
Hil, E-11a	induction coil	5N20.12	3	
Sut, E-245	induction coil		All sorts of stuff on induction coils - pro	oducing high voltage from a DC source.
AJP, 65(8), 744	A high potential Tesla coil impulse generator for lecture	5N20.14	An excellent "how to" guide for building contains information on the design of v	
	demonstrations and science exhibitions		analyze your work/design.	
F&A, Em-1	spark coil	5N20.15	A discussion of the construction of a la reversing polarity.	arge spark coil and the effects of
PIRA 200 - Old	hand held Tesla and lamp	5N20.25	Light a fluorescent lamp by touching w	rith a hand held tesla coil.
UMN, 5N20.25	hand held tesla and lamp	5N20.25		
PIRA 1000	Tesla coil	5N20.40		
UMN, 5N20.40	Tesla coil	5N20.40		
F&A, Ep-2	Tesla coil	5N20.40	Description of a 500 KHz tesla coil.	
Sprott, 4.6	Tesla coil	5N20.40	A Tesla coil is used to demonstrates p voltages and currents.	henomena associated with very high
Sut, A-35	continuous wave Tesla coil	5N20.41	A tesla coil is coupled to an oscillator of	coil from A-32 or A-36.
Sut, A-31	Tesla coil	5N20.42	Directions for building a Tesla coil and are described.	
Mei, 33-3.8	Tesla coil	5N20.43	Directions for building a Tesla coil (Ou that will give a thirty inch spark.	din coil when one end is grounded)
Hil, E-11e	Tesla coil	5N20.44	Pictures of two Tesla coils. References 194; Popular Science, June 1964, pp	
PIRA 500	glowing fluorescent lamp	5N20.50	,,,, ,, ,, , , , , , , , , , , , , , , , , , , ,	-
UMN, 5N20.50	glowing fluorescent lamp	5N20.50		

Demonstration	Bibliography	J	uly 2015	Electricity and Magnetism
F&A, Ep-5	fluorescent light in radiation field	5N20 50	A fluorescent light bulb is held in the T	esla coil radiation field
D&R, E-195	glowing fluorescent lamp	5N20.50	A 25 W or 40 W fluorescent tube is he	
Sprott, 4.6	glowing fluorescent lamp	5N20.50	A fluorescent light bulb is held in the ra	adiation field of a Tesla coil.
Disc 21-06	Tesla coil	5N20.50	Light a fluorescent tube at a distance,	
Sut, A-15	electrodeless discharge	5N20.55	Hold a bulb of a gas at low pressure ne	
PIRA 500	skin effect	5N20.60		
UMN, 5N20.60	skin effect	5N20.60		
			The skin effect corrige analysis surrent	to light a hulb hold in the hands
F&A, Ep-4	high frequency currents	5N20.60	The skin effect carries enough current	•
F&A, Ep-6	betatron action	5N20.70	An inductive coil replacing the high vol- give a visible beam in a partially evacu	ated glass bulb.
F&A, Ep-3	space charge from high frequency corona		Discharge a negatively charged electro corona.	
PIRA 200 - Old	Tesla coil and pinwheel	5N20.80	Place a pinwheel on the secondary of a	a tesla coil. See 5B30.50.
	Electromagnetic Spectrum	5N30.00		
PIRA 200	project the spectrum	5N30.10	Project white light through a high dispe	ersion prism.
UMN, 5N30.10	projected spectrum with prism	5N30.10	White light is projected through a high	•
Sut, L-101	project the spectrum with prisms	5N30.10	The optical path for projecting a spectr	
Sut, L-106	project the continuous spectrum	5N30.10	A carbon arc or concentrated filament	
Sut, L-42	white light with prism	5N30.10	optics. Project a slit of light through a prism or	
			disulfide.	
D&R, O-270	white light with prism	5N30.10	Project a slit of light from a slide project prism filled with ethyl cinnamate or car	bon disulfide.
Sprott, 6.1	project the spectrum with prisms	5N30.10	A rainbow produced by passing a collir glass prism illustrates that white light is	
AJP, 75 (1), 35	white light with prism	5N30.10	A short article with picture detailing a h different refractive indexes may be pou	
Sut, L-112	mapping the spectrum	5N30.15	Use a thermopile and galvanometer to continuous spectrum. Insert a water ce	
TPT 38(9), 559	infrared spectrum	5N30.15	Reproducing Herschel's experiment an liquid crystal sheet is used as the deter	d his discovery of infrared radiation. A
TPT 19(7), 483	ultraviolet spectrum	5N30.20	Part 1. A way to demonstrate the pres of mercury.	
TPT 19(9), 618	ultraviolet spectrum	5N30.20	Part 2. A way to demonstrate the far u fluorescent dyed cloth or paper.	Itraviolet line of mercury on
Bil&Mai, p 316	ultraviolet spectrum	5N30.20	A phosphorescent sheet is used to det violet end of the visible spectrum.	ect ultraviolet wavelengths beyond the
F&A, Ok-1	ultraviolet spectrum	5N30.20	A carbon arc is projected through quar white paper and half fluorescent paper	
PIRA 500	microwave transmitter & receiver	5N30.30		
UMN, 5N30.30	microwave transmitter & receiver	5N30.30	A 12 cm transmitter and receiver are d	emonstrated
AJP 51(10),925	microwave homebrew - 13 cm	5N30.30	Build a high quality source and detector	
. ,			0, 1, 2,	•
Disc 21-14	microwave unit	5N30.30	An LED bar graph indicates signal stre rotated around a receiver and as the b	eam is blocked by a metal sheet.
F&A, Ol-1	microwave wavelength by phase differential	5N30.31	Listen for minima as a second transmit wavelength.	
Mei, 33-7.1	microwave resonance	5N30.33	A modulated signal from a HP 616A ge a detector with provisions to modify the	
Mei, 33-7.3	water attenuation of microwaves	5N30.35	A Plexiglas box between the transmitter with water.	er and receiver has no effect until filled
Disc 21-16 PIRA 1000	microwave absorption IR camera and projected spectrum	5N30.35 5N30.45	Place dry and wet cloths in the microw	ave beam.
AJP 73(10), 986	IR camera and projected spectrum	5N30.45	Looking at different objects and the spe filter removed.	ectrum with a webcam that has the IR
PIRA 1000	IR camera and remote control device	5N30.50		
UMN, 5N30.50	IR from remote control device	5N30.50		
PIRA 1000	IR camera and soldering iron	5N30.51		
	•		Connect a solar coll to a small amplific	r / speaker Point a romate control at
PIRA LOCAL	hearing infrared	5N30.55	Connect a solar cell to a small amplifie	•
Bil&Mai, p 317	solar cell and remote control device	5N30.55	the solar cell and press a button. The The signals from a remote control is de mini amplifier with speaker. Confirm th infrared range by using a red and a blu	etected with a solar cell connected to a nat the remote is emitting in the red-

July 2015

Electricity and Magnetism

PIRA 1000	IR control devices	5N30.60	Use the ionization method with an electroscope to show penetration of X-
Sut, A-106	penetration of X-rays	5N30.80	
Sut, A-107	absorption coefficents	5N30.81	rays. Show the thickness of various materials needed to cut the intensity of a beam in half.

	GEOMETRICAL OPTICS Speed of Light	6A00.00 6A01.00	-
PIRA 200	speed of light	6A01.10	Demonstrate speed of light by the path difference method with a fast pulser and fast oscilloscope.
UMN, 6A01.10	speed of light	6A01.10	A fast pulser is used to demonstrate speed of light by the path difference method.
F&A, Oa-4	velocity of light	6A01.10	The displacement of a pulse from a fast pulser is viewed on a sampling oscilloscope as the path length is changed. Insert different media in the path.
Mei, 35-1.5	speed of light - moving reflector	6A01.10	Fancy speed of light apparatus fully documented. Diagrams, Pictures.
AJP, 65(7), 614- 618	measuring the speed of light using a fibre optic kit	6A01.10	This is a nice discussion of the "time delay method" of measuring the speed of light using the fibre optic method, and a good explanation of the equipment needed.
AJP 76 (9), 812	speed of light	6A01.10	A tabletop experiment that directly measures the speed of light using a pulsed diode laser, reflecting mirror, photodiode detector, and an oscilloscope. Electric circuit diagrams included.
AJP 41(5),722	pulser circuit	6A01.11	A pulser circuit for the moving reflector speed of light apparatus.
AJP 34(7),ix	speed of light - fast pulse	6A01.11	Use a high repetition rate pulsed light from TRW to demonstrate the speed of light.
AJP 55(9),853	pulser circuit	6A01.11	An LED pulser circuit that emits a 20 ns pulse.
AJP 37(11),1154	pulser circuit	6A01.11	A light pulser circuit based on the MV 10A LED.
AJP 38(11),1353	speed of light - N2 laser pulser	6A01.11	A N2 pulsed laser is used in the moving reflector setup.
AJP 40(5),740	speed of light - spark source	6A01.12	Construction and properties of a spark light source.
AJP 37(9),939 PIRA 1000	microwave moving reflector speed of light - two path	6A01.15 6A01.20	A small microwave pulse generator gives short pulses.
Mei, 35-1.4	speed of light - two path	6A01.20	Fast flash through two paths to a photomultiplier tube. Diagrams, Pictures.
Mei, 35-1.3	speed of light - two path	6A01.21	A spot of the display trace of a fast oscilloscope is passed through two different paths to a photomultiplier tube whose output is displayed on the same trace. Diagram, Picture.
AJP 37(11),1163	errata - corrected diagram	6A01.25	Corrected diagram for figure 2 in AJP 37(8),818 (1969).
AJP 41(2),272 AJP 50(12),1157	speed of light speed of light - minimal apparatus	6A01.25 6A01.25	The MV50 LED is pulsed in this simple time of flight measurement. An inexpensive time of flight apparatus using a strobed LED and voltmeter.
AJP 59(5),443	speed of light - time of flight	6A01.25	An acoustico-optic modulator chops a laser beam in a time of flight setup.
AJP 36(11),1021	speed of light choppers	6A01.25	Use a 250 tooth commercial gear as a light chopper.
AJP 37(8),816	speed of light - phase shift	6A01.26	Many circuits are given. Features a solid-state electro-optical light modulator to replace the Kerr cell.
AJP 40(11),1705	optical radar	6A01.27	A commercial (Optitron Inc.) speed of light apparatus with an ultraviolet pulser.
PIRA 1000	speed of light - rotating mirror	6A01.30	
Mei, 35-1.1	speed of light - rotating mirror	6A01.30	The position of the reflected image from a rotating mirror is measured for
A ID 40(0) 040	and a fill also and a fill and a second	0404.04	clockwise and counterclockwise rotations. Diagram, Appendix, p. 1353.
AJP 40(6),910 AJP 39(10),1145	speed of light - rotating mirror speed of light - rotating mirror		Photodiode detector with the rotating mirror. A laser beam is used with the rotating mirror method. Detector circuits given.
AJP 46(11),1189	speed of light - combined method	6A01.32	A rotating mirror chops the laser beam and a beam splitter gives near and far paths.
AJP 47(3),288	Leybold speed of light modification	6A01.36	When both sides of the rotating mirror are exposed, deflections as large as 2 cm can be observed with the unaided eye.
AJP 29(10),711	Leybold speed of light rotation rate	6A01.36	Instead of comparing the motor sound to a tuning fork, use a microphone to pick up the motor sound and display it on an oscilloscope, use Lissajous figures with a reference.
AJP 39(12),1537	more Leybold improvements	6A01.36	Use a solar cell with the AJP 32(7),567 technique.
AJP 32(7),567	Leybold speed of light improvements	6A01.36	Find the lateral displacement of the returning beam with a photomultiplier on a carriage.
Mei, 35-1.2	Leybold speed of light improvements	6A01.36	Use a microphone, oscillator, and oscilloscope to measure the motor frequency of the Leybold speed of light apparatus. Reference: AJP 29(10),711.
AJP 44(6),546	speed of light - microwave interferometer	6A01.38	The Doppler beat frequency from the detector is used to drive a spark generator.

TPT 35(4), 231	speed of light - microwave oven	6A01.39	Place a layer of marshmallows in the microwave oven. Heat the
			marshmallows until hot spots appear. Measure the distance between hot spots to get the wavelength of the microwave. Remember the hot spot
			separation should be distances of wavelength/2. Calculate the speed of light.
TPT 35(6), 323	speed of light - microwave oven	6A01.39	Correction to TPT 35(4), 231.
Sut, L-17	speed of light - models	6A01.40	Set up mirrors on the lab bench to help students visualize the standard methods. Do the sound analog (S-81). Set up a rotating mirror.
AJP 58(11),1059	group velocity of light	6A01.50	Measure the speed of light to 0.02% and verify the relationship between group and phase velocity. Low cost circuit is given.
AJP 69(2), 110	speed of light - electrical measurement	6A01.60	Determination of the speed of light using an LRC circuit.
	Straight Line Propagation	6A02.00	
PIRA 1000	light in a vacuum	6A02.10	
Disc 21-07	light in a vacuum	6A02.10	Place a flashing light in the bell jar to emphasize the point.
PIRA 1000	straight line propagation - shadows	6A02.15	
F&A, Oa-1	straight line propagation of light	6A02.15	A good point source shows straight line propagation of light by shadow projection.
Disc 21-08	straight line propagation	6A02.15	Cast shadows with a point source.
Sut, H-148	propagation star	6A02.16	An intense radiation point source limited by a star shaped aperture melts a star shaped pattern on a paraffin backed black foil.
PIRA 1000	chalk dust	6A02.35	
	Reflection from Flat Surfaces	6A10.00	
AJP 59(3),242	optical design software	6A10.05	Use commercial optical design software to model and display geometrical optics.
TPT 3(5),230	reflection model	6A10.09	A string and pulley arrangement shows the minimum path for reflection from a flat surface.
PIRA 500	blackboard optics - plane mirror	6A10.10	
F&A, Ob-11	blackboard optics - plane mirror	6A10.10	Blackboard optics - plane mirror.
PIRA 1000	optical disk with flat mirror	6A10.11	
UMN, 6A10.11	optical disk with flat mirror	6A10.11	Use a single beam with the optical disk and a flat mirror element.
Sut, L-22	optical disk with flat mirror	6A10.11	Turn the optical disk with a single beam of light hitting the mirror.
Disc 21-20 PIRA 500	angle of incidence, reflection	6A10.11 6A10.15	Aim a beam of light at a mirror at the center of a disc, rotate the disc.
UMN, 6A10.15	laser and flat mirror laser and flat mirror	6A10.15	Shine a laser at a flat mirror on the lecture bench and use chalk dust to make
			the beam visible.
PIRA 1000	microwave reflection	6A10.18	
Disc 21-18	microwave reflection	6A10.18	Reflect a microwave beam off a metal plate into a receiver.
PIRA 500	diffuse and specular reflection	6A10.20	Chally dust sprinklad on a mirror blurs the image of a light reflecting ants the
F&A, Ob-1	smooth and rough surface reflection	6A10.20	Chalk dust sprinkled on a mirror blurs the image of a light reflecting onto the wall.
Disc 21-19	diffuse and specular reflection	6A10.20	Show a beam on light reflecting off a mirror on an optics board. Replace the mirror with a sheet of paper.
Mei, 34-1.5	diffuse reflection	6A10.21	Hold frosted glass at various angles in a beam of light focused on the wall.
PIRA 1000	aluminum foil reflection	6A10.22	
UMN, 6A10.22	aluminum foil reflection	6A10.22	Same as AJP 50(5),473.
AJP 50(5),473	scattering with aluminum foil	6A10.22	Reflect light off a sheet of aluminum foil, then crumple and flatten it to create many facets.
Sut, L-19	reflection - normal and grazing	6A10.24	•
			reflection on the other. Also compare glass and silvered at grazing and
PIRA 1000	ripple tank reflection	6A10.25	normal incidence.
PIRA 1000 PIRA 500	ripple tank reflection corner cube	6A10.25 6A10.30	
F&A, Ob-6	corner reflector	6A10.30	Three reflectors are placed on the inside corner of a box.
Sut, L-21	corner cube	6A10.30	Two mirrors at 90 degrees or three mirrors mutually perpendicular.
Ehrlich 1, p. 179	corner cube	6A10.30	Three mirrors mutually perpendicular are taped together to form a corner cube.
Disc 21-24	corner reflection	6A10.30	Look at your image in a corner cube.
PIRA 1000	large corner cube	6A10.31	
UMN, 6A10.31	large corner cube	6A10.31	
AJP 50(8),765	large corner cube	6A10.31	Use large mirror wall tiles (12 in sq) to make a large corner reflector.
D&R, O-130	large corner cube	6A10.31	Use mirror "tiles" to make a large corner reflector.

Demonstration	n Bibliography	J	uly 2015 Optics
Mei, 34-1.2	signaling mirror	6A10.33	A plane mirror with a small unsilvered area in the center is used for signaling. Diagram.
F&A, Ob-9	perversion	6A10.35	Perversion can be demonstrated in public with a license plate and a plane mirror. Sorry, no inversion.
D&R, O-105	perversion	6A10.35	Perversion is studied with the word "AMBULANCE" arranged such that it can be read correctly in a rear view mirror.
PIRA 1000	parity reversal in a mirror	6A10.37	
Disc 21-22	parity reversal in a mirror	6A10.37	View a Cartesian coordinate system in a mirror.
PIRA 500	angled mirrors	6A10.40	
UMN, 6A10.40	angled mirrors	6A10.40	
F&A, Ob-4	mirrors at an angle	6A10.40	A candle placed between angled mirrors forms multiple images.
Mei, 34-1.1	angled mirrors	6A10.40	Two hinged front surface mirrors show multiple images of an object placed between them. Diagram.
D&R, O-125	angled mirrors	6A10.40	5
AJP, 75 (4), 342	angled mirrors	6A10.40	A short article with picture explaining some of the physics of angled mirrors and multiple images.
Ehrlich 1, p. 178	angled mirrors	6A10.40	
Disc 21-23	hinged mirrors	6A10.40	Mirrors angled at 60 degrees give one object and five images arranged in a
Sut, L-20	hinged mirrors	6A10.41	hexagon. Place a light between two mirrors hinged together and standing vertically. Place a sheet of clear glass between the mirrors forming an isosceles
Hil, O-1c	hinged mirrors, kaleidoscopes	6A10.42	triangle. A few more variations are given. Hinged mirrors are shown at 60 and 30 degrees along with 60 and 30 degree
D&R, O-135	kaleidoscope	6A10.42	kaleidoscopes. A simple kaleidoscope constructed from 3 microscope slides and 2 plastic film canisters
AJP 58(6),565	angled mirrors - laser spots	6A10.43	The hyperboloid of revolution formed by the successive reflections of a laser beam on two plane angled mirrors is explained by a simple geometrical method.
AJP 30(5),380	hinged mirrors theory	6A10.44	The theorem of Rosendahl is applied to the hinged mirror problem to predict the number of images formed at various inclinations.
PIRA 500	parallel mirrors	6A10.45	
F&A, Ob-5	parallel mirrors	6A10.45	An infinite number of images are formed with a candle between parallel mirrors.
D&R, O-120	parallel mirrors	6A10.45	
AJP 72(1), 53	parallel mirrors	6A10.45	The color of the object becomes darker and greener if common second- surface plane mirrors are used.
Disc 21-25	barbershop mirrors	6A10.45	Place objects between parallel mirrors and view them over one of the mirrors.
PIRA 500	full view mirror	6A10.50	
UMN, 6A10.50	full view mirror	6A10.50	
F&A, Ob-3	height of a mirror for full view	6A10.50	Shades are pulled up from the bottom and down from the top covering a mirror until a person can just see their entire height.
Hil, O-1d	large plane mirror	6A10.51	A three foot plane mirror is used to show all of a six foot person.
Sprott, 6.9	talking head	6A10.55	Reflections from a mirror mounted beneath a table give the illusion that a disembodied head is sitting on the table.
Bil&Mai, p 331	antigravity mirror	6A10.57	Straddle a large mirror so that it is between your legs. Lift the leg that is in front of the mirror and it will appear you are levitating.
PIRA 500	cold candle	6A10.60	··· · ·
UMN, 6A10.60	cold candle	6A10.60	
F&A, Ob-2	candle in a glass of water	6A10.60	A candle in front of a plate glass forms an image in a glass of water behind.
Sut, L-18	candle in a glass of water	6A10.60	A candle is placed in front of a sheet of glass and a beaker of water an equal distance behind. Place the entire apparatus on a rotating table.
D&R, O-100	candle in a glass of water	6A10.60	A candle in front of a plate of glass form an image in a battery jar of water. Can also be done with identical light bulbs in identical sockets.
Sprott, 6.10	candle in a glass of water	6A10.60	A candle in front of a plate glass forms an image in a glass of water behind the plate glass.
TPT 15(6), 360	candle in a flask - Pepper's ghost	6A10.60	The illusion of a candle burning in a flask, a modern version of the Pepper's ghost illusion done in the 1860's.
TPT 22(9), 591	Pepper's ghost	6A10.60	Description of several optical illusions including Pepper's ghost with diagrams.
TPT 49(6), 338	Pepper's ghost	6A10.60	Historical description of Pepper's ghost illusion with diagrams.

Demonstration	Bibliography	J	uly 2015	Optics
Bil&Mai, p 328	cold candle	6A10.60	A candle in front of a plate glass forms an image that ap	pears to be behind
Disc 21-21	location of image	6A10.60	the glass. Place a finger in the "flame" of the virtual ima Place a sheet of glass between a burning candle and a image of the candle appears in the glass.	age.
PIRA 1000	half silvered mirror box	6A10.65		
D&R, O-115	mirror box	6A10.65	Two people look at opposite sides of a large sheet of ac light over one subject is dimmed, the light over the other metamorphosis.	
Sprott, 6.10	mirror box	6A10.65	People look at opposite sides of a large sheet of acrylic over one subject is dimmed, the light over the other brig metamorphosis.	•
Disc 21-26	Mirror Box	6A10.65	Two people look into opposite ends of a box containing in the center. As the light on one end is dimmed, the ligh brightens, causing metamorphosis.	
TPT 28(7),468	sawblade optics	6A10.76	Keep the sawblade perpendicular by lining up the reflect the sawblade.	tion of the board in
TPT 30(5), 295	chinese magic mirror	6A10.80	The decorative pattern on the back of a bronze mirror is is reflected from the polished front side onto a screen.	revealed when light
TPT 30(7), 327	chinese magic mirror	6A10.80	Comments on the TPT 30(5), 295 article.	
TPT 31(7), 325	chinese magic mirror	6A10.80	More comments about the TPT 30(5), 295 article.	le et e d'an e e e
TPT 32(7), 329 TPT 35(9), 536	chinese magic mirror chinese magic mirror	6A10.80 6A10.80	A second look at how the magic mirror produces the refi How the magic mirror is used to teach optics principles i	-
TFT 35(9), 330	chinese magic minor	0410.00	now the magic minor is used to teach optics principles	in physics classes.
ref.	chinese magic mirror	6A10.80	The decorative pattern on the back of a bronze mirror is is reflected from the polished front side onto a screen. \$ 30(7), 341.	-
	Reflection from Curved Surfaces	6A20.00		
PIRA 200	blackboard optics - curved mirrors	6A20.10		
PIRA 1000 - Old	blackboard optics - curved mirrors	6A20.10		
F&A, Oc-1	blackboard optics - concave mirror		Blackboard optics - concave mirror.	
F&A, Oc-2	blackboard optics - convex mirror		Blackboard optics - convex mirror.	
D&R, O-150, O- 155 Diag 22.01	blackboard optics - curved mirrors		Blackboard optics, concave and convex mirrors	
Disc 22-01 PIRA 1000	concave and convex mirrors	6A20.10 6A20.11	Shine parallel beams at convex and concave mirrors. Us for display.	se a thread screen
UMN, 6A20.11	optical disc with curved mirrors	6A20.11	Use the optical disc with multiple beams and curved len	s elements
F&A, Oc-3	optical disc with curved mirrors	6A20.11	Mount either concave or convex mirrors in the optical dis	
Mei, 34-1.18	large optical disc	6A20.11	A large translucent screen and large lens elements scal disc. Diagrams.	e up the Hartl optical
PIRA 500	parallel lasers and curved mirrors	6A20.15		
UMN, 6A20.15	parallel lasers and curved mirrors	6A20.15	Shine parallel lasers at converging and diverging mirrors to make the beams visible.	
Bil&Mai, p 332	parallel lasers and curved mirrors	6A20.15	Shine parallel lasers at a concave mirror and use a fog beams visible.	machine to make the
PIRA 1000 Disc 22-02	spherical abberation in a mirror spherical abberation in a mirror	6A20.20 6A20.20	Shine parallel rays at spherical and parabolic mirror eler difference in aberration.	ments, noting the
AJP 36(11),1022	off focal point source	6A20.21	A picture of the caustic formed by parallel laser rays inc mirror at 30 degrees.	ident on a parabolic
Sut, L-25	concave mirrors - caustics	6A20.24	Directions for making a large cylindrical or parabolic mir	ror element.
AJP 35(6),534	variable curved mirrors	6A20.26	Aluminized mylar stretched over a coffee can makes a negative mirror when the can is pressurized or evacuate	•
F&A, Ob-10	elliptical tank	6A20.27	A filament lamp is placed at one focus of an elliptically s aluminum and chalk dust shows the image at the other	focus.
Sut, L-26	ellipsoidal mirror	6A20.28	Compare the light intensity from the lamps at the near a ellipsoidal mirror. Directions for making the mirror element	
PIRA 500 UMN, 6A20.30	mirror & rose mirror & rose	6A20.30 6A20.30		

Demonstration	Bibliography	J	uly 2015	Optics
F&A, Oc-10	flower in a vase	6A20.30	A hidden flower at the center of curvature of a parabolic mir	rror appears in an
		0, 120.00	empty vase.	nor appeare in an
Sut, L-24	lamp in the socket	6A20.30	A 40 W lamp is projected onto an empty socket.	
Sut, L-23	mirror and rose	6A20.30	Hints for projecting a real image (rose) on an object (vase).	
D&R, O-160, O- 165	lamp in the socket	6A20.30	A lamp image is projected onto an empty socket.	
F&A, Oc-11	cold candle	6A20.31	Hold your finger in the inverted image of a candle burning a curvature of a parabolic mirror.	t the center of
D&R, O-165	cold candle	6A20.31	Place the candle with axis horizontal at the center of curvat spherical mirror. Candle will appear to burn at both ends w pointed up and the other flame pointed down.	
Disc 22-05	large concave mirror	6A20.31	Hold a candle and other objects at the center of curvature c mirror.	of a large convex
PIRA 1000	optic mirage	6A20.35		
UMN, 6A20.35	optic mirage	6A20.35	Same as Oc-7.	
TPT 28(8),534	optic mirage	6A20.35	Derivation of additional "magic separations" of the Optic Minimages.	rage that give
F&A, Oc-7	optic mirage	6A20.35	Two concave mirrors face each other. Images of objects re bottom mirror appear at the center hole of the top mirror.	sting on the
D&R, O-175	optic mirage	6A20.35	Two concave mirrors face each other. Images of objects re bottom mirror appear at the center hole of the top mirror.	esting on the
AJP 46(3),297	shine an light on the Optic Mirage	6A20.36	Shine a light on an shiny object in the Optic Mirage and the	reflections will
F&A, Oc-6	red ball in hemisphere	6A20.37	look real. Looking at a red ball pendulum suspended from the rim of a	a hemispherical
Mei, 34-1.3	swinging lamp and concave mirror	6A20.37	concave mirror makes one puke. A lamp pendulum is swung between the center of curvature	and the principle
D&R, O-160	red ball in hemisphere	6A20.37	focus on a concave mirror. An optics toy that has a red ball pendulum suspended from	the rim of a
Bil&Mai, p 334	bi-colored ball in hemisphere	6A20.37	hemispherical concave mirror. Looking at a bi-colored pendulum suspended from the rim of concave mirror makes one puke.	of a hemispherical
PIRA 500	projected arrow with mirror	6A20.40		
UMN, 6A20.40	projected arrow with mirror	6A20.40	A converging mirror is used to project an image of an illumi a screen.	nated arrow onto
PIRA 1000	projected filament with mirror	6A20.41		
UMN, 6A20.41	projected filament with mirror	6A20.41	A converging mirror is used to project the image of a light b a screen. Masks can be used to stop down the mirror.	oulb filament onto
F&A, Oc-4	image with a concave mirror	6A20.41	A concave mirror is used to image a lamp filament on a scr	een or the wall.
Bil&Mai, p 329	image with a concave mirror	6A20.41	A concave mirror is used to image a light bulb with the lette onto a wall or screen.	
AJP 58(3),280	rotating liquid mirror	6A20.42	Rotate a pan of glycerine mixed with dark dye, using a light source and ground glass screen or TV camera as a detector	
PIRA 500	convex and concave mirrors	6A20.45		
F&A, Oc-8	no image with convex mirror	6A20.45	Try to project the image of a filament from a convex mirror.	
Hil, O-1f	convex and concave mirrors	6A20.45	Large 16" convex and concave mirrors are shown.	
D&R, O-150, O- 155	convex and concave mirrors	6A20.45	Large concave and convex mirrors are shown.	
Hil, O-1e	convex and concave mirrors	6A20.45	Project a lamp image with a concave mirror, then try conver	х.
F&A, Oc-5	amusement park mirrors	6A20.50	Cylindrical mirrors are made with a ten inch radius of curvat	ture.
D&R, O-140	amusement park mirrors	6A20.50	A rectangular flexible mirror is bent to make concave and concerning view objects in the horizontal and the vertical.	onvex mirrors to
Sut, L-27	convex mirror	6A20.51	View the image of your nose in a 1/2" diameter steel ball th focal length lens.	rough a short
Ehrlich 1, p. 184	convex mirror - focal length	6A20.55	The focal length of a convex mirror is found using a meter s	stick.
PIRA 1000	energy at a focal point	6A20.60	-	
F&A, Oc-9	lighting a cigarette	6A20.60	Light a cigarette at the focal point of a parabolic mirror cond beam of an arc light.	centrating the
Disc 22-03	energy at a focal point	6A20.60	Remove the projection head of an overhead projector and h paper at the focal point until it bursts into flame.	nold a piece of
	Refractive Index	6A40.00		
PIRA 500	apparent depth with TV	6A40.10		
F&A, Od-7	apparent depth with TV camera	6A40.10	Focus a camera on a spot and then note how far the camer refocus when a clear plastic block is placed on the spot.	ra is moved to
F&A, Od-6	apparent depth	6A40.11	Look down into a tall graduate and estimate the distance to bottom.	a coin at the

Demonstration	Bibliography	J	uly 2015	Optics
D&R, O-220	apparent depth on the overhead	6A40.11	Place a transparent ruler under a beaker of water filled to a mean d on the overhead and focus. Raise another transparent ruler u of the beaker until it to is in focus (d minus h). d/d-h should be refraction of water.	p the outside
Ehrlich 1, p. 182	apparent depth	6A40.11	A water filled jar is placed over a transparency on the overhead which is focused until the lettering is clear. Slide a pencil along of the jar until the point is also in sharp focus to show apparent	the outside
Mei, 34-1.8	focusing telescope method	6A40.12	Move a telescope back and forth on a optical bench to focus on then on the back of a block of Plexiglas or container of liquid.	the front and
Mei, 33-7.8	microwave index of refraction	6A40.13	The index of refraction is determined by measuring the distance minima with a movable plane mirror in a container of liquid. Dia	
AJP 33(1),62	refractive index of ice	6A40.15	Freeze water by pumping in a hollow acrylic prism and measure minimum deviation.	-
PIRA 500	count fringes	6A40.20		
UMN, 6A40.20	count fringes	6A40.20		
AJP 35(5),435	Michelson index of refraction	6A40.20	Place a gas cell in one leg of the Michelson interferometer and or let in a gas while counting fringes.	
AJP 39(2),224	Michelson index of refraction	6A40.20	Count fringes of laser light as air is let into an evacuated chamb of a Michelson interferometer.	-
Hil, O-2c	Michelson index of refraction	6A40.20	A vacuum chamber is put in one leg of a Michelson interferome fringes are counted as air or a gas is leaked into the chamber. I TPT 6(4),176.	
Mei, 34-1.9	Raleigh refractometer	6A40.21	Improvements on the Raleigh refractometer to make the fringes for easier counting as the air is let back in to the tube.	more visible
TPT 28(5),323	index of refraction of He and SF6	6A40.25	In addition to letting air (21 fringes) into one arm of the Michelso interferometer, let in He (3 fringes) and SF6 (55 fringes).	ิวท
PIRA 200	disappearing beaker	6A40.30		
PIRA 500 - Old	Cheshire cat	6A40.30	A cats face drawn on a beaker appears to float in the middle of beaker filled with baby oil or Wesson oil.	a larger
D&R, O-215	disappearing beaker	6A40.30	Use Johnson's baby oil or Wesson oil to make a small beaker of when immersed. If the beaker has graduations or words they w be floating in the liquid.	
D&R, O-216	broken test tube made whole	6A40.30	Smash a test tube and place the pieces into a beaker of baby o unbroken test tube.	il. Pull out an
Bil&Mai, p 336	disappearing beaker	6A40.30	A small beaker inside a larger beaker is made to disappear whe oil is poured in.	n vegetable
Ehrlich 2, p. 163	disappearing beaker	6A40.30	A small beaker disappears when placed into a larger beaker fille oil.	ed with baby
Disc 22-10	disappearing eye dropper	6A40.30	Place an eyedropper in a liquid with an index of refraction matcl glass.	ned to the
AJP 28(8),743	more Christiansen filters		A table of Christiansen filter pairs. See AJP 25,440 (1957)	
Sut, L-33	Christiansen filters	6A40.31	A mixture of crushed glass and a liquid with the same index of r glass is warmed in a container and exhibits colors. Directions for	
Bil&Mai, p 337	refraction of laser light	6A40.33	permanent display. Reference. A small piece of glass protrudes from the corner of a square ba	
			45 degree angle. A laser beam is directed through the jar at a the side so that it passes through the glass and produces two b	0 0
TPT, 36(7), 420	refraction of diffracted light	6A40.35	the jar with vegetable oil and one of the beams disappears. Refraction of light, using diffracted light, through a water and air explored.	interface is
AJP 47(1),120	grating pattern shift	6A40.36	Shine a laser beam through a grating so the beam splits the air, interface and measure the difference in the diffraction pattern for passing through the air and liquid.	
AJP 54(10),956	grating in aquarium	6A40.36	Mount a transmission grating inside an aquarium and measure laser beam on the other end with and without water in the tank.	the diffracted
Sut, L-29	refraction with shadow and cube	6A40.37	A shadow projected through a glass cube has a different length	than normal.
AJP 46(4),426	refractive index of beer	6A40.38	The ratio of the apparent diameter to the actual diameter of a st pepperoni in a glass of beer gives the index of refraction. In the use a mesh projected on the wall and measure offset of a vertic	classroom,
Mei, 34-1.7 PIRA 1000	Abbe refractometer variable index of refraction tank	6A40.39 6A40.40	A liquid separates the hypotenuses of two right angle prisms.	
AJP 40(6),913 Mei, 34-1.12	variable index of refraction tank variable index of refraction tank	6A40.40 6A40.40	Shine a laser beam through an aquarium with an unstirred sugation How to make a tank with varying concentrations of benzol and the second seco	

Demonstration Bibliography July 2015 Optics AJP 56(12),1099 gradient index lens 6A40.42 A small gradient index lens is passed around the class. It looks like a glass rod but one sees an inverted image when looking along the axis. **PIRA 1000** 6A40.45 mirage Sut. L-32 mirage 6A40.45 How to heat a long plate to demonstrate the mirage effect. Mei, 34-1.15 mirage 6A40.46 The image from a slide projector is directed just above a brass plate heated with a burner. AJP 51(3),270 mirage with a laser 6A40.47 A laser beam almost grazing a hot plate will show deflection when the hot plate is turned on. AJP 51(5),475 laser beam deflection - thermal 6A40.47 An apparatus for cooling a plate to deflect a laser beam downward. gradient AJP 37(3),332 mirage with laser 6A40.47 A laser beam is imaged through a keyhole and the beam then passes through a 1 meter oven. AJP 57(10),953 6A40.47 A laser beam passing through a tank of water begins to deflect immediately superior "superior" image when heat lamps are turned on. Images are also observed. D&R, O-225 laser beam deflection - twinkling 6A40.47 A laser beam close to the top of a hot plate. The laser beam is run through an aperture after the hot plate and before the screen. The spot on the wall will jiggle, twinkle, or even wink out at times when the plate is turned on. D&R, O-226 laser and hot plate 6A40.47 A laser beam almost grazing a hot plate will "dance" when the hot plate is turned on. Sprott, 6.4 laser beam deflection - twinkling 6A40.47 A laser beam passed over the top of a Bunsen burner produces a spot on the wall that twinkles like a star. Ehrlich 2, p. 164 mirage - superior mirage 6A40.47 A focusable flashlight beam passing through a tank of water begins to deflect when heat lamps above the tank are turned on. AJP 42(9),774 6A40.49 mirage explanation note A note correcting misleading textbook explanations of the mirage. **PIRA 1000** oil, water, laser 6A40.50 **PIRA 1000** 6A40.60 Schlieren image AJP 49(2),158 cheap Schlieren 6A40.60 A small, compact, portable, and inexpensive Schlieren instrument using an ordinary lamp and a light source. Mei, 34-1.27 Schlieren, etc. 6A40.60 Show and compare Schlieren, direct shadow, and interferometeric method of detecting small changes in the index of refraction of air. Diagrams, Details in appendix, p. 1352. 6A40.61 A simple arrangement with a point source, lens, and candle near the lens, AJP 29(9),642 Schlieren image of a candle aperture, and screen for lecture demonstration purposes. F&A, Op-1 Schlieren image of a candle 6A40.61 Laser light is used in Schlieren projection of a candle flame. AJP 52(5),467 single mirror Schlieren system 6A40.62 Two Ronchi rulings are placed at the radius of curvature of a spherical mirror. AJP 50(8),764 Schmidt-Cassegrain Schlieren 6A40.63 Two Schmidt-Cassegraion telescopes are used to make a simple inline Schlieren system. Mei, 34-1.26 **Toepler Schlieren apparatus** 6A40.65 A simpler Schlieren setup with colors indicating amount of deviation. Sut, L-31 refraction by gases 6A40.67 Shadow project the Bunsen burner (H-137), hold a hot object in one arm on the Michelson interferometer. **PIRA 1000** short beer 6A40.70 AJP 45(6),582 tall beer 6A40.70 Properly designed glassware makes the beer look taller. AJP 43(8),741 cylindrical lens and short beers 6A40.70 Analysis of the apparent inner diameter thick cylinder of a liquid of different index of refraction. 6A40.70 Paint the inside of the illusion cylinder, (AJP 43(8),741). AJP 44(6),601 short beers AJP 47(8),744 beer mugs 6A40.70 Two beer mugs were found that have the same outer dimensions and both appear to hold the same amount of beer when full, but actually differ in volume by a factor of two. AJP 44(8),799 short beer comment 6A40.70 Easy explanation. AJP 46(11),1197 plasma laser-beam focusing 6A40.90 An expanded laser beam grazing a flat combustion flame from a paint stripper is focused into a line. A second perpendicular flame gives a point. 6A42.00 **Refraction from Flat Surfaces PIRA 500** blackboard optics - refraction 6A42.10 6A42.10 F&A, Od-2 blackboard optics - refraction Blackboard optics with a single beam and a large rectangle and prism of Plexidas D&R, O-200 blackboard optics - refraction 6A42.10 Blackboard optics with a single beam and a large acrylic rectangular block. Add a plane mirror to the back of the block to reflect internal beam and show it is parallel to the beam reflected from the front surface. **PIRA 1000** 6A42.11 optical disk with glass block UMN, 6A42.11 optical disk with glass block 6A42.11 A single beam of light on the optical disc is used to show refraction through a rectangular block of glass. Disc 22-06 refraction/reflection from plastic 6A42.12 Rotate a rectangle of plastic in a single beam of light. F&A, Od-3 optical disc - semicircle 6A42.15 A single beam of light is refracted at the flat but not the curved side if it leaves along a radius.

July 2	2015
--------	------

	=		
PIRA 200 F&A, Od-1 Bil&Mai, p 339	refraction tank refraction tank refraction tank and lasers	6A42.20 6A42.20 6A42.20	Rotate a beam of light in a tank of water containing some fluorescein. A rotatable beam of light in a tank of water containing some fluorescein. Two different colored laser beams enter a tank of water containing a pinch of powdered coffee creamer. One beam enters at a right angle to the surface
			of the water, and the other enters at an angle. Use a fog machine to made
PIRA 1000	Nakamara refraction tank	6A42.21	the beams in air visible and observe the refraction.
UMN, 6A42.21	Nakamara refraction tank	6A42.21	
UMN, 6A42.22	big plastic refraction tank	6A42.22	
TPT 28(6),422	force table refraction tank	6A42.24	A small refraction tank is mounted on a force table.
Sut, L-28	refraction	6A42.27	Three refraction demos - optical tank, ripple tank, glass block.
PIRA 1000	refraction model - rolling	6A42.30	
Sut, L-30	refraction model	6A42.30	An axle with independent 1" wheels rolls down an incline with one wheel on cloth, the other on the plain board.
Mei, 34-1.21	string models of refraction	6A42.31	String models of refraction representing a water tank, prism, thin lens, comma aberration, and astigmatism are shown. Pictures, Construction
			details in appendix, p.1345.
AJP 48(4),275	wavefront strips model	6A42.32	
PIRA 1000	ripple tank refraction	6A42.35	
UMN, 6A42.35 PIRA 500	ripple tank refraction penny in a cup	6A42.35 6A42.40	
UMN, 6A42.40	penny in a cup	6A42.40	
F&A, Od-4	seeing a coin	6A42.40	Pour water into a beaker until a coin at the bottom previously hidden by the
		0742.40	side is visible.
PIRA 1000	light in a tank	6A42.43	
Disc 22-07	small refraction tank	6A42.43	Position a lamp in an opaque tank so the filament cannot be seen, then add water until the light from the filament is seen over the edge of the tank.
Ehrlich 2, p. 159	refraction - number of objects	6A42.44	An object is placed in a transparent tank of water near the corner. Look through the corner at the object and you will see multiple images of the object.
TPT 25 (7), 440	refraction - number of objects	6A42.44	A tank of water with a single fish in it. Look through the corner of the tank and see multiple fish.
PIRA 500	stick in water	6A42.45	
F&A, Od-5	stick in water	6A42.45	A stick appears bent when inserted into water at an angle.
D&R, O-210	stick in water	6A42.45	A stick, ruler, or spoon, appears bent or broken when inserted into water at an angle.
Ehrlich 2, p. 157	stick in water	6A42.45	A pencil inserted into a glass of water appears bent or broken. This can be used to calculate the index of refraction of the water.
AJP 43(1),112	rugged refraction demonstration	6A42.46	Cast a stick in a tumbler filled with clear casting resin. Pass around the class.
PIRA 1000	acrylic/lead glass refraction	6A42.47	
Disc 22-08	acrylic/lead glass refraction	6A42.47	Hold a stick behind stacked lead glass and acrylic blocks. The image of the stick is shifted when viewed off the normal to the surface of the blocks.
PIRA 1000	minimum angle of deviation	6A42.50	
F&A, Of-1	minimum deviation of a prism	6A42.50	At minimum deviation light reflected off the base is parallel to that passing
			through an equilateral prism.
Hil, O-2b	minimum angle of deviation	6A42.50	Project a line filament through a large prism on a rotating platform with and without monochromatic filters. Reference: TPT 7(9),513.
PIRA 1000	three prism stack	6A42.51	
Disc 22-09	three different prisms	6A42.51	A stack of three prisms of different glass shows different refraction and dispersion.
PIRA 1000	paraffin prism and microwaves	6A42.55	
UMN, 6A42.55	paraffin prism and microwaves	6A42.55	
Mei, 33-7.10	microwave paraffin prism	6A42.55	Determine the index of refraction of a large paraffin prism with 3.37 cm
			microwaves.
F&A, Oj-6	dispersion in different media	6A42.60	A multiple element prism is made with layers of different plastic and glass.
F&A, Oj-5	dispersion of liquids	6A42.65	A hollow prism is filled with a layer of carbon disulfide and a layer of water.
D&R, O-272	oil, syrup, and water prisms with a	6A42.65	Fill a V-shaped trough with oil, syrup, or water and shine a projector with a
	laser		narrow slit aperture through it and look at the spectrums and the deviation. Use a laser to compare deviations and relate to index of refraction of the liquids used.
	Total Internal Reflection	6A44.00	
PIRA 200	blackboard optics	6A44.10	Multiple beams of light pass through large scale optical elements.

201101101101101	. בוגווניק: מאויי	•	
D&R, O-205	blackboard optics - prism, semicircle	6A44.10	Single and multiple beams of light pass through large acrylic prisms and semicircles.
PIRA 1000	optical disk with prism, semicircle	6A44.11	
UMN, 6A44.11	optical disk with prism, semicircle	6A44.11	A single beam of light on the optical disk shows total internal reflection when passed through a prism.
Mei, 34-1.6	semicircular element on disc	6A44.11	
PIRA 500	big plastic refraction tank	6A44.20	
F&A, Oe-1	critical angle in a refraction tank	6A44.20	
0			the surface.
Sut, L-35	refraction tank	6A44.20	Adjust the path of a beam with mirrors in a tank of water with fluorescein to show total internal reflection.
Bil&Mai, p 341	critical angle in a refraction tank	6A44.20	Fill a refraction tank with water that contains a pinch of powdered coffee creamer. Direct a laser beam up through one side of the tank towards the top surface of the water.
Bil&Mai, p 343	critical angle / total internal reflection	6A44.20	Tape playing cards to the outside walls and bottom of a refraction tank. Fill the tank with water and observe what critical angle and total internal
Disc 22-11	critical angle/ total internal	6A44.20	o
	reflection		mirror in the tank so the beam passes through the critical angle.
UMN, 6A44.22	big plastic refraction tank	6A44.22	
PIRA 1000	Snell's wheel	6A44.25	
PIRA 1000	ripple tank total internal reflection	6A44.30	
AJP 45(6),550	ripple tank total reflection	6A44.30	Vary the angle of incidence of ripple tank waves to a boundary with water depths of 13 and 3 mm.
ref.	frustrated total internal reflection	6A44.35	see 7A50.12
Ehrlich 1, p. 180	fiber optics - ulexite	6A44.37	Ulexite or "TV rock" is a naturally occuring mineral that consists of parallel
			optical fibers. Place a sample of this on a written page and read the lettering at the top of the rock.
PIRA 200	laser and fiber optics	6A44.40	•
UMN, 6A44.40	laser and fiber optics	6A44.40	A laser is used with a bundle of fiber optics, a curled Plexiglas rod, and a 1"
		0/11/10	square lean rod.
F&A, Oe-7	light pipe - spiral	6A44.40	•
Sut, L-34	curved glass tube	6A44.40	
	•		
Hil, O-2e	light pipes	6A44.40	
D&R, O-255	laser and fiber optics	6A44.40	o o i i i
Sprott, 6.5	light pipe - spiral	6A44.40	A long spiral rod illuminated with a low-power laser.
Disc 22-13	light pipes	6A44.40	Shine a laser into a curved plastic rod.
PIRA 1000	optical path in fibers	6A44.41	
Disc 22-14	optical path in fibers	6A44.41	Shine a laser down a bent rectangular bar.
PIRA 1000	steal the signal	6A44.42	
UMN, 6A44.42	steal the signal	6A44.42	
D&R, O-258	steal the signal	6A44.42	Shine a laser into a spiral acrylic light pipe. Dip the spiral into baby oil, or coat with vaseline, and note that the light pipe no longer reflects light internally.
rof	staal the signal	604442	
ref.	steal the signal bounce around a tube	6A44.42	
AJP 53(2),182		6A44.43	internal reflection.
D&R, O-255	bounce around a tube	6A44.43	A laser beam follows a helical path around a thick walled acrylic tube.
PIRA 1000	water stream light pipe	6A44.45	
AJP 44(6),604	water stream light pipe	6A44.45	Shine a laser beam down the water stream issuing from the orifice of a Plexiglas tank of water.
Sut, L-36	illuminated fountain	6A44.45	5
D&R, O-250	water stream light pipe	6A44.45	
	3 111		soda bottle. A Florence flask with a two hole stopper may also be used.
Sprott, 6.6	water stream light pipe	6A44.45	A stream of water illuminated with a laser or high-intensity white light act as a light guide.
Bil&Mai, p 342	water stream light pipe	6A44.45	
Ehrlich 1, p. 181	water stream light pipe	6A44.45	•
Disc 22-15	laser waterfall	6A44.45	
	light below surface	6111 50	An underwater light illuminates newder on the surface of water to form a
PIRA 200 - Old	light below surface	6A44.50	An underwater light illuminates powder on the surface of water to form a central spot of light.

UMN, 6A44.50	ring of light	6A44.50	Same as Oe-2.
F&A, Oe-2	light below surface	6A44.50	An underwater light illuminates powder on the surface of water to form a central spot of light.
AJP 51(5),469	ring of light index of refraction	6A44.51	Find the index of refraction of transparent plates by wetting a filter paper on one side, shining the laser in that side, and measuring the diameter of the light circle.
AJP 49(8),794	ring of darkness	6A44.52	Shine a laser through a sample to a white diffusely reflecting surface and measure the darkened circle on the top surface.
F&A, Oe-5	water/benzol surface	6A44.53	Total internal reflection from a water/benzol surface.
Ehrlich 1, p. 180	oil and water/alcohol initerface	6A44.53	Total internal reflection occurs at an oil and water/alcohol interface.
F&A, Oe-4	hidden mercury in a test tube	6A44.54	Mercury in a partially filled test tube cannot be seen from above when immersed in water.
Sut, L-40	total internal and metallic reflection	6A44.54	View a test tube half full of mercury half in water from an angle of 100 degrees to the incident beam. The glass-air interface is brighter.
PIRA 1000	black ball turns silver	6A44.55	
F&A, Oe-3	black ball turns silver	6A44.55	A soot covered ball appears silver under water due to reflected light from air
Sut, L-39	soot ball	6A44.55	trapped on the surface of the ball. A ball covered with soot appears silvery in water due to the air trapped on the
Out, E 00		0/14.00	soot forming an air-water interface.
Ehrlich 2, p. 157	silver soot ball	6A44.55	A soot covered metal ball appears silver when suspended underwater.
Disc 22-12	silver soot ball	6A44.55	A ball coated with soot appears silver in water.
Sut, L-37	glass-air interface	6A44.56	Two thin strips of glass are sealed with an air barrier and immersed in water. Turned to the proper angle to the incident beam it will exhibit total internal reflection.
Sut, L-38	near critical angle	6A44.56	Use the entrapped air slide in a water bath or air between right angle prisms to show the colors of the transmitted and reflected light near the critical angle. Dispersing the two beams will show complementary spectra.
F&A, Oe-6		6444 50	Draiget light through anow or ghanned ice and old water
Sut, L-41	add water to snow diamond	6A44.59 6A44.60	Project light through snow or chopped ice and add water. A thin beam of light is directed on a diamond and the reflections are
000, 2		0,11,100	projected onto a cardboard.
F&A, Of-2	inversion with a right angle prism	6A44.65	Project an image upside down and place a right angle prism in the beam to invert the image.
F&A, Ob-7	right angle prism inverter	6A44.65	A right angle prism placed in a projected beam inverts the image.
F&A, Of-3	right angle prism - double reflection	6A44.66	A beam entering the hypotenuse of a right angle prism is inverted and reversed.
F&A, Of-4 Hil, O-2d	two right angle prisms - inversion prisms	6A44.67	Two right angle prisms are arranged to invert and pervert the image. Several prisms demonstrate total internal reflection.
AJP 59(5),477	Goos-Haenchen shift	6A44.68 6A44.70	The sideways displacement of a beam at total internal reflection is shown
7.01 00(0), 111			with 3 cm microwaves.
	Rainbow	6A46.00	
PIRA 500	rainbow rainbow	6A46.10 6A46.10	
UMN, 6A46.10 F&A, Oj-10	rainbow	6A46.10	An arc lamp directed at a sphere of water forms a rainbow on a screen.
Sut, L-43	rainbow	6A46.10	Project a beam through a spherical flask of water and view the rainbow on a
			screen placed between the light and the flask.
D&R, O-275	rainbow	6A46.10	A slit of light from a slide projector grazes a beaker or square plastic container filled with water producing a rainbow.
D&R, O-275	rainbow	6A46.10	A clear plastic cup filled with water is placed on the overhead. A dispersed circular rainbow will be seen on the ceiling.
D&R, O-280	rainbow	6A46.10	Project a beam through a spherical flask of water and view the rainbow on a
			screen with center hole placed between the light source and the flask.
Ehrlich 1, p. 183	rainbow	6A46.10	A rainbow is produced by shining a flashlight at the side of a jar of water.
AJP 77 (9), 795	rainbow	6A46.10	A project in which students use numerical methods to analyze the physics of the rainbow.
Sut, L-45	artificial rainbow	6A46.11	Form a vertical circle "rainbow" by placing a tube of water between a prism and screen.
AJP 58(6),593	secondary rainbow	6A46.12	Use a single sphere with the back surface coated with a reflecting material to show both primary and secondary bows with increased intensity.
Sut, L-44	rainbow droplets	6A46.15	Small droplets formed by spraying an atomizer on a soot covered glass plate glisten like colored jewels when viewed at 41 degrees.
AJP 56(11),1006	rainbow dust	6A46.16	On using small glass spheres to generate bows and halos.
PIRA 1000	rainbow model	6A46.20	

Demonstration	Dibilography	50	
Mei, 34-1.16	rainbow model	6A46.20	Depict a three dimensional model of the rainbow with strings representing light rays.
Mei, 34-1.17	rainbow	6A46.25	A mechanical model for demonstrating rainbow formation shows why the rainbow is produced and why size depends on the time of day.
TPT 28(7),509	rod and dowel raindrop model	6A46.26	A rod and dowel raindrop model is used to show why a rainbow is bow- shaped.
PIRA 1000	optical disc with spherical lens	6A46.30	
UMN, 6A46.30	optical disc with spherical lens	6A46.30	A single beam into a circular glass element is refracted, totally internally reflected, and refracted out again.
Disc 23-24	rainbow disc	6A46.30	A single beam is used with a spherical glass element on an optical board to show the path of refracted light that produces a rainbow.
	Thin Lens	6A60.00	
PIRA 500	blackboard optics - thin lens	6A60.10	
F&A, Og-7	blackboard optics - thin lens	6A60.10	Blackboard optics are used with convex and concave thin lens elements.
D&R, O-310	blackboard optics - thin lenses	6A60.10	Blackboard optics are used with convex and concave thin lens elements.
PIRA 1000	optical disk with thin lens	6A60.11	
	•		The entired disk is used with multiple became and a this loss element
UMN, 6A60.11	optical disk with thin lens	6A60.11	The optical disk is used with multiple beams and a thin lens element.
F&A, Og-10	optical disc - lenses	6A60.11	Various lens elements are used with the optical disc.
F&A, Og-1	optical disc - refraction at curved surfaces	6A60.12	A long plastic slab with a concave surface at one end and a convex surface at the other is used in the optical disc.
PIRA 500	ripple tank convex lens	6A60.15	
UMN, 6A60.15	ripple tank convex lens	6A60.15	
F&A, Sm-6	ripple tank - lens model	6A60.15	Refraction due to depth differences over a lens shaped area in the ripple tank.
PIRA 1000	ripple tank concave lens	6A60.16	
UMN, 6A60.16	ripple tank concave lens	6A60.16	
PIRA 500	parallel lasers and lenses	6A60.20	
UMN, 6A60.20	parallel lasers and lenses	6A60.20	Parallel lasers are passed through converging and diverging lenses. Chalk dust illuminates the beams.
F&A, Og-9	parallel lasers and lenses	6A60.20	Parallel lasers are used with chalk dust to show the path of rays through a lens and combinations of lenses.
AJP 70(12), 1184	ray tracing with lenses	6A60.20	A ray tracing approach to thin lens analysis. This ray tracing approach accommodates skew rays providing a more complete analysis.
Disc 22-18	ray tracing with lenses	6A60.20	Show parallel rays passing through a lens element and converging.
PIRA 200	thin lens projection	6A60.30	Project the filament of a lamp with a thin lens.
UMN, 6A60.30	projected filament with a lens	6A60.30	Project the filament of a light bulb on the wall. The lens can be stopped down.
F&A, Og-5	thin lens projection	6A60.30	Project the filament of a lamp with a thin lens.
Disc 22-16	real image formation	6A60.30	With a source and screen at the ends of a long optical bench, show the two positions a lens will produce an image.
PIRA 1000	projected arrow with a lens	6A60.31	
UMN, 6A60.31	projected arrow with a lens	6A60.31	Use an illuminated arrow with a converging lens to project an image on a screen.
D&R, 0-315	projected arrow with a lens	6A60.31	Use an illuminated arrow with a converging lens to project an image on a screen. Two such commercial light sources are shown.
D&R, O-320	project arrow with lens - cover half lens	6A60.31	Use an illuminated arrow with a converging lens to project an image on a screen. Cover the bottom half of the lens and observe the image.
Bil&Mai, p 345	projected arrow with a lens	6A60.31	Use an illuminated arrow with a converging lens to project an image on a screen.
Ehrlich 2, p. 161	image with lens - cover half lens	6A60.31	Form an image on a screen with a converging lens. Cover half of the lens with a piece of cardboard. The image just gets dimmer.
F&A, Og-6	thin concave lens	6A60.32	Try to project an image with a thin concave lens.
Hil, O-4a	image location	6A60.33	A set of lenses for demonstrating the six general cases for object and image distances.
PIRA 1000	lens magnification	6A60.35	
Disc 22-17	lens magnification	6A60.35	Place various lenses between a backlit grid and the class.
AJP 76 (9), 856	submerged light bulb	6A60.37	Exploring the unusual optical properties displayed by submerged clear and frosted light bulbs.
UMN, 6A60.40	position of virtual image	6A60.40	-
AJP 48(4),322	position of a virtual image with a TV	6A60.40	Find the virtual image location by focusing on an object through a lens removing the lens, and moving the object to a focused position. Also the apparent depth with a TV method.
	position of a virtual image	6460 45	apparent uepun with a t v methou.
PIRA 1000 F&A, Og-12	position of a virtual image focal length of a lens - mirror	6A60.45 6A60.45	When a lamp is at the focal length, the image is at the same place if a mirror is placed directly behind the lens.
			· · · · · · · · · · · · · · · · · · ·

		-	
TPT, 37(2), 94	how to quickly estimate the focal length of a diverging lens	6A60.46	A simple method for finding the focal length is explained.
Sut, L-50	effect of medium on focal length	6A60.48	Find the focal length of a lens, then find the focal length of the same lens in water.
Sut, L-47	lenses	6A60.49	All sorts of focal length stuff.
PIRA 500	pinholes projected with a lens	6A60.50	
	,	6A60.50	
UMN, 6A60.50	pinholes projected with a lens		Diskalar an arista dia shirata ana ana ing tana (bara (bara) bath Drive (ba
F&A, Oa-2	pinholes projected with a lens	6A60.50	Pinholes are pricked in a black paper covering a long filament bulb. Bring the
			multiple images into one image with a converging lens.
Sut, L-48	action of a lens	6A60.50	Project the images of a filament through several pinholes and then add a
			lens to collect the many into a single image.
D&R, O-300	pinholes projected with a lens	6A60.50	Pinholes are pricked in a black paper covering a bulb. Bring the multiple
			images into one image with a large converging lens.
AJP 48(11),990	flat flames as lenses	6A60.55	More of the original Phil Johnson humor = I haven't figured this out and have
			to go home to eat, so maybe some other time. The description would be:
			Using large flat oxyacetylene flames as lenses to focus a laser beam.
PIRA 1000	paraffin lens and microwaves	6A60.60	
UMN, 6A60.60	paraffin lens and microwaves	6A60.60	
Mei, 33-7.2	microwave lens	6A60.60	Construct a microwave lens and prisms of stacks of properly contoured
			aluminum sheets separated by just over one half the wavelength.
	Pinhole	6A61.00	
PIRA 1000	pinhole projection	6A61.10	
Sut, L-15	pinhole projection	6A61.10	Place a lamp in a box covered with heavy paper and poke a hole in the paper
Sul, L-15		0401.10	with a wire 1-2 mm in diameter. Poke more holes for more images. Try
			different size holes.
	ninkala projection	CAC1 10	
Hil, O-1a	pinhole projection	6A61.10	Interpose a metal plate with two holes between a lamp and a screen on an
			optical bench.
ref.	pinholes projected with a lens	6A61.15	see 6A60.50
PIRA 500	pinhole camera	6A61.20	
UMN, 6A61.20	pinhole camera	6A61.20	
F&A, Oa-3	pinhole camera	6A61.20	Place film at the back of a box with a hole.
D&R, O-350	pinhole camera	6A61.20	Construction of a simple pinhole camera from a shoe box.
Disc 21-09	pinhole camera	6A61.20	Project a lamp filament onto a screen. Vary the distance of the screen and
			the size of the pinhole. Includes animation.
Sut, L-16	pinhole camera	6A61.21	A sliding box with has pinhole at one end and a frosted glass at the other. Try
			a 1" diameter hole in the shutter of a window in a darkened room. Directions
			on making a pinhole camera.
AJP 49(5),715	pinhole imagery	6A61.22	
Ehrlich 2, p. 167	pinhole imagery	6A61.22	Varying the size of the pinholes will change the fuzziness and brightness of
			an image in a predictable way.
D&R, O-350, O-	pinhole imagery	6A61.22	A pinhole will allow a person to focus clearly on an object at 5 cm.
590			Approximate 5X magnification will also result.
Mei, 34-1.10	pinhole camera	6A61.23	A small tube covered with tin foil with a small hole replaces the lens of a TV
			camera.
Mei, 34-1.11	fish-eye camera	6A61.30	A pinhole camera filled with water or solid Lucite gives a fish-eye view.
			Diagram, Pictures.
Ehrlich 2, p. 168	negative pinhole image	6A61.35	A small sphere or screw head is place between a circular fluorescent light
, p			and a screen. A negative image of the light appears on the screen.
	Thick Lens	6A65.00	
AJP 55(12),1128	computer assisted optics	6A65.09	The authors describe a program that covers spherical and chromatic
/ (0) (00((12)), (120)		0,100100	aberration in addition to other topics. BASIC, PC, available from authors.
PIRA 500	improving an image with a stop	6A65.10	
F&A, Oh-2	improving an image with a stop	6A65.10	Use a stop to improve the image through a short focal length lens.
D&R, 0-370	improving an image with a stop	6A65.10	Use a stop to improve the image through a short focal length lens.
F&A, Oh-3	depth of focus	6A65.11	Use a six inch long glowing wire as an extended object for showing the effect
		0700.11	of stopping down a lens.
	optical disc. aircular alass plats	6166 46	or stopping down a lens.
PIRA 1000	optical disc - circular glass plate	6A65.15	Lies a simular plate of along with the entired dise on an event of a thirty
F&A, Og-4	optical disc - circular glass plate	6A65.15	Use a circular plate of glass with the optical disc as an example of a thick
	all as a set of the set of the	0405 05	lens.
PIRA 500	chromatic aberration	6A65.20	
UMN, 6A65.20	chromatic aberration	6A65.20	
AJP 68(9), 869	chromatic aberration	6A65.20	How to project chromatic aberration in a large lecture classroom using an
			overhead projector and another glass or Fresnel lens.
F&A, Oj-9	chromatic aberration	6A65.20	A diaphragm moved near the focus selects red or blue light from beams
			passing through the edge of a lens.

Demonstrati	ion Bibliography	J	luly 2015	Optics
Mei, 34-1.23	aplanic properties of a sphere	6A65.21	Aplanic systems show no spherical aberration or coma for som	e special
D&R, O-380	chromatic aberration		position of object and image demonstrated here with a spherica	al lens.
·		6A65.21	and blue or violet Kodak filters.	
Disc 22-22	chromatic aberration	6A65.21	Project spots of light on a screen from several points on a lens. chromatic aberration and then add a second correction lens.	
Mei, 34-1.22	chromatic aberration	6A65.22	Show the image formation distance for red and UV light using a screen to display the UV.	fluorescent
Mei, 36-7.2	lens aberrations with a laser	6A65.23	Good quality telescope and microscope objectives are used to aberrations in optical systems.	show
Sut, L-49	chromatic and spherical aberration	6A65.24	Use diaphragms with central, annular, and other openings to sh and chromatic aberration.	now spherical
PIRA 500	barrel and pincushion distortion	6A65.30		
UMN, 6A65.30		6A65.30		
Sut, L-52	barrel and pincushion distortion	6A65.30	Project an illuminated wire mesh with a large lens. Place a diap	hragm
000, 202			between the lens and the mesh for barrel distortion and betwee the screen for pincushion distortion.	-
D&R, O-375	barrel and pincushion distortion	6A65.30	Project a pincushion distortion using a slide projector with no le	ns a variable
Dark, 0 575		0700.00	aperture stop, wire mesh screen, and large lens. Some barrel	
PIRA 1000	off axis distortion	6A65.31		
Disc 22-24	off axis distortion	6A65.31	Parallel rays of light pass through a lens element held off axis.	
Disc 22-23	astigmatism	6A65.34	Focus light from a circular hole on a screen, then add a cylindri	cal lens
PIRA 1000	astigmatism and distortion	6A65.35		
Sut, L-51	astigmatism and distortion	6A65.35	An illuminated wire mesh is projected onto a screen with a shore	t focal longth
Sul, L-31	asigmatism and distortion	0A05.55	condenser lens. Turn the lens about an axis parallel to either set the horizontal and vertical wires will focus at different points.	
D&R, O-370	astigmatism	6A65.35	An illuminated wire mesh is projected on a screen with a lens.	Turn the lens
Dart, 0-370	asugmausm	0700.00	about an axis parallel to either set of wires and the horizontal ar wires will focus at different points.	
PIRA 500	spherical aberration	6A65.40		
D&R, O-170	spherical aberration	6A65.40	An image of a light bulb with writing on it is projected onto a scr	oon with a
Dar, 0-170	spherical aberration	0A03.40		
D&R, O-370	spherical aberration	6A65.40	concave mirror. Stop the outer portions of the mirror and then the Project an image with a thick planoconvex lens. Stop the outer lens, then the center.	
Disc 22-21	spherical aberration	6A65.40	Project an image with a spherical planoconvex lens. Stop the o the lens, then the center.	uter portion of
F&A, Oh-1	abberation with a plano convex	6A65.45	A series of parallel beams around the outside edge of a plano of	convex lens
	lens	0,100.10	made visible with chalk dust are better focused when the light e curved side.	
AJP 32(5),355	spherical abberation and coma with a laser	6A65.46	Diagram and pictures of a setup to project lens aberrations with	a laser.
PIRA 1000	fillable air lens	6A65.52		
F&A, Oq-2	water lens		A beam of light is directed through a round flask filled with wate	r
D&R, O-305	fillable air lenses	6A65.52	5	
D&R, 0-300	water lens	6A65.52	a trough of water with fluorescin dye added for visibility.	
·			plano-convex water lens.	
Ehrlich 1, p. 17	7 fillable air lenses	6A65.52	A variety of objects that can be used as convex and concave le or mirrors which can be filled with water or air and used in a tan with some powedered milk or dairy creamer added for visibility. overhead projector is used as a light source.	k of water
Ehrlich 2, p. 16	61 water lens	6A65.52	Add some water to a transparent plastic globe to make a plano lens.	-convex water
Ehrlich 2, p. 16	2 rotating water lens	6A65.52	lens. Place this on an overhead projector and give it a spin. O change in the focal length.	bserve the
Disc 22-20	fillable air lenses	6A65.52	Convex and concave lenses are filled with water and air in water	er and air.
Mei, 34-1.13	spherical lens	6A65.53		
F&A, Og-3	wine bottle lens	6A65.54		escein to show
F&A, Og-11	watch glass lens	6A65.55	A vertical lens can be formed by pouring various liquids into a v	vatch glass.
Hil, O-4c D&R, O-340	CHOICE OXIDE TITANIUM OXIDE	6A65.56 6A65.56	CHOICE OXIDE GLASS LAMP is viewed through a tube filled w TITANIUM OXIDE is viewed through a large diameter acrylic ro	

Demonstratior	n Bibliography	J	uly 2015 Optics
Mei, 34-1.4	light beam strikes rod	6A65.58	A light beam incident on the side of a glass rod at some angle will produce a
Mai: 04.4.40	alastic langes		cone with the half angle equal to the angle of incidence.
Mei, 34-1.19	plastic lenses	6A65.60	The advantages of plastic lenses.
PIRA 1000	Frensel lens	6A65.70	An article on the discovery of standard langes
AJP 57(4),312	Fresnel lens history	6A65.70	
D&R, O-355	Fresnel lens	6A65.70	Fresnel lenses from overhead projectors and their construction.
Ehrlich 1, p. 179	Fresnel lens	6A65.70	A large plastic Fresnel lens is shown to have the focusing properties of conventional lenses.
Disc 22-19	Fresnel lens	6A65.70	Fresnel lens magnification. Animation showing construction of a Fresnel lens.
	Optical Instruments	6A70.00	
PIRA 500	microscope model	6A70.10	
UMN, 6A70.10	microscope model	6A70.10	
Sut, L-54	microscope model	6A70.10	Make a demonstration microscope with a short focal length lens and reading glass.
Sut, L-53	microscope chart	6A70.12	A diagram on a wall chart shows the action of a microscope.
Mei, 6-2.10	fake microscope	6A70.13	A mirror arrangement and fake microscope make normal objects seem miniaturized.
AJP 32(9),xiv	primative microscope	6A70.14	
PIRA 500	telescope models	6A70.20	
UMN, 6A70.20	telescope models	6A70.20	
Sut, L-55	telescope	6A70.20	Set up astronomical, terrestrial, and Galilean telescopes for students to look through individually.
Hil, O-5b.1	real telescope	6A70.21	Observe with a Questar telescope.
Hil, O-5e	Sun telescope	6A70.22	Make a heliostat for a room with a south facing window. Reference: AJP 38(3),391-2.
Hil, O-5f	large telescopes	6A70.23	Large telescopes are available on the roof for observations.
Sut, L-56	telephoto lens	6A70.25	An illuminated wire mesh is projected on a screen using a telephoto lens setup.
PIRA 500	camera model	6A70.30	
Hil, O-5a	cameras	6A70.31	Several cameras are exhibited.
PIRA 1000	projector model	6A70.35	
F&A, Oh-4	superposition of images	6A70.40	A wire screen placed at the point where a real image is formed is projected through a second lens to form a combined image.
Sut, L-57	lens combinations	6A70.45	
Mei, 34-1.25	measuring with moire fringes	6A70.50	A long discussion on measuring with moire fringes. Diagrams, Construction details in appendix, p.1346.
F&A, Og-13	changing beam size	6A70.60	The beam size may be changed with or without inversion by placing the second lens at the sum or difference of the focal lengths.
Mei, 34-1.20	entrance and exit pupil	6A70.65	An optical bench setup shows the concept of entrance and exit pupil.
	PHOTOMETRY	6B00.00	
	Luminosity	6B10.00	
PIRA 500	checker board	6B10.10	
UMN, 6B10.10	checker board	6B10.10	Use a point source to superimpose shadows of a rectangle and a 3h x 3w checkerboard rectangle.
F&A, Oi-1	inverse square law	6B10.10	
PIRA 200	inverse square model	6B10.15	
Hil, O-1b.1	inverse square model	6B10.15	A wire frame pyramid connects areas of 1, 4, and 16 units.
PIRA 1000	inverse square law with a photometer	6B10.20	· · · [] · · · · · · · · · · · · · · · · · · ·
Sut, L-11	inverse square with a photocell	6B10.20	Double and triple the distance from an arc source to a photocell connected to a galvanometer.
Hil, O-1b.2	foot-candle meter	6B10.20	Use a Weston type foot-candle meter to measure the inverse square law.
Ehrlich 1, p. 154	inverse square law with a light meter	6B10.20	A light meter, meter stick, overhead projector, and large piece of opaque cardboard are used to plot light intensity versus distance. Equate this to an electrical field point charge. See 5A20.20.
Disc 21-10	inverse square law	6B10.20	Double and triple the distance between a source and photometer. Graph.
PIRA 500	paraffin block photometer	6B10.30	,
UMN, 6B10.30	paraffin block photometer	6B10.30	Two large paraffin blocks with tin foil sandwiched in between make a sensitive photometer. Use with lamps on either side.
F&A, Oi-4	paraffin block photometer	6B10.30	Two paraffin blocks separated by an aluminum sheet are moved between two light sources until they appear equally bright.
Sut, L-12	Joly diffusion photometer	6B10.30	Tin foil is sandwiched between two blocks of paraffin. Can be mounted in a box for greater accuracy.
			· · · · · · · · · · · · · · · · · · ·

Demonstratior	Bibliography	J	uly 2015	Optics
PIRA 1000	grease spot photometer	6B10.35		
F&A, Oi-3	grease spot photometer	6B10.35	A piece of paper with a grease spot is moved between two lig the spot disappears.	ht sources until
Sut, L-14	Bunsen grease spot photometer	6B10.35		sides. Diagram
Ehrlich 2, p. 165	grease spot photometer	6B10.35	o 1	
PIRA 1000	Rumford shadow photometer	6B10.40	'	
F&A, Oi-2	Rumford shadow photometer	6B10.40	Light sources are moved until their shadows of the same obje intensity.	ect are of equal
Sut, L-13	Rumford shadow photometer	6B10.40	Two light sources are moved so the shadow cast by a vertica same intensity.	I rod is of the
PIRA 1000	frosted globe - surface brightness	6B10.50		
UMN, 6B10.50	frosted globe - surface brightness	6B10.50	The surface brightness of a 40 W bulb is compared to a frost over it.	ed globe placed
F&A, Oi-6	surface brightness	6B10.50	A lamp with measured candlepower is enclosed in a frosted g	lobe.
PIRA 1000	frosted globes	6B10.55		
UMN, 6B10.55	frosted globes	6B10.55		
F&A, Oi-8	surface brightness of a lens	6B10.60	Place the eye at the image point of a lens focused on a dim la	amp.
F&A, Oi-7	reflected surface brightness	6B10.65	With a bright spot at the object point of a concave mirror and image point, the whole mirror seems to have the same surfact the spot.	•
AJP 43(1),111	laser and light bulb	6B10.70	•	ght center of a
F&A, Oi-5	covered strobe and detector	6B10.80	The amplitude of a signal displayed on an oscilloscope from a covered photodetector and from a translucent covered strobe angles and distances are changed.	
	Radiation Pressure	6B30.00	5 5	
PIRA 1000	radiometer - quartz fiber	6B30.10		
AJP 29(10),666	radiation pressure	6B30.10	Construction details for a quartz fiber radiometer. Deflection of easily achieved with a microscope lamp.	of one radian is
Sut, A-60	radiometer	6B30.10	The deflection of a quartz fiber radiometer is measured static vacuum.	ally under high
Sut, A-59	radiometer	6B30.11	Focus a beam of light intermittently on a vane of the quartz fil at the frequency of oscillation.	
AJP 34(3),272	light pressure comment	6B30.20	Brings attention to a paper that devotes six pages to describin "classical work by Nichols and Hull".	ng errors in the
	Blackbodies	6B40.00		
PIRA 200 - Old	variac and light bulb	6B40.10	temperature.	-
UMN, 6B40.10	variac and light bulb		Vary the voltage to a 1 KW light bulb with a variac to show co temperature.	-
Sut, L-99	variac and light bulb	6B40.10	Vary the voltage across a clear glass lamp from zero to 50% Also measure the intensity and plot against power.	overvoltage.
PIRA 500	hole in a box	6B40.20	Heles is block haven are blocker than the bases. One has	
UMN, 6B40.20	hole in a box	6B40.20	inside.	Dainted white
F&A, Hf-2 Bil&Mai, p 360	hole in a black box hole in a box	6B40.20 6B40.20	A box painted black has a hole in the side. A box with a hole has 4 different mattings with colors of dark y dark black, and white that can be placed on the inside. The c	
Ehrlich 1, p. 114	hole in a box	6B40.20	observed when the white matting is in place. A hole in a box painted white on the inside is a good example	of a blackbody.
Disc 24-25	Bichsel boxes	6B40.20	Two black boxes have blacker appearing holes in them. One painted white inside.	box actually is
PIRA 1000	carbon block	6B40.25	•	
UMN, 6B40.25	carbon block	6B40.25	A carbon block with a hole bored in it is heated red hot with a glows brighter.	torch. The hole
Mei, 38-5.5	hole in a hot ball	6B40.25	An iron ball with a hole is heated red hot.	
PIRA 1000	carbon rod	6B40.26		
UMN, 6B40.26	carbon rod	6B40.26	Bore a hole in an old carbon arc rod and heat electrically. The brighter.	e hole glows
F&A, Hf-3	radiation from a black body	6B40.30	5	white porcelain

Mets. 38:5.4catchon block and porcelainB640.30Graphite and porcelainResultator, and the block is harded with a barbon.Sut, L-17good absorbers - good radiatorsB640.30Graphite and porcelain header and hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a porcelain head red hol look the same. A pattern on a galvacommeter. B680.41Mets. 38:5.11Indiation intensity curveB680.41Bestore the curptot of a thermopile as it is moved across a spectrum. Monochrometer in appendix, p. 1382, Plots. B680.41Mets. 38:5.13Indiation spectrum of a hot object single sit and laserB680.55A more detailed look at varying the temporature of a black body and massauric and observe readiated colors at allock body and massauric and observe readiated colors at allock body and massauric and observe readiated colors at allock body and massauric and baser and allock at varying the temporature of a black body and massauric and observe readiated colors at allock body and massauric and observe readiated colors at allock body and massauric and observe readiated colors at allock body and massauric and observ	Demonstratio	on Bibliography	J	uly 2015 Optics
Sul, H-158 graphile and porcelain 6840.30 Graphile and porcelain dash abox brighter when heated. An electric element (E-171) with tablik marks or china with a pattern are heated. SUL, L-97 good absorbers - good radiators 6840.40 6840.40 VIMN, B640.40 XY spectrum recorder 6840.40 6840.40 VIMN, B640.40 Its spectrum recorder 6840.40 6840.41 VIMN, B640.40 Its spectrum recorder 6840.41 6840.41 VIMN, B640.41 Its spectrum on a galvanometer in appendix, p. 1382, Plots. 6840.41 Sut, L-98 radiation intensity curve 6840.41 6840.41 6840.41 Dic 23.22 infrared in the spectrum and change the temptor of a back body and meter in different parts of a spectrum. 6840.45 Singer the anergy distribution of the continuous spectrum of a carbon arc with a sensitive thermopile and galvanometer in different parts of a spectrum. Dic 23.21 radiation spectrum of a hot object 6840.55 A more detailed look at varying the temperature of a black body and meter and backers a long filament bub. Increase voltage with a variace and observer radiated colors at different filamet same share and observer radiated colors at different filamet same share and observer and same downge the voltage with a variace and observer adsamet downo sizes. Disc 21	Mei, 38-5.4	carbon block and porcelain	6B40.30	
Sul, Le77 good absorbers - good radiators GB40.35 An electric element (E-17) with chaik marks or china with a pattern are heated until they glow. UNN, GB40.40 XY spectrum recorder GB40.40 GB40.40 GB40.40 Mix, 38-5.11 plotting the spectrum GB40.41 Measure the output of a thermopile as it is moved across a spectrum. Monochrometer in appendix, p. 1362, Pets. GB40.41 Sut, L.98 radiation intensity curve GB40.43 Explore the energy distribution of the continuous spectrum of a carbon arc with a sensitive thermopile and galvanometer. Disc 23-22 infrared in the spectrum GB40.41 Explore the energy distribution of the continuous spectrum of a carbon arc with a sensitive thermopile and galvanometer. Hold a thermopile contexture of a black body and measuring with a thermopole. GB40.55 Fore the spectrum for a hot object. Mei, 38-5.12 radiation spectrum of a hot object. GB40.55 Fore the spectrum form a project the spectrum. Mei, 38-5.12 radiation spectrum of a hot object. GB40.55 Fore the spectrum form a project the spectrum form a project the spectrum form a project map and change the voltage. Mei, 38-5.12 DiFFRACTION Explore the spectrum form a project map and change the voltage. DiFRA201 DifFRACTION	Sut, H-158	graphite and porcelain	6B40.30	Graphite and porcelain heated red hot look the same. A pattern on a
FIRA 1000 X-Y spectrum recorder 6B4.40 The black body radiation curve is traced on a X-Y recorder from a thermopile. detector riding on the pen arm. PIRA 1000 IR spectrum on a galvanometer idea.01 6B4.41 Measure the output of a thermopile as it is moved across a spectrum. Monochrometer in appendix, p. 1362, Piots. Sut, L-86 radiation intensity curve 6B4.41 Explore the energy distribution of the continuous spectrum of a carbon are with a sensity ethermopile and galvanometer. Disc 23-22 infrared in the spectrum 6B4.41 Explore the energy distribution of the continuous spectrum of a carbon are with a sensity ethermopile and galvanometer. Disc 23-22 infrared in the spectrum 6B4.45 For the spectrum of a carbon are with a sensity ethermopile and galvanometer. PIRA 1000 project the spectrum of a hot object 6B4.0.55 A more datalled look at varying the temperature of a black body and measuring with a thermopile. Disc 24-18 radiation spectrum of a hot object 6B4.0.55 Project the spectrum from a projector lang and change the voltage. Mei, 38-5.12 radiation spectrum one spectrum of a hot object 6B4.0.55 Forject the spectrum from a projector lang and change the voltage. Disc 24-18 mcicrowave blackbody 6C1.0.05 6C1.0.06 6C1.0.06	Sut, L-97	good absorbers - good radiators	6B40.35	An electric element (E-171) with chalk marks or china with a pattern are
PIRA 1000 IR spectrum on a galvanometer Mei, 38-5.11 B40.41 Measure the output of a thermopile asi it is moved across a spectrum. Monochrometer in appendix, p. 1328, Piots. Sut, L-98 radiation intensity curve B40.41 Explore the energy distribution of the continuous spectrum of a carbon arc with a sensitive thermopile and galvanometer. Disc 23-22 infrared in the spectrum B40.41 Explore the energy distribution of the continuous spectrum of a carbon arc with a sensitive thermopile and galvanometer. PIRA 1000 project the spectrum and change the temperature B40.55 A more detailed look at varying the temperature of a black body and measuring with a thermopile. Disc 24-18 radiation spectrum of a hot object single sit and taken GB40.55 Project the spectrum from a projector lamp and change the voltage. Disc 24-18 radiation spectrum of a hot object single sit and laser GB40.75 Project the spectrum from a projector lamp and change the voltage. Disc 24-18 radiation spectrum of a hot object single sit and laser GB40.70 Microwave tradiation constant different filament bub. Increase voltage. Differaction Through one Site single sit and laser GC10.10 Shine a laser beam through single sits of various sizes. GC10.10 PIRA 2000 uhn, solid site of sarious sizes. GC10.10 Shine a laser beam through single sits of various siz	PIRA 1000	X-Y spectrum recorder	6B40.40	
Mei, 38-5.11 ploting the spectrum 684.041 Measure the output of a thermopile as it is moved across a spectrum. Sut, L-98 radiation intensity curve 684.041 Explore the energy distribution of the continuous spectrum of a carbon arc with a sensitive thermopile and galvanometer. Disc 23-22 infrared in the spectrum 684.041 Hold a thermopile connected to a galvanometer in different parts of a spectrum. PIRA 1000 project the spectrum and change the temperature 684.055 A more detailed look at varying the temperature of a black body and measuring with a thermopile. Disc 24-18 radiation spectrum of a hot object. 684.055 Sip red, green, and blue filters over a long filament bulb. Increase valtage with a variaz and observe radiated colors at different filament temperatures. Disc 24-18 radiation spectrum of a hot object. 6840.55 Project the spectrum from a projector lamp and change the voltage. Mei, 38-5.12 Stefan-Boltzman equation 6840.70 Microwave radiation consta different filament temperatures. VILN, COLO biffraction Through on sill 6840.70 Microwave radiation consta different filament filament temperature. VILN, COLO 10 single sill and laser 6C10.10 Shine a laser beam through single sills of various sizes. VILN, COLO 12	UMN, 6B40.40	X-Y spectrum recorder	6B40.40	
Sul, L-98 radiation intensity curve 6644.01 Explore the energy distribution of the conintous spectrum of a carbon arc with a sensitive thermopile and galvanometer. Disc 23-22 Infrared in the spectrum 6644.01 Hold a thermopile connected to a galvanometer. PIRA 1000 project the spectrum and change the temperature 6644.05.5 Amore detailed look at varying the temperature of a black body and measuring with a thermopile. Disc 24-18 radiation spectrum of a hot object 6644.05.5 Fronge the spectrum and phange the voltage. Mei, 38-5.12 radiation spectrum of a hot object 6644.05.5 Project the spectrum for a post object 6644.05.5 Mei, 38-5.12 radiation spectrum of a hot object 6644.05.5 Project the spectrum for a post object of lamp and change the voltage, different filament temperatures. Disc 24-18 radiation spectrum of a hot object 6644.05.5 Project the spectrum for a post object of lamp and change the voltage. Mei, 38-5.12 Stefan-Boltzman equation 6644.05.6 Wincrowave radiation entited or absorbed by a cavity is detected and displayed on an oscilloscope. DIFFRACTION Diffraction Through Don Sitt single silt and laser 6610.10 Nine a laser beam through single silts of various sizes. PIRA 2000 Cornel	PIRA 1000	IR spectrum on a galvanometer	6B40.41	
Disc 23-22Infrared in the spectrum6B40.14Hendia A thermoglie connected to a galvanometer.PIRA 1000project the spectrum and change6B40.55Amore detailed look at varying the temperature of a black body and measuring with a thermopile.D&R, S-170radiation spectrum of a hot object6B40.55Amore detailed look at varying the temperature of a black body and measuring with a thermopile.D&R, S-170radiation spectrum of a hot object6B40.55Silp red, green, and blue filters over a long filament bulb. Increase voltage with a variac and observe radiated colors at different filament temperatures.Disc 24-18radiation spectrum of a hot object6B40.55Project the spectrum for a projector tamp and change the voltage.AJP 43(11),1004microwave blackbody6B40.70Microwave radiation emitted or absorbed by a cavity is detacted and displayed on an oscilloscope.DIFFRACTION Diffraction Through One Sit single silt and laser6C10.10Shine a laser beam through single silts of various sizes.FRA, Ol-6single silt and laser6C10.12Direct laser beam through and justable silt.FRA, Ol-6single silt and laser6C10.12Cornell plate - single siltCornell plate - single silt6C10.12Shine a laser beam through an adjustable silt.UNN, 6C1.01adjustable silt and laser6C10.15FRA, Ol-7adjustable silt and laser6C10.15FRA, Ol-7adjustable silt and laser6C10.12Low at a single silt and laser6C10.12Disc 23-03Cornell plate - single silt6C10.15FRA, Ol-7<	Mei, 38-5.11	plotting the spectrum	6B40.41	
Disc 23-22Infrared in the spectrum684.0.41Hold a thermopile connected to a galvanometer in different parts of a spectrum.PIRA 1000project the spectrum and change the temperature684.0.55A more detailed look at varying the temperature of a black body and measuring with a thermopile.D&R, S-170radiation spectrum of a hot object684.0.55Silp red, green, and blue filters over a long filament bulb. Increase voltage with a variac and observe radiated colors at different filament temperatures.Disc 24-18radiation spectrum of a hot object684.0.55Froject the spectrum from a projector lamp and change the voltage. (684.0.62AJP 43(11).1004microwave blackbody684.0.70Microwave radiation emitted or absorbed by a cavity is detected and displayed on an oscilloscope.DIFFRACTION single silt and laser6610.10Shine a laser beam through single silts of various sizes.FRA, Ocisingle silt and laser6610.10Since a laser beam through single silts of various sizes.6610.12Disc 23-03Cornell plate - single silt6610.12Disc 23-03distable silt and laser6610.12PIRA 200-Oldadjustable silt and laser6610.12Disc 23-03distable silt and laser661.01PIRA 200-Oldadjustable silt and laser661.01Disc 23-03distable silt and laser661.01PIRA 200-Oldadjustable silt and laser661.01PIRA 200-Oldadjustable silt and laser661.01Disc 23-03adjustable silt and laser661.01PIRA 200-Oldadjus	Sut, L-98	radiation intensity curve	6B40.41	
Mei, 38-5.13Fradiation vs. temperature6840.55A more detailed look at varying the temperature of a black body and measuring with a thermopile.D&R, S-170radiation spectrum of a hot object6840.55Silp red, green, and blue filters over a long filament bub. Increase voltage with a variac and observe radiated colors at different filament temperatures.Disc 24-18 Mei, 38-5.12radiation spectrum of a hot object6840.55Project the spectrum form a projector lamp and change the voltage. (B40.55Disc 24-18 Mei, 38-5.12stefan-Boltzman equation6840.55Project the spectrum form a projector lamp and change the voltage. (B40.56)Diffraction through one Sitt single silt and laser6600.006010.10PIRA 200 UMN, 6C10.10single silt and laser single silt and laser6C10.10F8A, OL6 	Disc 23-22	infrared in the spectrum	6B40.41	
D&R, S-170radiation spectrum of a hot object6B40.55Slip red, green, and blue filters over a long filament bulb. Increase voltage with a variac and observe radiated colors at different filament temperatures.Disc 24-18 Mei, 38-5.12radiation spectrum of a hot object Stefan-Boltzman equation6B40.55Project the spectrum from a projector lamp and change the voltage. Measuring sigma by the relative method using a Hefmer lamp as a standard radiator.AJP 43(11),1001microwave blackbody6B40.70Microwave radiation emitted or absorbed by a cavity is detected and displayed on an oscilloscope.PIRA 2000 UMN, 6C10.10biffraction Through fore Sitt single sitt and laser Comel plate - single sitt6C10.10Shine a laser beam through single sitts of various sizes.PIRA 1000 Disc 23-33single sitt and laser displayed in an oscilloscope.6C10.10A laser beam is passed through single sitts of various sizes.PIRA 200- Old UMN, 6C10.15adjustable sitt and laser adjustable sitt and laser displase is angle sitt6C10.12Laser beam through an adjustable sit.PIRA 200- Old UMN, 6C10.15adjustable sitt and laser adjustable sitt and laser displase single sitt6C10.15PIRA 200- Old UMN, 6C10.15adjustable sitt and laser adjustable sitt and laser fecto.156C10.15PIRA 200- Old UMN, 6C10.16adjustable sitt and laser adjustable sitt and laser adjustable sitt and laser fecto.156C10.15<	PIRA 1000		6B40.55	
D&R, S-170 radiation spectrum of a hot object 6B40.55 Silip red. green, and blue filters over a long filament bub. Increase voltage with a variac and observe radiated colors at different filament temperatures. Disc 24-18 radiation spectrum of a hot object Stefan-Boltzman equation 6B40.55 Project the spectrum from a projector lamp and change the voltage. Measuing sigma by the relative method using a Hefmer lamp as a standard radiator. AJP 43(11),1004 microwave blackbody 6B40.76 Measuing sigma by the relative method using a Hefmer lamp as a standard radiator. PIRA 200 DIFFRACTION biffraction Through One Sitt single silt and laser 6C10.10 Nine a laser beam through single silts of various sizes. F8A, OI-6 single silt and laser 6C10.10 Direct taser beam through single silts of various sizes. Cornell plate - single silt 6C10.12 Cornell plate - single silt 6C10.12 UNN, 6C10.12 Cornell plate - single silt 6C10.12 Easer and Cornell side - measurements from on screen can be used in calculations. FRA, OI-6 adjustable silt and laser 6C10.15 Shine a laser beam through an adjustable silt. UNN, 6C10.12 Cornell plate - single silt 6C10.15 Frait caser and cornell silde - measurements from on screen can be used in calculations.	Mei, 38-5.13	radiation vs. temperature	6B40.55	
Mei, 38-5.12 Stefan-Boltzman equation 6B40.62 Measuring sigma by the relative method using a Hefner lamp as a standard radiator. AJP 43(11),1004 microwave blackbody 6B40.70 Microwave radiation emitted or absorbed by a cavity is detected and displayed on an oscilloscope. PIRA 200 Diffraction Through One Siti single sit and laser 6C10.10 Sine a laser beam through single sits of various sizes. FAA, Ol-6 single sit and laser 6C10.10 Direct laser beam through single sits of various sizes. FIRA 200 Cornell plate - single sit 6C10.12 Direct laser beam through an adjustable sit. VIMN, 6C10.15 adjustable sit and laser 6C10.12 Cornell plate - single sit 6C10.12 Disc 23-03 Cornell plate - single sit 6C10.15 Shine a laser beam through an adjustable sit. VIMN, 6C10.15 adjustable sit and laser 6C10.15 Shine a laser beam through an adjustable sit. Mei, 35-3.8 diffraction limited resolution 6C10.15 Shine a laser beam through an adjustable sit. Disc 23-02 adjustable sit and laser 6C10.15 Shine a laser beam through an adjustable sit. Disc 23-02 adjustable sit and laser 6C10.15 Shine a laser beam through an adjustable sit. Disc 23-0	D&R, S-170	radiation spectrum of a hot object	6B40.55	Slip red, green, and blue filters over a long filament bulb. Increase voltage
Mei, 38-5.12 Stefan-Boltzman equation 6B40.62 Measuring sigma by the relative method using a Hefner lamp as a standard radiator. AJP 43(11),1004 microwave blackbody 6B40.70 Microwave radiation emitted or absorbed by a cavity is detected and displayed on an oscilloscope. DIFFRACTION UNN, 6C10.10 Diffraction Through One Siti sigle sit and laser single sit and laser 6C10.10 Sine a laser beam through single sits of various sizes. F&A, Ol-6 single sit and laser 6C10.10 Direct laser beam through single sits of various sizes. UNN, 6C10.10 Cornell plate - single sit 6C10.10 Direct laser beam through single sits of various sizes. PIRA 200 - Old adjustable sit and laser adjustable sit and laser of adjustable sit and laser adjustable sit and laser of adjustable sit and laser adjustable sit and laser adjustable sit and laser adjustable sit and laser of C10.15 Shine a laser beam through an adjustable sit. Mei, 35-3.8 diffraction limited resolution 6C10.15 Shine a laser beam through an adjustable sit. Disc 23-02 adjustable sit and laser of through an adjustable sit. 6C10.15 Shine a laser beam through an adjustable sit. Disc 23-02 adjustable sit and laser of through an adjustable sit. 6C10.15 Shine a laser beam through an adjustable sit. Disc 23-02 adjustable sit and laser of throo finger sit	Disc 24-18	radiation spectrum of a hot object	6B40.55	Project the spectrum from a projector lamp and change the voltage.
displayed on an oscilloscope.PIRA 200 UMN, 6C10.10Diffraction Through One Silt single silt and laser6C0.00 6C10.10Shine a laser beam through single silts of various sizes. 6C10.10F&A, OI-6 DIR 1000 UMN, 6C10.12single silt and laser Cornell plate - single silt Cornell plate - single silt adjustable silt and laser adjustable silt and laser adjustable silt and laser digustable silt and laser for adjustable silt and laser digustable silt and laser adjustable silt and laser adjustable silt and laser digustable silt and laser adjustable silt and laser digustable silt and laser diffraction limited resolution6C10.12 6C10.15Laser beam through an adjustable silt.PIRA 200 - Oid adjustable silt and laser diffraction limited resolution6C10.15 6C10.15Shine a laser beam through an adjustable silt.PIRA 200 - Oid adjustable silt and laser diffraction limited resolution6C10.15 6C10.15Project al laser beam through an adjustable silt.PIRA 200 - Oid adjustable silt and laser diffraction limited resolution6C10.15Free and oil offit projected through an adjustable silt is closed.D&R, O-505 Sut, L-73adjustable silt and laser diffraction limited resolution6C10.20Have each student look at a vertical filament lamp through the silt formed by holding two fingers sit together close to the eye.D&R, O-505two finger silt6C10.20Look at a vertical limitent lamp through the silt formed by holding two fingers together close to the eye.				Measuring sigma by the relative method using a Hefner lamp as a standard
DIFFRACTION Diffraction Through One Sitt6C00.00 6C10.00PIRA 200 UMN, 6C10.10single sitt and laser single sitt and laser6C10.10F&A, Ol-6 PIRA 1000 UMN, 6C10.12single sitt and laser6C10.10FAA, Ol-6 PIRA 1000 UMN, 6C10.12single sitt and laser6C10.10Direct laser beam through single slits of various sizes.6C10.10PIRA 1000 Direct laser single slit6C10.10Direct 23-03Cornell plate - single slit6C10.12Laser beam through and justable slit6C10.12Disc 23-03Cornell plate - single slit6C10.15Alkace beam through an adjustable slit.6C10.15VMN, 6C10.15 adjustable slit and laser adjustable slit and laser6C10.15PIRA 200 - Old uMN, 6C10.15 adjustable slit and laser adjustable slit and laser adjustable slit and laser adjustable slit and laser adjustable slit and laser diffraction limited resolution6C10.15F&A, Ol-7 adjustable slit and laser adjustable slit and laser adjustable slit and laser adjustable slit and laser diffraction limited resolution6C10.26Disc 23-02 adjustable slit and laser adjustable slit bic c23-026C10.21Foreidtrough an adjustable slit. BC10.26Disc 23-02 bit adjustable slit and laser adjustable slit bit and laser bic c2.026C10.20Foreidtrough an adjustable slit. Scine a laser beam through an adjustable slit. BC10.26Disc 23-02 bit wo finger slit bit adjustable slit and laser bit adjustable slit BC10.266C10.20Foreidtrough an adjustable slit. BC10.26Disc 23-02	AJP 43(11),100	4 microwave blackbody	6B40.70	
Diffraction Through One Sitt6C10.00PIRA 200single silt and laser6C10.10Single silt and laser6C10.10F&A, Ol-6single silt and laser6C10.10PIRA 1000Cornell plate - single silt6C10.12Disc 22-02Cornell plate - single silt6C10.12UMN, 6C10.12Cornell plate - single silt6C10.12Disc 22-03Cornell plate - single silt6C10.12Disc 23-04Cornell plate - single silt6C10.12UMN, 6C10.15adjustable silt and laser6C10.12Disc 23-05adjustable silt and laser6C10.15FAA, Ol-7adjustable silt and laser6C10.15PIRA 200 - Oldadjustable silt and laser6C10.15PiRA 200 - Oldadjustable silt and laser6C10.15FAA, Ol-7adjustable silt and laser6C10.15PiRA 1000two finger silt6C10.20Disc 23-02adjustable silt and laser6C10.20Sut, L-73two finger silt6C10.20DaR, O-505two		DIFFRACTION	6C00.00	
PIRA 200 UMN, 6C10.10single slit and laser6C10.10Shine a laser beam through single slits of various sizes. 6C10.10F&A, OI-6 PIRA 1000correll plate - single slit6C10.10Direct laser beam through single slits of various sizes.FWA, OI-6 UMN, 6C10.12Correll plate - single slit6C10.10Direct laser beam through single slits of various sizes.UMN, 6C10.12 UMN, 6C10.12Correll plate - single slit6C10.12Laser and Correll slide - measurements from on screen can be used in calculations.PIRA 200 - Old uMN, 6C10.15adjustable slit and laser adjustable slit and laser 6C10.156C10.15Shine a laser beam through an adjustable slit.PIRA 200 - Old uMN, 6C10.15adjustable slit and laser adjustable slit and laser 6C10.156C10.15Froject a laser beam through an adjustable slit.PIRA 1000 UMN, 6C10.15diffraction limited resolution6C10.15Froject a laser beam through an adjustable slit.D&R, O-505 ut, L-73adjustable slit and laser adjustable slit and laser6C10.15Froject a laser beam through an adjustable slit.PIRA 1000 Uwo finger slit6C10.20Frak active to a V camera. The central slit widens as the slit is closed.PIRA 1000 Ut, L-73two finger slit6C10.20PIRA 1000 Ut, L-73two finger slit6C10.20<			6C10.00	
Patterns are shown on the wall.F&A, Ol-6single slit and laser6C10.10PIRA 1000Cornell plate - single slit6C10.12UMN, 6C10.12Cornell plate - single slit6C10.12Disce 23-03Cornell plate - single slit6C10.12Disce 23-03Cornell plate - single slit6C10.12Disce 23-03Cornell plate - single slit6C10.12Disce 23-03adjustable slit and laser6C10.15PIRA 200 - Oldadjustable slit and laser6C10.15Single slit and laser6C10.15F&A, Ol-7adjustable slit and laser6C10.16F&A, Ol-7adjustable slit and laser6C10.15PIRA 200 - Oldadjustable slit and laser6C10.15F&A, Ol-7adjustable slit and laser6C10.15PiRA 0-7adjustable slit and laser6C10.15Disc 23-02adjustable slit and laser6C10.15Disc 23-02adjustable slit and laser6C10.20Sut, L-73two finger slit6C10.20PIRA 1000two finger slit6C10.20BuR, O-505two finger slit6C10.20Jark 1000two finger slit6C10.20LAR, O-505two finger slit6C10.20Jark 1000two finger slit6C10.20Jark 1-73two finger slit6C10.20Lock	PIRA 200	single slit and laser	6C10.10	Shine a laser beam through single slits of various sizes.
PIRA 1000Cornell plate - single slit6C10.12Disc 23-03Cornell plate - single slit6C10.12Disc 23-03Cornell plate - single slit6C10.12Disc 23-03adjustable slit and laser6C10.15PIRA 200 - Oldadjustable slit and laser6C10.15Shine a laser beam through an adjustable slit.6C10.15F&A, Ol-7adjustable slit and laser6C10.15F&A, Ol-7adjustable slit and laser6C10.15Aligostable slit and laser6C10.15Shine a laser beam through an adjustable slit.6C10.15D&R, O-505adjustable slit and laser6C10.15D&R, O-505adjustable slit and laser6C10.15Disc 23-02adjustable slit and laser6C10.20Sut, L-73two finger slit6C10.20BuR, O-505two finger slit6C10.20BuR, O-505two finger slit6C10.20D&R, O-505two finger slit6C10.20Dar, O-505two finger slit6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together.D&R, O-505two finger slit6C10.20Look at a vertical allament lamp through the slit formed by holding two fingers together.D&R, O-505two finger slit6C10.20Look at a vertical allament lamp through the slit formed by holding two fingers together.D&R, O-505two finger slit6C10.20Look at a vertical allament lamp through the slit formed by holding two fingers together.D&R, O-505two finger slit	UMN, 6C10.10	single slit and laser	6C10.10	
UMN, 6C10.12 Disc 23-03Cornell plate - single slit Cornell plate - single slit6C10.12 6C10.12Laser and Cornell slide - measurements from on screen can be used in calculations.PIRA 200 - Old UMN, 6C10.15 adjustable slit and laser adjustable slit and laser adjustable slit and laser 6C10.156C10.15Shine a laser beam through an adjustable slit.PiRA, Ol-7 Disc 23-02adjustable slit and laser adjustable slit and laser 6C10.156C10.15D&R, O-505 Disc 23-02adjustable slit and laser adjustable slit and laser adjustable slit and laser bit on the slit of C10.156C10.15PIRA 1000 Dux finger slit bit wo finger slit6C10.20Easer beam through an adjustable slit. 6C10.20PIRA 1000 Dux finger slit bit wo finger slit6C10.20Have each student look at a vertical filament lamp through the slit formed by holding two fingers together. Close to the eye.D&R, O-505 Disk Mai, p 350two finger slit6C10.21Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.21An adjustable slit and amongen to may. Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.AJP 33(3),245 adjustable single slit6C10.22Look through a unific caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201 single slit diffraction - hand held Sut, L-826C10.25Look at a filament toroug	F&A, Ol-6	•	6C10.10	Direct laser beam through single slits of various sizes.
Disc 23-03Cornell plate - single slit6C10.12Laser and Cornell slide - measurements from on screen can be used in calculations.PIRA 200 - Old UMN, 6C10.15adjustable slit and laser adjustable slit and laser adjustable slit and laser adjustable slit and laser diffraction limited resolution6C10.15Shine a laser beam through an adjustable slit.F&A, Ol-7 Mei, 35-3.8diffraction limited resolution6C10.15A beam of light is projected through an adjustable slit into a telescope attached to a TV camera. The central slit widens as the slit is closed.D&R, O-505 Disc 23-02adjustable slit and laser adjustable slit and laser adjustable slit and laser adjustable slit and laser6C10.15Shine a laser beam through an adjustable slit. Bine a laser beam through an adjustable slit.D&R, O-505 Sut, L-73adjustable slit and laser adjustable slit6C10.20Shine a laser beam through the alser passing through an adjustable slit spreads as the slit is closed.D&R, O-505 Sut, L-73two finger slit two finger slit6C10.20Have each student look at a vertical filament lamp through the slit formed by holding two fingers together.D&R, O-505 Sut, L-73two finger slit6C10.20Look at a vertical liament lamp through the slit formed by holding two fingers togetherD&R, O-505 Sut, L-73two finger slit6C10.20Look at a vertical liament lamp through the slit formed by holding two fingers togetherD&R, O-505two finger slit6C10.20Look at a vertical slige slit and laser together close to the eye.Bil&Mai, p 350two finger slit6C10.21Look at a vertical				
calculations.PIRA 200 - Old UMN, 6C10.15adjustable slit and laser adjustable slit and laser bis 23-02 sut L-736C10.15 Choise a laser beam through an adjustable slit. 6C10.15 The diffraction pattern from a laser passing through an adjustable slit spreads as the slit is closed.PIRA 1000 Sut, L-73two finger slit two finger slit two finger slit6C10.20 6C10.206C10.20 Have each student look at a vertical filament lamp through the slit formed by holding two fingers together. Clock at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit efficient 1, p. 202 adjustable single slit6C10.20 6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 33(3),245 adjustable single slit6C10.21 6C10.21Look at a vertical filament.AJP 33(3),245 single slit diffraction - hand held single slit diffraction - hand held single and double slits6C10.22				Lesen and Carrell alide and an and from an arrange and he would be
UMN, 6C10.15 Ré, QI-7 Mei, 35-3.8adjustable slit and laser adjustable slit and laser black and the slit is closed.6C10.15 A beam of light is projected through an adjustable slit. to a nadjustable slit. GC10.15 The diffraction pattern from a laser passing through an adjustable slit spreads as the slit is closed.PIRA 1000 Sut, L-73two finger slit to finger slit6C10.20 GC10.20Have each student look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350 Lhrich 1, p. 202 Adjustable single slit6C10.21 GC10.21Cook at a vertical liament lamp through the slit formed by holding two fingers together close to the eye.Chrich 1, p. 201 Ehrlich 1, p. 201 eyelid sliteyelid slit6C10.22 GC10.21Cook at a vertical filament.AJP 33(3),245 adjustable single slitGC10.22 GC10.21Look at a filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3 Sungle slit diffraction - hand held single and double slitsGC10.22 GC10.25Look at a				calculations.
F&A, OI-7 Mei, 35-3.8adjustable slit and laser diffraction limited resolution6C10.15Project a laser beam through an adjustable slit. A beam of light is projected through an adjustable slit into a telescope attached to a TV camera. The central slit widens as the slit is closed.D&R, O-505 Disc 23-02adjustable slit and laser adjustable slit and laser6C10.15Shine a laser beam through an adjustable slit.D&R, O-505 Disc 23-02adjustable slit and laser6C10.15The diffraction pattern from a laser passing through an adjustable slit spreads as the slit is closed.PIRA 1000 Sut, L-73two finger slit6C10.20Have each student look at a vertical filament lamp through the slit formed by holding two fingers together.D&R, O-505 Bil&Mai, p 350two finger slit6C10.20Look at a vertical lilament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.21Look at a vertical lilament lamp through the slit formed by holding two fingers together close to the eye.Ehrlich 1, p. 202 Adjustable single slit6C10.21An adjustable single slit made from two razor blades. Look at an unfrosted light bulb with a linear filament.AJP 33(3),245 suigle add double slits6C10.22Look at a filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3 suigle and double slitssingle and double slits6C10.27Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.Mei, 35-3.2Cornell plate6C10.27Pas		•		Shine a laser beam through an adjustable slit.
Mei, 35-3.8diffraction limited resolution6C10.15A beam of light is projected through an adjustable slit into a telescope attached to a TV camera. The central slit widens as the slit is closed.D&R, O-505adjustable slit and laser6C10.15Shine a laser beam through an adjustable slit.Disc 23-02adjustable slit and laser6C10.15The diffraction pattern from a laser passing through an adjustable slit.PIRA 1000two finger slit6C10.20The diffraction pattern from a laser passing through an adjustable slit spreads as the slit is closed.PIRA 1000two finger slit6C10.20Have each student look at a vertical filament lamp through the slit formed by holding two fingers together.D&R, O-505two finger slit6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.21An adjustable single slit made from two razor blades. Look at an unfrosted light bulb with a linear filament.AJP 33(3),245adjustable single slit6C10.22Look through a vernier caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201eyelid slit6C10.22Look at a filament filament.F&A, Ol-3single alit diffraction - hand held6C10.22Look at a filament through a dark plate with a line scratched in it.Sut, L-82Single and double slits6C10.27Pass out Cornell plates to the students and have them look at a line filament.Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.		-		Project a laser beam through an adjustable slit
b&R, 0-505 Disc 23-02adjustable slit and laser adjustable slit and laser6C10.15 6C10.15Shine a laser beam through an adjustable slit. 6C10.15PIRA 1000 Sut, L-73two finger slit6C10.20 6C10.20Have each student look at a vertical filament lamp through the slit formed by holding two fingers together. Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.20 6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.20 6C10.20Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.Ehrlich 1, p. 202adjustable single slit6C10.21 6C10.21Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.F&A, Ol-3 Sut, L-82single slit6C10.22 6C10.21Look at a vertical lamp through the slit bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3 Sut, L-82single slit diffraction - hand held single and double slits6C10.27 6C10.27Look at a filament through a dark plate with a line scratched in it. 6C10.26 6C10.26Mei, 35-3.2Cornell plate6C10.27 Pass out Cornell plates to the students and have them look at a line filament.				
Disc 23-02adjustable slit and laser6C10.15The diffraction pattern from a laser passing through an adjustable slit spreads as the slit is closed.PIRA 1000two finger slit6C10.20Sut, L-73two finger slit6C10.20D&R, O-505two finger slit6C10.20Lawe each student look at a vertical filament lamp through the slit formed by holding two fingers together.Noding two fingers together.D&R, O-505two finger slit6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.20Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.Ehrlich 1, p. 202adjustable single slit6C10.21An adjustable single slit made from two razor blades. Look at an unfrosted light bulb with a linear filament.AJP 33(3),245adjustable single slit6C10.21Look through a vernier caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201eyelid slit6C10.22Looking at the filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3 Sut, L-82single and double slits6C10.25Look at a filament through a dark plate with a line scratched in it. 6C10.26Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.				attached to a TV camera. The central slit widens as the slit is closed.
PIRA 1000 Sut, L-73two finger slit6C10.20 4C10.20Bulk, L-73two finger slit6C10.20D&R, O-505two finger slit6C10.20Bil&Mai, p 350two finger slit6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slitBil&Mai, p 350two finger slitChuice6C10.20Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.Ehrlich 1, p. 202adjustable single slitAJP 33(3),245adjustable single slit6C10.21Look through a vernier caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201eyelid slitF&A, Ol-3 Sut, L-82single slit diffraction - hand held single and double slits6C10.26Look at a filament through a dark plate with a line scratched in it.6C10.26Single and double slitsMei, 35-3.2Cornell plateCornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.				The diffraction pattern from a laser passing through an adjustable slit
Sut, L-73two finger slit6C10.20Have each student look at a vertical filament lamp through the slit formed by holding two fingers together.D&R, O-505two finger slit6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Ehrlich 1, p. 202adjustable single slit6C10.21Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.AJP 33(3),245adjustable single slit6C10.21Look through a vernier caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201eyelid slit6C10.22Looking at the filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3single slit diffraction - hand held Sut, L-826C10.25Look at a filament through a dark plate with a line scratched in it. 6C10.26Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.	PIRA 1000	two finger slit	6C10.20	
D&R, O-505two finger slit6C10.20Look at a vertical filament lamp through the slit formed by holding two fingers together close to the eye.Bil&Mai, p 350two finger slit6C10.20Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.Ehrlich 1, p. 202adjustable single slit6C10.21An adjustable single slit made from two razor blades. Look at an unfrosted light bulb with a linear filament.AJP 33(3),245adjustable single slit6C10.21Look through a vernier caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201eyelid slit6C10.22Looking at the filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3single slit diffraction - hand held single and double slits6C10.25Look at a filament through a dark plate with a line scratched in it. 6C10.26Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.				
Bil&Mai, p 350two finger slit6C10.20Look at a vertical lamp through the slit formed by holding two fingers together close to the eye.Ehrlich 1, p. 202adjustable single slit6C10.21An adjustable single slit made from two razor blades. Look at an unfrosted light bulb with a linear filament.AJP 33(3),245adjustable single slit6C10.21Look through a vernier caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201eyelid slit6C10.22Look if filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3single slit diffraction - hand held6C10.25Look at a filament through a dark plate with a line scratched in it.Sut, L-82Single and double slits6C10.26Single and double slitsMei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.	D&R, O-505	two finger slit	6C10.20	Look at a vertical filament lamp through the slit formed by holding two fingers
 Ehrlich 1, p. 202 adjustable single slit AJP 33(3),245 adjustable single slit Ehrlich 1, p. 201 eyelid slit F&A, Ol-3 single slit diffraction - hand held Sut, L-82 Mei, 35-3.2 Cornell plate 6C10.21 An adjustable single slit made from two razor blades. Look at an unfrosted light bulb with a linear filament. 6C10.21 Look through a vernier caliper toward a monochromatic light 5 to 10 m away. 6C10.22 Looking at the filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern. 6C10.25 Look at a filament through a dark plate with a line scratched in it. 6C10.26 Single and double lines are ruled on a photographic plate. Students look at a line filament covered with half red and half blue filters. A ruling tool is described. Mei, 35-3.2 	Bil&Mai, p 350	two finger slit	6C10.20	Look at a vertical lamp through the slit formed by holding two fingers together
AJP 33(3),245adjustable single slit6C10.21Look through a vernier caliper toward a monochromatic light 5 to 10 m away.Ehrlich 1, p. 201eyelid slit6C10.22Looking at the filament of an unfrosted light bulb while squinting allows you to see a diffraction pattern.F&A, Ol-3 Sut, L-82single slit diffraction - hand held single and double slits6C10.25Look at a filament through a dark plate with a line scratched in it.Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.	Ehrlich 1, p. 202	2 adjustable single slit	6C10.21	An adjustable single slit made from two razor blades. Look at an unfrosted
F&A, Ol-3 Sut, L-82single slit diffraction - hand held single and double slits6C10.25 6C10.26Look at a filament through a dark plate with a line scratched in it. Single and double lines are ruled on a photographic plate. Students look at a line filament covered with half red and half blue filters. A ruling tool is described.Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.	AJP 33(3),245	adjustable single slit	6C10.21	•
F&A, Ol-3 Sut, L-82single slit diffraction - hand held single and double slits6C10.25 6C10.26Look at a filament through a dark plate with a line scratched in it. Single and double lines are ruled on a photographic plate. Students look at a line filament covered with half red and half blue filters. A ruling tool is described.Mei, 35-3.2Cornell plate6C10.27Pass out Cornell plates to the students and have them look at a line filament.	Ehrlich 1, p. 201	eyelid slit	6C10.22	
Mei, 35-3.2 Cornell plate 6C10.27 Pass out Cornell plates to the students and have them look at a line filament.		-		Look at a filament through a dark plate with a line scratched in it. Single and double lines are ruled on a photographic plate. Students look at a line filament covered with half red and half blue filters. A ruling tool is
Hil, O-7cCornell plate6C10.27Pass out the Cornell plate.	Mei, 35-3.2	Cornell plate	6C10.27	
	Hil, O-7c	Cornell plate	6C10.27	Pass out the Cornell plate.

PIRA 1000	slit on photodiode array	6C10.30	
Mei, 35-3.3	slit array	6C10.30	A slit array of randomly spaced single or double slits follows the imaging lens
0.4 1 00		0040.00	projecting a slit on the wall.
Sut, L-83	single and double slit projected	6C10.30	Focus a slit on the wall and place photographic plates with slits near the lens.
			For the single slit, parallel lines are unevenly spaced. For the parallel slit,
Ma: 05 0 4	white light diffusation	0040.00	pairs of lines of equal spacing are randomly spaced.
Mei, 35-3.1	white light diffraction	6C10.33	A slit is projected on the wall and a second slit is placed at the focal point of
TDT 07(0) 400	differentiate and the second design of the	0040.40	the lens.
TPT, 37(2), 106	diffraction patterns with light and	6C10.42	Using sensors to find and measure the peaks from a laser diffraction pattern.
	motion sensors	0040 40	
AJP 53(6),599	rotating mirror detector	6C10.43	
	ala atria na san data atan aura an	0040.40	the output is displayed on an oscilloscope.
AJP 54(10),956	electric razor detector sweep	6C10.43	A mirror mounted on an electric razor is used to sweep a diffraction pattern
			across a sensitive photodiode, and the resulting pattern is displayed on an
	motorized aliteration	6010 42	oscilloscope.
AJP 38(8),1039	motorized slit sweep	6C10.43	A slit is motorized and a microscope objective projects the observation plane
			onto a photodiode detector. The scope sweep is synchronized with the motor
	untation unimper data atau	0040 40	speed.
AJP 54(3),283	rotating mirror detector	6C10.43	A rotating mirror sweeps a diffraction pattern across a photodiode and the
	single alitical valative above	0040 44	pattern is shown on an oscilloscope.
AJP 54(9),851	single slit and relative phase	6C10.44	A double slit is used to sample the light from a single slit to give information
	T) (tub a data ata r	0040 47	about the relative phases.
AJP 52(7),653	TV tube detector	6C10.47	Look at the composite output from a TV camera on an oscilloscope at the
		0040 50	same time the pattern is displayed on the screen.
PIRA 1000	microwave diffraction	6C10.50	
UMN, 6C10.50	microwave diffraction	6C10.50	3 cm microwave and a single slit.
F&A, OI-2	microwave single slit diffraction	6C10.50	Single slit diffraction with a microwave apparatus.
Disc 23-01	microwave diffraction	6C10.50	An adjustable slit on the Brett Carrol microwave board (receiver and
			transmitter are mounted on a large vertical circle with a built in LED bar
Mai 25 2 0	diffraction limited readuition	6010.61	graph signal strength indicator.
Mei, 35-3.9	diffraction limited resolution	6C10.61	Demonstrating the resolving power of a microscope is tricky.
AJP 29(9),xvii	diffraction limited resolution	6C10.62	A "picket fence lantern slide with an adjustable slit on the screen side of the
	microscope reaching power	6010.64	projection lens.
AJP 37(1),105	microscope resolving power	6C10.64	Modify ordinary objectives by inserting diaphragms at the back focal plane.
	Diffraction Around Objects	6C20.00	Use a binocular microscope with a normal ocular on one side.
PIRA 200 - Old	Diffraction Around Objects Arago's (Poisson's) spot	6C20.00	Shine a laser beam at a small ball and look at the diffraction pattern.
UMN, 6C20.10	laser and diffraction objects	6C20.10	A laser beam is diffracted around balls.
AJP 36(4),ix	Arago white spot	6C20.10	A corridor demonstration using a flashlight bulb, a ball bearing and a small
AJF 30(4),IX	Alago while spor	0020.10	telescope.
AJP 70(2), 169	Poisson's bright spot imager	6C20.10	The Poisson bright spot apparatus using white light is modified to obtain
A31 T0(2), 103	r bisson's bright spot imager	0020.10	images of objects placed in the light path.
AJP, 78 (6), 598	Poisson's bright spot	6C20.10	Use energy flow lines to provide a complementary answer to Fresnel's wave
AJF, 70 (0), 390	Poisson's bright spot	0020.10	theory of light.
Sut, L-78	diffraction about a circular object	6C20.10	A coin is placed between a pinhole and a screen. A small hole is punched in
Sul, L-70	diffaction about a circular object	0020.10	the screen in the shadow of the coin. While looking at the coin through the
			hole, a ring of light will be seen.
Hil, O-7f.3	Arago's spot	6C20.10	Arago's spot with a small lamp, telescope, and ball bearing over a 90'
111, 0-71.5	Alago 3 Spot	0020.10	distance.
D&R, O-555	Poisson's bright spot	6C20.10	
Durt, O 000	r bibborr b bright spot	0020.10	Observe the "bright spot" at the center of the shadow.
Bil&Mai, p 351	Poisson's bright spot	6C20.10	•
Diama, p 001	r bibborr b bright spot	0020.10	Observe the "bright spot" at the center of the shadow.
Ehrlich 2, p. 176	Poisson's spot	6C20.10	
Ennion 2, p. 170		0020.10	and a spherical headed pin.
Disc 23-05	Poisson's bright spot	6C20.10	A point source is used to illuminate a small ball.
AJP 35(2),xix	photographing diffraction	6C20.12	
, ioi 00(2), iii		5520.12	bulb.
AJP 44(1),70	large scale diffraction	6C20.13	Use a penny and a long light path.
Mei, 35-3.5	diffraction around a coin	6C20.13	Project the shadow from a point source onto a translucent screen.
PIRA 500	knife edge diffraction	6C20.15	
F&A, OI-21	diffraction around objects	6C20.15	Diffraction of laser light around a razor edge, wires, small balls, etc. is viewed
. ,			on a screen.
D&R, O-530	diffraction around objects	6C20.15	
Disc 23-08	knife edge diffraction	6C20.15	Slowly move a knife edge into a laser beam.
	÷	2	

Domonotiution	Bibliography		
Mei, 36-5.2	laser diffraction objects	6C20.16	A list of recommended diffraction objects for use with laser beams. Pictures.
AJP 38(3),348	diffraction around large objects	6C20.17	Expand a laser beam to 1-3" and look at the diffraction pattern of large objects. A folded optical path brings the viewing screen close to the object.
Sut, L-77	Fresnel diffraction	6C20.18	Objects placed between a pinhole and a screen show striking diffraction patterns.
PIRA 500	thin wire diffraction	6C20.20	
UMN, 6C20.20	thin wire diffraction	6C20.20	
AJP 45(4),404	diffraciton pattern of a hair	6C20.20	Put a hair in a laser beam.
AJP 41(7),931	fake double slit	6C20.20	Put a straight pin in the laser beam.
AJP 42(5),412	diameter of a hair by diffraction	6C20.20	Use Babinet's principle to measure the diameter of a hair by the fringes.
D&R, O-532	diameter of a hair by diffraction	6C20.20	Calculate the diameter of hair by measuring the diffraction fringes.
Disc 23-04	thin wire diffraction	6C20.20	Place a .22 mm diameter wire in a laser beam and measure the diameter by the diffraction pattern. Measurements can be taken from the video.
PIRA 1000	shadow of a needle	6C20.22	
Disc 23-06	shadow of a needle	6C20.22	A point source is placed behind a pair of needles.
PIRA 500	pinhole diffraction	6C20.30	
UMN, 6C20.30	pinhole diffraction	6C20.30	
Mei, 36-7.1	Airy diffraction rings	6C20.30	As a laser beam is stopped down to a region of constant intensity, the Airy diffraction rings will appear.
D&R, O-550	pinhole diffraction	6C20.30	A laser beam passes through a pinhole in aluminum foil.
Ehrlich 1, p. 204	pinhole diffraction	6C20.30	Look at an unfrosted light bulb through a pinhole in aluminum foil.
Disc 23-07	pinhole diffraction	6C20.30	A laser passes through a pinhole in aluminum foil. Data can be taken from the video.
AJP 42(8),696	triangular aperature	6C20.33	The Fraunhofer diffraction pattern of a triangular aperture is predicted by an argument very similar to that used for a single slit.
TPT 34(6), 382	square and circular aperatures	6C20.35	Uniform circular holes salvaged from non-aerosol hair spray bottles give distortion free circular fringes.
D&R, O-530	square and circular aperatures	6C20.35	View the diffraction pattern of square holes or the center of a double edged razor blade.
PIRA 1000	zone plate lens	6C20.40	
F&A, OI-23	zone plate lens	6C20.40	Use a photographic zone plate lens with an expanded laser beam.
AJP 59(2),158	zone plates on a laser printer	6C20.42	A program to produce zone plates on a laser printer with discussion of limitations and applications.
F&A, OI-22	microwave Fresnel zones	6C20.45	A aluminum sheet with concentric rings that can be removed and replaced in various configurations is sized to work with a microwave transmitter.
Mei, 33-7.14	microwave Fresnel diffraction	6C20.45	Circular apertures are cut in aluminum sheets to simulate zone plates.
Hil, O-7i.2	microwave Fresnel zones	6C20.45	
AJP 30(1),55	microwave zone plates	6C20.46	The design of three varieties of microwave zone plates for 12 cm waves and
	·		lecture room use.
Sut, L-74	pass the razor blade	6C20.51	Students hold a razor blade close to the eye so as to cut off part of an arc lamp.
Sut, L-76	diffraction peep show	6C20.52	A 5 m long box holds a permanent diffraction setup.
Mei, 35-3.4	parallel beam array	6C20.58	An array of 25 small holes is projected to give parallel light beams which are used with slits and apertures to give patterns on the wall.
Sut, L-75	diffraction by a feather	6C20.62	An image of a slit is blocked by a vertical rod. When a feather is placed between the lens and slit, light is scattered by diffraction onto the screen.
AJP 50(10),949	viewing diffraction on TV	6C20.91	If the laser beam is expanded, diffraction patterns can be projected directly onto the bare videcon tube.
	INTERFERENCE Interference from Two Sources	6D00.00 6D10.00	
PIRA 1000	interference model	6D10.05	
UMN, 6D10.05	interference model	6D10.05	
PIRA 200	double slits and laser	6D10.10	Shine a laser beam through double slits of different widths and spacing.
UMN, 6D10.10	double slits and laser	6D10.10	Pass a laser beam through double slits of different widths and spacing.
F&A, OI-9	double slits and laser	6D10.10	Direct a laser through double slits of different dimensions.
D&R, O-405	double slits and laser	6D10.10	Pass a laser beam through a double slit. Calculate slit widths and slit to slit distance.
Bil&Mai, p 348	double slits and laser	6D10.10	Shine a laser beam through double slits of different widths and spacing.
Disc 23-11	double slit interference	6D10.10	Pass a laser beam through double slits on the Cornell slide.
PIRA 1000	Cornell plate - two slit	6D10.11	
UMN, 6D10.11	Cornel plate - two slit	6D10.11	

AJP 47(6),554	making double slits	6D10.14	Photograph two dark wires against a white background with high contrast film and use the negative for a double slit.
PIRA 1000	double slit on X-Y recorder	6D10.15	
UMN, 6D10.15	double slit on X-Y recorder	6D10.15	
AJP 44(4),399	double slit on X-Y recorder	6D10.15	Mount a photoresistor on the movable crossbar.
AJP 47(12),1103	double slit on X-Y recorder	6D10.15	Mount a detector on the the traveling arm of an X-Y recorder and trace out the intensity pattern of a double slit.
PIRA 1000	double slit on a photodiode array	6D10.17	
AJP 46(9),945	photodiode array	6D10.17	Shine the diffraction pattern on a photodiode array and display the intensity
A01 40(0),040		0010.17	
			plot on an oscilloscope.
F&A, OI-8	photodiode array detector	6D10.17	Project the pattern from the laser and adjustable slit onto a photodiode array
			and observe the intensity on an oscilloscope.
AJP 69(8), 917	a simple interference scanner	6D10.18	An interference and diffraction scanner based on a 10 cm long linear
		02.01.0	potentiometer.
	miarowaya two alit interference	6D10.20	potomomotor.
PIRA 1000	microwave two slit interference		
UMN, 6D10.20	microwave two slit interference	6D10.20	
F&A, OI-4	microwave two slit interference	6D10.20	Microwave two slit interference.
Mei, 33-7.9	microwave double slit diffraction	6D10.20	The set up for double slit diffraction using 3.37 cm microwaves.
Hil, O-7i.1	microwave double slit	6D10.20	A 12 cm microwave double slit demonstration.
Disc 23-10	microwave double slit interference	6D10.20	Two sets of slits with different spacing on the Brett Carrol microwave board.
PIRA 1000	microwave double source	6D10.25	
	interference		
UMN, 6D10.25	microwave double source	6D10.25	12 cm microwave is set up with two transmitters.
01111, 0010.20	interference	0010.20	
		0040.00	Leaders - Classes there there we will be a constant of the state of the
F&A, OI-5	two slit interference - hand held	6D10.30	Look at a filament lamp through parallel lines scratched in a dark plate.
PIRA 1000	ripple tank incoherence	6D10.35	
AJP 56(8),745	ripple tank incoherence	6D10.35	The necessary conditions for interference are shown with a dripping water
(- /)			double source that can be adjusted to show irregular changes in initial phase
			differences.
AJP 40(3),470	coherence and interference	6D10.36	An interference pattern results from a laser grazing the wall of a glass tube.
			The effect is not observable with non-coherent light.
AJP 41(5),720	coherence and interference of light	6D10.37	More variance on the subject.
	5		,
AJP 41(2),284	coherence and interference in a	6D10.37	This explanation of the interference pattern from the inner and outer edges of
AJF 41(2),204		0010.57	
	tube		a glass tube differs from AJP 40(3),470.
AJP 46(7),727	tube cylindrical tube interference	6D10.38	The ring pattern from shining a point source down a reflecting cylindrical tube
AJP 46(7),727		6D10.38	
	cylindrical tube interference		The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources.
F&A, OI-11	cylindrical tube interference Fresnel biprism	6D10.41	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources.
	cylindrical tube interference		The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a
F&A, Ol-11 Sut, L-84	cylindrical tube interference Fresnel biprism Fresnel biprism	6D10.41 6D10.41	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit.
F&A, OI-11	cylindrical tube interference Fresnel biprism	6D10.41	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a
F&A, Ol-11 Sut, L-84	cylindrical tube interference Fresnel biprism Fresnel biprism	6D10.41 6D10.41	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit.
F&A, Ol-11 Sut, L-84 D&R, O-410	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism	6D10.41 6D10.41 6D10.41	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced.
F&A, Ol-11 Sut, L-84	cylindrical tube interference Fresnel biprism Fresnel biprism	6D10.41 6D10.41 6D10.41	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens	6D10.41 6D10.41 6D10.41 6D10.42	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern.
F&A, Ol-11 Sut, L-84 D&R, O-410	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront	6D10.41 6D10.41 6D10.41	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement	6D10.41 6D10.41 6D10.41 6D10.42 6D10.46	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront	6D10.41 6D10.41 6D10.41 6D10.42	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement	6D10.41 6D10.41 6D10.41 6D10.42 6D10.46	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement	6D10.41 6D10.41 6D10.41 6D10.42 6D10.46	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes	6D10.41 6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51 6D10.52	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158	cylindrical tube interference Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51 6D10.52	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by interference	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51 6D10.52 6D10.61	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51 6D10.52	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by interference	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51 6D10.52 6D10.61	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by interference	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.48 6D10.51 6D10.52 6D10.61	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755	cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by interference 3D interference patterns	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.51 6D10.52 6D10.61 6D10.90	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755 AJP 51(4),380	<pre>cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by interference 3D interference patterns Interference of Polarized Light</pre>	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.51 6D10.52 6D10.61 6D10.90 6D15.00	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror and toward the students into a smoke filled box.
F&A, OI-11 Sut, L-84 D&R, O-410 F&A, OI-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755 AJP 51(4),380	cylindrical tube interferenceFresnel biprismFresnel biprismFresnel biprismBillet half lensdouble slit wavefront measurement measuring interference fringesinterference from "X" slits computer generated interferencedigital electronic diffractiongroup and phase velocity by interference3D interference of Polarized Lightinterference of polarized light	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.51 6D10.52 6D10.61 6D10.90 6D15.01	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror and toward the students into a smoke filled box.
F&A, Ol-11 Sut, L-84 D&R, O-410 F&A, Ol-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755 AJP 51(4),380	<pre>cylindrical tube interference Fresnel biprism Fresnel biprism Fresnel biprism Billet half lens double slit wavefront measurement measuring interference fringes interference from "X" slits computer generated interference digital electronic diffraction group and phase velocity by interference 3D interference patterns Interference of Polarized Light</pre>	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.51 6D10.52 6D10.61 6D10.90 6D15.00	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror and toward the students into a smoke filled box.
F&A, OI-11 Sut, L-84 D&R, O-410 F&A, OI-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755 AJP 51(4),380	cylindrical tube interferenceFresnel biprismFresnel biprismFresnel biprismBillet half lensdouble slit wavefront measurement measuring interference fringesinterference from "X" slits computer generated interferencedigital electronic diffractiongroup and phase velocity by interference3D interference of Polarized Lightinterference of polarized light	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.51 6D10.52 6D10.61 6D10.90 6D15.01	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror and toward the students into a smoke filled box.
F&A, OI-11 Sut, L-84 D&R, O-410 F&A, OI-12 AJP 53(11),1115 AJP 31(12),xiv AJP 40(1),201 TPT 28(5),336 AJP 46(11),1158 AJP 52(8),755 AJP 51(4),380	cylindrical tube interferenceFresnel biprismFresnel biprismFresnel biprismBillet half lensdouble slit wavefront measurement measuring interference fringesinterference from "X" slits computer generated interferencedigital electronic diffractiongroup and phase velocity by interference3D interference of Polarized Lightinterference of polarized light	6D10.41 6D10.41 6D10.42 6D10.42 6D10.46 6D10.47 6D10.51 6D10.52 6D10.61 6D10.90 6D15.01	The ring pattern from shining a point source down a reflecting cylindrical tube results from the interference of two virtual sources. A laser through a Fresnel biprism gives two interference sources. A Fresnel Biprism is placed between a slit and projecting lens giving a pattern similar to a double slit. A diverging laser beam is shown through a Fresnel biprism. A pattern similar to that of a double slit is produced. A split convex lens acts like a Fresnel biprism and gives an interference pattern. As the laser beam is scanned across the double slit, the interference pattern moves antiparallel to the laser beam translation. Use two filaments. Line up the central image of one filament with the first maximum of the other filament. Crossed slits produce hyperbolic interference patterns. A simple GW-BASIC program for generating two point interference patterns. A digital electronic circuit acts like 16 slits, any of which can be open or closed, with either or both of two wavelengths. Discusses the various effects that can be shown with the apparatus. The reflected laser light from the glass/air interfaces of two glass slides of different thicknesses show group and phase velocity when the air gap between them is changed. Direct the laser interference pattern from the back of the room off a mirror and toward the students into a smoke filled box.

Demonstration	ыыюдгарну		opics
AJP 39(6),679	interference of polarized light	6D15.10	A polarized laser beam passes through a calcite crystal and a polarizing sheet is interposed and rotated to make fringes appear and disappear.
AJP 31(4),303 AJP 42(5),408	interference question Quantum Mechanics polarized light demos	6D15.14 6D15.15	Mellon AJP 30(10),772 was wrong and here is why Eigenstates of the prism, etc.
AJP 51(5),464	polarized double slit diffraction	6D15.20	The diffraction patterns from parallel and perpendicular light through a double
AJP 30(6),470	total interference	6D15.20	slit. Show the standard interference patterns with Polaroids in each path aligned
AJP 38(7),917	Fresnel-Arago law	6D15.20	parallel, then rotate one and the pattern disappears. Use a laser to obtain widely separated fringes from a double slit. Cut ribbons of polarizer and hold with orthogonal polarization in the two exit beams and the fringes disappear.
AJP 31(8),624 AJP 49(7),690	interference of polarized light interference of polarized light	6D15.21 6D15.22	Pointer to articles in other publications. Demonstrating the Fresnel-Arago laws for interference of polarized light using a grating as a beam splitter and observing the interference fringes in its conjugate plane.
AJP 38(10),1249	interference of polarized light	6D15.25	Polarized light is passed through a double slit, the two output beams are polarized perpendicularly, and a third polarizer can be used as an analyzer.
AJP 40(5),735 AJP 30(10),772	elliptically polarized interference interference of polarized light	6D15.26 6D15.30	The double slit with orthogonal elliptical polarization. Put a quarter wave plate in one path of a Michelson interferometer and show the waves don't have to have the same polarization to interfere.
PIRA 200	Gratings number of slits	6D20.00 6D20.10	Shine a laser beam through various numbers of slits with the same spacing.
UMN, 6D20.10 F&A, Ol-10	Cornell plate - gratings number of slits	6D20.10 6D20.10	A laser is directed through various numbers of slits with the same spacing.
Disc 23-12 Sut, L-85	multiple slit interference project a course grating	6D20.10 6D20.11	Pass a laser beam through three sets of multiple slits on the Cornell slide. A course grating is placed between an illuminated slit and the projection lens. A fine grating must be placed near the screen.
AJP 52(1),77	grating in air and water	6D20.12	Measure the pattern of a laser beam incident on a diffraction grating placed inside an empty aquarium and with it full of water.
TPT 28(2),98	which side has the gratings?	6D20.13	Wet one surface of the grating with alcohol and if it is the grating side, the intensity of the diffraction maxima decrease.
AJP 76 (1), 43	grating equation - graphical representation	6D20.13	The diffraction grating equation is represented by a useful graph that makes analysis of the diffraction orders produced by the grating easier.
PIRA 500	gratings and laser	6D20.15	, , , , , , , , , , , , , , , , , , , ,
UMN, 6D20.15	gratings and laser	6D20.15	
Sprott, 6.2	gratings and laser	6D20.15	A laser beam passed through a grating is compared with a beam of white light passed through the same grating.
Bil&Mai, p 352	grating and laser	6D20.15	Shine a laser beam through a grating and onto a screen. Measure the distance from the grating to the screen and the distance between the maxima to calculate the wavelength of the laser light.
PIRA 500	projected spectra with grating	6D20.20	
UMN, 6D20.20	projected spectra with grating	6D20.20	White light, mercury, and sodium sources are passed through 300 and 600 lines per mm gratings.
Disc 23-13	interference gratings	6D20.20	Shine a white light beam through gratings of 3000, 4000, and 6000 lines/cm.
TPT 29(7), 423 ref.	holographic or phase gratings student gratings and carousel	6D20.23 6D20.25	The making, characteristics, and uses of holographic gratings. see 7B10.10.
Ehrlich 1, p. 203	measure wavelength with a grating		Look through a plastic grating at several different line sources to observe their spectra and measure their wavelengths.
TPT 2(2),85	measure wavelength with a grating	6D20.26	Look through a grating at a line source and measure the distance to the source and the angle of the lines.
AJP 41(7),932	beer can spectroscope	6D20.28	Drink the beer, tape a replica grating over the hole, cut a slit in the bottom.
TPT 28(5),343	film canister spectroscope	6D20.28	Make a slit in the cover of a film canister and place a grating over a hole in the bottom made with a #2 cork bore.
Mei, 35-3.7	grazing incidence diffraction	6D20.30	Grazing incidence on a very course grating produces minute path differences.
AJP 33(11),922	measuring wavelength with a ruler	6D20.31	A laser is diffracted at grazing incidence off the rulings of a steel scale.
Mei, 36-4.6	measuring wavelength with a ruler	6D20.31	Diffraction of a laser beam by grazing incidence on a machinists rule.
D&R, O-525	measuring wavelength with a ruler	6D20.31	A laser beam is diffracted at grazing incidence off the rulings of an engraved steel ruler.

Ehrlich 2, p. 172 measuing wavelength with a ruler 6202.31 A laser beam is diffracted at a grazing incidence off the rulings of a steel ruler, ruler, rule part and groove sizes and an example setup. AJP 54(8),367 compact disk grating wire diffraction gratings 6202.32 Information on the part of groove sizes and an example setup. AJP 54(8),735 dispersion and resolving power 6202.43 Wire diffraction gratings and sizes at blonch. AJP 54(8),735 dispersion and resolving power 6202.44 A dispusition of the distinction between dispersion and resolving power of a mask by photographic prainting. AJP 30(2),106 first order gratings 6202.45 Cratings that produce only one order either side of the control rule distinction between dispersion and resolving power of a mask by photographic prainting. AIP 30(2),102 AJP 30(2),102 Babinet's principle 6202.47 A sechrage for constructing complementary gratings for dimention the positive and regative complementary arrays. AJP 30(1),122 Babinet's principle 6202.47 The sechrame active of the panet of the panet of the panet of the positive and regative complementary arrays. PIRA 500 crossed gratings and laser 6202.50 Name as 0.113. F8A, 013 crossed gratings and laser 6202.50 Name as 0.113.	Į	Demonstration	Bibliography	Ju	uly 2015	Optics
APE 94(9).327 compact disk grating 6D20.35 Reconstruction of Fraunher's original gratings made of #42 wire at 80/inch. TP142(2), 76 wire diffraction gratings 6D20.35 Reconstruction of Fraunher's original gratings made of #42 wire at 80/inch. APE 94(8),737 dispersion and resolving power 6D20.35 Wire diffraction gratings made from brass bolts and # 40 or # 43 bare copper wire. APE 94(8),712 Babinet's principle 6D20.40 A descussion of the distinction between dispersion and resolving power of a grating. APF 39(1),123 Babinet's principle 6D20.40 Carefully draw black spots on white paper are pholographically reduced and the possitiv and regative copies are used as complementary array. APF 39(1),123 Babinet's principle 6D20.47 A technique for constructing complementary gratings for demonstrating Babinet's principle. APF 37(7), 678 Babinet's principle 6D20.47 The diffraction of utrassound by a circular disk and a negative of the same are wisely and a discussion of the paradox of waves out of phase which is regated as a detect of Freend's theory. PIRA 500 crossed gratings and leaser 6D20.55 Same as Ol-13. VLMA, 6D20.50 crossed gratings and leaser 6D20.55 Same as Ol-13. VLMA, 6D20.51 rossed gratings and leaser 6D20.55 Same as out of the grating and		Ehrlich 2, p. 172	measuring wavelength with a ruler	6D20.31		a steel
AUP 54(8),735 dispersion and resolving power 6202.40 Adecusion of the distinction between dispersion and resolving power of a grating. AUP 38(3),382 gratings and minimum deviation 6202.40 Adecusion of the downlapse of using diffraction gratings at the angle of minimum deviation instead of the positivo and regative copies are used as complementary gratings. AUP 39(1),123 Babinet's principle 602.20 602.20.40 Gratings that produce only one order either side of the central maximum are made by pholographing Fraunbeler diffraction fringes. AUP 39(1),122 Babinet's principle 602.20.47 A tachingus for consulturing complementary gratings for dimonstrating Babinet's principle. AUP 78(7), 678 Babinet's principle 602.047 The transmission tack spots on white any aperture of the same the state of the paratox of waves out of phase which is regarded as a defect of Fresnel's theory. PIRA 500 crossed gratings and laser 6120.50 Same as 01-13. FRA, OH 3 crossed gratings and laser 6120.50 Same as 01-13. Spott, 6.2 crossed gratings and laser 6120.50 Same as 01-13. Spott, 6.2 crossed gratings and laser 6120.55 Show the beams coming out of the grating at angles by grazing the biacheard or using a cylindrical lens. AuP 33(10),1271 crossed gratings and laser 6120.55 Show the beams coming out of the grating at angles by grazing the biacheard or using a cylindrical lens. </td <td></td> <td></td> <td></td> <td></td> <td>Information on the pit and groove sizes and an example setup.</td> <td>at 80/inch.</td>					Information on the pit and groove sizes and an example setup.	at 80/inch.
AJP 54(8):735 dispersion and resolving power of a grafting. 622.040 A discussion of the distinction between dispersion and resolving power of a grafting. AJP 33(3):382 graftings and minimum deviation 622.042 On the advantages of using diffraction graftings at the angle of minimum are made by photographical incidence. AJP 33(2):106 first order graftings 622.045 Cratings that produce only one order either side of the central maximum are made by photographically colouse are used as complementary graftings for demonstrating Babinet's principle AJP 33(1):122 Babinet's principle 622.047 A technique for constructing complementary graftings for demonstrating Babinet's principle. AJP, 78 (7), 678 Babinet's principle 622.050 Same as O-13. Crassed graftings and laser 6220.30 Same as Co-13. Crassed graftings and laser 6220.50 Same as Co-13. AJP 39(1).127 crossed graftings and laser 6220.50 Alaser beam passed through a fine mesh screen produces interesting limiteriscino printers AJP 39(2).101 crossed graftings and laser 6220.55 Alaser beam passed through a small square of silk. AJP 39(3).101/21 crossed graftings and las		TPT42(2), 76	wire diffraction gratings	6D20.35		bare copper
AJP 38(3):382 gratings and minimum deviation 652.042 On the advantages of using diffraction gratings at the angle of minimum are made viaciation instand of the position of prependicular incidence. AJP 38(1):123 Babinet's principle - 2D 622.045 Carafuly drawn black spots on white paper are photographically reduced and the positive and negative copies are used as complementary arrays. AJP 38(1):122 Babinet's principle 622.047 A technique for constructing complementary gratings for demonstrating Babinet's principle. AJP, 78 (7), 678 Babinet's principle 622.047 A technique for constructing complementary gratings for demonstrating Babinet's principle. PIRA 500 crossed gratings and laser 622.050 Same as 0-13. Crossed gratings and laser 622.055 A laser them passed through a fine mesh screen produces interesting interference patterns. AJP 39(1),127 crossed gratings and laser 622.055 A laser them patterns inform of utility agriting and laser Ref, A-0.51 filter con grating and laser 622.055 View the basens conting out the grating adrages by grazing the blackboard or using a cylindrical lens.		AJP 54(8),735	dispersion and resolving power	6D20.40	A discussion of the distinction between dispersion and resolving	ower of a
AJP 30(2),106 first order gratings 6120.45 Gratings that produce only one order either side of the central maximum are made by photographing Fraunholer diffraction finges. AJP 39(1),123 Babinet's principle - 2D 6120.47 Carefully drawn black spots on white paper are used as complementary arrays. AJP 39(1),123 Babinet's principle 6120.47 A technique for constructing complementary gratings for demonstrating Babinet's principle. AJP, 78 (7), 678 Babinet's principle 6120.47 The diffraction of ultrascuond by a circular disk and an aperture of the same size are investigated. A discussion of the paradox of waves out of phase which is regarded as a defect of Fresnel's theory. PIRA 500 crossed gratings and laser 6120.50 Same as O I-13. FAA, O-13 crossed gratings and laser 6120.50 Same as O I-13. FAA, O-13 crossed gratings and laser 6120.50 Vale are directing is a smoke box. Discusses patterns from skew beams. AJP 39(10),1271 crossed gratings and laser 6120.55 View an automobile headlamp through a small square of silk. AJP 39(10),1271 two dimensional grating 6120.55 Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens. PIRA 500 two dimensional grating 6120.55 Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens. PIRA 1000 regular and		AJP 38(3),382	gratings and minimum deviation	6D20.42	On the advantages of using diffraction gratings at the angle of mi	nimum
AJP 39(1),123 Babinets principle - 2D 602.047 Carefully drawn black spots on white paper are photographically reduced and the positive and negative copies are used as complementary arrays. AJP 39(1),122 Babinets principle 602.047 A technique for constructing complementary grafings for demonstrating Babinets principle. AJP, 78 (7), 678 Babinets principle 602.047 The diffraction of ultrasound by a circular disk and an aperture of the same size are investigated. A discussion of the paradox of waves out of phase which is regarded as a defect of Fresnel's theory. PIRA 500 crossed grafings and laser 6020.50 Same as 0-13. Carefully distantiation of the same size are investigated. A discussion of the paradox of waves out of phase which is regarded as a defect of Fresnel's theory. PIRA 500 crossed grafings and laser 6020.50 Same as 0-13. Carefully distantiation distantis distantis distantis distantiation distantiatis distantiation di		AJP 30(2),106	first order gratings	6D20.45	Gratings that produce only one order either side of the central ma	aximum are
AJP 39(1),122 Babinet's principle BD20.47 A technique for constructing complementary gratings for demonstrating Babinet's principle. AJP, 78 (7), 678 Babinet's principle BD20.47 The diffraction of ultrasound by a circular disk and an aperture of the same size are investigated. A discussion of the paradox of waves out of phase which is regarded as a defect of Fresnel's theory. PIRA 500 crossed gratings and laser BD20.50 Same as 0.113. FAA, OH3 crossed gratings in smoke box BD20.52 A laser and crossed gratings in a smoke box. AJP 39(10),1271 crossed gratings in smoke box 6D20.52 A laser and crossed gratings in a smoke box. Mei, 36-5.3 diffraction grating and laser 6D20.55 Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens. Sut, L-79 two dimensional grating 6D20.55 View an automobile headlamp through a small square of silk. Sut, L-79 two dimensional grating 6D20.55 Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens. VIM, 6020.50 regular and inegular patterns 6D20.56 Show the beams coming out of the grating and laser Sut, L-79 two dimensional grating 6D20.56 Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens. AJP 43(3),227 hole gratings 6D20.56 <td< td=""><td></td><td>AJP 39(1),123</td><td>Babinet's principle - 2D</td><td>6D20.46</td><td>Carefully drawn black spots on white paper are photographically</td><td></td></td<>		AJP 39(1),123	Babinet's principle - 2D	6D20.46	Carefully drawn black spots on white paper are photographically	
PIRA 500crossed gratings and laser6202.50VINN 602.05crossed gratings and laser6202.50FAA, OL13crossed gratings and laser6202.50Sprott, 6.2crossed gratings and laser6202.50AJP 39(10),1271crossed gratings in smoke box6202.52AJP 39(10),1271crossed gratings in smoke box6202.52Alser beam passed through a fine mesh screen produces interesting interference patterns.Mei, 36-5.3diffraction grating and laser6202.52Star Addition of the grating and laser6202.53Star Addition of the grating and laser6202.55Star, 1.79two dimensional grating6202.55Strik, 1.79two dimensional grating6202.55Strik, 2.79two dimensional grating6202.55Strik, 2.79two dimensional grating6202.55Strik, 2.79two dimensional grating6202.56VIN, 6202.66regular and irregular patterns6202.56AJP 37(9),871regular and irregular patterns6202.56AJP 33(3),227optical crystal set6202.56AJP 42(2),91optical crystal set6202.56AJP 43(3),237optical crystal set6202.56AJP 43(3),237optical simulation of electron diffraction6202.56AJP 43(5),3,237optical simulation of electron diffraction6202.56AJP 43(5),3,237optical simulation of electron diffraction6202.56AJP 43(5),3,237optical simulation of electron diffraction6202.66AJP 44(61),1193		AJP 39(1),122	Babinet's principle	6D20.47	A technique for constructing complementary gratings for demons	
PIRA 500 crossed gratings and laser 6D20.50 Same as Ol-13 FAA, OL-13 crossed gratings and laser 6D20.50 Same as Ol-13. AJP 39(10).1271 crossed gratings and laser 6D20.50 Same as Ol-13. AJP 39(10).1271 crossed gratings and laser 6D20.50 Same as Ol-13. AJP 39(10).1271 crossed gratings in smoke box 6D20.52 A laser heam passed through a fine mesh screen produces interesting interference patterns. Mei, 36-5.3 diffraction grating and laser 6D20.55 Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens. PIRA 500 two dimensional grating 6D20.55 Shime a laser through fine wire mesh or wire cloth and observe the patterns. TOBAR, O-515, S-10 fine mesh and laser 6D20.56 Shime a laser through fine wire mesh or wire cloth and observe the patterns. AJP 37(9)871 regular and irregular patterns 6D20.56 Seven 2x2 sides, each containing four samples used to study the simple Law approach to diffraction plates. AJP 42(2),91 optical crystal set 6D20.57 Seven 2x2 sides, each containing four samples used to study the simple Law approach to diffraction plates. AJP 42(3),227 hole gratings 6D20.56 Seven 2x2 sides, each containing four sampl		AJP, 78 (7), 678	Babinet's principle	6D20.47	size are investigated. A discussion of the paradox of waves out of	
F&A, D-113 Sprott, 6.2crossed gratings crossed gratings and laser (BD20.50CD20.50 FV FV Alseer and crossed gratings in a smoke box 		PIRA 500		6D20.50		
Sprott, 6.2crossed gratings and laser6D20.50A laser beam passed through a fine mesh screen produces interesting interference patterns.AJP 39(10),1271crossed gratings in smoke box6D20.52A laser and crossed gratings in a smoke box. Discusses patterns from skew beams.Mei, 36-5.3diffraction grating and laser6D20.53Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens.PIRA 500two dimensional grating fine mesh and laser6D20.55View an automobile headiamp through a small square of silk. 6D20.56Sut, L-79 DAR, O-515, S- 210two dimensional grating fine mesh and laser6D20.55View an automobile headiamp through a small square of silk. 6D20.56JNR 1000 UNN, 6D20.56regular and irregular patterns regular and irregular patterns regular and irregular patterns fop20.566D20.56Lea computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 42(2),91optical crystal set6D20.56A source for hole gratings of several spacings, sizzes, and arrangements. 6D20.57AJP 43(3),227optical simulation of electron diffraction radom multiple gratings red blood cells6D20.61Exhale on clean glass.AJP 45(3),231optical simulation of electron diffraction red blood cells6D20.62Cok through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 45(3),xiidust on the mirror6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder diffracti						
AJP 39(10),1271 crossed gratings in smoke box 6D20.52 A laser and crossed gratings in a smoke box. Discusses patterns from skew beams. Mei, 36-5.3 diffraction grating and laser 6D20.53 Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens. PIRA 500 two dimensional grating 6D20.55 Sut, L-79 Sut, L-79 two dimensional grating 6D20.55 View an automobile headlamp through a small square of silk. DAR, Op515, S- two dimensional grating 6D20.56 View an automobile headlamp through a small square of silk. VINN, 6D20.56 regular and irregular patterns 6D20.56 View an automobile headlamp through a small square of silk. AJP 37(9),871 regular and irregular patterns 6D20.56 Sucre for hole gratings of several spacings, sizes, and arrangements. AJP 42(2),91 hole gratings 6D20.56 Seven 2x2 sides, each containing four samples used to study the simple Laue approach to diffraction plates. AJP 453(3),237 optical cinystal set 6D20.56 Eaver approach to diffraction by crystals. Winner of the 1973 AAPT apparatus competition. AJP 45(3),237 optical cinystal set 6D20.56 Eaver approach to diffraction by activation by activation by crystals. Winner of the 1973 AAPT apparatus comprelition. <td< td=""><td></td><td></td><td>0 0</td><td></td><td></td><td></td></td<>			0 0			
Mei, 36-5.3diffraction grating and laser6D20.53Show the beams coming out of the grating at angles by grazing the blackboard or using a cylindrical lens.PIRA 500two dimensional gratings and laser6D20.55Show the beams coming out of the grating a tangles by grazing the blackboard or using a cylindrical lens.PIRA 500two dimensional grating6D20.55Site a laser through fine wire more wire coth and observe the patterns. Mesh with 60 to 400 wires per inch work best.PIRA 1000regular and irregular patterns6D20.56Site a laser through fine wire more dual and observe the patterns. Mesh with 60 to 400 wires per inch work best.AJP 53(3),227hole gratings6D20.56Luse a computer to generate regular and irregular antergular patterns 6D20.56AJP 42(2),91optical crystal set6D20.56A source for hole gratings of overall spacings, sizes, and arrangements. Seven 2x2 slides, each containing four samples used to study the simple Laue approach to diffraction patters.AJP 53(3),237optical simulation of electron red blood cells6D20.56Exhale on clean glass.AJP 41(5),714water droplets water droplets6D20.63Dust a bathroom mirror and hold a small light as close to the eye as possible.Mei, 35-3.6lycopodium powder diffraction with asscription with a 60 throw.6D20.75Speckle patterns in are light the with a speckle diameter of a microns. Clo27AJP 40(1),207speckle patterns in are light speckle patterns in are light6D20.76A collimated beam of white light is passed through a glass dusted with hycopodium powder giving a maximum at 50 cm with a 60 'throw. How to make					interference patterns.	-
PIRA 500two dimensional gratings and laser6D20.55blackboard or using a cylindrical lens.Sut, L-79 D&R, C-515, S- 10two dimensional grating the mesh and laser6D20.55SileSut, L-79 DIRA 1000 UMN, 6D20.56fine mesh and laser6D20.55Shine a laser through fine wire mesh or wire cloth and observe the patterns. Mesh with 60 to 400 wires per inch work best.VIRA 1000 UMN, 6D20.56 AJP 37(9),871regular and irregular patterns regular and irregular patterns6D20.55Solve a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 53(3),227 AJP 42(2),91optical crystal set6D20.56A source for hole gratings of several spacings, sizes, and arrangements. 6D20.576D20.58AJP 53(3),237 AJP 41(5),714optical simulation of electron diffraction multiple gratings AJP 45(3),xxii6D20.686D20.68AJP 43(5),xxiidust on the mirror6D20.58Enerate and reduce dot patterns that generate patterns with laser light that are similar to various electron diffraction patterns.Mei, 35-3.6lycopodium powder diffraction speckle spots and random diffraction patters6D20.63A collimated beam of while light is passed through a glass dusted with lycopodium powder diging a maximum at 50 cm with a 60 throw. 6D20.76A collimated beam of while light is passed through a glass dusted with lycopodium powder diging a maximum at 50 cm with a 60 throw. 6D20.76Mei, 35-3.6lycopodium powder diffraction speckle spots and random diffraction speckle spots and random diffraction6D20.76A collimated beam					beams.	
Sut, L-79 DRR, O-515, S- 210two dimensional grating time mesh and laser6D20.55View an automobile headlamp through a small square of silk. 6D20.55PIRA 1000 PIRA 1000 regular and irregular patterns regular and irregular patterns regular and irregular patterns regular and irregular patterns6D20.56 6D20.56Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 53(3),227 AJP 42(2),91hole gratings optical crystal set6D20.56 6D20.56Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 53(3),237 PIRA 1000 LIFA 1000 AJP 41(5),714optical simulation of electron diffraction red blood cells6D20.56 6D20.59Seven 2x2 slides, each containing four samples used to study the simple Lare approach to diffraction patterns.AJP 53(3),237 PIRA 1000 LIFA 1000 AJP 46(11),1193optical simulation of electron diffraction red blood cells6D20.59 6D20.61Exhale on clean glass.Sut, L-80 L-80red blood cells6D20.62 6D20.63Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 45(11),1193 Mei, 35-3.6lycopodium powder diffraction speckle patterns in ar light6D20.63 6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.AJP 40(1),207 speckle patterns in ar light6D20.67 6D20.75Free sparkling of a spot illominated by a laser beam on the wall is caused by random interference patter						ne
D&R, Q-515, S- 210fine mesh and laser6D20.55Shine a laser through fine wire mesh or wire cloth and observe the patterns. Mesh with 60 to 400 wires per inch work best.PIRA 1000 VIRA 1000 AJP 37(9),871regular and irregular patterns regular and irregular patterns optical crystal set6D20.56 6D20.56GD20.56 6D20.56AJP 53(3),227 AJP 42(2),91hole gratings optical crystal set6D20.56 6D20.56GD20.56 6D20.56Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates. 6D20.57As ource for hole gratings of several spacings, sizes, and arrangements. 6D20.57AJP 53(3),237 PIRA 1000 PIRA 1000 PIRA 1000 random multiple gratings Sut, L-80optical simulation of electron diffraction6D20.56 6D20.51Exhale on clean glass. 6D20.51Sut, L-80 Mei, 35-3.6lycopodium powder diffraction diffraction6D20.63Exhale on clean glass. 6D20.61Exhale on clean glass. 6D20.62Mei, 35-3.6lycopodium powder diffraction diffraction6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder diffraction diffractionAJP 41(6),114scatter light interference diffraction6D20.61A collimated beam of white light is passed through a glass dusted with lycopodium powder diffraction diffractionAJP 41(6),207 speckle patterns in arc light6D20.75A collimated beam of white light is passed through a glass dusted by random interference patterns can also be seen in arc lamp light. The patterns disappear a sthe object is brough locser to the arc.AJP 40(1),2		PIRA 500		6D20.55		
210Mesh with 60 to 400 wires per inch work best.PIRA 1000regular and irregular patterns6D20.56AJP 37(9),871regular and irregular patterns6D20.56AJP 53(3),227hole gratings6D20.56AJP 53(3),227hole gratings6D20.56AJP 53(3),237optical crystal set6D20.56AJP 53(3),237optical simulation of electron diffraction6D20.58AJP 53(3),237optical simulation of electron random multiple gratings6D20.58AJP 41(5),714vactor diffraction6D20.58Sut, L-80red blood cells6D20.61AJP 53(3),xxiidust on the mirror6D20.62AJP 41(5),714vactor diffraction6D20.62AJP 35(3),xxiidust on the mirror6D20.63AJP 41(5),714vactor diffraction6D20.62AJP 35(3),xxiidust on the mirror6D20.63AJP 46(11),1193scatter light interference ultrasonic wave diffraction6D20.63AJP 46(11),1193scatter light interference ultrasonic wave diffraction6D20.63AJP 40(1),207speckle patterns in an clight6D20.76AJP 40(11),207speckle patterns in unfiltered sunlight6D20.76AJP 40(11),1693reconstruction of diffraction pattern6D20.76AJP 43(12),1054Fabry-Perot "multiple slit"6D20.76AJP 40(11),207speckle patterns in unfiltered sunlight6D20.76AJP 40(11),1693reconstruction of diffraction pattern6D20.76AJP 40(11),1693reconstruction of diffracti						
PIRA 1000 UMN, 6D20.56 regular and irregular patterns regular and irregular patterns (AJP 33(3),227 AJP 42(2),91GP20.56 regular and irregular patterns optical crystal setGP20.56 6D20.56Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 53(3),227 AJP 42(2),91hole gratings optical crystal set6D20.56 6D20.57Seven 222 slides, each containing four samples used to study the simple Laue approach to diffraction by crystals. Winner of the 1973 AAPT apparatus competition.AJP 53(3),237 PIRA 1000 attractionoptical simulation of electron diffraction6D20.58 6D20.58Seven 222 slides, each containing four samples used to study the simple Laue approach to diffraction by crystals. Winner of the 1973 AAPT apparatus competition.AJP 41(5),714 water droplets6D20.58 6D20.62Exhale on clean glass.Sut, L-80red blood cells6D20.61 6D20.63Exhale on clean glass.AJP 35(3),xxiidust on the mirror6D20.63Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 46(11),1193 wi, 35-3.6lycopodium powder diffraction diffraction6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder gliffraction diffractionAJP 41(6),844 wi, 36-4.7speckle patterns in arc light diffraction6D20.75A collimated beam of white light is apseckle diameter of 3 microns. How to make a scatter plate with a speckle diameter of 3 microns. Ulty is diffraction platern random interference patterns caused by scattered light. AJP 40(11			fine mesh and laser	6D20.55		e patterns.
UMN, 6D20.56 AJP 37(9).871regular and irregular patterns regular and irregular patterns6D20.56 6D20.56Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 53(3),227 AJP 42(2),91hole gratings optical crystal set6D20.56Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 53(3),237 optical simulation of electron diffraction6D20.56A source for hole gratings of several spacings, sizes, and arrangements.AJP 53(3),237optical simulation of electron diffraction6D20.58Generate and reduce dot patterns that generate patterns with laser light that are similar to various electron diffraction patterns.PIRA 1000 AJP 41(5),714random multiple gratings water droplets6D20.59Exhale on clean glass.Sut, L-80red blood cells6D20.63Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 35(3),xxiidust on the mirror6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.AJP 46(11),1193 scatter light interference ulfraction6D20.76A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.AJP 40(1),207 speckle spots and random diffraction6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(11),207speckle patterns in un			regular and irregular patterns	6D20 56	Mesh with 60 to 400 whes per frich work best.	
AJP 37(9).871regular and irregular patterns6D20.56Use a computer to generate regular and irregular arrays of the same aperture and photo reduce them to make diffraction plates.AJP 53(3),227hole gratings optical crystal set6D20.576D20.57Seven 2x2 slides, each containing four samples used to study the simple Laue approach to diffraction by crystals. Winner of the 1973 AAPT apparatus competition.AJP 53(3),237optical simulation of electron diffraction6D20.58Generate and reduce dot patterns that generate patterns with laser light that are similar to various electron diffraction patterns.AJP 41(5),714water droplets6D20.61Exhale on clean glass.Sut, L-80red blood cells6D20.62Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 35(3),xxiidust on the mirror6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.AJP 46(11),1193scatter light interference ultrasonic wave diffraction diffraction6D20.76The sparkling of a specil illuminated by a laser beam on the wall is caused by random interference patterns in an clightAJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns caused by scattered light.AJP 40(11),1693reconstruction of diffraction pattern6D20.76Speckle patterns caused by a diffusing surface are common. Train yoursel to see them.AJP 40(11),1693Fabry-Perot "multiple slit"6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yoursel to see them.<			• • •			
AJP 53(3),227 AJP 42(2),91hole gratings optical crystal set6D20.56 6D20.57A source for hole gratings of several spacings, sizes, and arrangements. Seven 2x2 slides, each containing four samples used to study the simple Laue approach to diffraction by crystals. Winner of the 1973 AAPT apparatus competition.AJP 53(3),237 Optical simulation of electron diffraction PIRA 1000 random multiple gratings AJP 41(5),714optical simulation of electron diffraction6D20.58 6D20.59Generate and reduce dot patterns that generate patterns with laser light that are similar to various electron diffraction patterns.AJP 41(5),714 AJP 41(5),714water droplets red blood cells6D20.69 6D20.62Exhale on clean glass.Sut, L-80 Mei, 35-3.6lycopodium powder diffraction ultrasonic wave diffraction6D20.63 6D20.63Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 46(11),1193 Mei, 35-3.6lycopodium powder diffraction ultrasonic wave diffraction diffraction6D20.63 6D20.70A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.AJP 41(6),844 Mei, 36-4.7speckle patterns in arc light diffraction6D20.76Speckle patterns caused by a laser beam on the wall is caused by random interference patterns caused by a saser beam on the wall is caused by random interference patterns caused by y cattered light.AJP 40(11),1093speckle patterns in unfiltered sunlight6D20.76Speckle patterns in arc light 6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Tra						me aperture
Laue approach to diffraction by crystals. Winner of the 1973 ÅAPT apparatus competition.AJP 53(3),237optical simulation of electron diffraction6D20.58Generate and reduce dot patterns that generate patterns with laser light that are similar to various electron diffraction patterns.PIRA 1000random multiple gratings water droplets6D20.59AJP 41(5),714water droplets6D20.61Sut, L-80red blood cells6D20.62Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 35(3),xxiidust on the mirror6D20.63Mei, 35-3.6lycopodium powder diffraction ultrasonic wave diffraction6D20.63AJP 46(11),1193 scatter light interference ulfraction6D20.70Light is diffracted by ultrasonic wave diffraction diffraction6D20.70Mei, 35-3.10speckle spots and random diffraction6D20.76Mei, 36-4.7speckle patterns in arc light6D20.76AJP 41(6),844speckle patterns in unfiltered sunlight6D20.76AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D30.00		AJP 53(3),227	hole gratings	6D20.56		ements.
diffractionare similar to various electron diffraction patterns.PIRA 1000random multiple gratings6D20.59AJP 41(5),714water droplets6D20.61Sut, L-80red blood cells6D20.62AJP 35(3),xxiidust on the mirror6D20.63Mei, 35-3.6lycopodium powder diffraction6D20.63Mei, 35-3.6lycopodium powder diffraction6D20.64Mei, 35-3.10ultrasonic wave diffraction6D20.67Mei, 36-4.7speckle spots and random6D20.75Mei, 36-4.7speckle patterns in arc light6D20.76AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76AJP 40(11),1633reconstruction of diffraction patterns6D20.76AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D20.76Construction of diffraction pattern6D20.76Construct the image of a light source by viewing its diffraction patternAJP 43(12),1054Fabry-Perot "multiple slit"6D20.78AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80 <tr <td="">Aprox "multiple slit</tr>		AJP 42(2),91	optical crystal set	6D20.57	Laue approach to diffraction by crystals. Winner of the 1973 AAP	
AJP 41(5),714 Sut, L-80water droplets6D20.61 (D20.62)Exhale on clean glass. Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 35(3),xxiidust on the mirror6D20.63Dust a bathroom mirror and hold a small light as close to the eye as possible.Mei, 35-3.6lycopodium powder diffraction scatter light interference ultrasonic wave diffraction diffraction6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.Mei, 35-3.10scatter light interference ultrasonic wave diffraction diffraction6D20.70Light is diffracted by ultrasonic waves in a liquid.Mei, 36-4.7speckle patterns in arc light speckle patterns in arc light6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(11),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.Thin Films6D30.00		AJP 53(3),237		6D20.58		er light that
Sut, L-80red blood cells6D20.62Look through a drop of blood on a microscope slide at a point source or project onto a screen from a point source.AJP 35(3),xxiidust on the mirror6D20.63Dust a bathroom mirror and hold a small light as close to the eye as possible.Mei, 35-3.6lycopodium powder diffraction scatter light interference ultrasonic wave diffraction diffraction6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.MJP 46(11),1193 Mei, 35-3.10scatter light interference ultrasonic wave diffraction speckle spots and random diffraction6D20.70Light is diffracted by ultrasonic waves in a liquid.Mei, 36-4.7speckle spots and random diffraction6D20.76The sparkling of a spot illuminated by a laser beam on the wall is caused by random interference patterns caused by scattered light.AJP 41(6),844speckle patterns in arc light6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80Account the image of a light source by viewing its diffraction pattern through a similar grating placed in front of the camera lens.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.80An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferenceter.Thin Films6D30.00 <td></td> <td></td> <td>random multiple gratings</td> <td>6D20.59</td> <td></td> <td></td>			random multiple gratings	6D20.59		
AJP 35(3),xxiidust on the mirror6D20.63Dust a bathroom mirror and hold a small light as close to the eye as possible.Mei, 35-3.6lycopodium powder diffraction6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.AJP 46(11),1193scatter light interference ultrasonic wave diffraction6D20.61How to make a scatter plate with a speckle diameter of 3 microns.Mei, 35-3.10ultrasonic wave diffraction diffraction6D20.70Light is diffracted by ultrasonic waves in a liquid.Mei, 36-4.7speckle spots and random diffraction6D20.76Speckle patterns caused by scattered light.AJP 41(6),844speckle patterns in arc light sunight6D20.76Speckle patterns caused by scattered light.AJP 40(1),207speckle patterns in unfiltered sunight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.Thin Films6D30.00			•		•	
Mei, 35-3.6lycopodium powder diffraction6D20.63A collimated beam of white light is passed through a glass dusted with lycopodium powder giving a maximum at 50 cm with a 60' throw.AJP 46(11),1193scatter light interference ultrasonic wave diffraction6D20.64How to make a scatter plate with a speckle diameter of 3 microns.Mei, 35-3.10ultrasonic wave diffraction of grach6D20.70Light is diffracted by ultrasonic waves in a liquid.Mei, 36-4.7speckle spots and random diffraction6D20.75The sparkling of a spot illuminated by a laser beam on the wall is caused by random interference patterns caused by scattered light.AJP 41(6),844speckle patterns in arc light6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 40(11),1693reconstruction of diffraction pattern through a similar grating placed in front of the camera lens.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.Thin Films6D30.00		-			project onto a screen from a point source.	
AJP 46(11),1193 Mei, 35-3.10scatter light interference ultrasonic wave diffraction speckle spots and random diffraction6D20.64 6D20.70How to make a scatter plate with a speckle diameter of 3 microns. Light is diffracted by ultrasonic waves in a liquid.Mei, 36-4.7speckle spots and random diffraction6D20.75Light is diffracted by ultrasonic waves in a liquid.AJP 41(6),844speckle patterns in arc light6D20.76Speckle patterns caused by scattered light.AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 40(11),1693reconstruction of diffraction pattern through a similar grating placed in front of the camera lens.Reconstruct the image of a light source by viewing its diffraction pattern through a similar grating placed in front of the camera lens.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.						
Mei, 35-3.10ultrasonic wave diffraction speckle spots and random diffraction6D20.70Light is diffracted by ultrasonic waves in a liquid.Mei, 36-4.7speckle spots and random diffraction6D20.75Light is diffracted by ultrasonic waves in a liquid.AJP 41(6),844speckle patterns in arc light6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 40(11),1693reconstruction of diffraction pattern through a similar grating placed in front of the camera lens.6D20.85AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.Thin Films6D30.00		Mei, 35-3.6	lycopodium powder diffraction	6D20.63	lycopodium powder giving a maximum at 50 cm with a 60' throw.	
Mei, 36-4.7speckle spots and random diffraction6D20.75The sparkling of a spot illuminated by a laser beam on the wall is caused by random interference patterns caused by scattered light.AJP 41(6),844speckle patterns in arc light6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 40(11),1693reconstruction of diffraction pattern through a similar grating placed in front of the camera lens.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85AIP 530.00The sparkling of a spot illuminated by a laser beam on the wall is caused by random interference patterns caused by scattered light.Mei, 36-4.7Speckle patterns in arc lightAJP 43(12),1054Fabry-Perot "multiple slit"AJP 43(12),1054Fabry-Perot "multiple slit"AJP 43(12),1054GD30.00		. ,	-			s.
diffractionrandom interference patterns caused by scattered light.AJP 41(6),844speckle patterns in arc light6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 40(11),1693reconstruction of diffraction pattern6D20.80Reconstruct the image of a light source by viewing its diffraction pattern through a similar grating placed in front of the camera lens.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.Thin Films6D30.00		,				an una di huu
AJP 41(6),844speckle patterns in arc light6D20.76Speckle patterns can also be seen in arc lamp light. The patterns disappear as the object is brought closer to the arc.AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 40(11),1693reconstruction of diffraction pattern6D20.80Reconstruct the image of a light source by viewing its diffraction pattern through a similar grating placed in front of the camera lens.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.Thin Films6D30.00		Mel, 36-4.7		6D20.75		caused by
AJP 40(1),207speckle patterns in unfiltered sunlight6D20.76Speckle patterns from sunlight scattered by a diffusing surface are common. Train yourself to see them.AJP 40(11),1693reconstruction of diffraction pattern reconstruction of diffraction pattern6D20.80Reconstruct the image of a light source by viewing its diffraction pattern through a similar grating placed in front of the camera lens.AJP 43(12),1054Fabry-Perot "multiple slit"6D20.85An adjustable "multiple slit" interference pattern can be shown with a Fabry- Perot interferometer.Thin Films6D30.00		AJP 41(6),844		6D20.76	Speckle patterns can also be seen in arc lamp light. The patterns	disappear
AJP 40(11),1693 reconstruction of diffraction pattern 6D20.80 Reconstruct the image of a light source by viewing its diffraction pattern through a similar grating placed in front of the camera lens. AJP 43(12),1054 Fabry-Perot "multiple slit" 6D20.85 An adjustable "multiple slit" interference pattern can be shown with a Fabry-Perot interferometer. Thin Films 6D30.00		AJP 40(1),207		6D20.76	Speckle patterns from sunlight scattered by a diffusing surface and	e common.
AJP 43(12),1054 Fabry-Perot "multiple slit" 6D20.85 An adjustable "multiple slit" interference pattern can be shown with a Fabry-Perot interferometer. Thin Films 6D30.00		AJP 40(11),1693		6D20.80	Reconstruct the image of a light source by viewing its diffraction	oattern
Thin Films 6D30.00		AJP 43(12),1054	Fabry-Perot "multiple slit"	6D20.85	An adjustable "multiple slit" interference pattern can be shown wi	th a Fabry-
		PIRA 200				

Demonstration	n Bibliography	J	uly 2015 0	Optics
UMN, 6D30.10	Newton's rings	6D30.10	Newton's rings are projected on the wall.	
F&A, OI-17	Newton's rings	6D30.10		ass.
Sut, L-71	Newton's rings	6D30.10		
	C C		different colored light.	
Hil, O-7f.2	Newton's rings	6D30.10	Newton's rings with monochromatic light.	
D&R, O-460	Newton's rings	6D30.10	• •	produce
	-		brilliant rings when illuminated with a mercury lamp. A diverging l	
			or sodium light will give monochromatic fringes. Also, reflected lig	
			focal length lens squeezed against a flat glass.	-
Disc 23-15	Newton's rings	6D30.10	Reflect white light off a Newton's rings apparatus onto a screen.	
AJP 59(7),662	Newton's rings - HeNe	6D30.11	Not the standard. The laser light reflected from the curved and flat	t surfaces
			of a plano-convex lens is superimposed on a screen.	
AJP 46(2),187	Netwon's rings - float glass	6D30.12	Some diagrams and pictures of arrangements using float glass (v	ery flat) to
			demonstrate Newton's rings.	
PIRA 200	soap film interference	6D30.20	Reflect white light off a soap film onto a screen.	
UMN, 6D30.20	soap film interference	6D30.20	Project white light reflected off a soap film in a wire frame onto the	e wall.
F&A, OI-16	soap film interference	6D30.20	Reflect white light off a soap film onto a screen.	
Sut, L-68	soap film interference	6D30.20	Illuminate a soap film with an extended source in a darkened room	n.
Sut, L-67	soap film interference	6D30.20	Project light reflecting off a soap film onto a screen.	
D&R, O-465	soap film interference	6D30.20	Project light reflecting off a soap film onto a screen with a large le	ns. Use
			Kodak filters to produce monochromatic fringes.	
D&R, O-467	soap film in a soda bottle	6D30.20	Use a soda bottle to hold soap films for long term viewing.	
Bil&Mai, p 354	soap film interference - CO2	6D30.20	Soap bubbles are introduced into an aquarium partly filled with CC)2 gas.
			The CO2 will move into the bubbles increasing their size, causing	the bubble
			film to become thin and change color.	
Ehrlich 1, p. 205	soap film interference	6D30.20	An interference pattern of stripes in thin films is observed using so	рар
			bubbles.	
Ehrlich 2, p. 173	soap film interference	6D30.20	Long lasting soap bubbles are made on the mouth of an Erlenmey	yer filter
			flask partially filled with water.	
Disc 23-18	soap film interference	6D30.20	Reflect white light off a soap film on a wire frame.	
AJP 53(2),177	stable black soap films	6D30.21	Vidal Sasson - Extra Gentle Formula makes black films lasting fiv	e minutes
			or longer.	
TPT 28(7),479	soap film transmission and	6D30.22	A configuration that allows simultaneous viewing of transmitted ar	nd reflected
	reflection		patterns shows the colors of corresponding bands are complement	ntary.
AJP 29(19),713	constant soap film	6D30.23		uding
			through the stopper. Fill half full with soap solution.	
Sut, L-69	Boys rainbow cup	6D30.25	Rotate a hemispherical shell with a soap film across the front so the	he black
			spot forms in the middle.	
PIRA 500	air wedge	6D30.30		
UMN, 6D30.30	air wedge	6D30.30		
F&A, OI-18	air wedge		A sodium lamp illuminates an air wedge between two plates of gla	
Mei, 35-2.2	air wedge with sodium light	6D30.30	o o o i	lane glass
0	a in the almost	00000	plates.	f mlata
Sut, L-70	air wedge	6D30.30	Reflect an extended monochromatic source off two large pieces o glass held together.	i plate
A ID 72(2) 270	airwadaa	6020.20	5 S	oing the
AJP 72(2), 279	air wedge	6D30.30		-
			glass plates with one-way mirrors. Measurements done with an C	Cean
	airwadaa	6D30.30	Optics spectrometer. A sodium lamp illuminates an air wedge between two plates of gla	
D&R, O-455	air wedge	0030.30		155.
Diag 22 14	aloop plotop in opdium light	6020.20	Precise patterns can be obtained using optical flats.	rofloation
Disc 23-14	glass plates in sodium light	6D30.30		enection
	cir wodae and evenended loser	6020.25	off one and two pieces of plate glass.	aa hald
	air wedge and expanded laser	6D30.35		SS HEIU
TDT 41(4) 250	beam	6D30.35	together.	actions off
TPT 41(4), 250	mirror and expanded laser beam	0030.33	An expanded laser beam shines onto a back surface mirror. Refle	
			the front glass surface and the silver coated back surface of the m	
	Dobl'o mico chast	6000 40	produce large interference patterns.	
PIRA 500	Pohl's mica sheet	6D30.40		
UMN, 6D30.40	Pohl's mica sheet	6D30.40	Chow interformed by reflection of filtered as a second by the	a ab a t
F&A, OI-15	mica interference	6D30.40	Show interference by reflection of filtered mercury light from a mic	a sneet
Mat 05 0 5	Dahlla salara da d	0000	onto a screen.	
Mei, 35-2.3	Pohl's mica sheet	6D30.40	o	onto the
	Dahlla salara da d	0000	opposite wall. Derivation.	
Hil, O-7e	Pohl's mica sheet	6D30.40	Mercury light is reflected off a thin mica sheet. Mercury light source	e
			reference: AJP 19(4),248.	

Demonstration	Bibliography	J	uly 2015	Optics
D&R, O-470	mica interference	6D30.40	Show interference by the reflection of mercury light fro	om a mica sheet onto a
Disc 23-17	Pohl's mica sheet	6D30.40	screen.	
Mei, 35-2.4	turpentine film	6D30.40	Mercury light reflects off a sheet of mica onto a scree White light incident of the surface of turpentine on wa	
TPT 17(6), 392	evaporating film - alcohol	6D30.46	degrees is focused on a screen. Show an interference pattern by shining an expanded inverted test tube. Pour alcohol over the test tube an	
AJP 44(8),794	absorption phase shift	6D30.48	with a definite velocity as the alcohol evaporates. Cover the back of a microscope slide with streaks of a observed under monochromatic light.	an absorbing dye and
Mei, 35-2.5	temper colors	6D30.50	A thin film of oxide forms on a polished steel sheet wh	nen it is heated.
PIRA 1000	interference filters	6D30.60		
Mei, 35-2.6	interference filter	6D30.60	An interference filter for the mercury green line is use and neon light at different angles of incidence.	d with white, mercury,
Disc 23-16	interference filters	6D30.60	White light is seen in reflection and transmission on a three different interference filters.	thread screen using
Hil, O-7f.1	interference films	6D30.61	A broad source (36 sq in) He lamp is used to examine	
Hil, O-7d	oil film	6D30.65	The thickness of a film of oil on a pan of water that ca an iron bar across the surface makes an excellent var	
Mei, 33-7.13	microwave thin film interference	6D30.70	Show interference by transmission and reflection with sheets, one stationary and the other movable on an o	
	Interferometers	6D40.00		
Ehrlich 2, p. 187	Michelson - Morley simulation	6D40.05	The basic Michelson - Morley experiment is illustrated projector using 1 inch diameter ball bearings, note cal cardboard.	
PIRA 200	Michelson interferometer	6D40.10	Use a Michelson interferometer with either laser or whether whether with either laser or whether w	nite light.
UMN, 6D40.10	Michelson interferometer	6D40.10	Pass laser light through a commercial interferometer be done with white light.	onto the wall. Can also
AJP 30(8),604	Michelson interferometer modified	6D40.10	The Cenco M3 interferometer is modified to obtain go clock drive (AJP 27,520 (1959)).	od results without the
AJP, 50 (11), 987	Michelson interferometer	6D40.10	Michelson and Morley published data on their experin systematic trends. However, they did not explain how trends in their analysis. The paper attempts to recons of the analysis.	v they removed these
F&A, Ol-19	Michelson interferometer	6D40.10	Use a Michelson interferometer with either laser or whether the second sec	nite light.
Mei, 35-2.7	Michelson interferometer	6D40.10	The Michelson interferometer.	
Sut, L-72	Michelson interferometer	6D40.10	Project colored fringes from white light onto a screen, one path.	insert a hot object in
D&R, O-440, S- 050	Michelson interferometer	6D40.10	Use a Michelson interferometer with the expanded be	am from a laser.
Disc 23-20	Michelson interferometer - white light	6D40.10	A commercial interferometer with white light. Both circ are shown.	cular and line fringes
AJP 39(9),1091	Michelson interferometer - large class	6D40.11	Use a laser with the Michelson interferometer and exp a microscope objective.	band the exit beam with
AJP 35(2),161	Michelson interferometer - power	6D40.12		the Michelson
AJP 39(11),1395	Michelson interferometer alignment	6D40.13	Hints on alignment techniques.	
PIRA 1000	interference fringes with audio	6D40.15		
AJP 47(4),378	interference fringes with audio	6D40.15	A photocell detector detects fringes and the output is signal.	converted to an audio
AJP 39(4),412	Michelson interferometer - advanced topics	6D40.16	Use the Michelson interferometer to demonstrate grap transform nature of Fraunhoffer diffraction and introdu coherent optics.	
PIRA 500	microwave interferometer	6D40.20		
Mei, 33-7.6	microwave interferometer	6D40.20	Thorough discussion of the microwave interferometer calibrate a meter stick.	including using it to
Disc 23-19	Michelson interferometer	6D40.20	An interferometer constructed with 3 cm microwaves screen that functions as a half silvered mirror. Constr interference is heard as the reflector is moved.	
Mei, 33-7.4	microwave interferometer	6D40.21	Three microwave interferometers: Lloyd's mirror, Mich grid-detection interferometer, are shown. Pictures.	nelson's interferometer,
D&R, O-430	microwave interferometer	6D40.21	Use 11cm microwaves and a metal sheet to demonst	rate Lloyd's mirror.

July	2015
------	------

	······································	-	
AJP 33(11),924	microwave interferometer	6D40.22	Use 4 cm microwaves and 10" square platforms of Plexiglas to demonstrate Lloyd's mirror, Michelson's interferometer, and grid-detection interferometers
UMN, 6D40.25	microwave interferometer	6D40.25	on the overhead. Demonstrate an interferometer using chicken wire mirrors and a 12 cm microwave.
F&A, OI-20	microwave Michelson	6D40.25	Make a microwave Michelson interferometer with window screen reflectors
	interferometer		and a chicken wire half reflector.
D&R, O-410	Lloyd's mirror	6D40.27	A front surface mirror is brought close to an expanded laser beam at a very small grazing angle. Interference lines are formed on a screen.
Mei, 35-2.10	Jamin interferometer	6D40.30	The two mirrors are adjustable about mutually perpendicular axes.
Mei, 35-2.9	Jamin interferometer	6D40.30	Use second surface mirrors at an angle to generate parallel beams in this
			interferometer.
AJP 29(10),669	Sagnac interferometer - real fringes	6D40.35	Real fringes are observed with the Sagnac interferometer with both a point source and an extended source. Virtual fringes require an extended source. Also applies to Michelson interferometer.
AJP 30(10),724	Fabry-Perot interferometer	6D40.35	Construction details for a Fabry-Perot interferometer. Applications: optical measurements, index of refraction of a gas, and the Zeeman effect.
Mei, 35-2.8	triangular interferometer	6D40.40	The triangular interferometer is explained. Diagrams, Construction details in
AJP 43(11),940	coupled cavity interferometer	6D40.42	appendix, p. 1353. A prism mounted on a phonograph turntable is used to rapidly vary the path
AJP 33(6),487	coherence length	6D40.45	length of the external cavity. Use a long path interferometer to demonstrate the coherence length is at
Mai 26 4 4	long noth interferences	6040 45	least 12 m. Also transverse coherence.
Mei, 36-4.1	long path interferometer	6D40.45	The movable mirror can be at least 6 m away giving a coherence length of 12
Mei, 36-4.2	long path interferometer	6D40.46	m. A long path interferometer uses corner reflectors instead of mirrors and the output beam is directed onto a photodetector feeding an audio oscillator.
Mei, 36-4.3	double ended interferometer	6D40.47	Demonstrates the coherence of beams emitted from opposite ends of the laser tube.
Mei, 36-4.4	transverse coherence	6D40.48	Misaligning the mirrors still gives fringes.
Mei, 36-4.5	thick reflecting plate	6D40.49	Interference from waves reflected off two sides of a plate, limited to thin films in ordinary light, works in thick glass with lasers.
Mei, 35-2.11	Fresnel interferometers	6D40.50	Two different setups of Fresnel interferometers are discussed.
AJP 73(12), 1135	low cost Fabry-Perot cavity	6D40.54	Another low cost scanning Fabry-Perot cavity for laser experiments.
AJP 35(3),265	Mylar Fabry- Perot interferometer	6D40.54	Design of an interferometer using metalized mylar as mirrors.
AJP 35(3),xxii	inexpensive Fabry-Perot	6D40.54	Use standard "one-way" mirrors.
AJP 33(7),532	low cost Fabry-Perot	6D40.54	Construction of Fabry-Perot devices from microscope cover glasses and
AJP 33(12),1088	interferometer medium cost Fabry-Perot	6D40.54	plate glass. Use Pyrex optical flats.
AJP 36(1),ix	low cost Fabry-Perot	6D40.54	Use surplus optically flat circular plates.
AJP 33(12),1090	low cost comment	6D40.54	Spacings up to 1/4" are possible.
AJP 71(2), 184	low cost Fabry-Perot cavity	6D40.54	
Hil, O-10d	Fabry-Perot etalon	6D40.55	Directions for construction an inexpensive Fabry-Perot etalon. Reference: AJP 36(1),ix.
AJP 59(11),992	Fabry-Perot interferometer	6D40.56	Add some mirrors to a commercially made linear positioning stage.
AJP 52(6),563	simple gauge-length	6D40.57	A simple low-cost interferometer using only manufacturers' stock
	interferometer		components.
AJP 49(5),477	listening to the Doppler shift of light	6D40.60	Light from a laser beam is reflected off fixed and movable mirrors, mixed on a photodetector, and the resulting signal is amplified and drives a speaker.
Mei, 19-6.7	satellite tracking using Doppler	6D40.60	Beats between a generator and Sputnik I are recorded and played back while projecting a spot on a map indicating position.
Mei, 35-2.12	spherical mirror interferometer	6D40.60	An interferometer with two spherical mirrors is designed to show wind around objects, heat effects, and strain effects.
AJP 44(4),391	optical Doppler shift	6D40.61	Show the frequency shift of a laser beam bouncing off a moving mirror with a spectrum analyzer.
AJP 46(7),763	Doppler effect with light	6D40.61	Using a laser beam, retroreflector on a moving air track, beam splitter, and stationary mirror, observe the signal of the beat pattern from a silicon
AJP 37(7),744	Doppler radar	6D40.62	photodiode on an oscilloscope. Diagram of apparatus for Doppler radar. The reflector is mounted on a 1/32
AJP 33(6),499	Doppler shift with microwaves	6D40.62	scale slot car. Some of the transmitted signal and the signal received after reflection off a
TPT 30(2), 102	radar gun	6D40.62	moving object are fed to a mixer. Testing a radar gun and the tuning fork used to calibrate it for accuracy.
TPT 40(2), 94	radar gun	6D40.62	Determining the speed of objects in the classroom with a radar gun.

Mei, 19-6.8

F&A, Oj-1

purity of the spectrum

July 2015

complicated Doppler shift setups 6D40.70 Sophisticated Doppler shift experiments with construction details, diagrams,

Mei, 19-6.8	complicated Doppler shift setups	6D40.70	Sophisticated Doppler shift experiments with construction details, diagrams, and 7 references.
	COLOR Synthesis and Analysis of Color	6F00.00 6F10.00	
PIRA 500	color box	6F10.10	
UMN, 6F10.10	color box	6F10.10	A commercial Singerman box projects blue, red, and green light onto a screen with individually variable intensity.
F&A, Oj-3	color box	6F10.10	Overlap red, green, and blue light of adjustable intensity on a translucent screen.
Hil, O-6a	color box	6F10.10	The Welch color box shows the addition of the primary colors.
Disc 23-26	color box - additive color mixing	6F10.10	Mix red, green, and blue in a color box.
Sut, L-88	color addition	6F10.11	Red, green, and blue lamps shine from the corners of a white triangle. A rod or rods are placed on the screen to show the colors of shadows.
Hil, O-6b	Cenco color apparatus	6F10.12	The primary colors can be projected onto a screen.
Mei, 35-7.6	color synthesizer	6F10.13	A color synthesizer allows demonstration of the significance of dominate wavelength, purity, luminosity, etc.
Sut, L-89	color addition	6F10.15	Wratten filters Nos. 19, 47, and 61 are used to make a slide with 1/3 of a circle of each color. A projection arrangement shows the combination of colors and division of light between the separate colors.
Mei, 35-7.1	color projector	6F10.16	Adapting a lantern slide projector for mixing primary colors.
D&R, O-720	color projector or projectors	6F10.16	A single slide projector with three mirrors on blocks, or three separate slide projectors are used to overlap or mix the three primary colors on a screen.
Mei, 35-7.4	color projector	6F10.17	Many color demonstrations are performed with a slide projector and slides reflected off swivel mirrors.
Mei, 35-7.2	lantern slide colors	6F10.18	A diffraction grating is held in front of a lantern projector with seven slits, one side with primary additive colors, the other with subtractive, and the center white.
PIRA 500	color filters	6F10.20	
UMN, 6F10.20	color filters	6F10.20	Cyan, magenta, and yellow filters are available as loose squares or fixed in a Plexiglas holder for use on the overhead projector.
D&R, O-730	color filters	6F10.20	Red, green, blue, cyan, yellow, and magenta filters are used on an overhead.
AJP 37(6),662	dichromatic primary pairs	6F10.22	Discussion of the standard light addition, subtraction, as they relate to two color mixing.
AJP 47(2),142	artist's colors	6F10.23	On why artists use red, yellow, and blue instead of red, green, and blue.
AJP 47(7),573	artist's colors - letter	6F10.23	Hey guys, artists use pigments, not light, and anyway the subtractive primary colors are cyan, magenta, and yellow. Information of 4-color printing and real artist's pigments too.
Bil&Mai, p 318	artist's colors	6F10.23	Identify the primary colors of light as red, blue, and green using colored flashlights. Cyan, magenta, and yellow filters are place on top of one another on an overhead projector. Use these demonstrations to help discuss the difference between the primary colors of light and the primary colors of pigments.
PIRA 1000	spinning color disc	6F10.25	
F&A, Oj-2	spinning color disc	6F10.25	A disc with colored sectors appears white when rotated.
Sut, L-93 D&R, O-710	spinning color disc color fan	6F10.25 6F10.25	Disks with colored sectors are spun until the colors blend together. A three blade fan, each blade painted a primary color appears white when
TPT, 36(6), 347	as easy as R, G, B	6F10.25	rotated. Difficult to find right color mix for a good white. Using commercially available light sticks and a variable-speed drill to make white light.
Bil&Mai, p 320	as easy as R, G, B	6F10.25	Use red, green, and blue light sticks and a variable speed drill to make white light.
Disc 23-25	Newton's color disc	6F10.25	A spinning disc of colored sectors appears white.
Mei, 35-7.7	weird slit with Hg light	6F10.26	A slit and "inverted slit" used with Hg and a prism produce the normal line spectra and "inverted spectrum" of complementary colors.
PIRA 1000	recombining the spectrum	6F10.30	
F&A, Oj-4	recombining the spectrum	6F10.30	Recombine the spectrum after passing through a prism to get white light or remove a color and get the complement.
Mei, 35-7.5	recombining colors	6F10.30	Recombining dispersed light after reflecting out various colors, etc.
Sut, L-92	recombining the spectrum	6F10.30	Obtain a spectrum with a prism, reflect out a color with a small thin mirror, and recombine the light with a lens.
PIRA 1000	purity of the spectrum	6F10.33	A second a size of sight as also by the transformed size of the transformed size of the transformed size of the
F&A. Oi-1	purity of the spectrum	or 10.33	A second prism at right angles bends each color without dispersion.

6F10.33 A second prism at right angles bends each color without dispersion.

Demonstration	пырнодгарну	J	uly 2015 Optics
Mei, 35-1.6	splitting and recombining	6F10.35	A half spectrum filter splits out light from a beam which is then recombined at a spot.
Mei, 35-5.5 PIRA 1000	dispersion and recombination complementary shadow	6F10.36 6F10.45	Several variations of recombining dispersed light from a prism.
UMN, 6F10.45 Mei, 35-7.8	red and green complementary shadow	6F10.45 6F10.45	Shadows of red and white lights illuminating the same object from different
D&R, O-750	complementary shadow	6F10.45	angles appear to produce green light. Two flashlights, one with red filter, one with green filter, will produce a
Sut, L-96	metal films and dyes	6F10.61	shadow of an additional color when illuminating the same object. A thin film of gold transmits green but looks reddish-yellow by reflection.
Sut, L-95	dichromatism	6F10.65	Dyes also transmit and reflect different colors. Green cellophane transmits more red light than green. Stack lots of sheets
Que 1 07	three conditions for color	6510 70	and the color of transmitted light changes from green to red.
Sut, L-87	three conditions for color	6F10.70	The three conditions are: Color must be in the source, the object must reflect or transmit the color, the detector must be sensitive to the color. Shine different colored light at different colored objects.
Sut, L-91	color due to absorption	6F10.71	Light from a projection lantern reflected off red, green, and blue glass to the ceiling is the same but the transmitted light is colored by absorption.
PIRA 1000	colors in spectral light	6F10.75	
Mei, 35-7.3	colored yarn	6F10.75	Skeins of colored yarn are illuminated with different colored light.
Disc 23-23	colors in spectral light	6F10.75	A rose is viewed in white, red, green, and blue light.
AJP 39(2),201	complementary color transitions	6F10.80	Lecture room experiments are proposed which demonstrate complementary color transitions due to complementary boundary conditions at the aperture.
PIRA 1000	Dispersion dispersion curve of a prism	6F30.00 6F30.10	
Mei, 35-5.4	dispersion curve of a prism	6F30.10	Light passes through a grating and then through a second slit at right angles and a prism generating a dispersion curve in color on the screen.
F&A, Oj-7	deviation with no dispersion	6F30.15	Light passed through oppositely pointed crown and flint glass prisms adjusted to give light deviated in two directions but with no dispersion.
F&A, Oj-8	dispersion with no deviation	6F30.20	Light passes through prisms of crown and flint glass adjusted to give two beams of the same dispersion but different deviation.
Mei, 35-5.1	anomalous dispersion of fuchsin	6F30.30	Overcoming the difficulties of showing anomalous dispersion with fuchsin.
Mei, 35-5.2	anomalous dispersion of sodium	6F30.30	An absorption cell for the anomalous dispersion of sodium is described. Diagrams, Construction details in appendix, p.1354.
Mei, 35-5.3	bending dark absorption line of sodium	6F30.31	When salt is heated on a flame in the path of a narrow beam of light before dispersion, the edges of the spectrum close to the dark band bend up or down.
AJP 56(10),948	optical ceramics: dispersion	6F30.50	A custom fabricated prism made from LaSFN-9 glass shows a cutoff between transmission and total internal reflection that can be tuned through the visible spectrum by turning the prism.
	Scattering	6F40.00	
PIRA 200	sunset	6F40.10	Pass a beam of white light through a tank of water with scattering centers from a solution of oil in alcohol.
UMN, 6F40.10	sunset	6F40.10	A beam of white light is passed through a tank of water and a solution of cedarwood oil in alcohol is poured in to create scattering centers.
D&R, O-040	artificial sunset	6F40.10	Pass a slide projector beam through a hypo solution and add acid. Lysol will also work.
D&R, O-615	scattering and sunset	6F40.10	Add powdered creamer in increments to a beaker of water on the overhead. Observe scattered light with a polarizer. Transmitted light will go from white to yellow-red until extinction occurs.
AJP 70(6), 620	scattering and sunset	6F40.10	An absorption spectrophotometer is used to measure the wavelength dependence of light scattering from small spheres suspended in water. Measured values are compared to values predicted by the Rayleigh and Mie theories.
AJP 70 (1), 91	scattering and sunset	6F40.10	An observation of Mie scattering by using polystyrene microspheres of different diameters. Different diameters give different colors.
AJP 76 (9), 816	scattering of sky light	6F40.10	A model is described for the gas in the atmosphere and used to obtain the irradiance for sunlight scattered by the gas molecules contained in a coherence volume.
Sprott, 6.7	scattering and sunset - Rayleigh scattering	6F40.10	A white light passing through a liquid scatters primarily the blue light causing the transmitted light to appear red.
Disc 24-08	artificial sunset	6F40.10	Pass a beam through a hypo solution and add acid.
F&A, On-1	sunset	6F40.11	Light scattering with a hypo solution.
Mei, 35-4.1	sunset	6F40.11	HCI into hypo solution scatters blue light.

Sut, L-46	sunset	6F40.11	A beam of light is scattered when passed through water containing hypo and HCI.
AJP 53(2),184	various scattering centers, Mei scattering	6F40.12	Alternatives to hypo for the sunset demo including latex spheres that demonstrate Mie scattering.
Mei, 35-4.2	red and blue beam	6F40.15	A red beam is passed through a solution of gum mastic but a blue beam is not. Diagram.
PIRA 1000	optical ceramics scattering	6F40.20	not. Diagram.
AJP 56(10),948	optical ceramics - Rayleigh	6F40.20	Type 7070 glass is treated to induce glass-in-glass phase separation used to
(- //	scattering		show Rayleigh scattering.
Sut, L-100	color of smoke	6F40.30	Cigarette smoke is blue, but after exhaling is white.
AJP 77 (11), 1010) wavelength selective scattering	6F40.40	Structural color caused by wavelength selective scattering of light by
	-		microscopic features such as the scales on some insects. Morpho butterfly
			wings and peacock feathers are examples.
PIRA 1000	microwave scattering	6F40.50	
Mei, 33-7.17	microwave scattering	6F40.50	Show scattering of microwaves with a dielectric dipole inserted in the beam. Picture.
AJP 55(6),524	multiple scattering	6F40.60	Examples of common observations inexplicable by single scattering, e.g.,
	1 0		darkening of wet sand, whiteness of milk, etc., are discussed without
			invoking the complete incoherent scattering theory.
AJP 55(1),87	halos	6F40.80	Look at a point source lamp through a fogged microscope slide.
Sut, L-81	dust halos	6F40.80	A glass plate covered with dust is held in a beam that converges into a hole
			in a screen. Circular halos appear on the screen around the hole.
Ehrlich 1, p. 206	halos	6F40.80	Look at an unfrosted light bulb through a fog you have exhaled onto a glass
			slide.
AJP 45(4),331	lunar halo picture	6F40.82	Picture and analysis of an unusual lunar halo.
	POLARIZATION	6H00.00	
	Dichroic Polarization	6H10.00	
Mei, 35-6.1	generating polarized light	6H10.05	Lists all methods of generating polarized light.
TPT 28(7),464	many light demonstrations	6H10.06	Strain patterns, polarization by reflection, pile of plates, scattering, rotary
			dispersion, the Faraday effect, interference in polarized white light, double
PIRA 200	Polaroids on the overhead	6110 10	refraction, polarizing microscope, double refraction in sticky tape.
FIRA 200	Folatolus on the overhead	6H10.10	Show polarization with two sheets of Polaroid and a pair of sunglasses on an overhead projector.
UMN, 6H10.10	Polaroids on the overhead	6H10.10	Two sheets of Polaroid and a pair of sunglasses are provided with an
		01110.10	overhead projector.
Sut, L-122	Polaroids on the overhead	6H10.10	
D&R, O-610	Polaroids on the overhead	6H10.10	
Bil&Mai, p 322	Polaroids on the overhead	6H10.10	
Ehrlich 1, p. 172	Polaroids on the overhead	6H10.10	Two sheets of Polaroid on the overhead projector.
Disc 24-01	Polaroid sheets crossed and	6H10.10	Two Polaroid sheets are partially overlapped while aligned and at 90
	uncrossed		degrees.
F&A, Om-9	Polaroids	6H10.11	A beam from an arc lamp is directed through two Polaroid sheets.
Hil, O-8b	polarization kit		Polaroid sheets for the overhead plus a lot of other stuff.
PIRA 200	microwave polarization		Hold a grid of parallel wires in a microwave beam and rotate the grid.
UMN, 6H10.20	microwave polarization	6H10.20	A "hamburger grill" filter is used to demonstrate polarization from a 12 cm
F1 0 1		0114.0.00	dipole.
F&A, Om-1	microwave polarization	6H10.20	
Mei, 33-7.11	microwave polarization	6H10.20	Microwave polarization is shown by rotating the receiver or using a grating.
AJP 71(5), 452	microwave polarization	6H10.20	Construction of a strip grating that can convert a linearly polarized plane
		00.20	wave into one that is circularly polarized.
Disc 24-04	microwave polarization	6H10.20	A slotted disc is rotated in the microwave beam.
PIRA 500	polarization - mechanical model	6H10.30	
Sut, L-116	, polarization - mechanical model	6H10.30	Two boxes, one a polarizer and the other an analyzer, are built with a center
			slot that can be oriented either horizontally or vertically. Use with waves on a rubber hose.
D&R, O-605	polarization - mechanical model	6H10.30	Two large wooden slits oriented parallel or perpendicular to one another with
			a long helical spring passing through both.
Ehrlich 1, p. 173	polarization - mechanical model	6H10.30	A long spring passing through a vertical slit is used to demonstrate
			polarization of transverse waves.
Sut, L-117	polarization - mechanical model	6H10.31	A pendulum is hung from a long strut restrained by slack cords. Circular
			motion of the pendulum will be damped into a line by the motion of the strut.
	Delercide out at 45 decrees	6140.40	
PIRA 1000 Disc 24-02	Polaroids cut at 45 degrees	6H10.40	Cut squares of Polaroid so the avec are at 45 degrees. Now turning one
Disc 24-02	Polaroids cut at 45 degrees	6H10.40	Cut squares of Polaroid so the axes are at 45 degrees. Now turning one upside down causes cancellation.
			นุขานอ นบพา เฉนอออ อสาเอเาสแบท.

	······································	_	
AJP 33(4),xxv	Polarization by Reflection making black glass	6H20.00 6H20.05	Eliminate the reflection off the second surface of a glass plate with a Canada
PIRA 200	Brewster's angle	6H20.10	balsam and lampblack suspension on the back side. Rotate a Polariod filter in a beam that reflects at Brewster's angle off a glass
UMN, 6H20.10	Brewster's angle	6H20.10	onto a screen. A beam of white light is reflected off a sheet of black glass at Brewster's
D&R, O-620	Brewster's angle	6H20.10	angle onto the wall. A Polaroid is provided to test. A beam of white light is reflected off a stack of glass plates at Brewster's angle. Rotate a Polaroid in the incoming and reflected beams.
AJP 69(11), 1166 Ehrlich 1, p. 171	polarization by reflection Brewster's angle	6H20.10 6H20.10	Measurments of reflected light with an interface and light sensor. Plate glass, a Polaroid filter, a protractor, and a focusable light source are used to demonstrate Brewster's angle.
Disc 24-05 Mei, 35-6.2	polarization by reflection tilt the windowpane	6H20.10 6H20.11	Rotate a Polaroid filter in a beam that reflects off a glass onto a screen. Reflect plane polarized light off a window pane and vary the angle of incidence through Brewster's angle.
Mei, 36-6.2	Brewster's angle with a laser	6H20.12	Using horizontally polarized laser light, rotate a glass plate through Brewster's angle to observe a null.
Mei, 36-6.1	polarization of the laser beam	6H20.12	Rotate a Polaroid in the beam of a laser with Brewster's angle mirrors.
PIRA 1000	microwave Brewster's angle	6H20.15	
Mei, 33-7.12	microwave Brewster's angle	6H20.15	A block of paraffin is tilted until there is a minimum of transmitted radiation.
PIRA 500	polarization by double reflection	6H20.20	
UMN, 6H20.20	polarization by double reflection	6H20.20	
F&A, Om-16	polarization by double reflection	6H20.20	Two black glass mirrors - one fixed and the other rotates.
F&A, Om-2	polarization of double reflection	6H20.20	Reflect light off a black mirror onto a second rotating black mirror to produce extinction.
Mei, 35-6.3	double mirror Brewster's angle	6H20.20	Two glass plates are mounted in a box at Brewster's angle with the second able to rotate around the axis of the incident light.
Hil, O-8a	double reflection polarization	6H20.20	Direct unpolarized light at a glass plate at 57 degrees, then to another plate at the same angle of incidence and perpendicular to the polarized light.
Disc 24-06	polarization by double reflection	6H20.20	Offset a beam of light by double reflection off a glass, then rotate the first glass 90 degrees to obtain extinction. Replace the glass with metal mirrors and no polarization takes place.
Sut, L-123	Norrenberg's polariscope	6H20.21	Light strikes two black glass plates in succession, each at 57 degrees. Rotate the second glass plate and replace it with a mirror.
Sut, L-125	large scale polarizer	6H20.25	A large box with two black glass plates gives an extended source of plane polarized light.
PIRA 1000	Brewster's cone	6H20.30	
F&A, Om-18	Brewster's cone	6H20.30	A black glass cone at Brewster's angle.
Sut, L-124	pyramid method	6H20.31	Illuminate a rotatable pyramid made of four triangles of black glass mounted at 57 degrees with the base with plane polarized light.
PIRA 500	stack of plates	6H20.40	
Sut, L-126	stack of plates	6H20.40	A stack of glass plates at 57 degrees will transmit and reflect light that is cross polarized.
	Circular Polarization	6H30.00	
AJP 51(1),91	circular polarization model	6H30.01	One vector moves along with a fixed orientation in space while five others, at quarter wavelengths, rotate.
PIRA 200	three Polaroids	6H30.10	
PIRA 500 - Old	three Polaroids	6H30.10	
UMN, 6H30.10	three Polaroids	6H30.10	Three sheets of Polaroid are provided with an overhead projector.
Disc 24-03	rotation by polarizing filter	6H30.10	Stick a third sheet between crossed Polaroids
PIRA 500	barber pole	6H30.30	
Mei, 35-6.6	barber pole	6H30.30	A beam of polarized light is rotated when directed up a vertical tube filled with
Sut, L-129	barber pole	6H30.30	sugar solution. Show a beam of polarized light up through a tube with a sugar solution and
Disc 24-14	barber pole	6H30.30	scattering centers. The beam rotates and colors are separated. Illuminate a tube of corn syrup from the bottom. Insert and rotate a Polaroid
AJP 39(12),1536	laser and quinine sulfate	6H30.35	filter between the light and tube. Pass a polarized laser beam through a cylinder filled with a quinine sulfate
	Kana augus	01100.40	solution.
PIRA 200	Karo syrup	6H30.40	Insert a tube of liquid sugar between crossed Polaroids.
AJP 43(11),939	Karo syrup tank	6H30.40	Fill an aquarium with Karo syrup and insert glass objects - prism, block, balls. View the collection through motorized crossed Polaroids
F&A, Om-16	Karo syrup	6H30.40	Place a bottle of Karo syrup between crossed Polaroids
Sut, L-130	rotation by sugar solution	6H30.40	Insert a tube of sugar solution between crossed Polaroids

Demonstration	n Bibliography	July 2015		Optics
D&R, O-690	Karo syrup tube	6H30.40	Place Karo syrup in a 50 to 60 cm acrylic tube. Shine a projector lengthwise through the tube. A Polaroid placed source and the tube will produce a corkscrew rainbow. A	d between the light Also, a beaker of
Disc 24-11	optical activity in corn syrup	6H30.40	Karo syrup between crossed Polaroids on the overhead. A bottle of corn syrup between Polaroids, three overlapp equal thickness between Polaroids	
F&A, Om-19	Karo syrup prism	6H30.41	Colors change as one Polaroid is rotated in a Karo syrup crossed Polaroids	prism between
Mei, 35-6.5	three tanks	6H30.42		ntaining sugar
D&R, O-685	three tanks	6H30.42		0 0
Sut, L-131	quartz "biplate"	6H30.45	A quartz "biplate" is set between two crossed Polaroids a tube of sugar solution is also inserted and rotated.	at 45 degrees, then a
AJP 50(11),1051	quartz slices	6H30.60	-	•
PIRA 1000	microwave optical rotation	6H30.70		
Mei, 33-7.16	microwave optical activity	6H30.70	A styrofoam box contains 1200 coils of wire aligned in ar the same sense will rotate microwave radiation.	array and wound in
AJP 39(8),920	microwave optical rotation	6H30.71	A microwave analog of optical rotation in cholesteric liqu sheets with small parallel wires are stacked so the wires layers vary in a screw type fashion.	-
PIRA 1000	Faraday rotation	6H30.80		
Sut, L-132	Faraday rotation	6H30.80	Polarized light is passed through holes in an electromage with the magnetic field. A specimen is placed in the mag is determined when the magnet is energized.	
Sut, L-133	Faraday rotation	6H30.81	Insert a partially filled glass container of Halowax or carb the core of a solenoid between crossed Polaroids	on tetrachloride into
Mei, 35-6.18	rotation by magnetic field Birefringence	6H30.82 6H35.00	A CS2 cell placed in a solenoid rotates the plane of pola	rization of light.
PIRA 200 - Old	two calcite crystals	6H35.10	Use a second calcite crystal to show the polarization of t extraordinary rays.	he ordinary and
F&A, Om-6	two calcite crystals	6H35.10		he ordinary and
PIRA 1000	calcite and Polaroid on the overhead	6H35.15		
UMN, 6H35.15	calcite and Polaroid on the overhead	6H35.15	Rotate a calcite crystal on an overhead projector covered hole. Use a Polaroid sheet to check polarity.	d except for a small
F&A, Om-5	ordinary and extraordinary ray	6H35.15	Rotate a calcite crystal with one beam entering and two vaxis and the other rotating around.	will emerge, one on
Sut, L-120	calcite and Polaroid on the overhead	6H35.15	Project a hole in a strongly illuminated cardboard onto a calcite crystal. Interpose and rotate a polarizing plate to i images disappear alternately, or use a Wollaston prism.	
D&R, O-625	calcite and Polaroid on the overhead	6H35.15	Place a mask with 1 - 2 mm dia hole on the overhead. F over the hole and rotate until two beams emerge. Check these beams with a Polaroid.	•
Bil&Mai, p 322	calcite and Polaroid on the overhead	6H35.15	Place a transparency with words on an overhead project crystal on a portion of the words and rotate until you see words. Hold a Polaroid above the crystal and rotate.	
Ehrlich 1, p. 174	calcite and Polaroid on the overhead	6H35.15	A calcite crystal shows two images of whatever is placed Polaroid filter to shut off one image or the other.	I beneath it. Use a
Disc 24-16	double refraction in calcite	6H35.15	Place a calcite crystal over printed material or a metal pl	ate with a small hole.
PIRA 1000	Plexiglas birefringence	6H35.17		
UMN, 6H35.17	Plexiglas birefringence	6H35.17	Same as AJP 59, (12), 1086	
AJP 73(4), 357	birefringent filters	6H35.17	Low cost birefringent filters constructed from cellophane	•
AJP 59(12),1086	Plexiglas birefringence	6H35.17	Show birefringence of a Plexiglas rod directly with a linear Also easily construct half and quarter wave plates.	arly polarized laser.
AJP, 65(5), 449- 450	Plexiglas birefringence	6H35.17	A good guide to building your own Lucite optics for the d birefringence in polarized light.	emonstrations of
AJP, 65(7), 672- 674	Plexiglas birefringence - a modification of Schneider's experiment	6H35.17		15 degree surface so

Demonstration	Dibilography		
F&A, Om-3	birefringence crystal model	6H35.20	A flexible crystal model is used to show how the index of refraction can vary in a crystal.
Sut, L-118	pendulum model	6H35.21	Strike a pendulum with a blow, then wait 1/4, 1/2, or 3/4 period and strike
Sut, L-119	model of double refraction	6H35.21	another equal blow at right angles to the first. A double pendulum displaced in an oblique direction will move in a curved orbit.
AJP 53(3),279	wood stick polarization wave models	6H35.22	Stick models of plane and circular polarized light.
Hil, O-8c F&A, Om-4	retardation plate models wavefront models	6H35.23 6H35.24	Wire models show spherical and elliptical wavefronts in crystals.
Mei, 35-6.11	birefringent crystal axes	6H35.25	Examine calcite crystals cut perpendicular, parallel, and along the cleavage axis under a microscope.
F&A, Om-8	Nichol prism	6H35.30	One of a pair of Nichol prisms is rotated as a beam of light from an arc lamp is projected through.
F&A, Om-7	Nichol prism model	6H35.31	Construct a wire frame model to show how calcite crystals are cut to form a Nichol prism.
Sut, L-121 PIRA 500	polarizing crystals quarter wave plate	6H35.32 6H35.40	Explain the action of tourmaline crystals and the Nicol prism with models.
F&A, Om-11	quarter-wave plate	6H35.40	Insert a quarter-wave plate between Nichol prisms at 45 degrees giving circular polarization.
Disc 24-15	quarter wave plate	6H35.40	Place a quarter wave disc between a Polaroid and a mirror.
	mechanical model half wave plate		
AJP 54(5),455			An anisotropic spring and metal ball system is the mechanical analog of a half-wave plate.
Mei, 35-6.16 PIRA 1000	half and quarter wave plates half wave plate	6H35.44 6H35.45	Use half and quarter wave plates with polarized sodium light.
F&A, Om-10	half wave plate	6H35.45	Insert a half wave plate between Nichol prisms at 45 degrees giving plane polarized light.
Mei, 35-6.15	half wave plate	6H35.45	Use a quartz wedge to show the effect of a half wave plate.
PIRA 200 - Old	stress plastic	6H35.50	A set of plastic shapes are bent between crossed Polaroids.
UMN, 6H35.50	stress plastic	6H35.50	A set of plastic shapes are bent between crossed Polaroids.
UMN, 6H35.50	stress plastic	6H35.50	A commercial squeeze device and little plastic shapes are used between
			crossed Polaroids.
AJP 44(11),1138	stress plastic	6H35.50	•
F&A, Om-15	stress plastic	6H35.50	Various shapes of plastic fit in a squeezer between crossed Polaroids in a lantern projector.
Sut, L-134	stress plastic	6H35.50	Plastic is stressed between crossed Polaroids ALSO - Stroke a strip of glass longitudinally between crossed Polaroids and standing waves are apparent.
D&R, O-660	stress plastic	6H35.50	Stressed polyethylene bags or acrylic between crossed Polaroids.
Disc 24-13	stress plastic	6H35.50	Stress a plastic bar between crossed Polaroids
F&A, Om-12	crystal structure of ice	6H35.51	A thin slab of ice is placed between crossed Polaroids
Mei, 35-6.12	quartz wedge	6H35.52	Interference colors are shown with a quartz wedge in red, green and white light polarized light.
Mei, 35-6.13	quartz wedge	6H35.52	A setup to show the spectral analysis of the colors of a quartz wedge.
Mei, 35-6.14	various crystal thicknesses	6H35.52	
Mei, 35-6.17	sign on crystals	6H35.52	A setup using a quartz wedge or sensitive plate to determine the sign of crystals.
PIRA 1000	butterfly, etc.	6H35.53	
UMN, 6H35.53	butterfly, etc.	6H35.53	
Sut, L-136	butterfly	6H35.53	Mica, cellophane, etc. cut into specific shapes and thicknesses are placed between crossed Polaroids.
F&A, Om-14	color with mica	6H35.54	Rotate a mica sheet between crossed Polaroids.
PIRA 500	cellophane between polarizers	6H35.55	
	cellophane between Polaroids		A nice short evaluation of interference colors and a kitchen table variation
AJP 49(9),881		6H35.55	A nice short explanation of interference colors and a kitchen table variation where the polarizer and analyzer are not obvious.
Mei, 35-6.4	cellophane between Polaroids	6H35.55	A doubly refracting material between fixed and rotatable Polaroid sheets demonstrates color change with Polaroid rotation.
D&R, O-630, O- 625	cellophane between Polaroids	6H35.55	Cellophane placed between two sheets of Polaroid. Rotate either the cellophane or the Polaroids.
Disc 24-09	cellophane between Polaroids	6H35.55	Interesting designs show up when plates with layered cellophane are placed between crossed Polaroids
Disc 24-10	polarized lion	6H35.56	The second polarizer is reflected light from a horizontal plate of glass.
Disc 24-12	polage	6H35.57	Optically active art work - metamorphosis of a cocoon into a butterfly as one
			Polaroid rotates.

Demonstration	n Bibliography	J	uly 2015	Optics
AJP 54(7),625	Kerr effect with optical ceramics	6H35.60	Replace the nitrobenzene in the Kerr cell with an optical ceramic interesting welding goggles application is discussed.	:. An
Sut, L-135	Kerr effect - electrostatic shutter	6H35.61	Halowax oil is used between the plates of a capacitor set between Polaroids Charge the capacitor with an electrostatic machine an transmitted light will vary.	
AJP 41(2),270	nematic liquid crystals	6H35.62	Directions for making cells with thin layers of the liquid crystal M various optics experiments with the material.	BBA and
PIRA 1000 Mei, 17-8.3	LCD element between polaroids flow birefringence	6H35.65 6H35.80	A colloidal solution demonstrates birefringence accompanying fl Preparation instructions.	ow.
PIRA 500	Polarization by Scattering sunset with polarizers	6H50.00 6H50.10		
UMN, 6H50.10	sunset with polarizers	6H50.10	Use a sheet of Polaroid to check the polarization of scattering fro of light passing through a tank of water with scattering particles.	om a beam
F&A, On-2	sunset with polarizers	6H50.10	Rotate a Polaroid in the incoming beam or at the top and side of the sunset demonstration.	the tank in
Mei, 35-6.9	polarization from a scattering tank	6H50.10	A mirror at 45 degrees mounted above the scattering tank reflect scattered up onto the same Polaroid analyzer as the light scatter side.	
Mei, 35-6.8	the Tyndall experiment	6H50.10	Shine light in one side of a box with a scattering solution and loc scattered light out in a perpendicular direction.	k at the
Sut, L-128	sunset with polarizers	6H50.10	Rotate a Polaroid in the incident beam of the sunset experiment oriented at 45 degrees above the tank.	with a mirror
Bil&Mai, p 324	sunset with polarizers	6H50.10	Use a sheet of Polaroid to check the polarization of scattering fro of light passing through a tank of water with scattering particles. Sol.	
Ehrlich 1, p. 171	polarization by scattering	6H50.10	Use a sheet of Polaroid to show the polarization of light scattere degrees from light passing through a tank of water with powdere dairy creamer as the scattering particles.	•
Disc 24-07 Mei, 36-6.3	polarization by scattering scattered laser light	6H50.10 6H50.11	Add milk to water and show polarization of light scattered from a Rotate a polarized laser about its own axis as it is scattered from	
Sut, L-127	polarized scattering in a beaker	6H50.20	A beam of light is directed down into a beaker of water containin centers. Rotate a sheet of Polaroid in front of the beaker or in th before it enters the water.	• •
Mei, 35-6.7	scattering tube	6H50.21	Direct polarized or unpolarized light up a vertical tube filled with a containing scattering centers.	a solution
PIRA 1000	depolarization by diffuse reflection	6H50.30		
Mei, 35-6.10	depolarization by diffuse reflection	6H50.30	Reflect a beam of polarized light off a chalk surface through a Peanalyzer.	olaroid
PIRA 1000 TPT 28(9),598	Haidinger's brush Haidinger's brush	6H50.90 6H50.90	Train yourself to detect polarized light with the naked eye. Most	people can.
	THE EYE	6J00.00		
	The Eye	6J10.00		
PIRA 200	eye model	6J10.10		
PIRA 500 - Old	eye model	6J10.10		
UMN, 6J10.10	eye model	6J10.10		
F&A, Og-8	eye model	6J10.10	Show a take-apart model of the eye.	
Hil, O-5b.1 Mei, 34-2.1	eye model water flask model of the eye	6J10.10 6J10.21	The standard take-apart eye model. A large flask filled with water, a little fluorescein, and some exter make a model of the eye in near and far sighted conditions.	nal lenses
Sut, L-65	eye model	6J10.21	A spherical lens filled with milky water represents the eyeball. Us lens in front of the sphere to show inverted image, near and far s	-
TPT 46(9),528	eye model	6J10.21	How to construct a small but accurate model of the human eye.	
PIRA 1000	blind spot	6J10.21	nom to construct a small but accurate model of the number eye.	
UMN, 6J10.30	blind spot	6J10.30	Same as L-58.	
	· · · ·			the studente
Sut, L-58 D&R, O-580	blind spot	6J10.30	Move a white cross toward a white spot on the blackboard while close one eye.	
	blind spot	6J10.30	Place a black dot and a black cross about 5 cm apart on a white one eye and look at cross while moving card away from the eye disappears.	
PIRA 1000	inversion of image on the retina	6J10.40		

Demonstration	n Bibliography	J	uly 2015 Optic	;s
Sut, L-59	inversion of image on the retina	6J10.40	A small tube has three holes in a triangular pattern drilled in one end an single hole in the other. Hold the triangular end near the eye and the parappears inverted.	
Sut, L-64	astigmatism	6J10.50	Look at a chart of radial black lines.	
Sut, L-66	eyeglasses	6J10.55	Project an image of concentric circles crossed by radial lines. Place a le and then a correcting lens over the projection lens.	ns
Sut, L-63	chromatic aberration of the eye	6J10.60	A purple filter is mounted in front of a straight filament lamp.	
PIRA 1000	resolving power of the eye	6J10.80		
Sut, L-86	resolving power of the eye	6J10.80	The limit of resolving two filaments of an auto headlamp is 25 - 30 feet. ALSO - show slides of the "Navicula" made with green and UV light. Reference.	
D&R, O-570	resolving power of the eye	6J10.80	Place two black dots about 2 mm apart on a note card and observe from increasing distances until unable to resolve. Determine the angular resolution.	۱
PIRA 1000	resolving power with TV	6J10.81		
Disc 23-09	resolving power with TV	6J10.81	The camera zooms in on a vertical series of back illuminated double slit	s,
			each separated by half the distance of the preceding pair.	
AJP 58(6),552	Computer generated Sayce chart	6J10.85	A valuable background discussion on the resolution of the eye and a computer generated Sayce is shown. An external slit is used to stop dow the eye pupil.	vn
Mei, 34-1.14	locating images by parallax	6J10.90	An arrangement is shown for locating real and virtual images by paralla	ζ.
	Physiology	6J11.00		
PIRA 1000	retinal fatigue - color disc	6J11.10		
F&A, Oi-12	retinal fatigue - color disc	6J11.10	A red light placed behind a rotating disc with a slot at the border of half l and half white appears different colors depending on the direction of rota	
Sut, L-94	retinal fatigue - color disk	6J11.10	A disk with a notch, half black, half white is spun in front of a red lamp. lamp appears green or red depending on the direction that the disk spin	
Mei, 6-2.8	psychological colors	6J11.11	A black and white patterned disc appears colored when rotated.	
PIRA 1000	visual fatigue	6J11.20		
Sut, L-61	visual fatigue	6J11.20	Stare at a bright spot and a complementary color appears when the spo turned off.	t is
D&R, O-770	visual fatigue	6J11.20	Stare at a brightly colored object in good light for about 30 seconds. Lo away to a white paper or wall and see the image in complementary colo	
Mei, 6-2.2	after image and judgement of size	6J11.22	The retinal fatigue image seems to change size.	
PIRA 1000	persistence of vision	6J11.30		
UMN, 6J11.30	persistence of vision	6J11.30		
AJP 71(8), 774	persistence of vision	6J11.30	A mathematical description of the Roget Illusion and anorthoscope. Sin devices are shown.	
Bil&Mai, p 4	persistence of vision	6J11.30	Use a strobe light to read a phrase written on the blades of a spinning fa	
Mei, 6-2.7	persistence of vision	6J11.30	A wheel with circles with phase shifted dots painted on the rim is spun in strobed light.	1
TPT, 36(7), 442	the time delay in human vision	6J11.31	Exploring the time delay in vision by spinning LED's on a turntable	
AJP 43(1),113	colored fans	6J11.32	Paint a four bladed fan different colors and illuminate with a strobe.	
Mei, 6-2.9	tubeless television	6J11.33	Wave a wand at the point a projected image is focused.	
D&R, O-585 Sprott, 6.11	tubeless television tubeless television	6J11.33 6J11.33	Wave a meter stick at the point where a projected image is focused. A visual image appears in midair when waving a light-colored stick near focal plane of a slide projector.	the
F&A, Oi-9	integration of light pulses	6J11.35	If light intensity from a strobe that appears continuous at 3000 Hz is cut half, it will appear continuous at about 1700 Hz.	in
Sut, L-60	fluorescence of the retina	6J11.36	Shine an UV source with a visible filter toward the class and notice the luminous haze that covers the field of view.	
F&A, Oi-10	jarring the eye	6J11.37	Stamp your foot while watching a free running oscilloscope.	
Mei, 6-2.4	subjectivity of colors	6J11.40	A red spot projected on the wall looks orange or brown if it is surrounder white or black.	d by
Mei, 6-2.11	Mach disk	6J11.42	A spinning disk appears to have light and dark rings where it should be uniform.	
Mei, 6-2.1	relative black and white	6J11.44	A bright light shining on a black screen looks the same as a filtered light shining on a white screen.	
F&A, Oi-11	most sensitive to green light	6J11.46	A stick moved up and down in a projected spectrum will appear to bend the green light area.	at
PIRA 1000	impossible triangles	6J11.50		
Disc 21-12	impossible triangles	6J11.50	An optical illusion that depends on viewing angle.	

TPT 28(8),562	the square that ain't there	6J11.51	A cutout of a square in black paper has the illusion of being a white square
			on top of black paper.
Mei, 6-2.3	optical illusions	6J11.52	Compare the height to the width of a projected hat.
D&R, O-805	optical illusions	6J11.52	Four real optical illusions and explanations. 6 spoofs.
Sprott, 6.12	optical illusions	6J11.52	Transparencies containing optical illusions projected on a screen.
AJP 42(7),531	perception	6J11.55	Many cases of optical perception are discussed along with some audio and
TPT 46(2), 121	perception - shades of gray	6J11.56	miscellaneous phenomena. A gray box placed partially over a black background. The part of the box inside the black background looks darker than that ouside the black
AJP 33(12),1085	depth perception - special case	6J11.60	background, especially if a pencil is placed across the intersection. Apparatus for the demonstration of depth perception when due solely to the geometrical disparity of binocular vision.
TPT 19(8), 564	Pulfrich illusion - Pulfrich pendulum	6J11.65	A pendulum is swinging in a plane but appears to have an elliptical orbit if viewed with a filter over one eye.
TPT 20(2), 72	Pulfrich illusion - Pulfrich pendulum	6J11.65	More comments on TPT 19(8), 564.
TPT 33(2), 117	Pulfrich illusion - Pulfrich	6J11.65	A pendulum is swinging in a plane but appears to have an elliptical orbit if
D&R, W-060	pendulum Pulfrich illusion - Pulfrich	6J11.65	viewed with a filter over one eye. A pendulum is swinging in a plane but appears to have an elliptical orbit if
	pendulum	0 14 4 70	viewed with a filter or thin transparent film over one eye.
PIRA 1000	color blindness	6J11.70	
Sut, L-62	color blindness	6J11.70	Use standard color blindness slides or charts to test the students.
	MODERN OPTICS	6Q00.00	
	Holography	6Q10.00	
AJP 43(8),714	geometric model for holography	6Q10.01	A geometrical model which, without sacrificing any physical principles, correctly explains all the major characteristics of holograms.
AJP 35(11),1056	introduction to holography	6Q10.01	Holography at the level of an undergraduate optics course.
. ,	• • •		
AJP 43(11),954	practial holography		A "from the beginning" article on holography.
AJP 71(9), 948	phase holography	6Q10.01	A mathematical description of thick hologram recording and playback is given using a basic wave front representation.
Mei, 37-1	hologram chapter	6Q10.01	A chapter on holograms in Meiners by Tung H. Jeong.
PIRA 200	holograms	6Q10.10	Show a hologram.
AJP 44(10),927	360 degree reflection holography		Two methods of making 360 degree reflection holograms.
Hil, O-10a	360 degree hologram		A 360 degree hologram From Edmund Scientific is observed with a Hg lamp and 5461 Angstrom filter.
D&R, O-485	holograms	6Q10.10	Transmission and 120 degree holograms.
	0		
Ehrlich 1, p. 205	hologram eyeglasses		A pair of eyeglasses with holographic images of eyeballs.
Disc 23-21	holograms		A video of a 360 degree transmission hologram.
AJP 45(5),493	single beam 360 degree holograms	6Q10.11	A very simple arrangement using only a single lens to diverge a laser beam.
AJP 43(4),297	360 degree holograms	6Q10.11	Simple configuration for a good quality hologram.
PIRA 1000	in class holograms	6Q10.20	-
Hil, O-10b	holographic camera	6Q10.21	A Gaertner holographic system on an optical table.
AJP 57(6),560	making holographic interferograms		Directions for making a simple and cheap plate holder.
AJP 57(5),439	thin-transmission holograms	6Q10.31	A long article on Abramson ray-tracing holograms.
AJP 57(5),445	thin-transmission holograms		A long article on a simple ray-tracing method for thin-transmission holograms.
AJP 57(2),133	rainbow hologram with beaker of water	6Q10.40	Use a beaker of water in making the rainbow hologram.
AJP 55(9),823	real time holograms	6Q10.42	How to make real time good quality interferograms.
AJP 50(3),281	single beam holography	6Q10.45	Use single beam holography to study mechanical vibrations of an opaque object.
AJP 50(3),280	single beam holography	6Q10.45	Demonstrate real time holograms that last several hours without glass plate film, etc.
AJP 35(5),ix	vibration testing for holography	6Q10.50	A vertical Michelson interferometer is constructed on the optical table with a pool of mercury as one mirror.
AJP 40(12),1866	low cost holography	6Q10.60	Diagrams of single and double beam methods for making holographs.
AJP 37(4),455	inexpensive holography table	6Q10.60	Four inches of newspapers and twelve tennis balls support a concrete slab.
AJP 41(7),932	inexpensive spatial filter	6Q10.60	Substitute a microscope with an x-y stage for a commercial spatial filter.
AJP 36(2),ix	inexpensive beam splitters	6Q10.60	Use dime-store back silvered mirrors for beam splitters for holography.
AJP 35(8),773	inexpensive holography	6Q10.60	A simple method for making holograms.

D&R, O-490	inexpensive holography	6Q10.60	Directions and references for making holograms with inexpensive equipment and laser.
AJP 38(2),266	simple hologram arrangement	6Q10.62	
AJP 35(11),1092	instant holograms	6Q10.63	
AJP 36(1),62	holography for sophmore lab		A simple hologram camera.
AJP 44(7),712	beam splitter for holography	6Q10.70	A double front surface mirror splitter, and the Edmond 41 960 variable
			density beam splitter.
AJP 48(5),409	rear reflections in plates	6Q10.71	Put black PVC masking tape on the back of the holographic plate.
AJP 36(2),ix	film holder for holography	6Q10.71	Use a 35 mm camera (both Kodak 649-F and SO-243 films come in 35mm).
AJP 43(2),185	simple hologram verification	6Q10.72	Method for finding the orientation necessary for viewing and the location of
	1 3		the hologram on the film.
AJP 39(3),349	holography without darkroom	6Q10.72	Dye the plates with a blue-green attenuator and use laser light in a red poor
	0 1 9		background.
AJP 37(7),748	diffuser as beam splitter	6Q10.73	Get by with a single beam expander by using the polished back of the
			diffuser as a beam splitter.
AJP 39(7),840	holography with 1 mw laser	6Q10.74	A technique for low exposure holography.
AJP 38(8),1046	holography table	6Q10.75	Construction of an oscillation damped table for holography.
AJP 43(7),652	axial mode detector	6Q10.76	The output of a fast silicon photodiode is mixed with a UHF signal and the
			oscillator is tuned to give a 0 Hz difference frequency.
AJP 45(6),590	comment on AJP 44(7),712	6Q10.77	Two points of concern.
AJP 42(5),425	Kerr cell driver	6Q10.78	Modulate a laser beam with a Kerr cell. A circuit for a driver is given.
AJP 44(8),774	computer holograms	6Q10.81	Generate holograms with an HP 9100B desktop calculator and plotter.
AJP 38(7),919	reconstruction of acoustic	6Q10.82	A photocopy of a hologram produced from sound waves in air was used to
	holograms		reconstruct an image with laser light and a crude setup.
AJP, 45(11), 1027	holograph of a holograph	6Q10.85	A virtual image of a lens appears in front of a plate and images of various
			objects appear behind.
	Physical Optics	6Q20.00	
PIRA 1000	Abbe demonstrations	6Q20.10	
AJP 30(5),342	simple Abbe demonstrations	6Q20.10	Techniques of demonstrating Abbe theory of image formation with simple
			microscope equipment avoiding use of special Abbe diffraction gratings.
AJP 46(2),185	Abbe's theory of imaging	6Q20.10	A demonstration to show both image and diffraction pattern formation.
AJP 39(10),1164	optical simulation of the electron	6Q20.11	An optical setup simulates an electron microscope imaging a two-
	microscope		dimensional lattice. Demonstrates Abbe's theory of the microscope.
AJP 48(8),674	phase reversal effect - single slit	6Q20.20	Illuminate a double slit with the central maximum from a single slit diffraction
			pattern, then move the double slit so one slit is illuminated by the central
			maximum and the other by the first sideband.
AJP 40(4),571	symmetries in Fraunhofer	6Q20.21	The Fraunhofer diffraction patterns for eight apertures each show a central
	Diffraction		maximum and interesting symmetries.
AJP 39(8),959	spatial filtering	6Q20.30	An optimum lens configuration for optical spatial filtering for use in amplitude
			modification techniques.
AJP 42(7),614	mapping transform	6Q20.35	A distorted image is viewed at 45 degrees to the axes of cylindrical convex
			and concave mirrors resulting in recognizable mirror images.

		7400 00	
	QUANTUM EFFECTS	7A00.00	
	Photoelectric Effect	7A10.00	
PIRA 200	photoelectric effect in zinc	7A10.10	Use UV light to discharge a clean zinc plate mounted on an electroscope.
UMN, 7A10.10	photoelectric effect in zinc	7A10.10	Discharge a clean zinc plate mounted on an electroscope with UV light.
F&A, Ok-3	photoelectric effect in zinc	7A10.10	Discharge a zinc plate on an electroscope with UV light.
Mei, 38-2.1	photoelectric effect in zinc	7A10.10	A clean zinc plate mounted on a charged electroscope, discharges the electroscope when the light source is not covered with glass.
Sut, A-89	surface photoelectric effect	7A10.10	UV light shines on a zinc plate on an electroscope. More.
Hil, A-4b	photoelectric effect in zinc	7A10.10	Discharge a zinc plate on an electroscope.
D&R, S-095	, photoelectric effect in zinc	7A10.10	Discharge a freshly polished zinc plate on an electroscope with UV light from
,			a carbon arc lamp. Don't use a lens.
Bil&Mai, p 356	photoelectric effect in zinc	7A10.10	Discharge a clean zinc plate mounted on an electroscope with UV light. Use a glass plate to block the UV light.
Disc 24-19	photoelectric effect in zinc	7A10.10	Zinc plate on an electroscope, charged negative, glass UV barrier.
PIRA 1000	photoelectric charging	7A10.12	
UMN, 7A10.12	photoelectric charging	7A10.12	Same as AJP 33(9),746.
AJP 34(2),172	photoelectric charging	7A10.12	Additions to the AJP 33,746 (1965) article.
AJP 33(9),746	photoelectric charging	7A10.12	Hold a positively charged object next to the zinc plate on an uncharged
	procession enarging	17(10)12	electroscope while illuminating it with an UV light. The electroscope will charge positively.
PIRA 1000	discovery of the photoelectric effect	7A10.15	
Sut, A-90	discovery of the photoelectric effect	7A10.15	A spark passes between two zinc electrodes attached to a 15 KV transformer when UV light is present.
AJP 44(3),305	photoelectric effect with geiger counter	7A10.17	Conversion of photons to electrons in lead foil.
F&A, Ok-4	photoelectric effect with prism	7A10.20	Project different parts of the spectra onto a zinc plate on a charged electroscope.
AJP 53(9),911	photoelectric effect circuit	7A10.23	A photoelectric effect apparatus based on the AD 515 electrometer op amp allows relatively inexpensive and easy direct measurement of the photopotential between anode and photocathode.
TPT 1(5),229	photoelectric effect circuits	7A10.24	Very cheap current detector substitutes.
AJP 38(6),767	photoelectric effect circuit	7A10.26	Single transistor circuit for use with RCA 929 phototube.
AJP 46(2),133	photoelectric effect circuit	7A10.26	An op-amp circuit for a 1P39 or similar phototube.
TPT 3(8),380	photoelectric effect circuit	7A10.27	A helpful article on stopping potential with all the basic vital information, e.g.,
11 1 0(0),000		17(10.21	the wavelengths of the spectral lines of mercury, and featuring a transistorized current amplifier.
A ID 20(12) 15/2	photoelectric effect circuit	7A10.28	•
AJP 39(12),1542	•		Circuit diagram for an amplifier for use with the 1P39 tube.
PIRA 500	stopping potential	7A10.30	Macours the standing natestick of different colored light with a 4D20
UMN, 7A10.30	stopping potential	7A10.30	Measure the stopping potential of different colored light with a 1P39 phototube. Use interference filters at 400, 450, 500, 550, and 600 nm.
AJP 29(10),706	stopping potential	7A10.30	Equipment and circuit diagrams for stopping potential demonstration.
. ,		7A10.30	
TPT 1(3),183	stopping potential	7A10.30	Simple apparatus based on the 929 phototube. Several demonstrations and
			discussion sections for studying the photoelectric effect and measuring Planck's constant.
F&A, MPb-1	stopping potential	7A10.30	Measure the stopping potential of the lines of the mercury spectrum with a
	stopping potential	7710.50	phototube.
Mei, 38-2.4	stopping potential	7A10.30	A mercury arc lamp is used with filters giving passbands of one spectral line onto the cathode of a 1P39 phototube.
Sut, A-93	stopping potential	7A10.30	The potential in the collector is changed while measuring the current under different colored light.
AJP 44(8),796	stopping potential error	7A10.31	A widespread error in elementary texts on the stopping potential.
. ,	Planck's constant - LED's		
D&R, S-100	FIGHCK'S CONSIGNTER - LED'S	7A10.33	Plot graphs of voltage vs. frequency for several LED's. Multiply the slope of
AJP, 78 (9), 933	Maxwell-Boltzmann distribution	- 7A10,33	the graph by the electronic charge to calculate Planck's constant. Observations of the Maxwell-Boltzmann distribution in the emission spectra of six LED's spanning the visible spectrum.
PIRA 1000	photoelectric threshold	7A10.35	
AJP 43(4),370	photoelectric threshold	7A10.35	Rotate the spectrum across a zinc plate until the current rises sharply.
Mei, 40-1.9	photoelectric threshold	7A10.35	The photoelectric threshold demonstrator consists of a projected spectrum, a
	F	17.10.00	sample holder, and a translucent screen.
Mei, 38-2.3	phototube and electrometer	7A10.35	A 929 phototube is connected to a electrometer and the voltage observed
			while sweeping the tube across a projected spectrum.
Sut, A-92	photoelectric threshold	7A10.35	Measure the current from a photocell exposed to different colored light.

Demonstration	Bibliography	J	uly 2015	Modern Physics
Mei, 40-1.10	photoconductivity	7A10.36	A photocell is passed through the spectrum while r	resistance is measured.
Mei, 38-2.2	photoelectric charging of a capacitor	7A10.37	A double pole, double throw switch connects a vac capacitor, then a galvanometer while different lamp	
Sut, A-91	alkali metal photocell	7A10.38	A simple circuit for showing photoelectric current.	
PIRA 1000	solar cells	7A10.40		
Sut, A-96	barrier-layer cells	7A10.40	Measure the current from a cell of the type used in	
Hil, E-3f	Sun batteries	7A10.40	This must be a photocell connected to an ammeter	
Ehrlich 1, p. 146 Disc 24-21	solar cells solar cells	7A10.40 7A10.40	A small fan is powered by a solar cell and a bright Shine a bright light on selenium solar cells and run	•
Hil, A-4c	ring a bell	7A10.40 7A10.41	Shine a light on a photoelectric cell to ring a bell.	
Hil, A-4d	photo-voltaic switch	7A10.41	Turn on a light using a light beam and photo-voltain	c cell.
Hil, A-4e	photo detector	7A10.43	Modulate a light and use a photo detector and amp	
PIRA 1000	photo conduction vs. thermopile	7A10.50	······································	
Mei, 40-1.8	photoconduction vs. thermopile	7A10.50	A CdS photocell and thermopile are moved across the outputs compared for frequency response.	a projected spectrum and
PIRA 1000	carrier recombination and lifetime	7A10.60		
Mei, 40-1.11	carrier recombination and lifetime	7A10.65	A photoconductor is strobed and the output observ	ved on an oscilloscope.
Sut, E-212	sodium photoelectric cell	7A10.71	On making a sodium photoelectric cell.	
Sut, A-94	commercial vacuum photocells	7A10.72	Discussion of low cost ceasium-on-oxidized-silver	photocells.
Sut, A-95	commercial gas-filled photocells	7A10.73	The characteristics of argon filled photocells.	
Sut, E-170	selenium photoconductor	7A10.74	Directions for making a selenium photoconductor.	
AJP 29(5),xi Sut, A-100	making photoconductors photochemical reaction	7A10.76 7A10.99	Directions for preparing cadmium sulfide surfaces. A mixture of hydrogen and chlorine is set off by a li	
Sul, A-100	Millikan Oil Drop	7A10.99	A mixture of mydrogen and chionne is set on by a h	ight hash.
PIRA 1000	Millikan oil drop	7A15.10		
Sut, A-76	oil drop experiment	7A15.10	The real oil drop experiment.	
AJP 73(8), 789	Millikan oil drop	7A15.10	Put a flexcam over the eyepiece of the Millikan oil	drop apparatus and do
			video analysis of the experiment results.	
Hil, A-2b	Millikan oil drop experiment	7A15.10	The small Millikan chamber and telescope.	
Disc 24-24	Millikan oil drop	7A15.10	The real experiment and an animated sequence experiment	
AJP, 50 (5), 394	Millikan oil drop	7A15.10	A look at Millikan's 1913 data on oil drops to look for quantization and for fractional residual charge.	-
AJP 29(3),xxvi	Millikan oil drop illuminator	7A15.11	A microscope lamp makes an excellent illuminator experiment.	
AJP 40(3),474 AJP 40(5),768	Millikan oil drop - laser illumination Millikan oil drop - Pasco apparatus evaluation		Replace the light in the Welch apparatus with a las Problems with the Pasco apparatus.	ser.
AJP 36(12),1169	Millikan oil drop suggestions	7A15 12	Three suggestions for the Pasco apparatus.	
AJP 34(2),xv	Millikan oil drop charge change	7A15.13		
AJP 33(5),411	Millikan oil drop charge change		The spark from a small tesla coil is used to change	e the charge on the drops.
AJP 36(12),1170 PIRA 1000	drop discriminator and ionizer Millikan oil drop model	7A15.14 7A15.20	Modification to introduce drops into the apparatus.	
Mei, 29-2.6	Millikan oil drop with soap bubble	7A15.20	Blow a soap bubble on a sleeve attached to an ele	ectrostatic generator.
Mei, 29-2.5	Millikan oil drop model with glass beads	7A15.21	Tiny glass balls are levitated in this model of Millika	
F&A, Eb-15	model of Millikan oil drop experiment	7A15.25	Place a balloon between two large metal plates att	
Mei, 29-2.7	Millikan oil drop large version	7A15.25	A small light foam plastic ball is the drop between scaled up oil drop demonstration.	
Sut, A-75 AJP 33(5),406	model oil drop experiment air drop in a field	7A15.25 7A15.40	Balance a ping pong ball between two charged pla An apparent violation of Earnshaw's theorem wher field minimum.	
PIRA 500	Compton Effect Compton effect with a	7A20.00 7A20.10		
UMN, 7A20.10	multichannel analyzer Compton effect with a multichannel analyzer	7A20.10	Same as AJP 52(2)183.	
AJP 52(2),183	simple Compton effect	7A20.10	Use a multichannel analyzer to observe the norma source and detector are isolated. Bring aluminum a and observe the backscattered peaks.	
Mei, 38-3.1	Compton scattering with turntable	7A20.15	A shielded source faces a scatterer with a scintillat various angles. Pictures.	tor rotating around at

Mei, 38-3.2	X-ray Compton scattering	7A20.20	An X-ray beam strikes an aluminum plate at 45 degrees and the beam is scattered into an ionization chamber while a copper plate is inserted into the beam before and after scattering.
	Wave Mechanics	7A50.00	
PIRA 500	optical barrier penetration	7A50.10	A review of the history and theory. Dollin Drace prisms eliminate reflection
AJP 54(7),601	frustrated total internal reflection	7A50.10	A review of the history and theory. Pellin-Broca prisms eliminate reflection losses when measurements are taken.
AJP 33(5),xviii	frustrated total internal reflection	7A50.10	Squeeze two right angle prisms together with a "c" clamp while directing a beam of light at the interface.
AJP 43(1),107	optical barrier penetration	7A50.10	A laboratory setup of optical barrier penetration.
AJP 76 (3), 224	frustrated total internal reflection	7A50.10	A method to demonstrate frustrated total internal reflection in the visible
		745040	using the 100 nm thick air film near the center of Newton's rings.
AJP 76 (8), 746	frustrated total internal reflection	7A50.10	Frustrated total internal reflection using a laser and a wedge shaped air gap between two glass prisms.
Mei, 38-6.7	barrier penetration	7A50.10	Frustrated total internal reflection with light and glass prisms demonstrates barrier penetration.
Ehrlich 2, p. 182	frustrated total internal reflection	7A50.10	Frustrated total internal reflection demonstrated using a glass of water. This is an analog to quantum mechanical tunneling or barrier penetration.
ref.	frustrated total internal reflection	7A50.10	See 6A44.42.
AJP 39(10),1141	almost total reflection	7A50.11	Use a plano-convex lens between the prisms and laser beam illumination.
AJP 52(4),377	frustrated total internal reflection	7A50.12	A good note on frustrated total internal reflection and other accompanying
Mei, 38-6.8	tunnel effect	7A50.15	physics. Rocksalt prisms with gaps of 5 microns and 15 microns show transmission of
PIRA 500	microwave barrier penetration	7A50.20	IR to a thermopile in one case only.
AJP 31(10),808	microwave barrier penetration	7A50.20	Two right angle paraffin prisms are used with 3 cm microwaves to
	·		demonstrate barrier penetration.
AJP 39(1),74	optical and microwave penetration	7A50.20	Two detectors are used in both optical and microwave barrier penetration to quantitatively show the reflected and transmitted beams.
Mei, 38-6.6	frustrated total internal reflection	7A50.20	Demonstrate frustrated total internal reflection using microwaves and two
Disc 24-22	microwave barrier penetration	7A50.20	right angle paraffin prisms. Pictures, Reference: AJP 31(10),808. Microwaves are totally reflected off a plastic prism until another is touching
AJP 33(10),xiii	microwave tunnel effect	7A50.21	the first. A waveguide transmission line with three dielectric regions driven at 5 GHz.
AJP 34(3),260	microwave tunnel effect	7A50.21	A microwave "potential barrier" of three sections of waveguide - with dielectric, air and again dielectric.
PIRA 1000	circular vibrating soap film	7A50.30	-
Mei, 38-6.3	circular vibrating soap film	7A50.30	Soap films are vibrated at audio frequencies to produce standing waves
Mei, 38-6.4	circular Rubens tube	7A50.35	which are projected on a screen. A 4' diameter circular Rubens flame tube demonstrates circular standing
PIRA 200	vibrating circular wire	7A50.40	waves. Picture. Excite a circular wire at audio frequencies with an electromagnet driver to
UMN, 7A50.40	vibrating circular wire	7A50.40	produce standing waves.
AJP 33(10),xiv	vibrating circular wire	7A50.40	Eigenfrequences of a 2.2" dia. wire circle are obtained by exciting with a 650
//01/00(10),///		17100.10	ohm relay coil.
Mei, 38-6.5	vibrating circular wire	7A50.40	A circular wire is excited at audio frequencies with an electromagnet driver to produce standing waves. Diagram, Pictures, Reference: AJP 33(10),xiv.
PIRA 1000	complementary rule	7A50.50	
AJP 51(3),239	uncertainty principle with E&M	7A50.50	Interpret the inverse relation between the pulse length of a signal on the
/101 01(0);200	uncertainty principle with Earn	11100.00	oscilloscope and the spectral-energy density on a spectrum analyzer as a
			demonstration of the uncertainty principle.
AJP 39(3),302	complementarity rule	7A50.50	Circuit for a generator that produces 1,2,4,8, or 16 pulses in a packet.
			Decrease in bandwidth for longer packets is evident when the Fourier power
			spectrum is viewed.
AJP 34(12),1122	electric analog circuit	7A50.52	A three dimensional electrical network of inductors and capacitors models
	photon countor correlator	7450 60	energy density in three dimensions.
AJP 50(11),996	photon counter - correlator	7A50.60	A low cost time correlator-photon counter enables demonstrations of intensity correlation function, photon-bunching, coherence time, and related topics.
AJP 41(8),990	Kronig-Penny model analog	7A50.80	Diagram for an analog computer to simulate the Kronig-Penny model wave
	computer		functions.
PIRA 1000	Mermin's Bell theorem boxes	7A50.90	

Demonstration	Bibliography	J	uly 2015 Modern Physics
AJP 53(12),1143	Mermin's Bell theorem boxes	7A50.90	
AJP 41(3),418	noncommuting operators	7A50.90	instructive lecture demonstration. Use the Abbe theory of image formation in the microscope to demonstrate noncommutativity.
PIRA 1000	Particle/Wave Duality wave/particle sound analogy	7A55.00 7A55.10	
AJP 49(4),299	wave/particle sound analogy	7A55.10	A discussion of Henry's "principle of uncertainty": that it seems fundamentally impossible to exactly determine both the pitch and duration of sounds in space
PIRA 1000 AJP 30(1),69	wave/particle model with dice wave/particle model with dice	7A55.15 7A55.15	Dice numbered 1-2-3-6-7-8 are thrown and the results plotted, building a pattern similar to a single slit over many throws.
PIRA 1000	single photon interference	7A55.20	panen anna is a angis an aran y anana
AJP 40(7),1003	single photon interference	7A55.20	The source, slit, and viewing screen rotated first towards the viewer, and then towards a phototube where it is shown that the photons are individual pulses.
AJP 59(5),458	wave/particle transition	7A55.22	Film detectors are placed very close and then further away from a double slit to show the transition from particle to wave behavior. For d=1mm, the transition occurs at about .1mm.
AJP 44(3),306	electron interference phenomena	7A55.30	Electron interference is shown on a Seimens Elmiskop 101 equipped with a TV image intensifier. As the current density is increased, the flashes form a fringe pattern.
	X-ray and Electron Diffraction	7A60.00	
PIRA 200	electron diffraction	7A60.10	Rings or spots are shown with the old Welch electron diffraction tube.
UMN, 7B60.10	electron diffraction	7A60.10	Rings or spots are shown with the old Welch electron diffraction tube.
Mei, 38-7.5	electron diffraction	7A60.10	The Meiners/Welch electron diffraction tube. Pictures, Diagram, Reference: AJP,30, ,549.
Hil, A-13b	electron diffraction	7A60.10	The Welch electron diffraction apparatus.
Disc 24-23	electron diffraction	7A60.10	Rings are obtained from a commercial tube with a graphite target.
AJP 42(1),4	electron diffraction - multiple slits	7A60.11	A method for making 3 micron wide slits. A schematic for the electron diffraction apparatus is given.
AJP 30(12),891	TV tube electron diffraction	7A60.12	With the cooperation of a TV tube manufacturer, a gold foil was placed in a black and white TV tube.
Mei, 38-7.4	TV tube electron diffraction	7A60.12	Work with a local TV tube rebuilder to make an electron diffraction tube from an old TV
PIRA 500	Miller indices	7A60.15	
UMN, 7B60.15	Miller indices	7A60.15	A service service of the service service is the bit of the descention of MULL to the service set of the service service set of the service ser
AJP 37(3),333	Miller indices	7A60.15	A solid model of the cuprite crystal habit with the various Miller indices labels on the faces.
PIRA 1000	diffraction model	7A60.20	
Sut, A-109	X-ray and electron diffraction model	7A60.20	Generate a ring pattern by rotating fine mesh wire gauze in a point source of light.
Mei, 38-7.1	model Laue diffraction pattern	7A60.21	Direct a beam of light off a wood cylinder with radial glass vanes to a screen.
D&R, O-515	model Laue diffraction pattern	7A60.21	Direct a laser beam through two mounted meshs in series. Observe pattern of diffraction by two planes of mesh, analogous to Laue pattern in X-rays resulting from diffraction by two planes of atoms.
Mei, 38-7.2	model Laue diffraction pattern	7A60.22	Reflect a beam of light off a single polished rod onto a screen to illustrate Laue diffraction.
AJP 29(6),341	optical analog of X-ray diffraction	7A60.24	Compare Fraunhofer diffraction patterns from masks containing repeating arrays of holes with X-ray diagrams.
D&R, S-225	optical analog of X-ray diffraction	7A60.24	View a 15 - 25 W lamp from several meters through a silk scarf, handkerchief, or panty hose. Optical diffraction pattern is similar to that of X- rays diffracted from fine powder.
AJP 31(10),807	spherical projection model	7A60.26	Colored dots on the surface of a Lucite sphere represent the projection of the spots as if a single crystal was irradiated at the center of a spherical film.
AJP 47(3),289	blocking patterns in crystal lattices	7A60.27	Take a model of a crystal, replace an atom with a point source such as a flashlight battery, project the shadow pattern on a screen.
Mei, 38-7.6	bent crystal spectrometer model	7A60.28	A model of the Caushois bent crystal spectrometer using a beam of light and a stack of microscope slides.
PIRA 1000	electron "Poisson spot"	7A60.30	·
AJP 58(12),1143	electron "Poisson spot"	7A60.30	Fresnel zones and the "Poisson spot" with electrons using an electron microscope with a good deal of historical development.
PIRA 1000	field emmission electron microscope	7A60.40	

Demonstration	Bibliography	Jı	uly 2015 Modern Physics
UMN, 7A60.40	field emission electron microscope	7460.40	Use a simplified high voltage generator with the Leybold field emission
			electron microscope.
Mei, 38-7.7	simple field emission electron microscope	7A60.45	A coin used as an electrode in a highly evacuated tube forms an image on a fluorescent screen when voltage is high enough.
PIRA 500	microwave Bragg diffraction	7A60.50	
UMN, 7B60.50	microwave Bragg diffraction	7A60.50	
AJP 28(5),415	microwave Bragg diffraction	7A60.50	Apparatus Drawings Project No. 6: Three cm microwaves and a ball bearing
F&A, Ol-14	microwave Bragg diffraction model	7A60.50	array demonstrate crystal diffraction. Klystron source. Microwave diffraction is observed from a crystal model made of steel
Mei, 33-7.15	microwave Bragg diffraction	7A60.50	bearings mounted in a styrofoam cube. Lattices of steel ball bearings embedded in styrofoam form crystal models for microwave diffraction.
AJP 77 (10), 942	microwave Bragg diffraction - rotating crystal	7A60.50	Description of a rotating crystal microwave Bragg diffraction apparatus that can be easily constructed.
AJP 72(2), 154	microwave crystal diffraction models	7A60.51	Use rods to make the model crystal lattice. Use a computer interface to measure the difracted intensities.
AJP 37(3),333	improved Welch-Bragg mount	7A60.51	A parallelogram device that sweeps both arms through equal angles and has a direct reading of the sine of the angle.
AJP 36(9),920	microwave crystal diffraction models	7A60.51	Use 1/2" brads in place of ball bearings to make the analog of polarized particles.
AJP 36(6),559	microwave crystal diffraction	7A60.51	Make models of crystals for microwave diffraction by inserting a No. 7 lead
101 00(0),000	models	17100.01	shot in styrofoam balls and then making models of the crystal structures.
PIRA 1000	ripple tank Bragg diffraction	7A60.60	
Mei, 18-6.4	ripple tank Bragg diffraction	7A60.60	Floating arrays of pith balls model atoms for ripple tank Bragg diffraction. Also ripple tank construction techniques. Diagrams.
Mei, 18-6.6	ripple tank Bragg reflection	7A60.61	An array of rods is used to demonstrate Bragg reflection. Picture.
PIRA 1000	X-ray diffraction	7A60.90	
Sut, A-108	X-ray diffraction	7A60.90	Use a beam, rock salt, and X-ray photographic paper to show diffraction.
AJP, 50 (1), 89	X-ray diffraction	7A60.90	Crystalline powder diffraction patterns with the Tel-X-Ometer 80 apparatus.
Mei, 38-7.3	X-ray diffraction	7A60.91	X-ray diffraction of a rock salt crystal mounted on a goniometer with GM tube detector.
AJP 30(12),864	X-ray diffraction model	7A60.92	If you need to demonstrate the reciprocal lattice concept in relation to single- crystal X-ray diffraction patterns, this is for you.
PIRA 1000	sample X-ray tube	7A60.95	
UMN, 7A60.95	sample X-ray tube	7A60.95	Show a large X-ray tube.
	Condensed Matter	7A70.00	
PIRA 1000	Josephson junction analog	7A70.10	
AJP 49(7),701	Josephson junction analog	7A70.10	Abstract from the 1981 apparatus competition describing an electronic circuit for demonstrating Josephson junction behavior.
	Josephson junction analog		A Pendulum analog of a small-area Josephson junction between two superconductors is coupled to the analogs of other circuit elements to demonstrate a variety of time dependent phenomena observed in actual devices.
PIRA 1000	Josephson effect simple demo	7A70.20	
AJP 53(5),445	Josephson effect simple demo	7A70.20	Niobium wire is twisted together, varnished and built into a simple stainless tube that can be inserted into a helium dewar. I-V curves are observed on an oscilloscope.
AJP 40(6),897	flux quantization in superconductors	7A70.20	A indium film with lots of holes is used with a standard magnetometer.
TPT 38(3), 168	Quantum Levitation - Flux Pinning	7A70.25	Press a magnet into a superconductor. The magnet is pinned by the impurities in the superconductor giving great stability.
TPT 28(4), 205	Quantum Levitation - Flux Pinning	7A70.25	A explanation of how flux pinning works in a Type II superconductor.
AJP 77(9), 847	Quantum Levitation - Flux Pinning		A demonstration of levitation, suspension and movement of a superconductor over a magnetic track.
AJP 74(12), 1136	Quantum Levitation - Flux Pinning	7A70.25	Variational theory used to explain the high stability observed in magnetic force experiments with strongly pinned superconductors.
PIRA 1000	F- center diffusion	7A70.30	
AJP 35(11),1023	F- center diffusion	7A70.30	Place a small KCl crystal in a tube furnace and project the intense blue color that is injected and diffuses through the crystal when 300 V is applied.
	ATOMIC PHYSICS	7B00.00	
	Spectra	7B10.00	The second se
PIRA 200 PIRA 1000 - Old	line spectra and student gratings student gratings and line sources	7B10.10 7B10.10	Have students view line sources through replica gratings.

Demonstration	Bibliography	J	uly 2015	Modern Physics
UMN, 7C10.10	line and continuous spectra with gratings	7B10.10	Students look at a carousel of line spectra lamps and replica gratings.	d a line filament with
Sut, L-102	line spectra and student gratings	7B10.10	Replica gratings. Replica gratings are passed out, sources can be cor induction coil.	nected in series with an
Hil, O-9b	emission spectra	7B10.10	Line spectra are viewed through 13,400 lines/inch gr	
D&R, O-510, O-	emission spectra and holographic	7B10.10	Observe the emission spectra from different spectral	-
520, & S-220 AJP 77 (10), 920	grating helium spectrum analysis	7B10.10	holographic grating. Osram lamps can also be used A spreadsheet that introduces students to the analys spectrum data.	
Bil&Mai, p 362	line and continuous spectra with gratings	7B10.10	•	replica gratings or
Disc 25-01	emission spectra	7B10.10	Four spectral tubes and white light through a grating	
PIRA 1000 Sut, L-104	flame salts bright line spectrum	7B11.11 7B10.11	Sources for bright line spectra: high melting point me	atals are used as
		1010.11	electrodes in an arc lamp, the salts of low melting point inc a flame, gases are heated in discharge tubes.	
Disc 25-07	flame salts	7B11.11	The colors of different flame salts are observed.	
Sut, L-105	band emission spectra	7B10.12	Nitrogen, cyanogen, water vapor, and hydrogen show spectra.	w molecular band
PIRA 1000	line spectra and large grating	7B10.15	A how with five Diversion line anostro tubos are may	tod in a hav with a
Mei, 39-1.1	line spectra tubes and large grating	7B10.15	A box with five Pluecker line spectra tubes are moun replica grating front.	lied in a box with a
Hil, O-9c	prism spectrometer	7B10.17	Students can view emission spectra individually with	a spectrometer.
PIRA 1000	project spectral lines	7B10.20		
UMN, 7B10.20	project spectral lines	7B10.20	Project high intensity Na and Hg lamps through 300 gratings.	
UMN, 7B10.25	spectral chart	7B10.25	A spectral chart showing emission spectra of severa	
Sut, A-8	salt electrode arcs	7B10.30	Pinhole project a carbon arc onto a screen, pack an project a spectrum through a prism.	electione with a sait,
Sut, A-69	emmision spectra - Balmer series	7B10.40	Measure the deviations of the Balmer series of a pro hydrogen.	jected spectrum of
AJP 28(1),35	Balmer series spectrum tube	7B10.42	Apparatus Drawing Project No. 1: report on construc Balmer series tube with a useful life of greater than 1	
Sut, A-110	X-ray line spectra model	7B10.50	Pour lead shot into a pan.	
AJP 58(9),893	Raman effect - simple apparatus	7B10.60	A simple double cell apparatus that can be inserted i laser for direct observation of the virtual image of the light.	
AJP, 78 (7), 671	Raman effect - simple apparatus	7B10.60	A high performance Raman spectrometer made with components.	simple optical
	Absorption	7B11.00		
	sodium absorption/emission	7B11.10	A TV comerce about the Ne doublet from a spectrum	ator in both amigaian
UMN, 7C11.10	sodium absorption/emission		A TV camera shows the Na doublet from a spectrom and absorption.	
F&A, Oo-4	sodium absorption/emission		A grating spectrometer that resolves the sodium d lir emission by a salt flame and absorption of white ligh	t by the flame.
AJP 35(11),1032	Monochromator	7B11.11	angstrom lines.	
Sut, L-107	sodium absorption/emission	7B11.12	Illuminate half a slit with a sodium flame, half with su Compare emission and absorption lines.	-
Mei, 39-1.9	sodium absorption/emission	7B11.13	A projection system is aligned so both emission and sodium are visible from an arc with one electrode dri anhydrous sodium carbonate.	•
F&A, Oo-3	dark line sodium spectra	7B11.15	, ,	
Mei, 39-1.4	sodium absorption lines	7B11.15	White light is passed through sodium flames before prism.	being dispersed by a
AJP 31(12),945	sodium flame	7B11.16	•	m in the hottest part of
Sut, L-108	sodium absorption lines	7B11.16	Three methods of burning sodium in an arc and gene vapor to show a strong absorption line.	erating enough sodium
Sut, L-103	imitation line spectra	7B11.19	While projecting a slide of the continuous spectrum, lines drawn on representing the absorption spectrum	
PIRA 500	spectral absorption by sodium vapor	7B11.20		ŭ

Demonstration	Bibliography	Ju	uly 2015	Modern Physics
AJP 30(9),654	sodium absorption cloud	7B11.20	-	-
AJP 36(3),ix	two lamp flame absorption	7B11.20	illuminated with a sodium lamp. Use two lamps (He and Na) with a single condense	
		-	reference with the sodium flame absorption.	
Sut, A-70	sodium absorption spectra	7B11.24	Several methods for producing sodium vapor and p	bassing white light through.
PIRA 1000	flame absorption projected	7B11.25		
Mei, 39-1.7	flame absorption projected	7B11.25	The light from an arc lamp is focused on a Bunsen to being projected on the screen.	burner flame on the way
Disc 25-02	spectral absorption by sodium vapor	7B11.25	Sodium flame looks dark when illuminated with sod	lium light.
PIRA 1000	mercury vapor shadow	7B11.30		
F&A, Oo-2	mercury vapor shadow	7B11.30	Mercury vapor illuminated with a mercury lamp cas Willemite screen.	ts a shadow on a
Mei, 39-1.5	mercury vapor shadow	7B11.30	A UV lamp shines on a zinc sulfide screen while me heated watchglass.	ercury vapors waft from a
PIRA 1000	filtered spectrum	7B11.40		
Sut, L-90	filtered spectrum	7B11.40	Part of a beam of white light is projected through a	prism. When a filter is
D&R, O-740	filtered spectrum	7B11.40	inserted in the beam, the spectrum and transmitted Filters inserted between light source and grating of show narrow or wide absorption bands depending of	a projected spectrum will
Hil, O-6c	filtergraph	7B11.45	A slide with four filters and the corresponding spect	
Hil, O-9d	plotting absorption	7B11.43 7B11.47	A motor drive is connected to a grating and the out	
, 0 00			detector is plotted on a strip chart recorder as the s various filters and intensities. Reference: AJP 35(6)	pectrum is scanned with
Sut, L-115	photocell measurement of absorption	7B11.47	Use suitable sources, cells, and filters to measure a with a photocell.	absorption of substances
PIRA 1000	band absorption spectra	7B11.60		
UMN, 7B11.60	Glo-Doodler absorption	7B11.60	Use the front sheet of a Glo-Doodler etching toy to band.	show a strong absorption
TPT 29(7),454	didymium glass	7B11.65	Didymium glass, a mixture of praseodymium and n glass blowers, will produce 5 broad absorption band	
AJP, 65(4), 352- 4	absorption spectra of rare earths	7B11.65	The absorption spectra of rare earths is easily obset this experiment. Praesidymium, Neodymium, and I used in solution and displayed to the classroom. A class demonstration.	erved in the classroom in Holmium oxides can be
Sut, L-109	band absorption spectrum	7B11.70	A flask of nitrous oxide is placed in the beam of wh by a prism spectroscope. Didymium glass and dilut suggested.	
D&R, O-285	band absorption spectrum	7B11.72	Antifreeze (ethylene glycol) in a beaker will produc when placed in the beam of white light before dispe- grating.	
Sut, L-110	absorption spectrum of chlorophyll	7B11.75	Show the absorption spectrum of chlorophyll obtain in methyl alcohol. Red and Green transmit.	ed by macerating leaves
Mei, 39-1.6	water absorption bands	7B11.77	A monochrometer (38-5.11) is used to demonstrate	e water absorption bands.
Mei, 35-4.3	liquid cell absorption	7B11.80	An absorbing solution is placed in a liquid cell place before dispersion.	ed in a beam of light
Hil, O-9a	spectra and liquid absorption	7B11.80	Absorption cells filled with liquids are used with a 3 & L spectra projection kit.	5 mm projector and the B
TPT 29(7), 454	"Vanish" absorption	7B11.85	Shine a He-Ne laser and a solid state laser emitting solution of Vanish. The He-Ne laser light will be co the solid state laser light will pass through.	•
TPT 44(9), 618	"Vanish" absorption	7B11.85	Shine a He-Ne laser and a solid state laser emitting solution of Vanish. The He-Ne laser light will be co the solid state laser light will pass through.	•
	Resonance Radiation	7B13.00		
PIRA 1000	triboluminescence	7B13.05		
Disc 25-09	triboluminescence	7B13.05	Crush wintergreen lifesavers and they give off faint	flashes of light.
PIRA 500	iodine resonance radiation	7B13.10		
UMN, 7B13.10	iodine resonance radiation	7B13.10	Same as Oo-1.	
F&A, Oo-1	iodine resonance radiation	7B13.10	Direct a white light beam through an evacuated flas crystals.	-
Mei, 39-4.1	iodine resonance radiation	7B13.10	Focus a carbon arc on a large evacuated Florence crystals.	flask containing iodine

Demonstration	n Bibliography	J	uly 2015 Modern Physics
Sut, A-68	iodine resonance radiation	7B13.10	Pass a cone of white light through an evacuated flask containing heated iodine crystals.
Mei, 39-4.2	potassium resonance radiation	7B13.15	
PIRA 1000	sodium vapor beam	7B13.20	
Mei, 39-4.4	sodium vapor beam	7B13.20	A sodium furnace in an evacuated bell jar produces a sodium vapor beam that forms a "pencil" of resonance reradiation when illuminated with sodium light.
Mei, 39-4.3	resonance radiation - sodium vapor	7B13.20	A sodium vapor bulb is prepared and heated in a furnace while sodium and mercury light is passed through.
Mei, 39-1.8	Hanle effect	7B13.25	Measure the resonance polarization of mercury light from a quartz resonance cell of mercury vapor. Diagrams, References.
PIRA 1000	UV spectrum by fluorescence	7B13.40	
Sut, L-111	UV spectrum by fluorescence	7B13.40	optics.
Mei, 39-1.2	projected mercury spectum	7B13.42	painting half of a card with fluorescent paint.
D&R, S-180	projected mercury spectrum	7B13.42	The weak lines of the projected mercury spectrum are made visible using a fluorescent card. Intensity may be increased by carefully removing the glass envelope of the bulb.
Mei, 39-1.3	ultraviolet lines photographed	7B13.44	•
TPT 19(7), 483	ultraviolet lines	7B13.44	
TPT 19(9), 618	ultraviolet lines	7B13.44	
PIRA 500	fluorescence and phosphorescence	7B13.50	
F&A, Ok-2	black light	7B13.50	Use a black lamp to illuminate fluorescent materials.
D&R, O-760	fluorescence	7B13.50	Detergent boxes with fluorescent ink, fluorescent chalk, and antifreeze in black light.
Sprott, 6.8	fluorescence	7B13.50	5 5
Disc 25-11	fluorescence	7B13.50	8
Sut, L-114	fluorescence and phosphorescence	7B13.51	Show many substances that fluoresce and phosphoresce in UV light.
Hil, O-11a	fluorescence and phosphorescence	7B13.52	vibrating meter stick and a thin transparent film over one eye.
Bil&Mai, p 358	fluorescence and phosphorescence	7B13.53	Use UV sensitive craft beads and glow in the dark plastic string with a UV light. The craft beads undergo a UV induced color change but are not fluorescent.
TPT 48(3), 186	quantum dots	7B13.54	An inquiry on the 4 different colors emitted by vials of the same materials. When illuminated with a black light the color of the emitted light depends on the size of the quantum dots.
PIRA 1000	luminescence	7B13.55	
Disc 25-10	luminescence	7B13.55	A glow-in-the-dark sword exposed to black light. The covered portion does not glow as brightly.
Sut, A-105	fluorescence by X-rays	7B13.58	materials.
Mei, 39-4.5	phosphorescence	7B13.60	demonstrations are discussed.
AJP 29(3),xxv	phosphorescence decay	7B13.63	half to red light. The masked side will remain luminous.
	Fine Splitting	7B20.00	
PIRA 500	Zeeman splitting with mercury	7B20.10	A more unularman hot upon the noise of a large all strangement in former than
F&A, MPc-1	Zeeman splitting with mercury	7B20.10	Fabry-Perot interferometer.
AJP 41(3),423	Zeeman splitting - three tubes	7B20.11	Sodium, mercury, and neon tubes used in Zeeman splitting.
AJP 39(11),1387	Zeeman effect - sources Zeeman effect - source	7B20.11 7B20.11	Sodium, mercury, and neon tubes for the Zeeman effect.
AJP 41(2),287 Mei, 39-2.3	Zeeman effect - source Zeeman effect - mercury vapor	7B20.11 7B20.14	Use the violet 4046 line from the Cenco 79661 mercury tube. The light from a mercury lamp is focused on an air stream containing
			mercury vapor between the poles of an electromagnet.
PIRA 1000	Zeeman effect - sodium flame	7B20.15	Exception Publics a local fill of the state
Mei, 39-2.2	Zeeman effect - sodium flame	7B20.15	electromagnet.
Mei, 39-2.1	Zeeman effect - sodium flame	7B20.15	Sodium light focused on a sodium flame between the poles of an electromagnet will absorb until the field is turned on.

PIRA 500 AJP, 50 (8), 697	Stern-Gerlach experiment Stern-Gerlach experiment	7B20.20 7B20.20	The paradox in the classical treatment of the Stern-Gerlach experiment can be resolved if the torque on the magnetic moment is taken into account.
PIRA 1000 UMN, 7B20.25	Stern-Gerlach crystal model Stern-Gerlach crystal model	7B20.25 7B20.25	
PIRA 500	ESR - low field	7B20.20	
			A circuit for chowing ESP in DPDU on a locture demonstration
AJP 37(2),222	ESR - simple low field		0
AJP 30(12),927	ESR apparatus	7B20.31	Simple ESR apparatus.
AJP 35(3),xxi	ESR coil	7B20.32	
AJP 33(4),xxvi	ESR mechanical analog	7B20.33	The shaft of a gyro is made from a permanent Alnico magnet, the Earth's field represents the DC field in the ESR experiment, two Helmholtz coils are used to model the microwave radiation.
AJP 35(7),iii	ESR references	7B20.34	References for anyone planning to apply the AJP 35(3) note.
PIRA 500	Mossbauer experiment	7B20.40	······································
PIRA 1000	Mossbauer model	7B20.45	
AJP 40(9),1336	Mossbauer effect - air track analog		Burn a string constraining spring loaded air gliders. Vary the mass of the "nucleus" glider.
Mei, 41-2.7	Mossbauer effect model	7B20.45	A suspended gun firing steel balls serves as a gamma ray emitting nucleus in a Mossbauer effect model. Picture, Diagrams, Construction details in appendix, p. 1373.
	Ionization Potential	7B30.00	
PIRA 1000	ionization potential of mercury	7B30.10	
Sut, A8144A-67	ionization potential of mercury	7B30.10	Measure the ionization potential of mercury vapor in a FG-57 tube at different temperatures.
Hil, A-6b	ionization potential	7B30.11	Looks like some older commercial apparatus to show the ionization
			potentials of mercury and xenon.
AJP 33(5),xvii	ionization potential of xenon	7B30.12	Use the Frank-Hertz principle to show the ionization potential of xenon in a 2D21 Thyratron.
AJP 34(4),366	comparrison of apparatus	7B30.13	The Klinger and Leybold apparatus are compared.
PIRA 500	Frank-Hertz experiment	7B30.20	
Mei, 39-3.1	Frank-Hertz experiment	7B30.20	A qualitative lecture demonstration on the oscilloscope.
Disc 25-12	Frank-Hertz experiment	7B30.20	The curve generated by a commercial tube is shown on an oscilloscope.
TPT 2(6),282	Frank-Hertz modification	7B30.21	The collector is made very negative to both the grid and cathode. When the accelerating potential is increased, the collector current appears in the opposite sense.
AJP 35(6),541	homemade Frank-Hertz tube	7B30.22	Replace the commercial cathode and filament assembly with a piece of 7 mil tungsten wire.
AJP 33(10),849	homemade Frank-Hertz tube	7B30.22	5 F
Mei, 39-3.2	Frank-Hertz experiment	7B30.23	An argon filled CTIC thyatron is mounted on a board. The circuit is drawn on the board.
AJP 43(2),190	Frank-Hertz automated on an X-Y recorder		Connect the constant current source to the X and the electrometer output to the Y of an X-Y recorder.
AJP 74(5), 423	what really happens?	7B30.26	A new look at the Frank-Hertz experiment reveals some surprising data. The results contradict the usual assumption that the spacings between successive minima or maxima are equal.
AJP 56(8),696	what really happens?	7B30.26	Gives the standard textbook explanation and then goes beyond.
PIRA 1000	excited states model	7B30.40	
AJP 36(1),49	air track model ?????	7B30.40	A small air track is caught by a large one. Models a collision between an "electron" and an "atom" capable of being raised to an excited state.
AJP 37(5),562	collisions and excited states model	7B30.40	Expansion on AJP 36(1),49. Slight modification to model inelastic collisions of the second kind.
	Electron Properties	7B35.00	
PIRA 1000	discharge at low pressure	7B35.10	
TPT 2(4),178	discharge at low pressure	7B35.10	Lower the pressure with a cooling bath while running the discharge tube with a spark coil.
F&A, Ep-7	Crookes tube	7B35.10	Evacuate a glass tube while a high voltage is applied to electrodes at the ends of the tube.
Disc 25-05	discharge tube and vacuum pump	7B35.10	Pump down a long tube while applying a high voltage across the ends.
D&R, S-150	discharge at low pressure	7B35.10	The pressure is reduced in a long tube while high voltage from an induction coil is applied to the electrodes.
Mei, 30-4.1	Paschen's law of gas discharge	7B35.20	Pump down a double tube assembly with electrodes at different distances with a constant voltage on each set of electrodes.
PIRA 1000	Maltese cross	7B35.40	

F&A. Ep-10 Mailase cross 783.50 An electron beam produces a shadow of a Mailase cross on a fluorescent paddie wheel FiRA 1000 paddie wheel 783.50 Show the shadow of a Mailese cross in an electron discharge tube. FiRA 1000 paddie wheel 783.50 The Fihi Johnson humor continues with "1 don't have a stagengy for thi". The description is: The continentiate is the with a padde wheel. He is 30-4.2 The Fihi Johnson humor continues with "1 don't have a stagengy for thi". The description is: The continentiate is the mail to be adde wheel. First No Meil, 30-1.5 arc characteristics 783.57 Commercial Crockets lake with a padde wheel. First No FIRA 1000 plasma tubes or globes plasm tube. 783.576 Commercial plasma tube. 783.576 FIRA 1000 plasma tube or globes plasma tube. 783.576 Commercial plasma tube. 783.576 FIRA 1000 plasma tube. 783.576 Commercial plasma tube. 783.576 Atomic Models 783.570 Romercial plasma tube. 783.570 Atomic Models 7850.07 Romercial plasma tube. 7850.07 Atomic Models 7850.07 Romercial context is anone. 7850.07 Atomic Models 7850.07	Demonstration	Bibliography	J	uly 2015 Modern Physics
Dia: 25-04 Mattese cross 785.50 The Phil Johnson humor continues with: "I don't have a category for this". The descriptor is: The commercial Crockes' tube with a padde wheel. The electron beam transfers its momentum to the paddle wheel. Dis: 17.17 padde wheel 785.50 The Phil Johnson humor continues with: "I don't have a category for this". The descriptor is: The commercial Crockes' tube with a padde wheel. The electron beam transfers its momentum to the paddle wheel. Meil, 30-1.5 arc characteristics 785.70 Electron beam transfers its momentum to the paddle wheel. Meil, 30-1.5 arc characteristics 785.70 Electron beam transfers its momentum to the paddle wheel. PIRA 1000 plasma tubes or globes 785.57 Commercial plasma tubes. 785.07 Splott, 4.3 plasma tubes or globes 785.57 Commercial plasma tube. 785.00 Ap# 43(3):217 history of the atom - symposium 785.01 Rutheriord Bohn atom. 785.01 Ap# 43(3):225 history of the atom - symposium 785.01 An indication to a series of four papers presented in a symposium 'History at plasma tubes or optilat models Ap# 43(3):225 history of the atom - symposium 785.01 A series of four papers presented in a symposium 'History at plastatube atom - symposium 'History at plastatube ato	F&A, Ep-10	Maltese cross	7B35.40	
F&A, Ep-9 paddle wheel 783:55 The PHJ Johnson humor continues with: "I can't have a category for this: The decipiton is: The commercial Cockes' tube with a paddle wheel. Disc 17-17 paddle wheel 783:55 The commercial Cockes' tube with a paddle wheel. Mel, 30-1.5 arc characteristics 783:57 Electrode shart can be water cocled are used to stike arcs cocled and uncocled. PIRA 1000 plasma tube 783:57 Electrode shart can be water cocled are used to stike arcs cocled and uncocled. PIRA 1000 plasma tube 783:57 Commercial plasma tubes and globes are discussed. PIRA 1000 plasma tube 783:57 The decimation from Newton to Datan. AIP 49(3):27 history of the atom - symposium AIP 49(3):225 history of the atom - symposium 785:001 refer atom. AIP 49(3):225 history of the atom - symposium AIP 49(3):225 history of the atom - symposium 785:001 refer atom. AIP 49(3):225 history of the atom - symposium 785:001 Refer atom. refer atom. AIP 49(3):226 history of the atom - symposium 785:001 Ais et alom. refer atom. AIP 49(3):226 history of the atom - symposium 785:001 Refer atom. refer atom.				
Meil, 30-4.2 Instand cold cathode discharge 785.70 Electrodes that can be water cooled are used to strike arcs cooled and uncooled. Meil, 30-1.5 arc characteristics 783.75 Final Arc struck between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the polytic structs between a cathon rod and an aluminum plate will go out if the plate and task between a cathon rod and an aluminum plate will go out if the plate and task between a cathon rod and an aluminum plate will go out if the plate and task between a cathon rod basing alphane task between a cathon rod and an aluminum plate will go out if the plate and task between a cathon rod basing alphane structs between a cathon rod basing alphane task between a cathon rod basing alphane task between a cathon rod basing alphane structs basing alphane struct				The description is: The commercial Crookes' tube with a paddle wheel. The electron beam transfers its momentum to the paddle wheel and turns it to
unccoled. unccoled. PIRA 1000 plasma tube 783.5.71 An arc struck between a carbon rod and an aluminum plate will go out if the polarity is reversed. Sprot. 4.8 plasma tube or globes 783.5.75 Commercial plasma tubes and globes are discussed. ApJP 48(3).211 history of the atom - symposium 783.00 Kinetic atom. AJP 48(3).211 history of the atom - symposium 783.01 Kinetic atom. AJP 48(3).205 history of the atom - symposium 785.00 Kinetic atom. AJP 48(3).205 history of the atom - symposium 785.00 Kinetic atom. AJP 48(3).205 history of the atom - symposium 785.01 Atomism from Newton to Daton. AJP 48(3).205 history of the atom - symposium 785.01 A seri of Kinger electron orbital models. DBR, S-106 electron orbital models 785.01 A seri of Kinger electron orbital models. DBR, S-107 electron shell model 785.01 A set of Kinger electron orbital models. Stri, A-66 electron shell 785.01 Fortor starting waves in the hydrogen ad stack them for a 3-d model of the probability of the alcorons in the avarous shalls. St		paddle wheel		•
PIRA 1000 plasma tube plasma tube 783.75 Commercial plasma tubes and globes and globes and discussed. Disc 25-06 Plasma tubes 783.75 Sing the hand near a commercial plasma tubes. AIP 49(3):211 history of the atom - symposium 7850.00 Kinetic atom. AIP 49(3):205 history of the atom - symposium 7850.01 Kinetic atom. AIP 49(3):205 history of the atom - symposium 7850.01 Kinetic atom. AIP 49(3):205 history of the atom - symposium 7850.01 Greek atomic theory. AIP 49(3):205 history of the atom - symposium 7850.01 A introduction to a series of four papers presented in a symposium "History of the atom. AIP 49(3):205 bistory of the atom - symposium 7850.01 A set of Klinger electron orbital models. D8R, S-105 electron orbital models 7850.10 Several models showing integer number of wavelengths as when orbital electrons from standing waves in the hydrogen atom. Fef. Sohr model 7850.15 See 304.05 0.5 Ehrich 1. AJP 28(7),676 Bohr model 7850.15 See 304.05 0.5 Ehrich 1. AJP 32(1),xvi atomic beam apparatus 7850.20 <td></td> <td>5</td> <td></td> <td>uncooled.</td>		5		uncooled.
Sproti A.8. Disc 25-06 plasma tubes or globes plasma tubes of globes are discussed. 783.75 Commercial plasma tubes and globes are discussed. AJP 49(3):211 history of the atom - symposium AJP 49(3):205 history of the atom - symposium 7850.01 Kinetic atom. AJP 49(3):211 history of the atom - symposium AJP 49(3):205 history of the atom - symposium 7850.01 Kinetic atom. AJP 49(3):205 history of the atom - symposium AJP 49(3):205 history of the atom - symposium 7850.01 Greek atomic theory. AJP 49(3):205 history of the atom - symposium 7850.01 Greek atomic theory. nitroduction to a series of four papers presented in a symposium 'History of the Atom'. UNN. 7850.20 electron orbital models 7850.10 A set of Klinger electron orbital models. Solt Anototized model with fluorescent electrons and nucleus to be viewed in the dark a motorized model with fluorescent electrons and nucleus to be viewed in the dark VII, A-66 electron shell model 7850.10 See 3040 sto. Elizion 1. Sut, A-61 equilibrium configurations 7850.20 Golf thes are insented in practilied holes in a plywood sheet to represent electrons in the values shells. JII, A-62 equilibrium configurations 7850.50 Free 50.50	Mei, 30-1.5	arc characteristics	7B35.71	
Disc 25-06plasma tube7835.75Bring the hand near a commercial plasma tube.ALP 49(3):217history of the atom - symposium7850.00Kinetic atom.ALP 49(3):217history of the atom - symposium7850.01Kinetic atom.ALP 49(3):223history of the atom - symposium7850.01Rutherford-Bohr atom.ALP 49(3):205history of the atom - symposium7850.01Greek atomic theory.ALP 49(3):205history of the atom - symposium7850.01Greek atomic theory.ALP 49(3):205electron orbital models7850.01A set of Klinger electron orbital models.DBR, 5-102electron orbital models7850.10A set of Klinger electron orbital models.DBR, 5-102electron orbital models7850.10A set of Klinger electron orbital models.FIR. A500electron orbital models7850.11A set of Klinger electron orbital models.FIR. A505Bohr model7850.11See varial models thousen electrons and nucleus to be viewed in the dark.ref.Bohr model7850.15Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen atom.Sut, A-66electron shell model7850.50Steel balls floating in a dish of mercury over an electromagent assume equilibrium configurations. A dynamic setup is also described.FIR. A500pariodic charts7850.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11).xviiatomic beam apparatus7850.50Welch and Cenco periodic charts are displayed on the wall.AJP		•		-
ALP 49(3):211Factorial model7850.00ALP 49(3):211history of the atom symposium7850.01Kinetic atom.ALP 49(3):205history of the atom symposium7850.01Ruthaford-Bohr atom.ALP 49(3):205history of the atom symposium7850.01Greek atomic theory.ALP 49(3):205history of the atom symposium7850.01Arek atomic theory.ALP 49(3):205electron orbital models7850.01A set of Klinger electron orbital models.PIRA 500electron orbital models7850.11A set of Klinger electron orbital models.UNN, 7850.20electron orbital models7850.11A set of Klinger electron orbital models.UNN, 7850.20electron orbital models7850.11Servarial models showing integer number of wavelengths as when orbital electrons form standing waves in the hydrogen atom.Hil, A-5bBohr model7850.11Servarial models and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.ref.Bohr model7850.15Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.sut, A-62equilibrum configurations7850.90Velch and Cenco periodic charts are delectronagnet assume equilibrum configurations.PIRA 500periodic charts7850.90Velch and Cenco periodic charts are delapyed on the wall.AJP 33(11).xiiatomic beam apparatus7850.90Introduction to the handbook 'Radiation Protection in Teaching Institutions' with bird presentation of urgenty needed information.PIRA	• •			
AJP 49(3):217history of the atom - symposium AJP 49(3):223755:0.01Kinetic atom. AIP 49(3):223AJP 49(3):223history of the atom - symposium history of the atom - symposium history of the atom - symposium history of the atom - symposium AJP 49(3):205755:0.01Rutherfort-Fohr atom. 755:0.01AJP 49(3):205electron orbital models electron orbital models755:0.01A set of Kinger electron orbital models. Several models showing integer number of wavelengths as when orbital electron strial modelsPIRA 500electron orbital models755:0.10A set of Kinger electron orbital models. Several models showing integer number of wavelengths as when orbital electron strial modelsFIR. 500Bohr model755:0.11A contoxine modelsFiref.Bohr model755:0.12Several models waves in the hydrogen atom.Firef.Bohr model755:0.15Several model with fluorescent electrons and nucleus to be viewed in the dark.Sut, A-66electron shell755:0.16Gol trees are inserted into produiled holes in a phywood sheet to represent electrons in the various shells.PIRA 500periodic charts priodic charts755:0.02Stelet balls floating in a dish of mercury over an electromagnet assume equilibrium configurations.PIRA 500periodic charts radioactivity755:0.01Velch and Cenco periodic charts are displayed on the wall.AJP 33(1),xxiiradioactivity radioactivity710:0.09Introduction to the handbook 'Radiation Protection in Teaching Institutions" with briaf presentation of urgenty needed information.PIRA 500Geiger	Disc 25-06	•		Bring the hand near a commercial plasma tube.
AJP 49(3):21Inistory of the atom - symposium AJP 49(3):206TBS:0.1Atomism from Newton to Dalton.AJP 49(3):206history of the atom - symposium history of the atom - symposium and the atom - symposiumTBS:0.1Rutherford-behar atom.AJP 49(3):205history of the atom - symposium history of the atomTBS:0.1An introduction to a series of four papers presented in a symposium "History of the Atom".PIRA 500electron orbital modelsTBS:0.10As ter / Kinger electron orbital models.PIRA 500electron orbital modelsTBS:0.10Several models showing integer number of wavelengths as when orbital electrons form standing waves in the hydrogen atom.HII, A-5bBohr modelTBS:0.11Several models showing integer number of wavelengths as when orbital electrons from standing waves in the hydrogen atom.VLP 28(7),767wave function modelTBS:0.11Several models and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.Sut, A-62equilibrium configurationsTBS:0.90Velotang in a dish of mercury over an electromagnet assume equilibrium configurations.PIRA 500periodic chartsTBS:0.90Velotang the dianger of atoms by directing a very low pressure stream at a varien in an evacuated bell jar.PIRA 500periodic chartsTBS:0.90Velotang the dianger of atoms by directing a very low pressure stream at a varien in an evacuated bell jar.PIRA 200Geiger counter & samplesTD10.00TD10.00TPT 3(4),158radiation safleyTD10.00TPT 3(4),158radiation saf				
AJP 49(3):22history of the atom - symposium7B50.01Rutherford-Boh ratom.AJP 49(3):205history of the atom - symposium7B50.01Greek atomic theory.PIRA 500electron orbital models7B50.10A set of Klinger electron orbital models.PIRA 500electron orbital models7B50.10A set of Klinger electron orbital models.BLR, S-105Bohr model7B50.10A set of Klinger electron orbital models.Fef.Bohr model7B50.15Several models showing integer number of wavelengths as when orbital electrons form standing waves in the hydrogen atom.AJP 28(7).676wave function model7B50.15Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.Sut, A-66electron shell model7B50.20Golf tees are inserted into pred/file holes in a plywood sheet to represent electrons shells.PIRA 500periodic charts7B50.50Weich and Cenco periodic charts are displayed on the wall.AJP 33(11).Xiiradiation saftey7D00.00Tradiation safteyTPT 3(4),158Source of radiations aftey7D10.10IFRA 200Geiger counter & samples7D10.10IFRA 201Geiger counter & samples7D10.10IFRA 202Geiger counter & samples7D10.10IFRA 203Geiger counter & samples7D10.10IFRA 204Geiger counter & samples7D10.10IFRA 204Geiger counter & samples7D10.10IFRA 205Hall life7D10.20IFRA 206Hall life with iso				
AJP 48(3),205 history of the atom 7850.01 Greek atomic theory. AJP 48(3),205 history of the atom 7850.01 Are katomic theory. PIRA 500 electron orbital models 7850.01 A set of Klinger electron orbital models. UNN, 7850.20 electron orbital models 7850.10 A set of Klinger electron orbital models. PIRA 500 electron orbital models 7850.10 A set of Klinger electron orbital models. PIRA 500 electron orbital models 7850.11 A motorized model with fluorescent electrons and nucleus to be viewed in the dark. ref. Bohr model 7850.11 See 3040.50, Ehrlich 1. AJP 28(7),676 wave function model 7850.20 Electron shell model 7850.20 Sut, A-66 electron shell model 7850.20 See is lasted with fluorescent electromagnet assume equilibrium configurations 7850.20 PIRA 500 periodic charts 7850.20 See is last and is of mercury over an electromagnet assume equilibrium configurations. 7850.20 PIRA 500 periodic charts 7850.50 Welch and Cenco periodic charts are displayed on the wall. AJP 33(11),xvii atomic beam apparatus 7750.50 Determine the diameter of atoms by directin	().			
AJP 49(3).205history of the atom7B50.01An introduction to a series of four papers presented in a symposium "History of the Atom".PIRA 500electron orbital models7B50.10A set of Klinger electron orbital models.DAR, S-105betron orbital models7B50.10A set of Klinger electron orbital models.Hil, A-5bBohr model7B50.10Several models showing integer number of wavelengths as when orbital electrons form standing waves in the hydrogen atom.Hil, A-5bBohr model7B50.15Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.Vit, A-66electron shell model7B50.20Stele balls floating in a dish of mercury over an electromagnet assume equilibrium configurationsVit, A-62equilibrium configurations7B50.20Stele balls floating in a dish of mercury over an electromagnet assume equilibrium configurations.PIRA 500periodic charts7B50.50Determine the diameter of atoms by directing a very low pressure stream at a vare in an evacuated bell jar.VILCLEAR PHYSICS7D00.00Radiation Stream apparatus7B50.90PIRA 200Geiger counter & samples7D10.10UMM, 7D10.10Geiger counter & samples7D10.10Disc 25.16Geiger counter & samples7D10.10Disc 25.16hall life with isotope generator7D10.20Three isotope generator7D10.20NUCLEAR HYSICS7D10.20Three isotope generator7D10.20Three isotope generator7D10.20Disc 25.16hall life w	().			
PIRA 500 electron orbital models 7B50.10 UMN, 7B50.20 electron orbital models 7B50.10 D&R, S-105 electron orbital models 7B50.10 HI, A-5b Bohr model 7B50.11 Am totorized models whong integer number of wavelengths as when orbital electrons form standing waves in the hydrogen atom. ref. Bohr model 7B50.11 AJP 28(7),676 wave function model 7B50.15 Sut, A-66 electron shell model 7B50.20 Sut, A-62 equilibrium configurations 7B50.50 PiRA 500 periodic charts 7B50.50 PiRA 500 periodic charts 7B50.50 PiRA 500 periodic charts 7B50.50 Vel ch and Cenco periodic charts are displayed on the wall. AJP 33(11),xvii AJP 33(11),xvii atomic beam apparatus 7B50.50 TPT 3(4),158 Geiger counter & samples 7D10.00 Radioactivity radioactivity 7D10.00 radioactivity radioactivity 7D10.10 Listen to a Geiger counter & samples 7D10.10 Bi&Mai, p. 366 Geiger counter & samples 7D10.10	. ,			
UMN, 7550.20 D&R, S-105electron orbital models electron orbital models7550.10A set of Klinger electron orbital models. 7850.10Hil, A-5bBohr model7850.11A motorized model with fluorescent electrons and nucleus to be viewed in the dark.ref.Bohr model7850.11A motorized models with fluorescent electrons and nucleus to be viewed in the dark.ref.Bohr model7850.15Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.Sut, A-66electron shell model7850.20Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations.PIRA 500periodic charts7850.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11).xviiatomic beam apparatus7850.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11).xviiGeiger counter & samples radiation saftey7010.00Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgently needed information.PIRA 200Geiger counter & samples radiation saftey7010.00Introduction to the handbook "Radiaction Protection in Teaching Institutions" with brief presentation of urgently needed information.PIRA 200Geiger counter & samples radiation saftey7010.00Introduction to the handbook "Radiaction Protection in Teaching Institutions" with brief presentation of urgently needed information.PIRA 100Half life with isotope generator radiation samples7010.10Introduction to the handbook "Radiactive s				
D&R, S-105 electron orbital models 7850.10 Several models showing integen number of wavelengths as when orbital electrons form standing waves in the hydrogen atom. Hil, A-5b Bohr model 7B50.11 A motorized model with fluorescent electrons and nucleus to be viewed in the dark. AJP 28(7),676 wave function model 7B50.11 See 3340.50, Ehrlich 1. AJP 28(7),676 wave function model 7B50.11 Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Sut, A-66 electron shell model 7B50.15 Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Sut, A-62 equilibrium configurations 7B50.20 Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described. PIRA 500 periodic charts 7B50.50 Welch and Cenco periodic charts are displayed on the wall. AJP 33(11),xvii atomic beam apparatus 7B50.90 Periomine the diark. 7D10.00 Radioactivity 7D10.00 Radioactivity 7D10.01 Geiger counter & samples 7D10.10 Listen to a Geiger counter & samples Sut, A-111 sources of radioactivity 7D				A set of Klippen alectron orbital market
Hil, A-5b Bohr model 7B50.11 A motorized model with fluorescent electrons and nucleus to be viewed in the dark. ref. Bohr model 7B50.11 See 3D40.50, Ehrlich 1. AJP 28(7),676 wave function model 7B50.15 Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example splates and stack them for a 3-d model of the probability of the electron shell. Example of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described. PIRA 500 periodic charts 7B50.50 Welch and Cenco periodic charts are displayed on the wall. AUCLEAR PHYSICS 7D0.00 7D0.00 7D0.00 7D0.00 Radioactivity 7D10.01 Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgenty needed information. PIRA 200 Geiger counter				•
Hil, A-5bBohr model7850.11A motorized model with fluorescent electrons and nucleus to be viewed in the dark.ref.Bohr model7850.11See 3D40.50, Ehrlich 1.AJP 28(7),676wave function model7850.15Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell.Sut, A-66electron shell model7850.16Golf tees are inserted into predirilled holes in a plywood sheet to represent electrons in the various shells.Sut, A-62equilibrium configurations7850.20Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described.PIRA 500periodic charts7850.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11),xviiatomic beam apparatus7850.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11),xviiradiation saftey7D10.00Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgenty needed information.PIRA 200Geiger counter & samples Geiger counter & samples7D10.10IBI&Mai, p 366Geiger counter & samples7D10.10BilkMai, p 366Geiger counter & samples7D10.10Sut, A-111sources of radioactivity radioactive presentation of urgenty needed information.PIRA 1000half life with isotope generator AJP 39(10).1282FD10.10AJP 39(10).1282isotope generator radioactive presentation7D10.20AJP 39(10).1282isotope generator radioactive presentation7D10.20<	Dar, 5-105	electron orbital models	700.10	
ref. AIP 28(7).676Bohr model7B50.11See 3D40.50, Ehrlich 1. TB50.15Draw dots on glass plates plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.Sut, A-66electron shell model7B50.16Golf tees are inserted into prodrilled holes in a plywood sheet to represent equilibrium configurations.Sut, A-62equilibrium configurations7B50.20Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described.PIRA 500periodic charts periodic charts7B50.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11),xviiatomic beam apparatus7B50.90Determine the diameter of atoms by directing a very low pressure stream at a vane in an evacuated bell jar.TPT 3(4),158radiactivity radiation saftey7D10.00Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgently needed information.PIRA 200Geiger counter & samples Geiger counter & samples7D10.10Listen to a Geiger counter when radioactive samples are tested.Sut, A-111sources of radioactivity radioactive plate7D10.10Listen to a Geiger counter when radioactive samples are tested.Sut, A-111sources of radioactivity radioactive plate7D10.20Three istope generator 7D10.20AJP 39(10),1272half life with isotope generator rAJP 39(10),1282Fordioactivity radio penerator7D10.20AJP 39(10),1282isotope generator rAJP 39(10),1282Fordioactivity radioactive dating - carb	Hil, A-5b	Bohr model	7B50.11	A motorized model with fluorescent electrons and nucleus to be viewed in the
AJP 28(7),676wave function model7850.15Draw dots on glass plates and stack them for a 3-d model of the probability of the electron shell. Example given for hydrogen 3d state.Sut, A-66electron shell model7850.16Coll tess are inserted into predilled holes in a plywood sheet to represent electrons in the various shells.Sut, A-62equilibrium configurations7850.20Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described.PIRA 500periodic charts7850.30Welch and Cenco periodic charts are displayed on the wall.AJP 33(11),xviiatomic beam apparatus7850.30Velch and Cenco periodic charts are displayed on the wall.AJP 34(),158radiation saftey7000.00Determine the diameter of atoms by directing a very low pressure stream at a vane in an evacuated bell jar.TPT 3(4),158radiation saftey7010.00Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgently needed information.UMN, 7D10.10Geiger counter & samples7010.10Bil&Mai, p 366Geiger counter & samples7010.10Sut, A-111sources of radioactivity radioactive plate7010.10Jiste to a Geiger counter & samples7010.10Listen to a Geiger counter & samples7010.10Jiste to a Geiger counter & samples7010.10Sut, A-111sources of radioactivity radioactive plate7010.12Jiste to a Geiger counter & samples7010.12Jiste to a Geiger counter & samples7010.12	rof	Bohr model	7850 11	
Sut, A-66electron shell model7B50.16Goff tees are inserted into predrilled holes in a plywood sheet to represent electrons in the various shells.Sut, A-62equilibrium configurations7B50.16Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described.PIRA 500periodic charts periodic charts atomic beam apparatus7B50.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11),xviiatomic beam apparatus7B50.60Welch and Cenco periodic charts are displayed on the wall.AJP 34(1,158nation saftey7D10.00TP10.00TPT 3(4),158radiactivity radiation saftey7D10.00TPT 3(4),158Geiger counter & samples Geiger counter & samples7D10.10Bil&Mai, p.366Geiger counter & samples Geiger counter & samples7D10.10Bil&Mai, p.366Sources of radioactivity radiactive plate half life with isotope generator AJP 39(2),221TD10.11Disc 25-16half life with isotope generator radioctive dating - carbon dating7D10.20AJP 39(10),1224 AJP 39(10),1224isotope generator radioactive dating - carbon dating7D10.21 The sample radioactive fload as and plate is checked for radioactivity. TD10.20AJP 39(10),1224 AJP 39(10),1224isotope generator radio nithe air radioactive dating - carbon dating7D10.21 The commercial Cs/Ba generator. AJP 39(10),1222PIRA 1000 AJP 39(10),1224radioactive dating - carbon dating radioactive dating - carbon dating7D10.21 The commercial Cs/Ba generator. TD10.21				Draw dots on glass plates and stack them for a 3-d model of the probability
Sut, A-62equilibrium configurations7B50.20Steel balls floating in a dish of mercury over an electromagnet assume equilibrium configurations. A dynamic setup is also described.PIRA 500periodic charts periodic charts atomic beam apparatus7B50.50Welch and Cenco periodic charts are displayed on the wall.AJP 33(11),xviiatomic beam apparatus7B50.50Welch and Cenco periodic charts are displayed on the wall.NUCLEAR PHYSICS radiation saftey7D00.007D10.00The diameter of atoms by directing a very low pressure stream at a vane in an evacuated bell jar.TPT 3(4),158Geiger counter & samples Geiger counter & samples Geiger counter & samples Geiger counter & samples7D10.00Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgently needed information.VIMN, 7D10.10Geiger counter & samples Geiger counter & samples Geiger counter & samples7D10.10Listen to a Geiger counter when radioactive samples are tested.Sut, A-111 Hil, A-18dsources of radioactivity radioactive plate half life with isotope generator AJP 39(10),1274radioactive plate iffe with isotope generator radioactive plate radioactive dating - carbon dating7D10.21AJP 39(10),1282 F39(10),1282radon in the air radoactive carbon dating7D10.25The all life of a barium 137 sample recorded on a computer based analyzer.PIRA 1000 AJP 39(10),1282radon in the air radoactive dating - carbon dating7D10.25The commercial Cs/Ba generator. radioactive dating works.PIRA 1000 Mei, 41-1.6radon in the air radoon in the air <td>Sut, A-66</td> <td>electron shell model</td> <td>7B50.16</td> <td>Golf tees are inserted into predrilled holes in a plywood sheet to represent</td>	Sut, A-66	electron shell model	7B50.16	Golf tees are inserted into predrilled holes in a plywood sheet to represent
Hil, A-1a AJP 33(11),xviiperiodic charts atomic beam apparatus7B50.50Welch and Cenco periodic charts are displayed on the wall. Determine the diameter of atoms by directing a very low pressure stream at a vane in an evacuated bell jar.TPT 3(4),158NUCLEAR PHYSICS Radioactivity radiation saftey7D00.00 TD10.097D10.09Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgently needed information.PIRA 200 UMN, 7D10.10Geiger counter & samples Geiger counter & samples7D10.10Listen to a Geiger counter when radioactive samples are tested.Sut, A-111 PIRA 1000 AJP 39(2),221sources of radioactivity half life with isotope generator half life7D10.11Chean adioactive or or old radon seeds. 7D10.20AJP 39(10),1224 AJP 39(10),1224isotope generator half life7D10.21The commercial Cs/Ba generator. 7D10.20The life of a barium 137 sample recorded on a computer based analyzer.AJP 39(10),1225 TPT 52(2), 115radon in the air7D10.25TO10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.PIRA 1000 Mei, 41-1.6radon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a ania and 10 hr.	Sut, A-62	equilibrium configurations	7B50.20	Steel balls floating in a dish of mercury over an electromagnet assume
AJP 33(11),xviiatomic beam apparatus7B50.90Determine the diameter of atoms by directing a very low pressure stream at a vane in an evacuated bell jar.NUCLEAR PHYSICS Radioactivity radiation saftey7D00.00TPT 3(4),158Output Site Site Site Site Site Site Site Sit	PIRA 500	periodic charts	7B50.50	
Vance in an evacuated bell jar.VUCLEAR PHYSICS Radioactivity radiation saftey7000.00 7010.00TPT 3(4),158NUCLEAR PHYSICS Radioactivity radiation saftey700.00 7010.00PIRA 200 UMN, 7D10.10 Bil&Mai, p 366Geiger counter & samples Geiger counter & samples Geiger counter & samples Geiger counter & samples Geiger counter & samples7010.10 7010.10 Listen to a Geiger counter when radioactive samples are tested.Sut, A-111 Hil, A-18d PIRA 1000 AJP 39(2),221 AJP 39(10),1274 AJP 39(10),1282 TPT 52(2), 115sources of radioactivity radioactive generator half life with isotope generator reply to comment reply to comment reply to comment radioactive dating - carbon dating7010.21 7010.25PIRA 1000 AJP 39(10),1282 TPT 52(2), 115radon in the air radon in the air7010.25 7010.25PIRA 1000 Hil, A-15dradon in the air7010.25 7010.25PIRA 1000 Hil, A-15dradon in the air7010.25 7010.25PIRA 1000 Mei, 41-1.6radon in the air7010.25 7010.25	Hil, A-1a	periodic charts	7B50.50	Welch and Cenco periodic charts are displayed on the wall.
Radioactivity radiation saftey7D10.00 7D10.09TPT 3(4),158radiation saftey7D10.09TPT 3(4),158radiation saftey7D10.09PIRA 200Geiger counter & samples7D10.10UMN, 7D10.10Geiger counter & samples7D10.10Bil&Mai, p 366Geiger counter & samples7D10.10Listen to a Geiger counter when radioactive samples are tested.7D10.10Sut, A-111sources of radioactivity radioactive plate7D10.11Hil, A-18dradioactive plate half life with isotope generator half life with isotope generator7D10.20Three isotope generator AJP 39(10),1274isotope generator isotope generator7D10.20AJP 39(10),1274isotope generator reply to comment7D10.21TPT 52(2), 115radioactive dating - carbon dating7D10.25PIRA 1000 Mei, 41-1.6radon in the air radon, thoron in the air7D10.25PIRA 1000 Mei, 41-1.6radon in the air7D10.25PIRA 1000 Mei, 41-1.6radon in the air7D10.25PIRA 1000 Mei, 41-1.6radon in the air7D10.26PIRA 1000 Mei, 41-1.6radon in the air7D10.25PIRA 1000 Mei, 41-1.6radon in the air </td <td>AJP 33(11),xvii</td> <td>atomic beam apparatus</td> <td>7B50.90</td> <td></td>	AJP 33(11),xvii	atomic beam apparatus	7B50.90	
TPT 3(4),158radiation saftey7D10.09Introduction to the handbook "Radiation Protection in Teaching Institutions" with brief presentation of urgently needed information.PIRA 200Geiger counter & samples7D10.10Listen to a Geiger counter when radioactive samples are tested.Bil&Mai, p 366Geiger counter & samples7D10.10Listen to a Geiger counter when radioactive samples are tested.Sut, A-111sources of radioactivity7D10.10Listen to a Geiger counter when radioactive samples are tested. Use index cards, aluminum plates and lead to determine the type of radiation emitted by the samples.Sut, A-111sources of radioactivity7D10.10Listen to a Geiger counter when radioactive samples are tested. Use index cards, aluminum plates and lead to determine the type of radiation emitted by the samples.Sut, A-111sources of radioactivity7D10.10Listen to a Geiger counter when radioactive as cards, aluminum plates and lead to determine the type of radiation emitted by the samples.Sut, A-111sources of radioactivity7D10.10Listen to a Geiger counter when radioactive as cards, aluminum plates and lead to determine the type of radiation emitted by the samples.Sut, A-111sources of radioactivity7D10.10Thotonin radioactive or or old radon seeds.PIRA 1000half life with isotope generator half life7D10.20Three isotope generator.AJP 39(10),1282isotope generator reply to comment7D10.21The commercial Cs/Ba generator.TPT 52(2), 115radioactive dating - carbon dating7D10.25TD10.25PIRA 1000radon in the air ra		NUCLEAR PHYSICS	7D00.00	
PIRA 200 UMN, 7D10.10 Bil&Mai, p 366Geiger counter & samples Geiger counter & samples7D10.10 7D10.10 Geiger counter & samples7D10.10 7D10.10 TD10.10Listen to a Geiger counter when radioactive samples are tested.Sut, A-111 PIRA 1000 AJP 39(2),221 Disc 25-16sources of radioactivity half life7D10.11 7D10.20Obtain radioactive ore or old radon seeds. 7D10.20AJP 39(10),1274 AJP 39(10),1282 TPT 52(2), 115isotope generator radioactive dating - carbon dating7D10.21 7D10.21The commercial Cs/Ba generator. 7D10.21AJP 39(10),1282 AJP 39(10),1282radioactive dating - carbon dating radioactive dating - carbon dating7D10.25 7D10.25The commercial Cs/Ba generator. 7D10.21PIRA 1000 Half liferadioactive dating - carbon dating radioactive dating - carbon dating7D10.25 7D10.25The commercial Cs/Ba generator. 7D10.21PIRA 1000 Hei, 41-1.6radon in the air radon, thoron in the air7D10.25 7D10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a			7D10.00	
UMN, 7D10.10 Bil&Mai, p 366Geiger counter & samples7D10.10 7D10.10Listen to a Geiger counter when radioactive samples are tested. Use index cards, aluminum plates and lead to determine the type of radiation emitted by the samples.Sut, A-111 PIRA 1000 AJP 39(2),221 Disc 25-16sources of radioactivity half life with isotope generator half life7D10.12 7D10.20A red "fiesta" plate is checked for radioactivity. 7D10.20 Three isotope generator the half life of a barium 137 sample recorded on a computer based analyzer.AJP 39(10),1274 AJP 39(10),1282 TPT 52(2), 115isotope generator radioactive dating - carbon dating7D10.21 7D10.21The commercial Cs/Ba generator. 7D10.21 The commercial Cs/Ba generator.TPT 52(2), 115radioactive dating - carbon dating radon in the air7D10.25 7D10.25Vui diots.PIRA 1000 Mei, 41-1.6radon in the air radon, thoron in the air7D10.25 7D10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a	TPT 3(4),158	radiation saftey	7D10.09	•
Bil&Mai, p 366Geiger counter & samples7D10.10Listen to a Geiger counter when radioactive samples are tested. Use index cards, aluminum plates and lead to determine the type of radiation emitted by the samples.Sut, A-111sources of radioactivity radioactive plate7D10.11Obtain radioactive ore or old radon seeds.Hil, A-18dradioactive plate7D10.20AJP 39(2),221half life with isotope generator half life7D10.20AJP 39(10),1274isotope generator isotope generator7D10.21AJP 39(10),1282isotope generator radioactive dating - carbon dating7D10.21TPT 52(2), 115radioactive dating - carbon dating7D10.25PIRA 1000 Mei, 41-1.6radon in the air radon, thoron in the air7D10.25PIRA 1000 Mei, 41-1.6radon in the air7D10.25Hil, A-15dradon in the air7D10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Pump air through a filter and place the filter under a counter attached to a		•		Listen to a Geiger counter when radioactive samples are tested.
Sut, A-111sources of radioactivity7D10.11Obtain radioactive ore or old radon seeds.Hil, A-18dradioactive plate7D10.12A red "fiesta" plate is checked for radioactivity.PIRA 1000half life with isotope generator7D10.20Three isotope generators that can be "milked".AJP 39(2),221half life with isotope generator7D10.20Three isotope generators that can be "milked".AJP 39(10),1274isotope generator7D10.21The commercial Cs/Ba generator.AJP 39(10),1282redy to comment7D10.21The commercial Cs/Ba generator.AJP 39(10),1282radioactive dating - carbon dating7D10.21The commercial Cs/Ba generator.TPT 52(2), 115radon in the air7D10.25To10.25PIRA 1000radon in the air7D10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a	UMN, 7D10.10	•		
Sut, A-111sources of radioactivity7D10.11Obtain radioactive ore or old radon seeds.Hil, A-18dradioactive plate7D10.12A red "fiesta" plate is checked for radioactivity.PIRA 1000half life with isotope generator7D10.20Three isotope generators that can be "milked".AJP 39(2),221half life with isotope generator7D10.20Three isotope generators that can be "milked".Disc 25-16half life7D10.20Three isotope generators that can be "milked".AJP 39(10),1274isotope generator7D10.21The commercial Cs/Ba generator.AJP 39(10),1282isotope generator7D10.21The commercial Cs/Ba generator.AJP 39(10),1282reply to comment7D10.21On the amount of the longer-lived Sn coming through the generator.TPT 52(2), 115radioactive dating - carbon dating7D10.23Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.PIRA 1000radon in the air7D10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a	Bil&Mai, p 366	Geiger counter & samples	7D10.10	cards, aluminum plates and lead to determine the type of radiation emitted
Hil, A-18dradioactive plate7D10.12A red "fiesta" plate is checked for radioactivity.PIRA 1000half life with isotope generator7D10.207D10.20AJP 39(2),221half life with isotope generator7D10.20Three isotope generators that can be "milked".Disc 25-16half life7D10.20The commercial Cs/Ba generator.AJP 39(10),1274isotope generator7D10.21The commercial Cs/Ba generator.AJP 39(10),1282isotope generator7D10.21The commercial Cs/Ba generator.AJP 39(10),1282reply to comment7D10.21On the amount of the longer-lived Sn coming through the generator.AJP 39(10),1282radioactive dating - carbon dating7D10.23Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.PIRA 1000radon in the air7D10.25Mei, 41-1.6radon, thoron in the air7D10.25Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a	Sut Δ₋111	sources of radioactivity	7D10 11	
PIRA 1000 AJP 39(2),221 Disc 25-16half life with isotope generator half life7D10.20 7D10.20Three isotope generators that can be "milked". The half life of a barium 137 sample recorded on a computer based analyzer.AJP 39(10),1274 AJP 39(10),1282 AJP 39(10),1282 TPT 52(2), 115isotope generator isotope generator radioactive dating - carbon dating7D10.21 7D10.21The commercial Cs/Ba generator. On the amount of the longer-lived Sn coming through the generator. 7D10.21 You idiots.PIRA 1000 Mei, 41-1.6radon in the air radon in the air7D10.25 7D10.25Toto 25 Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a		-		
AJP 39(2),221 Disc 25-16half life with isotope generator half life7D10.20Three isotope generators that can be "milked". The half life of a barium 137 sample recorded on a computer based analyzer.AJP 39(10),1274 AJP 39(10),1282 TPT 52(2), 115isotope generator isotope generator radioactive dating - carbon dating7D10.21 7D10.21The commercial Cs/Ba generator. On the amount of the longer-lived Sn coming through the generator. 7D10.21PIRA 1000 Mei, 41-1.6radon in the air radon in the air7D10.25Hil, A-15dradon in the air7D10.25Hil, A-15dradon in the air7D10.25		•		A reu llesta plate is checked for radioactivity.
Disc 25-16half life7D10.20The half life of a barium 137 sample recorded on a computer based analyzer.AJP 39(10),1274isotope generator7D10.21The commercial Cs/Ba generator.AJP 39(10),1282isotope generator7D10.21The commercial Cs/Ba generator.AJP 39(10),1282reply to comment7D10.21On the amount of the longer-lived Sn coming through the generator.TPT 52(2), 115radioactive dating - carbon dating7D10.23Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.PIRA 1000radon in the air7D10.25Mei, 41-1.6radon in the air7D10.25Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a				Three isotone generators that can be "milked"
AJP 39(10),1282 AJP 39(10),1282isotope generator reply to comment7D10.21On the amount of the longer-lived Sn coming through the generator. You idiots.TPT 52(2), 115radioactive dating - carbon dating7D10.23Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.PIRA 1000radon in the air7D10.25Mei, 41-1.6radon, thoron in the air7D10.25Hil, A-15dradon in the air7D10.25	().			
AJP 39(10),1282 AJP 39(10),1282isotope generator reply to comment7D10.21On the amount of the longer-lived Sn coming through the generator. You idiots.TPT 52(2), 115radioactive dating - carbon dating7D10.23Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.PIRA 1000radon in the air7D10.25Mei, 41-1.6radon, thoron in the air7D10.25Hil, A-15dradon in the air7D10.25	AJP 39(10).1274	isotope generator	7D10.21	The commercial Cs/Ba generator.
AJP 39(10),1282 TPT 52(2), 115reply to comment radioactive dating - carbon dating7D10.21 7D10.23You idiots.TPT 52(2), 115radioactive dating - carbon dating7D10.23Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.PIRA 1000radon in the air7D10.25Mei, 41-1.6radon, thoron in the air7D10.25Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a	. ,			•
TPT 52(2), 115radioactive dating - carbon dating7D10.23Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate how radioactive dating works.PIRA 1000radon in the air7D10.25Mei, 41-1.6radon, thoron in the air7D10.25Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a	. ,			
PIRA 1000 Mei, 41-1.6radon in the air7D10.25Mei, 41-1.6radon, thoron in the air7D10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a	. ,			Use the count rates from a new Cobalt 60 source and older Cobalt 60 sources which have manufacturing dates stamped on them to demonstrate
Mei, 41-1.6radon, thoron in the air7D10.25Pump air through a filter and measure the decay to get two half lives of 32 min and 10 hr.Hil, A-15dradon in the air7D10.25Pump air through a filter and place the filter under a counter attached to a			_	how radioactive dating works.
min and 10 hr. Hil, A-15d radon in the air 7D10.25 Pump air through a filter and place the filter under a counter attached to a				
	Mei, 41-1.6			min and 10 hr.
	Hil, A-15d	radon in the air	7D10.25	

		•	
D&R, S-252	radon in the air	7D10.25	Electrostatically charge an inflated balloon and allow this to set in the room for an hour. Pop the balloon and measure the counts with a Geiger counter. The balloon should measure about 10 times background.
AJP 29(11),789	emanation electroscope	7D10.27	Demonstrate the thorium half life by observing the decay of an emanation electroscope.
Hil, A-15e	emanation electroscope	7D10.27	The Welch emanation electroscope is used to demonstrate the thorium half life. Reference: AJP 29(11),789.
PIRA 1000	activation by a neutron source	7D10.30	
Mei, 41-1.1	activation by a neutron source	7D10.30	A coin is placed with a neutron source on a paraffin block for a minute and then tested for radioactivity.
AJP 34(3),246	buildup and decay	7D10.31	•
Hil, A-15f	half life of silver	7D10.33	Measure the half life of silver activated by a neutron source.
Hil, A-18c	half life of silver	7D10.33	Use a neutron source and silver dollar.
AJP 31(9),734	radioactive iodine source	7D10.36	Irradiate the sodium iodide crystal that is in the scintillation spectrometer.
		7D10.30	
PIRA 500	secular equilibrium		
Mei, 41-1.4	secular and transient equilibrium	7D10.40	less than the half life of the parent.
Sut, A-115	radioactive decay model	7D10.40	radioactive decay.
D&R, S-250	radioactive decay model	7D10.40	Poker chips are used to simulate radioactive decay.
Mei, 41-1.5	secular equilibruim in series	7D10.41	A model of a series of disintegrations with a series of capillary tubes
	·		emptying into each other.
Mei, 41-1.3	simultaneous decay model	7D10.41	
Mei, 41-1.2	water flow model of decay	7D10.42	•
			tubes. In another setup, the water drips through wire meshes to a counter.
PIRA 1000	electrical analog of decay	7D10.45	
	•		An electrical circuit allows three consecutive first order rate reactions
AJP 46(2),189	electrical analog of decay	7D10.47	
AJP 45(3),288	atomic radiative decay analog	7D10.47	The response of an electrical circuit is compared to the decay characteristics of coupled three level atomic systems.
AJP 39(11),1408	analog computer decay model	7D10.48	Circuit for an analog computer does a three stage nuclear chain decay.
PIRA 1000	dice on the overhead	7D10.50	
UMN, 7D10.50	dice on the overhead	7D10.50	
AJP 51(2),185	dice on the overhead	7D10.50	Drill a face centered hole through each of twenty dice and roll the bunch on
			an overhead projector, removing the ones that light shows through.
Bil&Mai, p 363	dice on the overhead	7D10.50	Drill a face centered hole through each of 48 dice and roll the bunch on an overhead projector, removing the ones that light shows through.
PIRA 1000	coin toss half life	7D10.55	Toss some coins into the air and onto a table. Count and keep those that are heads. Collect the tails and toss again. Count and keep the heads, and again
	ronge and chapter	7D10.60	toss the tails. Repeat until all are counted.
PIRA 500	range and absorption		
UMN, 7D10.50	range and absorption	7D10.60	
Disc 25-14	nuclear shielding	7D10.60	
Hil, A-16a	alpha, beta, and gamma ray absorption	7D10.61	A set of absorbers for showing alpha, beta, and gamma absorption.
Mei, 41-1.7	exponential absorption model	7D10.65	A series of neutral density filters are added to a light and photocell arrangement to model absorption.
Sut, A-113	range of alpha particles	7D10.70	Bring an alpha source near a grid and plate connected to an electroscope.
Sut, A-114	scattering of alpha particles	7D10.75	A thin metal foil placed between an alpha source and a detector shows the intensity of scattering dependent on angle.
PIRA 1000	cosmic rays	7D10.80	
Sut, A-121	coincidence counters for cosmic rays	7D10.80	A circuit with two Geiger-Muler tubes.
AJP 69(8), 896	cosmic rays	7D10.80	Measuring and modeling cosmic ray showers with a microcomputer-based laboratory system.
Disc 25-17	cosmic rays	7D10.80	Scintillator paddles are placed on each side of a person and simultaneous events indicate cosmic ray muons passing through the body.
	Nuclear Reactions	7D20.00	evente maloute ocomie ray mache pacomy through the body.
Ehrlich 2, p. 179	marble chain reaction	7D20.00	A chain reaction simulation made from rows of marbles on an inclined board. Start an avalanche with a single marble.
PIRA 500	mousetraps	7D20.10	
UMN, 7D20.10	mousetraps	7D20.10	56 mousetraps in a cage are each set with two corks.
F&A, MPa-1	mousetrap chain reaction	7D20.10	A large number of mousetraps set with two corks each in a large cage.
		. 220.10	

Demonstration	Bibliography	Jı	uly 2015	Modern Physics
D&R, S-265	mousetrap chain reaction	7D20.10	A large number of mousetraps set with silicon Trigger with a single "neutron".	ne balls in an acrylic enclosure.
Disc 25-15 AJP 48(1),86	mousetrap chain reaction better mousetrap	7D20.10 7D20.11	Ping pong balls on mousetraps. An electronic mousetrap array that can be use a continuous self-sustaining nuclear reaction.	-
AJP 31(1),62	mousetrap improvments	7D20.11	Attach groups of six mousetraps to a hardwood the blocks can be varied to produce subcritica assemblies. Place two wood blocks on each t	od block. The spacing between al, critical, or supercritical
Sut, A-65	nuclear disintegration model	7D20.12	A ball rolls down an incline and hits a group o	
D&R, S-260	nuclear disintegration model	7D20.12	Ball bearings or marbles roll down and incline group of balls in a small potential well.	d aluminum channel and hit a
PIRA 1000	match chain reactions	7D20.15		
UMN, 7D20.15	match chain reactions	7D20.15		
AJP 51(2),185	match chain reaction	7D20.15	Matches are spaced differently in two perpend the junction and the entire row with the smaller	-
PIRA 1000	dominoes chain reaction	7D20.20		
UMN, 7D20.16	dominoes chain reaction	7D20.20	Knock down a row of dominoes of ever increa	sing size.
AJP 51(2),182	dominoes chain reaction	7D20.20	A whisp of cotton knocks over a small domino which each succeeding domino is 1 1/2 times	o starting a chain reaction in
Mei, 41-2.12	uranium model	7D20.30	A sphere contains internal mechanisms to eje ball is dropped in (thermal neutron.) Pictures, appendix, p. 1378.	. ,
Mei, 41-2.13	uranium fission model - U235	7D20.31	A wooden sphere flies apart and ejects two w when an iron sphere is dropped in. Pictures, (p. 1380.	•
AJP 51(2),185	fission model - liquid drop	7D20.35	Probe a motor oil drop in alcohol/water to indu	uce "fission".
Mei, 41-2.6	moderation of fast neutrons	7D20.40	The moderation of fast neutrons in paraffin yie neutrons shown by shielding the boron counter thermal neutrons from a second paraffin block	elds both fast and thermal er with a Cd sheet and detecting
Mei, 41-2.11	water model xenon poisoning reactor	7D20.41	A water flow model of the behavior of a therm poisoning.	
Mei, 41-2.8	resonance absorption of gamma rays	7D20.60	Model of resonance absorption of gamma ray electromagnetically driven tuning fork and auc	
AJP 50(7),586	nuclear explosion effects	7D20.90	An introductory level summary of the physics and the effects on humans.	
	Particle Detectors	7D30.00		
PIRA 1000	Ludlum Detectors	7D30.05		
UMN, 7D30.15	Ludlum Detectors	7D30.05	Ludlum hand held alpha, beta, and gamma de of sources.	etectors are used with a variety
Hil, A-18b	survey meters	7D30.05	Alpha, beta, and gamma survey meter and slo	ow neutron monitor.
AJP 57(11),1051	Geiger-Muller tube to Apple circuit	7D30.06	A simple complete circuit for biasing a Geiger and interfacing to an Apple computer.	
AJP 46(2),191	Poisson distribution of counts	7D30.08	An electronic circuit provides output pulses w pulses is of the preset value. Show the different scintillation detector and Geiger counter.	
PIRA 1000	nixie Geiger counter	7D30.10	C	
UMN, 7D30.10	nixie Geiger counter	7D30.10	A Geiger tube in a lead brick is used with a ni	xie tube counter.
F&A, MPa-2	nixie Geiger counter	7D30.10	A Geiger tube in a lead block is attached to a	
Sut, A-118	Geiger-Muller tube	7D30.11	Make a simple tube with a wire down the mide circuits for counters.	
Sut, A-119	Geiger point counter	7D30.12	A Geiger point counter made with an ordinary	steel phonograph needle.
Sut, A-120	water jet counter	7D30.13		
Mei, 41-3.7	ionizaton avalanche model	7D30.14	Rows of balls held on an inclined plank at interavalanche starting with one ball as more balls interval.	•
PIRA 1000	thermal neutron detector	7D30.15		
Mei, 41-2.10	thermal neutron detector	7D30.15	A UO2 detector for fission produced thermal r	neutrons.
AJP 34(12),1182	neutron howitzer	7D30.16	A 55 gal drum filled with paraffin.	
Hil, A-18a	neutron howitzer	7D30.16	A 2 curie neutron source is used with a BF3 d	letector.
PIRA 500	alpha detector	7D30.20	· · · · · · · · · · · · · · · · · · ·	
UMN, 7D30.20	alpha detector	7D30.20	The Cenco alpha detector with a high voltage wire grid.	bias between a plate and a
AJP 30(2),140	Cenco alpha detector review	7D30.20	Long review of the Cenco alpha counter origin Waage.	nally developed by Harold

Demonstration Bibliography July 2015 **Modern Physics** Mei, 41-3.8 alpha detector 7D30.20 A grid over a plate is biased just below sparking and an alpha source is brought near. Cenco photo. AJP 53(12),1212 simple alpha detector 7D30.21 Directions on making a simple homemade single wire spark counter. D&R. S-135 simple alpha detector 7D30.21 Simple alpha detector construction using a single wire and plate with 1kv high voltage supply. AJP 51(5),452 silicon photodiode alpha detector 7D30.22 Use a silicon photodiode as a alpha detector. A charge sensitive preamp design is included. **PIRA 1000** 7D30.25 spark chamber AJP 35(7),582 spark chamber 7D30.25 Plans for two types of spark chambers: multiplate and "curtain discharge". AJP 31(8),571 spark chamber 7D30.25 Construction details, driver and power supply circuits for a small spark chamber. Mei, 41-3.9 7D30.25 A small spark chamber is shown. Pictures, Construction details in appendix, spark chamber p.1390, Reference: AJP 31(8),571. AJP 28(2),163 ionization chamber 7D30.28 A simple parallel plate ionization chamber built in an aluminum roasting chamber with a sensitive volume of 75 cubic inches. Mei, 41-1.8 magnetic deflection of beta rays 7D30.30 A magnet is used to bend electrons from a beta source past a shield to a detector. Mei, 41-1.9 beta spectrometer 7D30.31 A qualitative beta spectrometer for use as a lecture demonstration. Pictures, Diagrams, Construction details in appendix, p. 1370. AJP 28(2),164 7D30.32 beta spectrometer A small beta spectrometer with a 4" face. Hil, A-15a film detection 7D30.40 Several samples are placed on a large sheet of film overnight and the film is developed the next day showing which are radioactive. On using Polaroid land sheet film packets as a detector for radiation TPT 3(3),125 film detection 7D30.41 experiments and demonstrations. **PIRA 500** Wilson cloud chamber 7D30.50 Wilson cloud chamber Squeeze the rubber bulb of the Wilson cloud chamber and watch tracks from F&A, HI-12 7D30.50 an alpha source. Sut, A-116 Wilson cloud chamber 7D30.50 The Knipp type chamber with a rubber bulb and alpha source. D&R, S-140 Wilson cloud chamber 7D30.50 Squeeze the rubber bulb of the cloud chamber and watch tracks from an alpha source. Sut. A-117 Wilson cloud chamber 7D30.51 An expansion cloud chamber mounted in a lantern projector. Mei, 41-3.6 cycling Wilson cloud chamber 7D30.55 An automatically cycling Wilson cloud chamber. Pictures, Construction details in appendix, p.1382, Reference: AJP 18(3),149. **PIRA 200** diffusion cloud chamber 7D30.60 Dry ice diffusion cloud chambers. UMN, 7D30.60 diffusion cloud chamber 7D30.60 AJP 35(5),ix cloud chamber accessories 7D30.60 Drawings of a lamp housing and chamber housing. AJP 54(5),473 small cloud chamber 7D30.60 A 10x10x10 cm Plexiglas cube cloud chamber suitable for TV projection. small cloud chamber TPT 1(2),80 7D30.60 A transparent plastic refrigerator jar on a cake of dry ice serves as a small continuous cloud chamber. TPT 3(6),284 simple diffusion cloud chamber 7D30.60 Using cheap parts to make a dry ice cloud chamber. F&A, HI-13 diffusion cloud chamber 7D30.60 A large chamber supersaturated with alcohol vapor is cooled with an alcohol/dry ice bath at the bottom. 7D30.60 Mei, 41-3.5 diffusion cloud chamber A large alcohol/dry ice cloud chamber is shown. Pictures. Mei, 41-3.2 simple diffusion cloud chamber 7D30.60 Alcohol in a jar placed on dry ice makes a cheap cloud chamber. Hil, A-15b diffusion cloud chamber 7D30.60 Dry ice diffusion cloud chambers. diffusion cloud chamber 7D30.62 Mei. 41-3.4 A fancier dry ice and alcohol cloud chamber. AJP 59(3),285 LN2 cooled diffusion cloud 7D30.63 The design of a LN2 cooled diffusion cloud chamber with increased chamber sensitivity and quick startup. AJP 29(2),99 cloud chamber - vacuum jacket 7D30.64 Design for a vacuum jacket that increases the sensitive area of the chamber. Mei, 41-3.3 glycol cloud chamber 7D30.65 A glycol cloud chamber is heated at the top and cooled with running water at the bottom. AJP 30(8),602 7D30.68 photographing tracks Black dye (Nigrosin) in methanol provides a dark nonreflective background, other hints. cloud chamber principles 7D30.69 Mei, 41-3.1 Place a spark gap in the steam coming from a teakettle. AJP 35(11),ix model cyclotron 7D30.70 A conical pendulum is accelerated by periodic electrical forces four times per revolution to model the motion of a charged particle in an isochronous cyclotron with four 90 degree Dees. AJP 42(2),106 7D30.70 A Ball is gravitationally accelerated along a spiral grove in an apparatus model cyclotron designed to demonstrate the principles of acceleration and phase stability in a cyclotron. Mei, 31-1.15 model cyclotron 7D30.70 Mei, 31-1.14 model cyclotron 7D30.70 AJP 43(3),277 model linear accelerator 7D30.71 A ping pong ball is accelerated in a Plexiglas tube when a series of ring electrodes are charged by a Wimshurst

I	Demonstration	Bibliography	Jı	ıly 2015	Modern Physics
	AJP 40(5),761	linear accelerator - sand model	7D30.71	A Wimshurst charges a model linear accelend.	erator that shoots sand out one
	Mei, 31-1.16 AJP 43(4),293	particle focusing in accelerator model synchrotron	7D30.75 7D30.78	Inverted pendulum model of focusing in a p A steel ball bounces on an oscillating pisto focusing. At constant amplitude, the ball bo decreased.	n with concave surface to provide
	PIRA 500 AJP 35(6),x	bubble chamber photographs bubble chamber photographs	7D30.80 7D30.80	Welch. Two slide sets taken at the 20" in c National Laboratory.	hamber at the Brookhaven
	AJP 34(10),1005 Mei, 41-2.9	bubble chamber photographs bubble chamber photographs	7D30.80 7D30.80	Pictures and analysis of bubble chamber p Determination of the rest mass of a hypero pictures. Pictures.	
	AJP 28(5),418	mass spectrometer	7D30.90	Apparatus Drawings Project No. 7: A mass lab with a resolving power of 75.	spectrometer for undergraduate
	AJP 28(4),380	mass spectrometer	7D30.90	Apparatus Drawings Project No. 5: Small N plans for a small radius 180 degree mass s tungsten filament, 1K gauss, 100V, resolvin	spectrometer with a salt coated
	D&R, S-190	mass spectrometer model	7D30.90	A model mass spectrometer using a magn different size ball bearings.	
	Bil&Mai, p 293	mass spectrometer model	7D30.90	A model mass spectrometer is constructed different size ball bearings.	l using a magnet, ruler, and
	Mei, 38-4.1	pair production and annihilation	7D30.95	A pair of scintillation counters face each ot interrupted by a card with the appropriate e	
		NMR	7D40.00		
	PIRA 1000 Mei, 41-4.1	NMR - gyroscope model NMR - gyroscope model	7D40.10 7D40.10	A modified gyroscope model of NMR. Diag	ram, References, AJP 29(10),709.
	Mei, 41-4.2	NMR - gyroscope model	7D40.11	A gyroscope with a permanent magnet is p electromagnet.	laced on like poles of an
	Mei, 41-4.3	NMR - gyroscope model	7D40.12	A gyroscope model designed to show the r and Larmor frequency are identical.	nagnetic transitions when the field
	AJP 29(10),709	NMR - Maxwell top model	7D40.13	The top post of the Maxwell top is constrain frame to demonstrate the "flopping" of the increases or decreases the precession and	magnetic moment vector which
	Mei, 41-4.4	Larmor precession model	7D40.13	A spinning gyro over an electromagnet der Diagram, Picture, Construction details in a	nonstrates Larmor precession.
	AJP 31(6),446	magnetic resonance	7D40.15	A small magnet suspended and driven with particular frequency, but at a different frequency right angles.	Helmholtz coils will oscillate at a
	Hil, A-6a	Larmor precession model	7D40.16	A bicycle wheel gyro used to show Larmor	
	AJP 33(4),322 Mei, 41-4.5	NMR - air bearing gyro model NMR - air bearing gyro model	7D40.20 7D40.20	An air bearing gyro with Alnico magnet in the NMR principles are demonstrated with an a Helmholtz coils. Diagrams, Reference: AJF	air gyro mounted between
	Mei, 41-4.6	Magnetic top in Helmholtz coils	7D40.22	An air driven magnetic top mounted betwee spinning dipole interaction with external fiel in appendix, p. 1393.	
	PIRA 500	spin echo spectrometer	7D40.30		
	AJP 42(1),58	spin echo spectrometer	7D40.30	Design and construction of a simple pulsed a high school physics class.	I NMR spectrometer, used first in
	Mei, 41-4.7 AJP 31(1),58	spin echo instrument NMR "grid dip" method with cobalt	7D40.30 7D40.31	Four demonstrations with a simplified spin A bottle of powdered cobalt, a grid current a small dip in grid current at resonance.	
	AJP 43(8),747	NMR with fixed field	7D40.40	Block diagram of a method to demonstrate and modulating the frequency.	NMR in a fixed field by sweeping
	AJP 42(12),1057	magnetic resonance demonstration	7D40.40	A description of a simple and inexpensive of magnetic resonance effects.	demonstration model of pulsed
	AJP 34(4),335	simple NMR spectrometer	7D40.40	Circuits for a simple NMR spectrometer.	
		Models of the Nucleus	7D50.00		
	PIRA 500 UMN, 7D50.10	Rutherford scattering Rutherford scattering	7D50.10 7D50.10	Balls roll down a ramp onto a potential surf	ace to model Rutherford
	AJP 37(2),204	scattering surface with analyzer	7D50.10	scattering. Balls roll down an incline onto a scattering	surface. Eighteen pockets ring the
	TPT 2(6),278	Rutherford scattering on the overhead	7D50.11	surface. Ink dipped balls are rolled down an incline on an overhead projector stage.	toward a clear plastic potential hill

Demonstration	Bibliography	J	uly 2015	Modern Physics
Sut, A-63	alpha particle scattering model	7D50.12	A magnet pendulum is repulsed by the pole of a	vertical electromagnet.
Mei, 41-2.3	Rutherford pendulum	7D50.13	Orbits can be demonstrated in the attracting cas	e.
AJP 72(2), 237	Rutherford scattering on an air	7D50.14		rmine the force law from
AJP 29(4),xiii	table Rutherford scattering on a table	7D50.14	with a second vertically oriented magnet just und	
Sut, A-64	alpha particle scattering model	7D50.15	square force. A ping pong ball pendulum is suspended above	a Van de Graaff generator.
AJP 29(12),854	"Welch" scattering apparatus	7D50.16	On using the "Welch" ball bearing scattering app conditions of an experiment in nuclear physics a	
Bil&Mai, p 359	"Welch" scattering apparatus	7D50.16	Construct a "Welch" style scattering apparatus t Rutherford experiment.	
AJP 29(6),349	alpha particle scattering model	7D50.19	Apparatus Drawings Project No. 16: Simple Ruth annular ring of scattering material. The distance is varied giving scattering angles from 28 to 71 c	from the ring to the detector
AJP 33(12),1055 PIRA 1000	Rutherford scattering Rutherford scattering animation	7D50.19 7D50.20	Take data for thirty minutes as a lecture demons	•
Disc 25-13	Rutherford scattering animation	7D50.20	An animation of alpha particle scattering.	
PIRA 1000 Mei, 39-5.1	Thomson model Thomson model of the atom	7D50.30 7D50.30	Vertical needle magnets stuck in corks float in a	pan of water surrounded by
Hil, A-5a	Thomson model	7D50.30	a coil on the overhead projector. Looks like it might be the vertical magnets in a c	oil apparatus. Reference:
Mei, 41-2.2	Thomson vs. Rutherford model	7D50.35	H.E.White, Modern College Physics, 5th ed., p 4 An apparatus to randomly shoot steel balls at m	
Mei, 41-2.1	1/r surface model of the nucleus	7D50.40	Rutherford atom. A Lucite 1/r surface with a well and accelerating used to show repulsion, capture, and ejection. P appendix., p.1372.	
D&R, S-255	scattering field of the nucleus	7D50.40	A cone made from cardboard or fiberglass. Lau scattering and capture.	nch ball bearings to show
AJP 31(11),888	scattering field of the nucleus	7D50.42	Deform a rubber sheet by boiling water in a test the rubber sheet so it gets sucked down, then lif potential barrier.	
Mei, 39-5.2	electron falls into the nucleus	7D50.45	A ball rolling in a funnel falls into the middle.	
PIRA 1000	mass defect	7D50.46		
UMN, 7D50.46	mass defect chemical heart model of the	7D50.46 7D50.65	The chemical heart vibrates in various modes ai	ving a gruda model of a
AJP 28(6),561	nucleus	7050.65	The chemical heart vibrates in various modes gi nucleus. Recipe included.	ving a crude model of a
Mei, 41-2.4	mercury ameoba model of the nucleus	7D50.65	The mercury amoeba is used to demonstrate vik oscillations of an excited nucleus. Reference: A	
Mei, 41-2.5	scattering x-rays by paraffin ELEMENTARY	7D50.90 7E00.00	A paraffin block is inserted to scatter x-rays into	a Geiger counter.
	PARTICLES			
	Miscellaneous	7E10.00		
PIRA 500 UMN, 7E10.10	fundamental particles chart fundamental particles chart	7E10.10 7E10.10		
PIRA 1000	fundamental particles chart	7E10.10 7E10.20		
UMN, 7E10.20	fundamental particles software	7E10.20		
AJP 49(11),1030	quark confinement model	7E10.50	A Rubik's cube is used as a model of quark cont	inement.
Ehrlich 2, p. 185	tachyons	7E10.60	The hypothetical faster than light abilities of tach transparencies on the overhead projector.	
	RELATIVITY	7F00.00		
	Special Relativity	7F10.00		
ref.	gravitational surface	7F10.05	see 8C20.20	
PIRA 1000 AJP 31(10),802	Lorentz transformation machine Lorentz transformation machine	7F10.10 7F10.10	A machine shows the behavior of clocks and me	assuring rode in two
Mei, 38-1.3	Lorentz transformation machine	7F10.10	reference frames. A device offers visual representation of the space	-
,			two reference frames in uniform relative motion. 31(10),802.	
PIRA 1000	flow ripple tank - twin source	7F10.20		
Mei, 38-1.1	flow ripple tank	7F10.20	Wave propagation upstream and downstream is tank. Picture.	shown with a flow ripple

Demonstration Bibliography July 2015 **Modern Physics** Mei, 38-1.2 flow ripple tank - twin source 7F10.20 Twin source interference in a moving medium is demonstrated with a flow ripple tank and variable phase generator. **PIRA 1000** 7F10.25 foam rubber roller AJP 31(12),913 Fitzgerald contraction model 7F10.26 A stick traveling at constant velocity makes a traveling dimple in an elastic sheet Ehrlich 2, p. 184 time dilation simulation 7F10.30 A folding carpenters ruler is used to simulate the effects of time dilation in a "bouncing light pulse clock". AJP 73(9), 876 time dilation - twin paradox 7F10.31 An explicit formula for differential aging from acceleration. TPT 3(5),218 time dilation - high school 7F10.31 Algebra and geometry only covering a gedanken experiment of time dilation gedanken and space contraction. AJP, 75 (9), 805 time dilation - twin paradox 7F10.31 How do clocks, initially synched in the laboratory frame, fall out of sync as their speed relative to the lab increases. AJP 76(4 & 5),360 time dilation - twin paradox Two java applets developed to interactively explore time dilation. 7F10.31 relatavistic length contraction The "pole in a garage" paradox is demonstrated using a collapsible pointer Ehrlich 2, p. 191 7F10.32 and two cardboard boxes. 7F10.32 AJP 56(10),941 relativistic length contraction -Simple diagrams for representing relativistic length contraction and time simple diagrams dilation. AJP, 50 (3), 278 relativistic length contraction 7F10.32 Additional length contraction of an accelerated meter stick when viewed from an inertial system. 7F10.35 AJP 48(9),780 induction coil relativity On using the simple induction coil and galvanometer as a special relativity demonstration. AJP, 58(11), 1066 computer relativistic phenomena 7F10.40 The Edwin F Taylor Spacetime Software is used to generate printouts demonstrating aberration, the Doppler effect, the headlight effect, etc. 7F10.40 An evaluation of the Taylor "Space-time" software, used mainly in a AJP 57(6),508 computer software review homework mode. AJP 56(7),600 The author's review of a simple program about relativistic space and time many colored relativity engine 7F10.41 that requires no knowledge of physics, algebra, or geometry. AJP 47(3),218 cylindrical relatvity model 7F10.50 A spacetime diagram rolled on a cardboard tube is used to demonstrate the nature of simultaneity and the propagation of light in a rotating coordinate system. AJP 38(8),971 7F10.55 Some examples are illustrated in detail. geometrical appearances time reversal invariance 7F10.60 see 1N30.23 ref. **PIRA 200** Lorentz Transformation 7F10.60 PIRA 500 - Old Lorentz Transformation 7F10.60 7F10.60 UMN, 7F10.60 Lorentz Transformation The Mechanical Universe chapter 42 and the Hewitt film "Relativistic Time Dilation" Hewitt Film 7F10.65 **PIRA 500** UMN, 7F10.65 Hewitt film 7F10.65 **PIRA 1000** Majestic clockwork 7F10.66 **General Relativity** 7F20.00 AJP 50(4),300 general relativity primer 7F20.01 A tutorial article. AJP 50(3),232 film loop review article 7F20.10 Two film loops, "Uniformly Accelerated Reference Frame", and "Twin Paradox", are thoroughly reviewed.

PLANETARY ASTRONOMY 8A00.00

	HISTORICAL ASTRONOMY	9 4 9 5 9 9	
TPT 37(8), 476	HISTORICAL ASTRONOMY calendar wheels	8A05.00 8A05.10	Native American celestial calendar wheels and how to construct them.
PIRA LOCAL	Stonehenge	8A05.10 8A05.15	Many models of this famous megalith are available.
AJP 45(2), 125	megaliths	8A05.16	Some historical background on megalighic astronomy.
TPT, 31(6), 383	constellations	8A05.20	Constellations used to interpret historical legends.
TPT, 29(2), 80	constellations	8A05.20	The Big Dipper used to tell time.
TPT 25(8), 500	Eratosthenes measurment of	8A05.30	Eratosthenes determination of the circumference of the Earth updated by
11 1 20(0), 000	Earth's radius	0/100.00	doing the experiment from an aircraft.
TPT 26(3), 154	Eratosthenes measurment of	8A05.30	Eratosthenes experiment redone using meter sticks instead of wells.
	Earth's radius	0,100100	
TPT 31(7), 440	Eratosthenes measurment of	8A05.30	Trying to calculate the radius of the Earth by watching the Sun set twice,
	Earth's radius		once from the bottom and then from the top of a tall building.
TPT 31(9), 519	measurment of Earth's radius	8A05.30	The calculation done using feet and miles. Also several other neat problems
			using Earth's radius as a starting point.
TPT 38(6), 360	measurment of Earth's diameter	8A05.30	A GPS is used to calculate the diameter of the Earth.
TPT 38(3), 179	Eratosthenes - scale of	8A05.30	Using Eratosthenes calculation of the diameter of the Earth to calculate the
	Earth/Moon/Sun system		size of the Moon.
AJP 31(6),456	Eudoxus: homocentric spheres	8A05.33	Two homocentric models of Eudoxus: one shows the motion of the Sun, the
	models		other shows retrograde motion.
AJP 30(9),615	Ptolemaic and Copernian orbits	8A05.35	An analog computer (circuit given) displays orbits and epicycles on an
			oscilloscope.
TPT 25(8), 493	Kepler and planetary orbits	8A05.40	Kepler's third law and the rise time of stars.
TPT 34(1), 42	Kepler and planetary orbits	8A05.40	Applying Kepler's third law to elliptical orbits.
TPT 36(1), 40	Kepler and planetary orbits	8A05.40	Measuring an asteroids orbit to test Kepler's first and second law.
TPT 36(4), 212	Kepler and planetary orbits	8A05.40	A graphical representation of Kepler's third law.
TPT 42(9), 530	Kepler and planetary orbits	8A05.40	Kepler's third law calculations without a calculator.
AJP, 69(4), 481	Kepler and planetary orbits	8A05.40	A hodographic solution to Kepler's laws.
AJP, 69(10), 1036	6 Kepler and planetary orbits	8A05.40	An unusual verification of Kepler's first law.
AJP 52(2),185	sundial	8A05.50	A Plexiglas model of a sundial.
TPT 10(3), 117	sundial	8A05.50	Detailed descriptions, pictures, and how to time correct a sundial.
TPT 37(2), 113	sundial	8A05.50	Constructing a portable sundial.
TPT 41(5), 268	sundial, solar pocket watch	8A05.50	Picture of a portable sundial (solar pocket watch) dated 1573.
TPT 41(8), 380	sundial, solar pocket watch	8A05.50	Additional observations on TPT 41(5), 268.
AJP 42(5),372	horizontal sundial	8A05.55	An analytic solution for determining the markings on a sundial and a
			description of construction.
AJP 33(2),165	cross-staff	8A05.60	Cut a meter stick into 57 1/3 cm and 42 2/3 cm. (At 57 1/3 cm one degree
	d d	0405 70	equals one cm.) Some refinements.
	sextant	8A05.70	
TPT 38(4), 238	sextant	8A05.70	An easily constructed mini-sextant and directions for it's use.
PIRA LOCAL	artificial horizon	8A05.80	A mercury filled dish that is used for an artificial horizon when taking
			measurments with a sextant during times when the real horizon is obscured.
PIRA LOCAL	chronometer	8A05.85	An accurate ships time piece used in conjunction with the sextant to
	chronometer	0A03.03	determine longitude and latitude.
AJP 38(3),391	heliostat	8A05.90	Picture of a heliostat
/101 00(0),001	Honostat	0/100.00	
	SOLAR SYSTEM MECHANICS	8A10.00	
	origin of the Solar System	8A10.05	
TPT 5(8), 363	origin of the Solar System	8A10.05	Discussion on how the Solar System was formed.
TPT 29(5), 268	planetary nebula	8A10.06	On the formation of planetary nebula.
PIRA 200	Orrery model	8A10.10	A mechanical model of the inner planets.
UMN, 8A10.10	Orrery model	8A10.10	·
F&A, Ma-3	Orrery model	8A10.10	A motor driven model of the Sun, Moon, Earth system.
D&R, S-390	Orrery model	8A10.10	A mechanical model of the inner planets
TPT 16(4), 223	scale model of the Solar System	8A10.15	The scale model of the Solar System as a hallway demo.
TPT 29(6), 371	scale model of the Solar System	8A10.15	The 1:10 billion Colorado Scale-Model Solar System on the University of
	-		Colorado - Boulder campus.
TPT 27(1), 38	scale model of the Solar System	8A10.15	Globes and balloons used to model the planets of the Solar System.
	Scale of the Solar System - Video	8A10.15	
	Inflatable Solar System	8A10.15	

Astronomy

Demonstration	Bibliography	Ju	uly 2015	Astronomy
TPT 43(2), 120	Solar System on a String scale of the orbital radii of the	8A10.15 8A10.16	A hat pin, roll of tape, and some markers used to scale th	ne orbital radii of the
	planets	9410.20	planets. A simple analytical method at the descriptive astronomy l	lovel for logating
AJP 53(6),591	locating stars	8A10.20	stars.	level for locating
TPT 44(3), 168	locating stars	8A10.20 8A10.22	Using the stars of the Big Dipper to teach vectors.	tically and
AJP, 78 (11), 1128	tracking stars, Sun, and Moon	0A10.22	Construction of an electromechanical device that automa continually tracks celestial objects.	
AJP 43(1),113	diurnal motion	8A10.25	Punch holes in a can bottom in the Big Dipper pattern and source of light. Rotate the can.	d place over a point
Hil, O-5h	planispheric planetarium	8A10.30	Description of a homemade planetarium.	
Hil, O-5g PIRA 500	small planetarium day & night	8A10.30 8A10.33	Description of a small homemade planetarium dome.	
PIRA 1000	local zenith	8A10.35		
UMN, 8A10.20	local zenith	8A10.35		
TPT 29(5), 265	sidereal time	8A10.40	An explanation of how a sidereal day differs from a solar calculate the difference.	day and how to
TPT 30(9), 558	sidereal day	8A10.42	A simple method to measure the length of the sidereal da	ay.
TPT 34(2), 94	sidereal day	8A10.42		
TPT 32(2), 111	sidereal year	8A10.44	Use orbital mechanics and centripital force to calculate th	ne sidereal year.
ref. AJP 55(9),848	Foucault pendulum precession of the equinox graph	8A10.45 8A10.50	See 1E20.10. A graph that shows the precession of the equinox from 18	890 to 2000 and a
TPT 29(9), 566	distortion due to refraction by	8A10.70	discussion of its pedagogical value. A demonstration using sugar water to show why the Sun	
11 1 23(3), 300	Earth atmosphere	0410.70	instead of round when viewed through the atmosphere.	
TPT 35(9), 553	distortion due to refraction by	8A10.70	The appearance of the flattening of the solar disk and the	e appearance of the
	Earth atmosphere		"anti-Sun" captured on film.	
TPT 20(6), 404	distortion due to refraction by Earth atmosphere	8A10.70	The apparent ellipticity of the setting Sun.	
AJP 71(4), 379	distortion due to refraction by Earth atmosphere	8A10.70	On the flatness of the setting Sun.	
TPT 39(2), 92	distortion due to refraction by Earth atmosphere	8A10.75	A complete explanation of distortions produced by the atr	
TPT 34(6), 355	Analemma	8A10.80	A good explanation of how the analemma couples the se- changes of the Sun with the "Equation of Time".	
TPT 38(9), 570	Analemma	8A10.80	How to plot and demonstrate the noncircularity of the Ear Sun.	
TPT 34(1), 58	Analemma	8A10.80	Analemma used to show why sunrise can be at the same weeks while the length of the day increases.	e time for several
TPT 43(5), 260	Analemma	8A10.80	Additional comments on TPT 34(1), 58	
ref.	Geochron	8A10.80	See 1A10.41. The standard Geochron is used to show a	nalemma, the part
TPT 29(5), 318	subsolar point	8A10.80	of the Earth lit by the Sun at any given time, etc. An experiment plotting the subsolar point (the place on E	Earth where the Sun
TPT 23(2), 85	Analemma, clocks, apparent	8A10.80	is directly overhead at solar noon). Explains why the length of the morning and afternoon do	not increase in the
	motion of the Sun		same proportion as the length of the day gets longer.	
TPT 31(8), 508	apparent motion of the Sun	8A10.90		
TPT 31(9), 536	apparent motion of the Sun	8A10.90		
TPT 34(6), 351 TPT 35(5), 310	apparent motion of the Sun apparent motion of the Sun	8A10.90 8A10.90	Using simple equipment to measure the length of the sola Using the apparent motion of the Sun to teach vectors an	•
	apparent motion of the Sun	8A10.90	A formula for the number of days between the winter sols	·
TPT 35(3), 167	apparent motion of the Sun	8A10.90	sunrise. The autumn and spring equinoxes do not have equal length	
11 1 33(3), 107		0410.90	Index of refraction through the atmosphere makes the da longer than the night.	
	EARTH - MOON MECHANICS	8A20.00		
TPT 31(7), 419	Earth's Seasons Seasonal Tilt	8A20.05 8A20.07	Showing the Earth's seasons with a 3-D model.	
	Tilt of the Earth - Video	8A20.08	A factor a la all'illumida ata di bor a diferenza di bor a 1970 a.	
PIRA 200	phases of the Moon - terminator line demo	8A20.15	View a ball illuminated by a distant light with a TV camera between the ball and light varies.	a as the angle
UMN, 8A10.25 TPT 38(6), 371	phases of the Moon phases of the Moon	8A20.15 8A20.15	How the view of the crescent moon changes from the nor	thern to southern
		5,20.10	hemisphere.	

TPT 34(6), 360			
	phases of the Moon	8A20.15	Phases of the moon shown with a styrofoam ball, light source, and a CCD camera.
TDT 04(0) 470	where of the Mean	040045	
TPT 31(3), 178	phases of the Moon	8A20.15	
TPT 32(2), 126	phases of the Moon	8A20.15	An exercise in Moon watching and observation of phases of the Moon.
TPT 3(6),263	phases models	8A20.17	Illuminated models for showing the phases of Venus and the Moon.
TPT 37(9), 528	phases of the planets	8A20.19	Calculating the phases of the outer planets.
	albedo	8A20.20	
TDT 22(5) 202		8A20.20	Two mothodo to dotorming the brightness of the Mean
TPT 23(5), 293	brightness of the Moon		Two methods to determine the brightness of the Moon.
AJP, 78 (8), 834	eccentricity of the Moon's orbit	8A20.22	A piece of cardboard with a hole slid up and down a yardstick is used to
			determine the eccentricity of the Moon's orbit.
PIRA 500	eclipse models	8A20.25	
TPT 34(6), 376	eclipse model	8A20.25	An eclipse model built from Hoola Hoops to show the eclipse seasons.
11 1 04(0), 010	•	8A20.30	
TDT (7) (40	solar eclipse		
TPT 17(7), 443	solar eclipse	8A20.30	•
TPT 9(5), 276	solar eclipse	8A20.30	Preparations and observation of the March 7, 1970 eclipse.
TPT 35(9), 515	solar eclipse	8A20.30	The path of the February 26, 1998 solar eclipse.
TPT 34(4), 232	solar eclipse	8A20.31	Using a solar eclipse to estimate the Earth-Moon distance.
TPT 32(6), 347	solar eclipse, pinhole images	8A20.32	Using pinholes and natural phenomenon to view a solar eclipse.
11 1 32(0), 347			Using philoles and natural phenomenon to view a solar eclipse.
	lunar eclipse	8A20.35	
TPT 44(3), 181	lunar eclipse	8A20.35	Why the Moon appears red during a lunar eclipse
	umbra, penumbra	8A20.37	
PIRA LOCAL	umbra, penumbra	8A20.37	Why there are crisp, dark or fuzzy shadows during eclipses.
	Transit - Mercury & Venus	8A20.40	,
TDT 04(4) 040	-		Lunar geography chours determined by graning oppultation
TPT 21(4), 218	occultations	8A20.45	Lunar geography shown determined by grazing occultation.
TPT 30(5), 290	occultations	8A20.45	
AJP 45(10), 914	occultations	8A20.45	Occultation used to determine the diameter of a planet.
PIRA LOCAL	Earth/Moon system	8A20.50	The Earth is a pinhead and the moon is a piece of 30 gauge wire. These are
			placed in a Styrofoam block 1-1/4 inches apart.
TPT 44(1), 48	Earth/Moon system	8A20.50	The Earth-Moon system orbits the Sun at its center of mass or barycenter.
11 1 ++(1), +0	Lattimoon system	0420.00	
	Conton of Mass. Forth Mass	0400 50	
	Center of Mass - Earth/Moon	8A20.50	
TPT, 44(7), 414	Earth/Moon system	8A20.55	Using Earth-Moon communication to calculate the speed of light.
TPT 33(2), 90	Earth/Moon distance	8A20.60	Retroreflector arrays and laser pulses to measure the Earth/Moon distance.
TPT 10(1), 40	Earth/Moon distance	8A20.60	How to determine the distance to the Moon.
PIRA 1000	pinhead Earth	8A20.70	
	•		
UMN, 8A10.40	pinhead Earth	8A20.70	
TPT 38(2), 115	scale model of the	8A20.70	Using a basketball and a push pin to model the Sun-Earth system.
	Earth/Moon/Sun system		
TPT 11(8), 489	scale model of the	8A20.70	Pinholes used to enhance a 1:2 billion scale model of the Earth/Moon/Sun
	Earth/Moon/Sun system		system.
	Moon & Tides	0 4 0 0 0 0	-)
		8A20.80	
	VIEWS FROM EARTH	8A30.00	
PIRA 1000	horizon astronomy model	8A30.00 8A30.10	
PIRA 1000 UMN, 8A10.50		8A30.00	
	horizon astronomy model	8A30.00 8A30.10	A method for calculating the distance to the horizon.
UMN, 8A10.50 D&R, S-360	horizon astronomy model horizon astronomy model horizon calculations	8A30.00 8A30.10 8A30.10 8A30.10	
UMN, 8A10.50	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the	8A30.00 8A30.10 8A30.10	A method for calculating the distance to the horizon. How to accurately estimate the distance to the horizon.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon	8A30.00 8A30.10 8A30.10 8A30.10 8A30.10	How to accurately estimate the distance to the horizon.
UMN, 8A10.50 D&R, S-360	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the	8A30.00 8A30.10 8A30.10 8A30.10	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon	8A30.00 8A30.10 8A30.10 8A30.10 8A30.10	How to accurately estimate the distance to the horizon.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the	8A30.00 8A30.10 8A30.10 8A30.10 8A30.10	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon	8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon	8A30.00 8A30.10 8A30.10 8A30.10 8A30.10	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon	8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon estimating the distance to the horizon Cinhelium	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon estimating the distance to the horizon Cinhelium Cinhelium	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon estimating the distance to the horizon Cinhelium	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon estimating the distance to the horizon Cinhelium Cinhelium	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55 AJP 55(5),393	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus. Pointer to AJP 43,693(1975).
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus. Pointer to AJP 43,693(1975). Two balls driven by independent clock motors are connected with a rod fixed
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55 AJP 55(5),393 AJP 54(11),1021	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model retrograde motion model retrograde motion model letter retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 8A30.30 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus. Pointer to AJP 43,693(1975). Two balls driven by independent clock motors are connected with a rod fixed through one ball and sliding through the other.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55 AJP 55(5),393	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus. Pointer to AJP 43,693(1975). Two balls driven by independent clock motors are connected with a rod fixed
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55 AJP 55(5),393 AJP 54(11),1021	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model retrograde motion model retrograde motion model letter retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 8A30.30 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus. Pointer to AJP 43,693(1975). Two balls driven by independent clock motors are connected with a rod fixed through one ball and sliding through the other.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55 AJP 55(5),393 AJP 54(11),1021 TPT 37(6), 342 AJP 43(7), 639	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model retrograde motion model retrograde motion model retrograde motion model retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 8A30.30 8A30.30 8A30.32 8A30.32 8A30.32 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus. Pointer to AJP 43,693(1975). Two balls driven by independent clock motors are connected with a rod fixed through one ball and sliding through the other. How to plot the retrograde motion of Mars on paper. Three methods to plot retrograde motion, one is simpler than the others.
UMN, 8A10.50 D&R, S-360 TPT 38(9), 528 AJP, 50 (9), 795 D & R, S-360 PIRA 1000 UMN, 8A10.51 PIRA 200 UMN, 8A10.55 AJP 55(5),393 AJP 54(11),1021 TPT 37(6), 342	horizon astronomy model horizon astronomy model horizon calculations estimating the distance to the horizon estimating the distance to the horizon cinhelium Cinhelium retrograde motion model retrograde motion model retrograde motion model retrograde motion model retrograde motion model	 8A30.00 8A30.10 8A30.10 8A30.10 8A30.10 8A30.10 8A30.13 8A30.20 8A30.20 8A30.30 8A30.30 8A30.30 8A30.30 8A30.30 8A30.30 8A30.30 	How to accurately estimate the distance to the horizon. An analysis for calculating the distance to the horizon as a function of the altitude of the observer. Also takes into account the variation of atmospheric refractive index with height. How to accurately estimate the distance to the horizon when at sea. Two balls, connected with a rod fixed through one ball and sliding through the other, orbit on a common focus. Pointer to AJP 43,693(1975). Two balls driven by independent clock motors are connected with a rod fixed through one ball and sliding through the other. How to plot the retrograde motion of Mars on paper.

Demonstration	Bibliography	J	uly 2015	Astronomy
TPT 21(4), 252	retrograde motion	8A30.32	Plotting retrograde motion in a manner that gives a bet	ter diagram.
AJP 73(11), 1023		8A30.32	5 5	•
TPT 35(9), 554	retrograde motion	8A30.34	Retrograde motion and epicycles are shown using pola fender washer.	ar graph paper and a
Mei, 8-8.5	epicycles	8A30.40	An Orrery carries a small flashlight on a rod between E project epicycloidal motion.	arth and Jupiter to
Mei, 8-8.4	epicycles	8A30.40	A elliptical Lucite dish has two arms attached to one for bearings between the two arms and rotate the rear arm velocity.	
Mei, 8-8.6	epicycles	8A30.40	A diagram of how to make a fairly simple crank device through cusped figures with a penlight.	to trace out elliptical
TPT 19(2), 116	synodic period	8A30.50	Using calculations to show that the conjuction and opport not "perfect" due to non-circular orbits.	osition of a planet are
TPT 23(3), 154	synodic period	8A30.50	Use relative angular velocity to calculate the synodic pe	eriod.
TPT 35(6), 379	tidal locking	8A30.60	A demonstration on how the Moon and other moons be	
TPT 41 (6), 363	tidal locking	8A30.60	Why the same side of the Moon always faces the Earth	٦.
TPT 35(1), 34	parallax	8A30.70	Measuring the distance to an outer planet by parallax w	
AJP 45(5), 490	parallax	8A30.70	Have students measure the distance to objects in the cusing a camera to better understand stellar parallax.	
AJP 45(12), 1221	parallax	8A30.70	Another simple photographic experiment to help studer parallax.	nts understand
AJP 45(11), 1124	parallax	8A30.72		allax and relative
AJP, 69(10), 1096	autoresonance	8A30.80	3:2 and 2:1 resonances of the planets and asteroids.	
TPT, 44(6), 381	Roche Limit	8A30.90	A calculation of the Roche limit of a Jovian planet and a experiment to test the calculation.	a simulated
	VIEWS FROM EARTH - 2	8A35.00		
PIRA 200	celestial sphere	8A35.10	A simple model celestial sphere is made from a round	bottom flask. Pictures.
UMN, 8A10.80	celestial sphere	8A35.10		
Mei, 8-8.8	celestial sphere	8A35.10	A simple model celestial sphere is made from a round	bottom flask. Pictures.
TPT 18(6), 465	celestial sphere	8A35.15	Modifying the Replogle Model 15620 celestial sphere.	
TPT 25(7), 438	celestial sphere	8A35.16	Making your own celestial sphere by locating stars.	
TPT 10(2), 96	celestial sphere	8A35.18	Difficulties teaching concepts with a celestial sphere m construction of a mechanical Armillary.	
AJP 73(11), 1030	celestial sphere	8A35.18	Introducing students to the celestial sphere should alwa companion Earth-Sun model.	ays be done with a
TPT, 45(6), 369	satellite orbits	8A35.30	Plotting the orbits of the planets from existing data and	charts.
TPT 31(2), 122	satellite orbits	8A35.30	Orbital periods of Mercury, Venus, and the Earth simula setup.	ated using a whirligig
TPT 36(2), 122	satellite orbits	8A35.30	Calculating how long it takes for a planet to fall into the motion is arrested and relating that to the orbital period	
TPT 19(3), 181	satellite orbits	8A35.32	The orbital motion of the Moon explained by projectile r	•
TPT 23(1), 29	satellite orbits	8A35.35	Calculation showing that an orbiting satellite is in freefa	
TPT 46(4), 237	satellite orbit model	8A35.35	Making a satellite/Earth system model from glass tubin nylon thread, a support stand, wooden sphere, and hoc	ig, a model rocket,
	PLANETARY PROPERTIES	8A40.00		

PLANETARY PROPERTIES 8A40.00

PIRA 1000 UMN, 8A20.10	GLOBES, HEMISPHERES, & MAPS globes globes	8A40.10 8A40.10	Globes of Earth, the Moon, Mercury, Venus, Mars, etc.
UMIN, 6A20.10	giones	0A40.10	Globes of Earth, the Moon, Mercury, vehus, Mars, etc.
TPT 32(8), 506	globes and hemispheres	8A40.20	The angles of any triangle on a sphere or hemisphere always add up to more than 180 degrees.
TPT 26(5), 280	globes and hemispheres	8A40.20	The minimum path length joining two points on a sphere's surface is a segment of a "great circle".

PLANETARY PROPERTIES - 8A50.00 2 THE PLANETS

Demonstration Bibliography July 2015 Astronomy Mercury 8A50.10 Mercury's orbit 8A50.12 Plotting Mercury's orbit from data in The Astronomical Almanac. TPT 29(6), 346 perihelion of Mercury 8A50.15 A calculation for the precession of the perihelion of Mercury. AJP 56(12), 1097 AJP 73(8), 730 perihelion of Mercury 8A50.15 The precession of the perihelion of Mercury's orbit calculated using the LaPlace-Runge-Lenz vector. AJP 70(5), 498 perihelion of Mercury 8A50.15 A Lagrangian yielding the same equations of motion that Einstein derived for the precession of the perihelion of Mercury. 8A50.15 Mercury's precession according to special relativity. AJP, 54, 245 perihelion of Mercury Venus 8A50.20 Earth 8A50.30 TPT 25(2), 86 Earth's rotation 8A50.30 Does the Earth rotate. Seven "proofs" for the rotation of the Earth. TPT 25(7), 418 Earth's rotation 8A50.30 Several other experiments carried out that proved the Earth rotates. TPT 30(4), 196 Earth's rotation 8A50.30 One more "proof" the Earth rotates. TPT 30(2), 111 Earth's rotation 8A50.30 Additional experiments on how we sense the Earth rotates. Earth's rotation Leeuwenhoek's "Proof" of the Earth's rotation. TPT 33(3), 144 8A50.30 TPT 33(2), 116 Earth's rotation 8A50.30 Emperical evidence the Earth rotates by marking the length of a shadow of a rod in two minute intervals starting 20 minutes before midday and ending 20 minutes after midday. Geological Timeline - Earth 8A50.34 The Moon 8A50.35 The Moon TPT 38(3), 179 8A50.35 What information it takes to calculate the size of the Moon. TPT 11(1), 43 The Moon 8A50.35 A calculation of how high you can jump on the Moon. TPT 29(3), 160 The Moon's orbit 8A50.36 How to observe the Moon's path with a cross-staff and plot its path. TPT 18(7), 504 The Moon's orbit 8A50.36 Measuring the Moon's orbit TPT 38(9), 522 8A50.38 Detection and analysis of moonquakes by the seismometers left on the Moon moonguakes by the Apollo astronauts. AJP 46(7),762 The Moon's offset center-of-mass 8A50.39 Comments on the center-of -mass offset of the Moon. Mars 8A50.40 TPT, 43(5), 293 Mars Missions, Orbital Timing 8A50.41 The problems, physics principles, and timing involved in a mission from Earth to Mars. 8A50.42 The physics of aerobraking at Mars. TPT 36(3), 154 Aerobraking at Mars Mars' moons 8A50.45 8A50.50 Jupiter TPT 35(3), 178 Jupiter 8A50.52 Looking at the Solar System from Jupiter's reference frame. Jupiter's moons / Galilean 8A50.55 Satellites TPT 19(6), 402 lo 8A50.55 The volcanos on lo. TPT 25(8), 508 Europa's Ocean 8A50.55 An exercise exploring the effect of freefall acceleration on buoyancy and waves. Galileo's discovery of Jupiter's A look at the challenges Galileo faced during his observation of the Jovian TPT 30(2), 103 8A50.55 moons moons. Saturn 8A50.60 Saturn's moons 8A50.65 Statistics about Mimas and the view of Saturn from Mimas. TPT 26(4), 207 Mimas 8A50.65 Uranus 8A50.70 Uranus' moons 8A50.75 Neptune 8A50.80 8A50.85 Neptune's moons PLANETARY PROPERTIES - 8A60.00 3 PLANETIODS, MINOR OBJECTS TPT 45(1), 14 Pluto/Charon 8A60.10 The history and process that resulted in Pluto's demotion from a planet to a minor object. Pluto/Charon TPT 38, 534 8A60.10 How big does an object have to be to be considered a planet. asteroids 8A60.20 TPT 40(8), 487 asteroids 8A60.25 The physics of asteroid/Earth collisions. AJP 74(8), 717 asteroids 8A60.25 Describes the trajectory of an asteroid as it approaches a planet of much greater mass. Values are given for Earth, Mars, Jupiter, and Saturn. AJP 74(9), 789 asteroids 8A60.25 Estimates of catastrophic asteroid and comet impacts on the Earth. AJP 71(7), 687 asteroids 8A60.25 How asteroid or comet impacts is not the cause of and would not significantly change the eccentricity of Earth's orbit. TPT 5(1), 5 meteorites 8A60.30 Mass spectroscopy of meteorites.

8A60.40

TPT 37(2), 123

meteors

Outer Solar System Objects

Demonstratior	n Bibliography	J	uly 2015	Astronomy
	The Kuiper Belt	8A60.50		
TPT 39(2), 120	extra - solar planets	8A60.60	Teaching about and helping with the search for extra-solar	r planets.
TPT 39(7), 400	extra - solar planets	8A60.60	The precision it takes to detect extra-solar planets.	
TPT 42(4), 208	extra - solar planets	8A60.60	Teaching about data and detection of extra-solar planets to solar system would look if viewed by an observer from far same detection methods.	
TPT 20(4), 222	matter from outside our solar system	8A60.70	Using cosmic rays to study matter in the galaxy outside or	ur solar system.
TPT 20(5), 289	matter from outside our solar system	8A60.70	Using cosmic rays to study matter in the galaxy outside or	ur solar system.
	PLANETARY PROPERTIES	- 8A70.00)	
	4			
	PLANETARY			
	CHARACTERISTICS			
	geological samples	8A70.05	Assortments of rocks, minerals, or gemstones.	
	Planetary Magnetism	8A70.10		
TPT 45(3), 168	Earth's magnetic field	8A70.10	An elementary model of Earth's magnetic field capturing s the geodynamo.	some features of
TPT 26(5), 266	Earth's atmosphere	8A70.20	The interaction of radiation from the Sun and the Earth's a	atmosphere
,	<i></i>	0 1 7 0 0 0	determines the Earth's climate.	
ref.	refraction/twinkling	8A70.20	Refer to 6A40.47 to demonstrate how observing planets a the atmosphere makes them appear to twinkle.	ind stars through
TPT 35(2), 90	effective depth of Earth's	8A70.20	Using "The Old Farmers Almanac" to calculate the effectiv	ve denth of the
11 1 35(2), 30	atmosphere	0470.20	atmosphere.	
AJP 71(10), 979	thickness of Earth's atmosphere	8A70.20	A method of estimating the thickness of the atmosphere b	by light scattering.
TPT 43(9), 578	sounding balloon experiment	8A70.22	Atmospheric measurements using sounding balloons.	
AJP 74(9), 804	sprites	8A70.30		
ref.	greenhouse effect	8A70.40	See 4B50.60 for demonstrations of the greenhouse effect	
ref.	Cloud Formation	8A70.45	See 4B70.20 for cloud in a bottle demonstrations.	
PIRA LOCAL	IR Telescope Model	8A70.48	Construction of a simple IR telescope.	
	Gaseous Planets	8A70.50		
TPT 16(7), 490	gaseous planet atmospheres	8A70.50	Float bubbles on layers of Freon, CO2, or other heavy gas of a fish tank.	
PIRA LOCAL	Rotational Banding	8A70.55	Rheoscopic fluid in a round bottom flasked placed on a tu rotational banding when turned for a few seconds.	
TPT 35(7), 391	planetary atmospheres	8A70.55	A demonstration that can be used to explain rotational bar atmospheres.	nding in planetary
TPT 40(4), 239	planetary atmospheres	8A70.55	The composition of the atmospheres of the planets and th How would acoustic waves travel in these atmospheres.	e moon Titan.
TPT 45(8), 502	precipitation in the Solar System	8A70.60	Descriptions of the types of precipitation that fall on the ot moons in the Solar System. Some of these can be broug classroom.	•
TPT 17(4), 228	aurora	8A70.65	Historical and detailed explanation of Earth's aurora.	
TPT 43(9), 573	aurora	8A70.65	A brief description of aurora and how to photograph them.	
TPT 44(2), 68	aurora	8A70.65		
TPT 33(1), 34	auroral measurements	8A70.65	·	
TPT 33(2), 71	auroral measurements	8A70.65	Additions to TPT 33(1), 34.	
rof	lightening whistlers	8A70.70	•	d comporisons to
ref.	culvert whistlers	8A70.70	See 3B25.67 for acoustical examples, demonstrations, an ionospheric whistlers.	ia compansons to
PIRA LOCAL	planetary density model	8A70.75	•	foam with a steel
PIRA LOCAL	planetary gravities	8A70.78	Use pennies and soda cans to show how a can of soda we different planets. Mercury = 38 pennies, Venus = 101, Ea or 100 pennies, the Moon = 12, Mars = 38, Jupiter = 293, Uranus and Neptune = 133, Pluto = 0.	orth = 1 can of soda
PIRA LOCAL	Red Hot Ball	8A70.80	•	in the camera even
TPT 35(4), 230	Earth's glow	8A70.80	The Earth glows from nuclear processes in the interior.	
TPT 16(7), 479	earthquakes	8A70.85	Student participation in P-wave and S-wave demonstration	ns.
PIRA 500	cratering	8A70.90		

Demonstratior	n Bibliography	J	uly 2015 Astronomy
UMN, 8A20.30		8A70.90	Drop ball bearings into a pan of glass beads or flour. Illuminate with a lamp
UIVIN, 8A20.30	cratering	6A70.90	from the side of the pan to provide contrast.
PIRA LOCAL	cratering	8A70.90	Drop ball bearings into a pan of glass beads. Illuminate with a lamp from the side of the pan to provide contrast.
AJP 68(8), 771	cratering	8A70.90	Impact cratering studied in the laboratory using a marble for the meteorite, salt for the target, and a video camera to record the impact. Frame by frame
TPT 27(2), 118	cratering	8A70.91	analysis. High speed photography and analysis of milk drops falling into coffee that can be applied to cratering.
	PLANETARY PROPERTIES	- 8A80.00	
	COMETS AND THE SEARCH		
PIRA LOCAL	FOR LIFE make a comet	8A80.10	Mix sand and snow in a pan. Add some water and mix some more. Form a
		0,00.10	muddy snow ball with a knotted end of a string at its center. Place this in a beaker of liquid nitrogen to harden and then swing the "comet" around your head.
PIRA LOCAL	Ed's comet	8A80.10	A Styrofoam ball with a tail of turkey feathers is attached to a string. Swing this around your head.
PIRA 1000	comet orbit	8A80.20	
UMN, 8A10.65	comet orbit	8A80.20	
TPT 23(1), 6	comet orbits	8A80.20	The erroneous view that in Newton's <i>Principia</i> one can find a proof that inverse-square central forces implies a conic-section orbit.
TPT 22(8), 488	Halley's comet	8A80.30	About Halley's comet.
TPT 15(2), 110	Halley's comet	8A80.30	Preparing to observe Halley's comet in 1986
TPT 15(4), 260	Halley's comet	8A80.30	
TPT 23(4), 225	Halley's comet	8A80.30	
TPT 23(8), 490	Halley's comet	8A80.30	Making a Halley's comet orbit model.
TPT 23(8), 485	Halley's comet	8A80.30	Making sense of the apparent path of Halley's comet.
TPT 34(9), 558	comet Hale-Bopp	8A80.40	A computer preview of comet Hale-Bopp.
TPT 35(6), 348 TPT 35(4), 247	comet Hale-Bopp comets emit x-rays	8A80.40 8A80.80	Photographs and data review of comet Hale-Bopp. Surprise, comets emit x-rays.
PIRA LOCAL	creating life in the classroom	8A80.90	Spoof the creation of life in the classroom by putting the necessary
TPT 20(2), 90	life on other planets	8A80.95	ingredients in a tank, add UV light and lightening, and voila. Searching for life on other planets. What to look for.
	STELLAR ASTRONOMY	8B00.00	
	THE SUN	8B10.00	
PIRA LOCAL	60 W Sun	8B10.10	· · · · · · · · · · · · · · · · · · ·
TPT, 42(4), 196	the solar constant	8B10.20	Accurate methods to calculate the amount of energy the Earth receives from the Sun.
TPT 38(6), 333	solar constant	8B10.20	
TPT 42(4), 196	solar constant	8B10.20	
TPT 15(3), 172 AJP 45(10), 981	solar constant lab	8B10.20 8B10.22	Inexpensive equipment used to measure the solar constant. Measurement of solar energy from the Sun.
TPT 29(2), 96	solar energy solar luminosity	8B10.22 8B10.24	Use a light bulb of known wattage to calculate the luminosity of the Sun.
AJP 74(8), 728	solar luminosity	8B10.24	Experiments measuring the solar constant used to calculate the luminosity of
			the Sun.
AJP 73(5), 457	solar luminosity	8B10.24 8B10.24	Estimating <i>hc/k</i> from observations of sunlight. Corrections to AJP 73(5), 457.
AJP 73(10), 979 AJP 71(12), 322	solar luminosity solar Wien peak	8B10.24 8B10.25	A calculation that puts the Sun's Wien peak at 710 nm.
AJP 71(12), 322 AJP 71(3), 216	solar Wien peak	8B10.25	A discussion of why the human eye sees best at the yellow-green
			wavelengths which is well away from the Wien peak.
AJP 71(6), 519	solar Wien peak	8B10.25	Additional comments on AJP 71(3), 216.
TPT 17(8), 531 TPT 38(5), 272	The Sun's temperature The Sun's diameter	8B10.30 8B10.35	How to calculate the Sun's temperature from known data. How to use a pinhole to calculate the diameter of the Sun.
TPT 38(5), 272 TPT 13(7), 417	The Sun's diameter	8B10.35 8B10.35	How to use a pinhole to calculate the diameter of the Sun.
TPT 38(2), 115	The Sun's size	8B10.35	Using ratios and models in class to bring the size of the Sun into perspective.
		0010.00	
TPT 39(4), 249 Bil&Mai, p 3	The Sun's size The Sun's diameter	8B10.35 8B10.35	How the observed size of the Sun changes from perihelion to aphelion. Use an index card with a small hole and a meter stick to determine the diameter of the Sun
TPT 35(8), 391	solar convection cells (Rayleigh-	8B10.40	diameter of the Sun. An explanation of the convection cells and how do make a demonstration
11 1 33(0), 381	Bernard cells)	0010.40	using a skillet, aluminum powder, and silicon oil.

Demonstration	n Bibliography	J	uly 2015	Astronomy
TPT 35(7), Cover	solar convection cells	8B10.40	The cover of this edition of TPT showing the convect	ion cells made with a
shot			skillet, aluminum or brass powder, and silicon oil.	
TPT 46(4), 219	lava lamp sunspots	8B10.40 8B10.50	Making a lava lamp which can be used to show conv	ection cells.
PIRA 200	sunspot on the overhead	8B10.50	A light bulb on a variac is turned up to visible glow ar overhead projector that is turned off. When the overh filament appears as a dark spot.	
PIRA LOCAL	sunspot on the overhead	8B10.50	A light bulb on a variac is turned up to visible glow ar overhead projector that is turned off. When the overl filament appears as a dark spot.	
TPT 35(6), 334	sunspot hallway demo	8B10.50	In a brightly lit room open the door to a dimly lit hallw appears dark. Gradually dim the room lights and obs dramatically lights up.	
PIRA 200	random walk - modeling the energy outflow in stars	8B10.60	Use a Bumble Ball (a common toy) to illustrate the i energy photons in a star.	random walk of high
TPT,37(4), 236	random walk - modeling the energy outflow in stars	8B10.60	Use a Bumble Ball (a common toy) to illustrate the i energy photons in a star.	random walk of high
Sprott, 1.21	random walk	8B10.60	Flip coin to model 1-d random walk. Execute a comp pan of ping pong balls or tennis balls to model a 2-d	
	solar oscillations	8B10.70		
Ehrlich 2, p. 180	stellar / nuclear fusion	8B10.80	A model for the overhead using a transparent groove magnetic marbles or spheres, and a piece of folded i	
AJP 62(9), 804 TPT 43(5), 303	stellar/nuclear fusion stellar fusion	8B10.80 8B10.80	A model built from magnets to demonstrate the force A look at fission and fusion and a determination as to	
			nuclei release more energy.	
TPT 42(2), 119	Poynting-Robertson Effect	8B10.90	How to demo the Poynting-Robertson effect using an an air hose blowing air down onto the air track.	air track, air glider, and
	STELLAR SPECTRA	8B20.00		
TPT 38(1), 35	stellar spectra	8B20.10	Using stellar spectra to classify stars according to ter	•
TPT 21(9), 616	Doppler effect & stellar spectra	8B20.20	How the energy of a photon is directly proportional to is not a violation of energy conservation when applied Doppler effect.	
TPT 22(6), 350 TPT 26(2), 102	Doppler effect & stellar spectra Doppler effect & stellar spectra	8B20.20 8B20.20	A further discussion on energy conservation and the A flaw in the argument of observed red shifts as proo universe.	
TPT 35(3), 160	Doppler effect & stellar spectra	8B20.20	The effect of the Doppler shift on the spectrum of sta travelers.	rs as observed by space
TPT 19(8), 527	gamma ray line astronomy	8B20.40	Gamma ray line astronomy (GRLA) used to detect sp stars.	pectral features from
	STELLAR EVOLUTION	8B30.00		
TPT 29(5), 273	stellar magnitude	8B30.10	An explanation of stellar magnitude and how it is use	d.
PIRA 1000	stellar magnitude simulator	8B30.10		
AJP 46(8),813	stellar magnitude simulator	8B30.10	Six LEDs are adjusted so they appear to form a linea to bright. The actual brightness is then measured.	
TPT 17(7), 460	HR diagram	8B30.20	Using part of the PSSC text to teach about the HR di	-
TPT 25(7), 420	HR diagram	8B30.20	The use of variable stars as a means to observe agir	ng of stars.
TPT 27(4), 231 TPT 34(6), 327	HR diagram HR diagram	8B30.20 8B30.20	Corrections to TPT, 25(7), 420. A discussion of a simple but often missed important i	implication of the Main
TPT 42(6), 347	HR diagram	8B30.20	Sequence. A student-centered, learning-cycle approach to teach	ning star life cycles
AJP 74(1), 10	HR diagram	8B30.20	Why is the Sun so large. Deriving a lower limit on the hydrogen-burning star. Why 90 percent of stars lie in	e radius and mass of a
AJP 74(10), 938	HR diagram	8B30.20	Additional comments on AJP 74(1), 10.	
AJP 68(5), 421	HR diagram	8B30.20	Transformation of a main sequence star to a red giar	nt is discussed.
TPT 42(6), 347	stellar lifecycle	8B30.30	Inquiry based Stellar lifecycle exercise.	
TPT 17(4), 278	stellar lifecycle	8B30.30	How the force of gravity can be responsible for the bi	rth and death of stars.
TPT 10(4), 182	stellar lifecycle	8B30.30	A look at how a star is born and the processes that d	etermine it's lifecycle.
TPT 10(5), 250	stellar lifecycle	8B30.30	Part 2 of a look at how a star is born and the process lifecycle.	ses that determine it's
TPT 10(6), 299	stellar lifecycle	8B30.30	Corrections to TPT 10(5), 250.	

Demonstration	Bibliography	J	uly 2015 Astronomy
		0000.05	Two different size bells are and see be used to model a binery star system.
TPT 28(6), 425	binary star system	8B30.35	Two different size balls on a rod can be used to model a binary star system.
TPT 17(7), 456	binary star system	8B30.35	A model eclipsing binary star system using light bulbs.
AJP 35(9), 817	binary star system	8B30.35	A discussion of the aberration of light from a binary star system.
TPT 7(8), 453	binary star system	8B30.35	How to observe eclipsing binary stars and make a model from an "N" gauge railroad set and light bulbs.
PIRA 1000	variable star simulation	8B30.40	
AJP 51(7),668	variable star simulation	8B30.40	A ball eclipses a lamp. The output from a phototransistor is conditioned by a ADC/microcomputer/DAC on the way to an oscilloscope display.
TPT 31(9), 541	variable stars	8B30.40	Variable stars are used to provide information about properties, processes, and evolution of stars.
AJP 46(11),1197	synthesized variable star	8B30.42	Use a PROM to store the curves for variable stars. No microprocessor, the curve is generated with a simple hardware circuit.
AJP 44(12),1227	variable star simulation	8B30.42	-
AJP 54(11),976	digital variable star		A simple circuit drives a lamp with data stored in EPROM to generate real
			light curves from various types of variable stars. Also includes discussion of a classroom photometer.
PIRA LOCAL	variable star simulation	8B30.42	A 12 volt, 15 watt lamp is plugged into a Pasco digital function generator- amplifier. Set the generator at about 1 Hz. and observe the intensity change.
AJP 71(1), 11	supernova	8B30.42	Resource Letter: OTS-1: Obervations and theory of supernovae. Also, many books and review articles.
TPT 9(6), 326	supernova	8B30.45	What happens and what results from the death of a star.
TPT 7(1), 24	supernova	8B30.45	The Crab Nebula and some results from the death of a star.
PIRA 500	supernova core bounce	8B30.50	
TPT 28(8),558	supernova core bounce	8B30.50	Use the double ball bounce to illustrate supernova core bounce.
TPT 33(6), 358	supernova core bounce	8B30.50	Use the "Astro-Blaster" toy to demonstrate the supernova core bounce.
TPT 33(9), 548	supernova core bounce	8B30.50	Other combinations of ball that can be used to demonstrate a supernova core bounce.
TPT 33(1), 56	supernova core bounce	8B30.50	How to make an aligner for elastic collision of multiple dropped balls.
AJP 39(6), 656	supernova core bounce	8B30.50	Velocity amplification in collision experiments involving Superballs. Analysis and how to make the demonstration.
TPT 30(1), 46	supernova core bounce	8B30.50	Analysis of multiple ball collisions and suggestions for safer multiple ball collision demonstrations.
TPT 30(4), 197	supernova core bounce	8B30.50	
PIRA LOCAL	flashbulb supernova	8B30.55	A flashbulb is placed on the lecture bench hidden behind some "innocent" barrier. The instructor sets it off at an "appropriate" moment.
AJP 72(7), 892	neutron stars	8B30.60	Neutron star projects for undergraduates.
PIRA 1000	pulsar model	8B30.65	
PIRA 1000	pulsar recording	8B30.70	
TPT 9(5), 232	pulsars	8B30.70	
AJP 46(5), 530	pulsars		Observations of pulsars used in the lab or the classroom.
AJP 68(8), 775	x-ray pulsar	8B30.72	Calculation of the "spindown" rate of the x-ray pulsar SGR 1806-20.
	white dwarfs	8B30.75	
PIRA 1000	nebula forward and backward scattering	8B30.90 8B30.95	
UMN, 8B10.40	forward and backward scattering	8B30.95	Clap erasers in front of and behind a clear 60 W lamp.
PIRA LOCAL	forward and backward scattering	8B30.95	Aim a laser or laser pointer through a fish tank filled with water that has a small amount of Pine-Sol added to it. Forward, side, and back scattering can be observed.
	BLACK HOLES	8B40.00	
TPT 41(5), 299	black holes	8B40.10	Some simple black hole thermodynamics.
TPT 41(6),	black holes	8B40.10	
AJP 73(12), 1148	black holes	8B40.10	
AJP 45(5), 423	black holes	8B40.10	
AJP 46(6),678	black holes	8B40.10	
TPT 23(9), 540	black holes	8B40.10	
TPT 24(1), 29	black holes	8B40.10	Part 2. To convey the properties of black hole to students it is useful to put them human terms, such as "The hazards of encountering a black hole".
AJP 56(1), 27	black holes	8B40.10	How long can an observer wait before rescuing an object falling into a black hole.

Demonstration	l Bibliography	0	
TPT 39(2), 84	black holes	8B40.10	How dense is a black hole??
AJP 42(11), 1039		8B40.10	On the radius of black holes.
TPT 46(1), 10	black holes	8B40.10	A black hole in our galactic center.
PIRA 1000	black hole surface - fiberglass or	8B40.20	
	plastic	0040.20	
UMN, 8C20.10	black hole surface - fiberglass or	8B40.20	A large fiberglass black hole potential surface from some museum in Philly.
	plastic		
D&R, M-822	black hole surface - fiberglass or plastic	8B40.20	A potential well made of a clothes basket and rubber sheet. Also large and small commercial models of 1/R cones.
TPT 28(8), 575	black hole surface - fiberglass or plastic	8B40.20	A cardboard funnel constructed to give results similar to fiberglass or plastic models found in science museums.
PIRA 200	membrane table	8B40.30	
PIRA 500 - Old	membrane table	8B40.30	
UMN, 8C20.20	membrane table	8B40.30	Swimsuit fabric stretched over a wood frame is deformed with a weight and
			balls are rolled around.
TPT 16(7), 504	potential well/hill	8B40.35	How to make a potential well or hill from a Pexiglas sheet on a frame.
ref.	potential well/hill	8B40.35	See 1L20.12.
ref.	gravity well	8B40.40	See 1L20.10. Use this demonstration when discussing black holes and gravity wells.
	magnetic field coupling	8B40.50	
	STELLAR MISCELLANEOUS	8B50.00	
TPT 39(3), 187	distance to stars	8B50.10	How to construct an "Astronomy Angulator" to calculate small angles to
Mai 25 0 12	steller dismeter messurement	0050.00	assist in naked-eye observations.
Mei, 35-2.13	stellar diameter measurement	8B50.20	The angular separation of two artificial stars is measured by the Michelson
			method of measuring stellar diameters. Diagrams, Reference: AJP
TPT 39(7), 428	interferometry	8B50.30	27(2),101. Stellar interferometers used to measure the angular diameters of stars.
TPT 28(8), 526	stellar energy radiation	8B50.40	A look at the processes that determine the energy radiated by a star.
AJP 46(1), 23	stellar radiation	8B50.50	What does it take to make a sun shine.
TPT 31(7), 422	lookback time	8B50.60	Note historic events going on when light from specific distant stars started its
			journey to Earth.
TPT 27(7), 518	lookback time	8B50.60	Lookback times and how to calculate them.
TPT 38(2), 122	Olbers' paradox	8B50.70	Why is the sky dark at night when there are so many stars.
AJP 45(2), 119	Olbers' paradox	8B50.70	Why is the sky dark at night when there are so many stars.
AJP 46(9), 923	Olbers' paradox	8B50.70	The expansion of the universe may also be used to explain Olbers' paradox.
TPT 36(3), 176	gamma ray bursts	8B50.80	Gamma Ray Bursts (GRB's) and the effects of time dialation and time
			contraction.
	COSMOLOGY	8C00.00	
	MODELS OF THE UNIVERSE	8C10.00	
TPT 18(9), 639	cosmological models		A discussion of Red Shift, unbound universe, and other factors, and how they
1F1 10(9), 039	cosmological models	0010.05	are applied to comological models.
TPT 38(9), 564	The Big Bang	8C10.10	The Big Bang and chirality of the universe.
TPT 36(9), 529	cosmic microwave background	8C10.20	The study of anisotropies in the CMB.
AJP 70(2), 106	cosmic microwave background	8C10.20	The study of anisotropies in the CMB.
TPT 16(3), 137	steady state, expanding, or	8C10.25	A look at the question " Is the universe open or closed"?
11 1 10(0), 107	contracting universe	0010.20	
AJP 45(7), 642	steady state, expanding, or	8C10.25	The general Doppler formula in a nonstatic universe is derived.
	contracting universe		5 11
PIRA 200	expanding universe	8C10.30	Pull a rubber hose threaded through five large styrofoam balls.
UMN, 8C10.10	expanding universe	8C10.30	Pull a rubber hose threaded through five large styrofoam balls.
Ehrlich 2, p. 189	expanding universe	8C10.30	A simulation of the expansion of the universe using two transparancies with
, , , , , , , , , , , , , , , , , , ,			random dot patterns on the overhead projector.
AJP 50(6),571	expanding universe	8C10.30	Pull on a rubber rope with "galaxies" attached.
TPT 29(2), 103	expanding universe	8C10.30	Use transparencies of a sample universe on the overhead to show center of
		-	expansion in an expanding universe.
AJP 69(2), 125	expanding universe	8C10.30	Using a strip of latex to model how long a light pulse would take to travel
		-	from one galaxy to another in an expanding universe.
PIRA 1000	inflating balloon	8C10.35	
UMN, 8C10.15	•		A belless with relaxies drawn as is blown we with several second sin
01011, 0010.15	inflating balloon	8C10.35	A balloon with galaxies drawn on is blown up with compressed air.
PIRA 1000	inflating balloon expanding universe on a white	8C10.35 8C10.37	A balloon with galaxies drawn on is blown up with compressed air.
	-		A balloon with galaxies drawn on is blown up with compressed air.

Demonstration	Bibliography	J	uly 2015 Astronomy
TPT 20(9), 617	expanding universe	8C10.39	Are we able to use experimantal evidence to calculate the total vector momentum of our expanding universe. Is it zero?
PIRA 1000	bubble universe	8C10.40	nomentum of our expanding universe. Is it zero:
UMN, 8C10.20	bubble universe	8C10.40	Use a straw to blow bubbles in liquid soap.
PIRA 1000	galaxy model	8C10.50	
UMN, 8C10.30	galaxy model	8C10.50	Show a 16" diameter galaxy model.
	View of Galactic Center	8C10.55	
	Spiral Galaxies	8C10.60	
	Radio Galaxies	8C10.70	A proston charrier distillar aplanias talen at radio unuslanatha
	One Million Galaxies	8C10.80	A poster showing 1 million galaxies taken at radio wavelengths.
PIRA 1000	GRAVITATIONAL EFFECTS Klein bottle	8C20.00 8C20.10	
UMN, 8C10.40	Klein bottle	8C20.10	A Klein bottle has been made from a 20 L flask.
PIRA 1000	Moebius strip	8C20.20	
UMN, 8C10.45	Moebius strip	8C20.20	A strip of aluminum about six inches wide and six feet long is made into a Moebius strip.
PIRA 1000	saddle shape	8C20.30	
UMN, 8C10.50	saddle shape	8C20.30	
TPT 33(5), 286	saddle shape	8C20.30	Two models of a negatively curved two-dimensional space. One of
			fiberglass, and one made with strings.
TPT 15(5), 298	saddle shape	8C20.30	A butternut squash provides a negative space over small distances. At large distances the space becomes positive. A hubbard squash has a positive space.
TPT 16(1), 8	saddle shape	8C20.30	•
	·		potato chips are examples of negative space.
AJP 63(2), 186	saddle shape	8C20.30	A ball is not stable when placed on a saddle shape, but surprisingly does become stable if the saddle shape is rotated.
TPT 30(2), 92	non-Euclidean geometry	8C20.35	
			is positively curved, flat, or negatively curved.
TPT 22(9), 557	non-Euclidean geometry	8C20.35	A discussion of gravity touching on non-Euclidean geometry and the geometry of three dimensional space.
TPT 29(3), 147	non-Euclidean geometry	8C20.35	A helpful discussion about space curvature and how to visualize it.
PIRA 500	gravitational lens	8C20.40	
UMN, 8C20.40	gravitational lens	8C20.40	A machined Plexiglas lens bends light like a black hole.
TPT 25(7), 440	gravitational lens	8C20.40	Viewing a fish in a fish tank. Refraction of light as the optical counterpart of a gravitational lens.
TPT 34(9), 555	gravitational lens	8C20.40	5
AJP 48(10),883	gravitational lens	8C20.40	An equation is developed for constructing a Plexiglas lens.
AJP 37(1),103	gravitational lens	8C20.40	Directions for constructing a gravitational lens simulator from Plexiglas. Ref: Phys.Rev. 133, B835 (1964).
AJP 49(7),652	gravitational lens	8C20.40	A plastic lens that bends light the same way a black hole does. Theory and directions for construction of a lens.
AJP 69(2), 218	gravitational lenses	8C20.40	
AJP 56(5), 413	gravitational lens	8C20.42	Henry Cavendish and Johann von Soldner calculated that light would be deflected by gravitational bodies long before Einstein.
AJP 55(4), 336	gravitational lens	8C20.42	How would the outer world look from an observer located in a gravitational lens.
AJP 46(8), 801	gravitational lens	8C20.42	The principle of equivalence and the deflection of light by the Sun.
TPT 38(9), 524	gravitational lens	8C20.42	The prediction and test of Einstein's 1916 prediction.
TPT 39(4), 198	gravitational lens	8C20.42	
AJP 55(5), 428	gravitational lens	8C20.43	The black hole as a gravitational lens.
PIRA 500	galactic lens	8C20.45	
UMN, 8C20.45	galactic lens	8C20.45	
AJP 51(9),860	galactic lens	8C20.45	с с
TPT 44(7), 416	gravitational waves	8C20.50	Icebreaker activities to use when introducing the subject of gravitational waves.
TPT 44(7), 420	gravitational waves	8C20.50	About the new generation of gravitational wave detectors.
TPT 22(5), 282	gravitational waves	8C20.50	5
TPT 34(8), 496	quasars	8C20.60	
TPT 35(1), 5	quasars	8C20.60	
AJP 55(3), 214	quasars Cosmic Strings	8C20.60 8C20.70	The use of quasars in teaching introductory special relativity.
	Cosmic Strings Dark Matter	8C20.70 8C20.80	

July 2015

8D00.00

MISCELLANEOUS

MISCELLANEOUS ASTRONOMY 8D10.00

TPT 21(4), 250	astrophotography	8D10.10	Problems with the photography of stars and galaxies.
TPT 35(3), 186	astrophotography	8D10.10	A homemade mount for guided astrophotos.
TPT 29(7), 459	daytime observations	8D10.20	Compare the size of the Sun and the Moon using welder's filters for daytime
			observation.
TPT 29(8), 500	daytime observations	8D10.20	Calculating Sun-Earth and Earth-Moon distances using trigonometry and
	,		foam plastic balls.
TPT 30(2), 70	daytime observations	8D10.20	Make observations to determine if the Moon revolves around the Earth in the
		0010.20	same direction as the Earth itself rotates or in the opposite direction.
TPT 42(7), 423	tossing on a rotating space station	8D10 30	Amusement park rides are used to answer the question "Where does a
11 1 42(1), 420	tossing on a rotating space station	0010.00	
TDT 42(4) 4	tooping on a ratating appeal station	0040.20	tossed ball go?" on a rotating space station.
TPT 43(1), 4	tossing on a rotating space station	6010.30	A graphical approach to the tossed ball on a rotating space station problem.
	an a sa dahata	0.040.00	
PIRA LOCAL	space debris	8D10.80	
	TELESCOPES	8D20.00	
TPT 48(4), 251	radio telescopes	8D20.10	Introducing radio astronomy as a classroom stimulus.
TPT 49(9), 546	very small radio telescope	8D20.10	Using the very small radio telescope (VSRT) to teach high school physics.
TPT 18(7), 548	radio telescopes	8D20.10	Six articles by Prof. George Swenson and how to instructions for building a
			portable radio interferometer.
TPT 14(8), 479	radio telescopes	8D20.10	Observing "cosmic synchrotrons" with a radio telescope.
TPT 4(3), 99	radio telescopes	8D20.10	About the 210 foot diameter radio telescope at Parkes, New South Wales.
TPT 2(2), 72	radio telescopes	8D20.10	About the radio telescope at Mullard Observatory, Cambridge, England.
PIRA LOCAL	microwave telescopes	8D20.20	Show the old microwave telescope.
TPT 17(2), 132	infrared telescopes	8D20.30	Build an infrared telescope using the 1P-25 image conversion tube.
TPT 18(1), 64	infrared telescopes	8D20.30	How to build an improved handheld infrared telescope.
TPT 22(4), 248	infrared telescopes	8D20.30	A simple infrared telescope made with kitchen materials.
11 1 22(1), 2 10	optical telescopes	8D20.40	See 6A70.20.
PIRA LOCAL	UV telescopes	8D20.50	A look at the Polar and Dynamic Explorer satellites.
TPT 36(7), 403	X-ray telescopes	8D20.50	Views of our Sun at the soft X-ray wavelengths.
TPT 24(1), 21	gamma ray telescopes	8D20.70	An explanation of gamma ray astronomy and the instruments used to
TDT (0(0) 507		0000 70	observe very high energy gamma ray sources.
	gamma ray telescopes	8D20.70	Gamma ray line astronomy and the instruments used for observation.
TPT 19(8), 527	gainina ray telebebebe		
11 1 19(0), 527			
11 1 19(0), 327	ASTRONOMICAL	8D30.00	
TPT 46(4), 237	ASTRONOMICAL		Building a satellite model to demonstrate centripital force and satellite
	ASTRONOMICAL INSTRUMENTS	8D30.00	
	ASTRONOMICAL INSTRUMENTS	8D30.00	Building a satellite model to demonstrate centripital force and satellite
TPT 46(4), 237	ASTRONOMICAL INSTRUMENTS satellite models	8D30.00 8D30.10	Building a satellite model to demonstrate centripital force and satellite motion.
TPT 46(4), 237	ASTRONOMICAL INSTRUMENTS satellite models	8D30.00 8D30.10	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc.
TPT 46(4), 237 PIRA LOCAL	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models	8D30.00 8D30.10 8D30.20	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models	8D30.00 8D30.10 8D30.20	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites Satellites GPS satellites satellites satellites	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.50	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites Satellites GPS satellites satellites satellites	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.50	Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.50	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites Satellites GPS satellites satellites satellites	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.50	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft spacecraft artifacts	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft	8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.50	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft spacecraft artifacts	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft spacecraft artifacts spacecraft orbits	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.60 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft spacecraft artifacts	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft spacecraft artifacts spacecraft orbits	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.60 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit.
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft spacecraft artifacts spacecraft orbits	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.60 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit. A simple explanation of the "slingshot effect" or "gravity assist".
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft spacecraft artifacts spacecraft orbits slingshot effect	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.60 8D30.70 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit. A simple explanation of the "slingshot effect" or "gravity assist".
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft artifacts spacecraft orbits slingshot effect ASTRONOMY TEACHING	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.60 8D30.70 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit. A simple explanation of the "slingshot effect" or "gravity assist".
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft artifacts spacecraft orbits slingshot effect ASTRONOMY TEACHING TECHNIQUES	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.60 8D30.70 8E00.00 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit. A simple explanation of the "slingshot effect" or "gravity assist".
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232 TPT 23(8), 466	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft artifacts spacecraft artifacts spacecraft orbits slingshot effect ASTRONOMY TEACHING TECHNIQUES AND PROJECTS	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.70 8E30.00 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit. A simple explanation of the "slingshot effect" or "gravity assist".
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232 TPT 23(8), 466	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft artifacts spacecraft artifacts spacecraft orbits slingshot effect ASTRONOMY TEACHING TECHNIQUES AND PROJECTS	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.70 8E30.00 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit. A simple explanation of the "slingshot effect" or "gravity assist".
TPT 46(4), 237 PIRA LOCAL TPT 43(7), 454 TPT 43(7), 454 TPT 43(7), 452 TPT 44(7), 424 TPT 2(2), 70 TPT 23(1), 29 TPT 37(4), 196 TPT 39(8), 476 TPT 13(4), 232 TPT 23(8), 466 TPT 23(8), 466	ASTRONOMICAL INSTRUMENTS satellite models spacecraft models satellites satellites GPS satellites satellites satellites spacecraft artifacts spacecraft artifacts spacecraft orbits slingshot effect ASTRONOMY TEACHING TECHNIQUES AND PROJECTS teaching astronomy with games	 8D30.00 8D30.10 8D30.20 8D30.50 8D30.50 8D30.50 8D30.60 8D30.60 8D30.60 8D30.70 8E30.00 8E30.00 	 Building a satellite model to demonstrate centripital force and satellite motion. Spacecraft models of Pioneer, Voyager, Cassini, PDP, Hawkeye, Juno, and the Radiation Belt Storm Probes, etc. How to simulate realistic satellite orbits and the effect that atmospheric drag has on them. The effect of atmospheric drag and temperature on satellite orbits. Relativistic effects on clocks aboard GPS satellites. Determination of a satellite orbit using the doppler effect. Calculating the velocity of orbiting satellites. A demonstration to show why the Voyager 2 spacecraft had an unwanted wobble when a tape recorder on the spacecraft was turned on. A classroom exercize deciphering the information contained on the plaque that accompanied the Pioneer 10 and Pioneer 11 spacecraft. A classroom experiment where students are given a comet or spacecraft's initial velocity and distance from the Sun. They use Newton's laws and a process of iteration to approximate its orbit. A simple explanation of the "slingshot effect" or "gravity assist".

July 2015

Astronomy

TPT 44(3), 153	teaching with astronomical
	catalogues
TPT 37(2), 102	using space to teach physics

8E30.30 Using online astronomical catalogues to expand your experimental astronomy possibilites.

8E30.40 Student projects using up to date world wide web book sized sites and spaceflight as the means to ask questions.

	Support Systems	9A00.00	
	Blackboard Tools	9A10.00	
PIRA 1000	compass	9A10.10	
Mei, 6-1.4	compass	9A10.11	Modifying a steel tape measure to make a blackboard compass. Diagram.
PIRA 1000	protractor	9A10.12	
Mei, 6-1.3	protractor	9A10.12	A blackboard straight edge with a permanently mounted angle indicator. Diagram.
TPT 4(1),19	drawing conic sections	9A10.14	Simple blackboard tools for drawing the ellipse, parabola, and hyperbola.
Hil, M-10b	drawing vectors	9A10.15	A drafting machine mounted on the blackboard helps in drawing vectors.
Mei, 6-1	blackboard graphs	9A10.21	Sources of help for making large blackboard graphs.
Mei, 6-1.6	blackboard graphs	9A10.21	Slides of coordinate systems can be projected on the blackboard with an overhead projector.
PIRA 1000	angle templates	9A10.31	
UMN, 9A10.31	angle templates	9A10.31	Large triangles are used on the chalkboard.
PIRA 1000	sine wave templates	9A10.35	
Mei, 6-1.5	templates for drawing waves	9A10.35	Cardboard templates for various sine waves.
AJP 43(10),927	templates for sine curves	9A10.35	Make a Masonite half period template with a scale at 10 degree intervals.
AJP 55(3),219	moveable blackboards	9A10.40	A long article on movable blackboards.
	Audio	9A20.00	
PIRA 1000	wireless microphone	9A20.10	
UMN, 9A20.10	wireless microphone	9A20.10	
PIRA 1000	multiple wireless microphones	9A20.11	
UMN, 9A20.11	multiple wireless microphones	9A20.11	
PIRA 1000	cord microphone	9A20.15	
UMN, 9A20.15	cord microphone	9A20.15	
PIRA 1000	multiple cord microphones	9A20.16	
UMN, 9A20.16	multiple cord microphones	9A20.16	
PIRA 1000	CD player	9A20.20	
UMN, 9A20.20	CD player	9A20.20	
PIRA 1000	audio cassette	9A20.30	
UMN, 9A20.30	audio cassette	9A20.30	
PIRA 1000	phonograph	9A20.40	
UMN, 9A20.40	phonograph	9A20.40	
PIRA 1000	reel to reel	9A20.50	
UMN, 9A20.50	reel to reel	9A20.50	
	Slide Projectors	9A30.00	
PIRA 1000	mobile screen	9A30.05	
UMN, 9A30.05	mobile screen	9A30.05	
Mei, 34-2.4	projection screen	9A30.06	Drafting linen makes a good projection screen.
PIRA 1000	35 mm projector	9A30.10	
UMN, 9A30.10	35 mm projector	9A30.10	
PIRA 1000	two 35 mm projectors	9A30.11	
UMN, 9A30.11	two 35 mm projectors	9A30.11	
PIRA 1000	35 mm to go	9A30.15	
UMN, 9A30.15 PIRA 1000	35 mm to go	9A30.15	
PIRA 1000 UMN, 9A30.20	lantern projector 3 1/4 x 4 projector	9A30.20 9A30.20	
Sut, L-1	projection lanterns	9A30.20	On using projection lanterns to magnify demonstrations. Diagram.
PIRA LOCAL	light pointer	9A30.21 9A30.30	A handheld light pointer unit with arrow image and focusing ability.
	Film Projectors	9A34.00	A handheid light pointer unit with arrow image and locusing ability.
PIRA 1000	16 mm projector	9A34.10	
UMN, 9A34.10	16 mm projector	9A34.10	
PIRA 1000	film loop projector	9A34.20	
UMN, 9A34.20	film loop projector	9A34.20	
PIRA 1000	super 8 mm projector	9A34.30	
UMN, 9A34.30	super 8 mm projector	9A34.30	
PIRA 1000	8 mm projector	9A34.35	
UMN, 9A34.35	8 mm projector	9A34.35 9A34.35	
PIRA 1000	film strip projector	9A34.35 9A34.40	
UMN, 9A34.40	film strip projector	9A34.40	
AJP 34(8),706	anechoic chamber	9A34.51	Eliminate the sound of the projector with a portable anechoic chamber.
, 01 0-(0), 100	Overhead Projectors	9A36.00	
TPT 2(2),77	overhead projection techniques	9A36.05	On the advantages of using the overhead projector. Many examples.
Mei, 34-2.3	overhead projector construction	9A36.06	Make your own overhead projector. Diagram.
		0.00.00	

Demonstration	Bibliography	J	uly 2015	Equipment
PIRA 1000	overhead projector	9A36.10		
UMN, 9A36.10	overhead projector	9A36.10		
AJP 55(1),89	longer focal length	9A36.11	Adding an auxiliary lens to increase the focal length of an o	overhead projector.
AJP 51(2),183	projecting vertical objects with the		Lay the projector on its back and tape a shaving mirror to the	
	overhead			
AJP 37(1),108	"vertical" overhead projectors	9A36.12	Add an additional mirror to a projector on its back to invert right.	the image left to
PIRA 1000	two overhead projectors	9A36.15		
UMN, 9A36.15	two overhead projectors	9A36.15		
AJP 52(4),379	LCD on the overhead	9A36.20	Take the back off the LCD.	
AJP 54(3),282	digital multimeter on the overhead		Remove the reflecting foil from the back of the LCD display	
AJP 29(6),374	projection meter	9A36.20	Review of a commercial projection meter (HV meter - Willia Development Company)	amson
AJP 52(5),467	LCD devices on the overhead	9A36.20	Take the backing off LCD devices and use them in the tran the overhead projector.	ismission mode on
AJP 41(9),1116	projection galvanometer	9A36.20	Use a laser with a d'Arsonval galvanometer.	
Mei, 30-1.8	projection meter	9A36.20	Use the Cenco projection meter in a lantern projector.	
Mei, 30-1.9	projection meter	9A36.20	A projection meter mount for a slide projector.	
Mei, 30-1.7	projection meter	9A36.20	Project a standard meter on a screen.	
Hil, E-2a	projection meters	9A36.20	Two projection meters for the overhead with assorted acce	ssories.
PIRA 1000	write on film rolls	9A36.30		
UMN, 9A36.30	write on film	9A36.30		
AJP 32(10),xiv	projecting thermometers	9A36.40	Alcohol thermometers are easily projected on the overheac scale on the side.	l projector. Add a
AJP 32(9),xiii	multiexposure transparencies	9A36.50	Use Polaroid 146-L film to make instant transparencies.	
AJP 47(3),291	action effects on the overhead	9A36.60	A review of special commercially available polarizing mater simulation of various motions on the overhead projector.	rials that allow
	Video and Computer Projection	9A38.00		
PIRA 1000	TV table (color)	9A38.10		
UMN, 9A38.10	TV table (color)	9A38.10		
PIRA 1000	TV table (B&W)	9A38.11		
UMN, 9A38.11	TV table (B&W)	9A38.11		
PIRA 1000	tripod TV (color)	9A38.15		
UMN, 9A38.15	tripod TV (color)	9A38.15		
PIRA 1000	tripod TV (B&W)	9A38.16		
UMN, 9A38.16	tripod TV (B&W)	9A38.16		
PIRA 1000	tripod TV (IR)	9A38.17		
UMN, 9A38.17	tripod TV (IR)	9A38.17	Liss a TV assesses and alassesses manifest to calculate an	
AJP 33(1),xxvi	projecting oscilloscopes on TV	9A38.18	Use a TV cameras and classroom monitors to enlarge an c screen.	oscilloscope
PIRA 1000	video projector	9A38.20		
UMN, 9A38.20	video projector	9A38.20		
PIRA 1000	LCD panel	9A38.21		
UMN, 9A38.21	LCD panel	9A38.21		
PIRA 1000	color LCD panel	9A38.22		
UMN, 9A38.22	color LCD panel	9A38.22		
PIRA 1000	classroom monitors	9A38.25		
UMN, 9A38.25 PIRA 1000	classroom monitors monitor on cart	9A38.25 9A38.26		
	monitor on cart	9A38.26 9A38.26		
UMN, 9A38.26 PIRA 1000	video disc	9A38.20 9A38.30		
UMN, 9A38.30	video disc player - level l	9A38.30		
UMN, 9A38.31	video disc with computer	9A38.31		
PIRA 1000	VHS tape deck	9A38.40		
UMN, 9A38.40	VHS tape deck	9A38.40		
PIRA 1000	3/4" tape deck	9A38.45		
UMN, 9A38.45	3/4" tape deck	9A38.45		
PIRA 1000	IBM clone	9A38.50		
UMN, 9A38.50	IBM clone	9A38.50		
PIRA 1000	Мас	9A38.60		
UMN, 9A38.60	Mac	9A38.60		
	Photography	9A40.00		
AJP 30(12),921	strobe photography	9A40.10	A strobe photography primer.	
AJP 37(2),227	strobe photography	9A40.11	On using the Polaroid "Big Swinger" camera with a rotating	I disk strobe.

AJP 42(5),387	light flasher for lab	9A40.12	Design of a small battery powered light flasher with "grain of wheat" lamps.
AJP 39(3),343 TPT 28(1),12 AJP 58(4),397	miniflashers for "strobe" photos high-speed flash photography video peak store	9A40.12 9A40.15 9A40.18	Circuit design for a small battery powered neon flasher. A long article on high speed flash photography with sound triggering. A video technology that combines several images into a single frame
AJP 38(8),1044	scope camera	9A40.20	resembling strobe photography. A scope camera made from a 2 lb coffee can and a Polaroid camera.
AJP 37(2),226	scope camera	9A40.20	A hood design for using the Polaroid CU5 camera with Tektronix oscilloscopes.
AJP 36(11),1022 AJP 38(3),385	polaroid positive and negative Schlieren photography	9A40.30 9A40.40	Treat the negatives with an 18% solution of sodium sulfite. Diagram of an optical system for Schlieren photography, suggestions of interesting Schlieren effects.
AJP 44(3),308	Polaroid ED-10 attachment	9A40.50	An attachment for mounting the Polaroid ED-10 camera on divided circle spectrometers.
AJP 44(3),309	Polaroid ground glass back X-Y, Chart Recorders	9A40.50 9A50.00	On making a ground glass back for Polaroid cameras.
AJP 38(8),1046	chart recorder pen	9A50.01	Use a Leroy reservoir pen on a Leeds and Northrup or Brown chart recorder.
AJP 46(10),1082	projection plotter	9A50.10	Replace the X-Y recorder plate with a Fresnel mirror and use as the stage on an overhead projector.
AJP 30(6),439	X-Y projection plotter	9A50.10	Apparatus Drawings Project No 28: Mechanical and electrical construction plans for a plotter designed to fit the 10x10 stage of an overhead projector.
AJP 34(4),361	projection X-Y plotter	9A50.10	A long extension arm translates the motion from an X-Y plotter to an adjacent overhead projector.
Mei, 7-1.9	X-Y projection plotter	9A50.10	An X-Y projection plotter, Pictures, Diagram, Construction details in appendix, p.537.
Mei, 7-1.11 AJP 33(11),xvii	X-Y projector plotter X-Y recorder	9A50.10 9A50.11	The Huston X-Y recorder is adapted for the overhead projector. Pictures. Two Heath Servo Recorders are used (non-destructively) to make an X-Y
Mei, 7-1.10	X-Y projection plotter	9A50.11	recorder that is suitable for overhead projection. An X-Y recorder is constructed from two Heath Servo Recorders without disabling either unit. Diagram.
AJP 37(9),861	spot follower attachment	9A50.14	Two photocells in a bridge arrangement to attach to a chart recorder. Made for the Cavendish experiment.
AJP 53(8),792	cheap optical scanner Buildings	9A50.15 9A60.00	Mount a photocell at the pen location of a computer controlled X-Y plotter.
AJP 38(11),1366	"The Design of Physics Buildings"	9A60.10	Book review: "The Design of Physics Buildings", from England. Also mentions "Modern Physics Buildings"
AJP 33(12),1050 AJP 36(10),964	science lecture hall - Berkley lecture auditoria design	9A60.10 9A60.10	A 550 seat hall with triangular rotating stage and CCTV facilities. Design of a 380 seat auditorium.
AJP 41(11),1233	Frank C. Waltz Lecture Halls	9A60.10	-
AJP 29(1),50	physics building classroom addition	9A60.10	
AJP 30(11),841	about lecture tables	9A60.20	Cover your black table tops with matte white.
AJP 33(1),45	Kansas State building	9A60.40	Floor plans, construction details, and special features of a new physics-math building at Kansas State University.
AJP 31(6),417	physics building at UC - Riverside	9A60.40	Planning and plans for a building for a twenty staff, ninety grad students and a 300 seat lecture hall with rotating front.
AJP 29(11),753	Pierre S. du Pont Science Building	9A60.40	Article on building design with particular attention on procedure in planning.
	Museums	9A65.00	
AJP 43(12),1049	physics learning center	9A65.01	Description of the physics learning center at UC Santa Barbara.
AJP 40(7),978	The Exploratorium	9A65.01	Description of the Exploratorium.
AJP 39(3),243	European scientific museums	9A65.01	A survey of west European scientific museums.
AJP 40(3),433	modern physics in European museums	9A65.01	Four museums display some discovery apparatus in modern physics.
	Resource Books	9A70.00	
AJP 47(10),835 AJP 32(1),56	resource letter PhD-1 Soviet lecture demonstrations	9A70.10 9A70.20	A listing of many sources of information on lecture demonstrations. A translation project on a series of eight volumes on lecture demonstrations is available in microfilm.
	Unclassified Demonstrations	9A73.00	
AJP 40(1),183	rope sliding off table	9A73.01	Analysis of the rope sliding off the table for beginning students.
AJP 42(12),1123	surface plasmons on gold	9A73.01	A demonstration of the surface plasmons at the gold-air interface.
AJP 35(6),482	apparatus competition awards	9A73.10	List of awards for the 1967 apparatus competition awards - three lecture
		0.000	demonstration, three undergraduate laboratory.

Demonstratio	n Bibliography	J	uly 2015	Equipment
TPT 28(7),495	Ballistic Pendulum demonstrations	9A73.11	Five additional demonstrations using the Ballistic pendulu	um.
TPT 28(7),492	demo collection	9A73.12	Ten demonstrations from "Turning the World Inside Out". be entered into the bibliography at some point.	. This book should
TPT 28(5),312	meter stick mechanics	9A73.13	Five standard demonstrations performed with meter stick finding the center of mass, cantilevered stack, greater that vibrations.	
AJP 44(6),602 AJP 34(8),660	corridor displays quantitative corridor exhibits	9A73.20 9A73.20	A list of twenty interactive displays in corridor glass cabin These corridor type exhibits are actually used as low cost much description of individual displays.	
AJP 53(7),690	second order phase transition model	9A73.30	A mechanical model exhibits spontaneous symmetry breating a ferroelectric material.	aking similar to that
AJP 53(12),1172		9A73.31	A discussion of the bird-in-shell toy exhibiting a catastrop order phase transition.	he similar to first-
AJP 47(6),539	air table interstitial atoms	9A73.32	Magnetic cylinders on an overhead projector air table der features of dumbbell shaped interstitial atoms.	nonstrate all the
Sprott, 6.13	fractals	9A73.40	Transparencies or computer images containing fractals a wall or screen.	ire projected on the
TPT 46(8), 473	Diet Coke and Mentos	9A73.50	An open ended experiment that explores the variables of Mentos reaction.	the Diet Coke and
AJP 76(6), 551	Diet Coke and Mentos	9A73.50	Experiments that identify the surface roughness for bubb the chemical reaction of potassium benzoate and asparta reasons for the explosive reaction.	•
AJP 77(8), 677	Diet Coke and liquid nitrogen	9A73.50	Direct immersion of an open bottle of Diet Coke into liquid cause rapid nucleation and a violent reaction.	d nitrogen can also
AJP 77(4), 293	Diet Coke and iron filings Philosophy	9A73.50 9A75.00	Iron filings are a substitute for Mentos in the popular read	tion.
AJP 30(8),594	films vs. demonstrations	9A75.10	A study finding the use of films in place of demonstration instructional tool.	s is an effective
AJP 39(4),454	cost of labs and lecture	9A75.10	Cost per student contact hour for labs and lecture is com	
AJP 51(4),305	conceptual physics lecture	9A75.11	Paul G. Hewitt's Millikan lecture 1982 on conceptual phys	
AJP 28(4),306	rationale of lecture demonstrations	9A75.11	Four unique contributions lecture demonstrations make to	
AJP 51(4),297	philosophy of lecture demonstrations	9A75.11	The activity of "demonstrating" is actually one of the man physics, and more straight talk from Harald C. Jensen.	y ways of doing
AJP 28(6),539	Wesleyan conference summary	9A75.12	Summary of the conference on lecture demonstrations lis and ten recommendations.	sting eight points
AJP 35(5),440	labs as lecture demonstrations	9A75.20	Set up labs as lecture demonstrations in such a way that students to take data directly in their lecture seats. Exam inclined air track.	
AJP 45(5),433	demonstration homework problems	9A75.23	Demonstration problems as homework performed at the Center.	Physics Learning
AJP 28(3),263	"Continental Classroom" reviews	9A75.50	Three appraisals of the "Continential Classroom" television Harvey White.	on program featuring
AJP 28(4),368	physics on TV	9A75.50	Harvey E. White discusses the turntable lecture room fro a studio.	nt and teaching from
M-002 (D&R)	buttons & signs	9A75.60	Make bumper stickers or buttons with puns and slogans.	Several are shown.
D&R, M-002	buttons and signs	9A75.60	Buttons and signs with puns and logos.	
D&R, O-045	buttons and signs	9A75.60	Sign of Maxwell's Equations.	
D&R, M-006	buttons and signs	9A75.60	Buttons and signs with puns and logos.	
AJP 41(4),604	Films Kodansha color slide set	9A80.00 9A80.05	Review of the Kodansha set of 360 color slides.	
AJP 45(4),384	quantum computer generated	9A80.05	Description of a set of computer generated slides.	
AJP 41(6),848	images physics transparencies	9A80.06	Review of a collection of 82 color transparencies with 159	9 overlavs
AJP 44(12),1236		9A80.00 9A80.10	A list of 17 films released.	, ovonayo.
AJP 44(11),1146		9A80.10		
AJP 44(8),811	films released	9A80.10		
AJP 44(10),1022		9A80.10		
AJP 36(4),302	films - 16 mm (1020)	9A80.10		. (1968).
AJP 44(4),407	films released	9A80.10	-	· /
AJP 44(2),197	films released	9A80.10		
AJP 36(6),475	resource letter - films	9A80.10	A resource letter on physics films. 149 films were selecte annotation.	d with brief
AJP 30(5),321	film listing - 220 films	9A80.10		

	013		
AJP 29(4),222	films for physics - 1960	9A80.10	450 films listed by field with distributors.
AJP 44(6),621	films released	9A80.10	A list of 28 films released.
. ,			
AJP 33(10),806	single concept films	9A80.11	Franklin Miller introduces the concept of single concept films.
AJP 35(3),177	making quantum computer movies	9A80.20	The details of generating computer movies in quantum mechanics.
AJP 39(1),4	short films	9A80.20	The Millikan lecture (1970) by Franklin Miller, Jr. on making short physics
			films.
A ID 20(7) 517	making physics films	0100 20	
AJP 30(7),517	making physics films	9A80.20	Twenty single concept films were produced. Film production from a
			physicist's perspective.
AJP 39(5),588	film competition	9A80.21	Announcement of the third film competition (1972).
AJP 35(2),166	films released	9A80.21	List of fifteen films released for commercial distribution by Education
			Services Inc.
	film loop review	0 4 9 0 2 2	
AJP 44(1),116	film loop review	9A80.23	"Electrostatic Series" 19 film loops; Baez, Powell, and Bosserman;
			Encyclopedia Britannica Education Corp.; color.
AJP 44(4),406	film review	9A80.25	"The Plutonium Connection" and "A Small Case of Blackmail" 60 min. and 27
			min. (1976?).
AJP 32(1),62	film/film loops: Ripple Tank	9A80.25	Film Review: "Ripple Tank Wave Phenomena" (Series of three): B&W, 25
/101 02(1),02		0/100.20	
			min, 19 min, 23 min, (1963?) ALSO: Nine film loops of the same.
AJP 41(8),1034	film loop review	9A80.25	Review of the fifteen loops in the "Standing Waves Series" Produced by
			Encyclopedia Britannica Education Corp.
AJP 44(6),619	film loop review	9A80.25	"Relativity, A series of Computer Animated Films", set of eight, Houghton
- (-//			Mifflin.
	film Ioon - Dolotivistic Dido	0400.05	
D&R, S-030	film loop - Relativistic Ride	9A80.25	Computer animated visual effects of the finite velocity of light. Also, includes
			the effects of time dialation and the Penrose-Terrell rotation.
AJP 44(10),1021	film loop review	9A80.25	"Skylab Film Series", set of 12.
AJP 43(3),290	Skylab film loops	9A80.26	The AAPT purchased two miles of unedited film from the skylab missions.
	, , , , , , , , , , , , , , , , , , , ,		The thirteen edited loops are announced here.
	film loop not inter	0 4 0 0 0 0	•
AJP 44(11),1144	film loop review	9A80.30	"Lissajous Figures and Phase Measurements" and "Lissajous Figures and
			Frequency Measurements"
AJP 40(10),1502	computer film notes	9A80.30	Notes on generating the computer film loop "Eigenvalues in Quantum
			Mechanics"
AJP 40(1),46	dynamic electric field pictures	9A80.30	The equations for generating pictures of the electric fields of various moving
	dynamie electric field pictures	5400.50	
			charges.
AJP 40(2),343	film loop review	9A80.30	The physical significance of the bumps occurring in the momentum-space
			representation is elucidated.
AJP 37(5),514	computer film notes	9A80.30	Complete background for the film loop "Expanding Wavefronts in Special
(-)/-			Relativity"
	huden and war find the stars	0 4 0 0 0 0	
AJP 38(8),984	hydrogen wave functions -	9A80.30	Description of the mathematics of the film loop "Quantum-Mechanical Wave
	computer		Functions of the Hydrogen Atom"
AJP 40(11),1657	computer film notes	9A80.30	Notes on a series of computer generated films for solid state physics - "Wave
			Packets in Periodic Potentials"
AJP 34(6),470	quantum-mechanical harmonic	9A80.30	A description of the "Quantum Mechanical Harmonic Oscillator" film loop and
AJI 34(0),470	•	3700.30	
=	oscillator		the possibility of other films.
AJP 39(8),952	computer film notes	9A80.30	Background for the film loop "Tunneling Between Two Square Wells".
AJP 41(6),836	computer film loop notes	9A80.30	Notes on "Synchrotron Radiation", a fifth film in the series Electric Fields of
			Moving Charges.
AJP 39(12),1540	film loop notes	9A80.30	Notes on making the computer generated series of four film loops on electric
/10/ 00(12),1010		0/100.00	fields of moving charges.
	film mater	0400.00	5 5
AJP 36(5),412	film notes	9A80.30	Film notes on "Image Methods in Electrostatics" computer animated film
			loop.
AJP 44(8),810	film loop review	9A80.30	"Kinetic Theory by Computer Animation", 11 films, Fitch, Kinsley, and Martin.
	•		
AJP 31(5),400	film review: Forces (PSSC)	9A80.40	Film Review: "Forces" (PSSC), B&W, 23 min, (1963?) Excerpt 7 1/2 min.
(),	. ,		
AJP 44(4),405	film review	9A80.40	"Wave-Particle Duality" color, 2min., British Films, Ltd. (1976?).
AJP 31(7),552	film review	9A80.40	Film Review: "Time and Clocks" (PSSC), B&W, 27 min. (1963?)
AJP 42(11),1047	film review	9A80.40	"Refraction, Dispersion and Resonance" color, sound, 35 min., (1973).
AJP 44(5),499	film review	9A80.40	"Galileo: The Challenge of Reason" color, 26 min. Learning Corp of America
		230.40	(1970).
	film and a second second	0400 40	
AJP 31(5),390	film announcement	9A80.40	Announcement of "the Ultimate Speed" and "Time Dilation"
AJP 39(7),849	film review	9A80.40	Film Review: "The World of Enrico Fermi" 16mm, B&W, 47 min, (1970),
			Harvard Project Physics.
		a . a a . a	
AJP 44(12).1234	film review	9A80.40	"P-N Junction" and "The Crystal Diode" 14 and 18 min.
AJP 44(12),1234 A.IP 44(11) 1145	film review	9A80.40 9A80.40	"P-N Junction" and "The Crystal Diode" 14 and 18 min. "Fusion: The Ultimate Fire" color, 15 min, (19762)
AJP 44(11),1145	film review	9A80.40	"Fusion: The Ultimate Fire" color, 15 min., (1976?).
. ,			"Fusion: The Ultimate Fire" color, 15 min., (1976?). "Technology: Catastrophe or Commitment?" color, 24 min., Hobel-Leiterman
AJP 44(11),1145 AJP 44(5),498	film review film review	9A80.40 9A80.40	"Fusion: The Ultimate Fire" color, 15 min., (1976?). "Technology: Catastrophe or Commitment?" color, 24 min., Hobel-Leiterman Productions, (1976?).
AJP 44(11),1145	film review	9A80.40	"Fusion: The Ultimate Fire" color, 15 min., (1976?). "Technology: Catastrophe or Commitment?" color, 24 min., Hobel-Leiterman

	• • •		
AJP 44(4),405	film review	9A80.40	"Life and the Structure of Hemoglobin" color, 30 min, KCET (1976?).
AJP 31(6),463	film review: Inertial Mass (PSSC)	9A80.40	Film Review: "Inertial Mass", B&W, 19 1/2 min., (1963?)
().			
AJP 44(12),1236	film review	9A80.40	"Schlieren" 18 min.
AJP 44(5),499	film review	9A80.40	"Ee Yi Ee Yi Oh" color, 10 min. Perennial Education Inc. (1976?).
AJP 43(7),659	film review	9A80.40	"Volta and Electricity", color, sound, 33 min., Samuel Devons
AJP 30(11),844	film review: An Experiment in	9A80.40	Film review of "An Experiment in Physics", B&W, 23 min, (1962?).
701 30(11),044	•	5700.40	
AJP 31(9),735	Physics film review	9A80.40	Film Review: "Coulomb's Law", "Coulomb's Force Constant", B&W, 30 min. each, (1963?)
	film review	9A80.40	
AJP 44(8),810			"The Fossil Affair", color, 24 min., (1976?).
AJP 43(5),473	film review	9A80.40	"Albert Einstein: The Education of a Genius" color, sound, 44 min., Films for
			Humanities. (1975?)
AJP 44(12),1235	film review	9A80.40	"The Energy Crunch" - three films series. 40, 34, 38 min.
AJP 44(10),1021	film review	9A80.40	"The Kinematics of Vectors" color, 30 min.
. ,			
AJP 44(5),498	film review	9A80.40	"Day of the Dark Sun" color, 17 min. Iowa State, (1976?).
AJP 43(12),1120	film review	9A80.40	"Explorations in Space and Time" Series of eight, color, sound, 7-10 min
			each, Houghton Mifflin. (1973).
AJP 44(7),718	film review	9A80.40	"Space: Life Out There", color, 24 min., (1976?).
AJP 44(11),1146	film review	9A80.40	"Birth and Death of a Star" color, 30 min.
().			
AJP 42(6),525	film review	9A80.40	"Introduction to Lasers" color, 17 min. Encyclopedia Britannica Corp. (1974?)
AJP 31(5),342	film background -"Rel.Time	9A80.40	A long background article on the experiment that was the basis of the film
	Dilation"		"Time Dilation - An Experiment With mu-Mesons"
AJP 44(9),901	film review	9A80.40	"Railroad to the Stars", "Solar Eclipse", "A Stranger Near the Sun", NSF,
			color, sound, 5 min each.
AJP 39(9),1102	film review	9A80.40	"Laser Light" 37 1/2 min., Color, (1971?
AJP 30(12),932	film review	9A80.40	Film Review: Archimedes' Principle, B&W, 6 min, (1953).
AJP 31(11),889	film review	9A80.40	Film Review: "Time Dilation", B&W, 37 min, (1963?)
AJP 31(7),552	film reviews	9A80.40	Film Review: "Long Time Intervals" (PSSC), B&W, 24 min. (1963?)
AJP 44(11),1144	film review	9A80.40	"Museum of the Solar System", color, 23 min., (1976?).
AJP 32(7),571	film review	9A80.40	Film Review: "Similarities in Wave Behavior", B&W, 27 1/2 min, (1964?) Bell
			Laboratories, John Shive
AJP 31(7),552	film reviews	9A80.40	Film Review: "Short Time Intervals" (PSSC), B&W, 22 min. (1963?)
().		9A80.40	
AJP 44(12),1234	film review		"The Ultimate Energy" 28 min.
AJP 42(9),804	film review	9A80.40	You Can't Go Back" color, sound, 6 min., Elementary Penguin Productions.
AJP 42(9),803	film review	9A80.40	"Anti-Matter" color, animated, sound, 12 min., UCLA Animation Workshop.
			(1973).
AJP 43(2),203	film review	9A80.40	"Introduction to Holography" color, sound, 17 min., Encyclopedia Britannica
			Corp. (1975).
AJP 43(8),752	film review	9A80.40	"The Physicists: Playing Dice with the Universe", color, sound, Document
101 40(0),102		0/100.40	Associates, (1975?).
	Class Marshawing Law d Thermore	0 4 0 0 4 0	
AJP 31(4),307	film: Mechanical and Thermal	9A80.40	Film Review: Mechanical and Thermal Energy, B&W, 22 min, (1963?).
	Energy		
AJP 32(7),571	film review	9A80.40	Film Review: "Simple Waves", B&W, 27 min, (1964?) Bell Laboratories, John
			Shive
AJP 44(2),197	film review	9A80.40	"The Ultimate Machine" color, 30 min., Time-Life (1971).
AJP 33(5),414	film review:	9A80.40	Film review: "Liquid Helium II: The Superfluid" 16min., B&W (1965?)
.,			Resource letter SH-1: superfluid helium.
AJP, 50 (3), 202	superfluid helium	9A80.40	I I I I I I I I I I I I I I I I I I I
AJP 33(10),859	film review	9A80.40	Film Review: "Lasers. Coherent Light Sources for Science and Industry: the
			Princeton Report" Color, 30 min.
AJP 31(6),463	film review: Inertia (PSSC)	9A80.40	Film Review: "Inertia", B&W, 27 min., (1963?)
AJP 32(3),234	film Review: The Ultimate Speed	9A80.40	Film Review: "The Ultimate Speed", B&W, 38 min, (1963?)
AJP 44(6),617	film review. The onimate opeed	9A80.40	"Wondering About Things", color, 22 min.
().			
AJP 33(1),63	film review: Matter Waves	9A80.40	Film review: "Matter Waves", Bell Laboratories, B&W, 28 min.
AJP 44(9),902	film review	9A80.40	"Power from the Earth", "Putting the Sun to Work", NSF, color, 12 min, 4
			min.
AJP 31(9),735	film review	9A80.40	Film Review: "Speed of Light" (PSSC), B&W, 21 min., (1963?)
AJP 30(10),772	film review: Photons	9A80.40	Film review of "Photons", B&W, 19 min, 1962?
AJP 31(5),400	film review: Frames of Reference	9A80.40	Film Review: "Frames of Reference" (PSSC), B&W, 28 min, (1963?)
AU 31(3),400		0700.40	
	(PSSC)		Excerpt I - 7 min., Excerpt II - 5 1/2 min.
AJP 43(12),1121	film review	9A80.40	"Shadows of Bliss" color, sound, (1972).
AJP 44(6),618	film review	9A80.40	"Keyhole to Eternity", color, 27 min., (1976?).
AJP 44(7),718	film review	9A80.40	"Science New Frontiers Series - No Easy Answers" color, 14 min., (1976?).
			• • • • • • • • • • • • • • • • • • • •
AJP 31(9),735	film review	9A80.40	Film Review: "Change of Scale" (PSSC), B&W, 23 min., (1963?)
AJP 31(6),462	film announcement	9A80.40	"Liquid Helium II, The Superfluid", B&W, 40 min., (1963?)
		000	

	AJP 44(1),116	film review	9A80.40	Joseph Fraunhoffer: Dispersion" and "Joseph Fraunhoffer: Diffraction" color,
				sound, 16, 14 min. (1975).
	AJP 30(10),772	film: Interference of Photons	9A80.40	Film review of "Interference of Photons", B&W, 14 min., PSSC, (1962?)
	AJP 44(9),902	film review	9A80.40	"Action and Reaction" color, sound, 15 min., (1967).
	AJP 44(9),900	film review	9A80.45	"Take the World from Another Point of View" 3/4" video, 60 min.
		Computer Programs	9A85.00	
	AJP 44(8),792	analog computer uses	9A85.05	Additional uses of the analog computer as a teaching aid.
	AJP 42(1),75	analog computer module	9A85.05	The Analog Devices 433 multifunction module simplifies analog computer simulations.
	AJP 44(11),1139	Heath analog computer	9A85.05	An op amp module replaces the vacuum tube op amps in the Heath ES-201
	//01 ++(11),1100	modification	0/100.00	computer.
	AJP 42(7),591	Fourier transform with analog	9A85.05	Use the EIA TR-20 instructional analog computer to find the Fourier
	A01 42(7),001	computer	5405.00	transform of some real, even functions.
	AJP 41(5),622	analog computer applications	9A85.05	Description of the analog computer with applications in harmonic motion,
		5 1 11		quantum mechanics, and radioactive decay.
	AJP 36(12),1088	quantum mechanical ripple tank	9A85.10	Graphical presentations of the probability density of a scattering problem.
	AJP 53(7),694	alternate velocity conception	9A85.20	A program identifies students who use position criterion for judging when two
				objects are moving with the same velocity and includes a remedial program.
	AJP 39(5),539	waves in media: BASIC program	9A85.30	A program showing waves in a dispersive media with a listing in BASIC.
4	AJP 36(9),907	FORTRAN mechanics programs	9A85.30	Brief descriptions of 11 dynamics programs for tutorial use.
	AJP 35(5),434	"Photographic" objects - relativity	9A85.30	A tutorial fortran program in special relativity to investigate the "photographic"
				appearance of objects moving past the camera at relativistic speeds.
			0405 00	
	AJP 35(3),275	the square well	9A85.30	A sequence of five programs (printout of one, student handouts shown)
			0405 00	allowing the student to explore several features of the square well.
	AJP 36(3),273	simple pendulum experiment	9A85.30	Description of a tutorial program in FORTRAN.
	AJP 37(4),386	Hamilton's principle of least action	9405.30	A PDP-1 based tutorial program.
	AJP 39(4),442	optics programs - BASIC	9A85.30	Three simple optics programs in BASIC. Listings.
		ELECTRONIC	9B00.00	
		Timers	9B10.00	
	AJP 37(5),563	spark timer	9B10.10	A transistorized spark timer.
	AJP 36(1),60	transistorized spark timer	9B10.10	Circuit diagram for a transistorized spark timer.
	. ,		9B10.10	
	AJP 48(4),321 AJP 40(3),487	spark timer circuit		A complete spark timer circuit. Another circuit.
	AJP 48(4),321		9B10.10	A complete spark timer circuit. Another circuit.
	AJP 48(4),321 AJP 40(3),487	spark timer circuit solid state spark timer	9B10.10 9B10.10	A complete spark timer circuit.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326	spark timer circuit solid state spark timer spark timer	9B10.10 9B10.10 9B10.10	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642	spark timer circuit solid state spark timer spark timer spark timer	9B10.10 9B10.10 9B10.10 9B10.10	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 36(7),743 AJP 36(8),761 AJP 36(8),761	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 48(11),989	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 36(8),761 AJP 40(10),1549 AJP 48(11),989 AJP 29(6),367	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 36(8),761 AJP 40(10),1549 AJP 48(11),989 AJP 29(6),367 AJP 34(6),536	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 48(11),989 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.13	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 40(12),1864 AJP 39(5),566	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.13 9B10.14	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.13 9B10.14	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(4),455	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix	spark timer circuit solid state spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14	 A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark timer record	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14 9B10.14	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix	spark timer circuit solid state spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498	spark timer circuit solid state spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076	spark timer circuit solid state spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.12 9B10.12 9B10.12 9B10.12 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.12 9B10.12 9B10.12 9B10.12 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076	spark timer circuit solid state spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.12 9B10.12 9B10.12 9B10.12 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183 AJP 46(8),864	spark timer circuit solid state spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer sequential timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20 9B10.21 9B10.22	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart recorder.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.12 9B10.12 9B10.12 9B10.12 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart recorder. Add a rectifier in parallel with the switch to stop the residual motion of the
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 30(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183 AJP 46(8),864 AJP 28(5),507	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer sequential timer household clock conversion	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20 9B10.22 9B10.23	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart recorder. Add a rectifier in parallel with the switch to stop the residual motion of the clock motor.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 39(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183 AJP 46(8),864	spark timer circuit solid state spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer sequential timer	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20 9B10.21 9B10.22	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart recorder. Add a rectifier in parallel with the switch to stop the residual motion of the clock motor. Circuit for a switch with a reset timer that will open after times from a few
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 35(6),ix AJP 30(12),1864 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183 AJP 46(8),864 AJP 28(5),507 AJP 31(2),132	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer sequential timer household clock conversion time switch for corridor display	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20 9B10.22 9B10.23 9B10.23	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. A paparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart recorder. Add a rectifier in parallel with the switch to stop the residual motion of the clock motor. Circuit for a switch with a reset timer that will open after times from a few seconds to ten minutes.
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 30(5),566 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183 AJP 46(8),864 AJP 28(5),507	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer sequential timer household clock conversion	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20 9B10.21 9B10.22	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. Apparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart recorder. Add a rectifier in parallel with the switch to stop the residual motion of the clock motor. Circuit for a switch with a reset timer that will open after times from a few seconds to ten minutes. Complete plans and circuit boards for a high speed counter with 22 cm high
	AJP 48(4),321 AJP 40(3),487 AJP 37(3),326 AJP 36(7),642 AJP 36(7),642 AJP 41(5),743 AJP 36(8),761 AJP 40(10),1549 AJP 40(10),1549 AJP 29(6),367 AJP 34(6),536 AJP 35(6),ix AJP 35(6),ix AJP 35(6),ix AJP 30(12),1864 AJP 37(10),1065 AJP 37(10),1065 AJP 37(4),455 AJP 36(4),ix AJP 41(6),831 AJP 29(8),498 AJP 43(12),1076 AJP 51(2),183 AJP 46(8),864 AJP 28(5),507 AJP 31(2),132	spark timer circuit solid state spark timer spark timer spark timer wide range spark timer double sparker for air track spark timer for air track spark timer modification spark timer electronic spark timer spark timer double spark timer - air track coincident spark timer double sparker for air track double sparker note two-glider spark records continuous spark timer record electric stop clock control electric timer control versatile digital timer sequential timer household clock conversion time switch for corridor display	9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.10 9B10.11 9B10.12 9B10.12 9B10.12 9B10.13 9B10.14 9B10.14 9B10.14 9B10.14 9B10.14 9B10.15 9B10.20 9B10.20 9B10.22 9B10.23 9B10.23	A complete spark timer circuit. Another circuit. A solid state spark timer with five frequencies between 5 and 60 Hz. Circuit diagram for a simple low cost solid state synchronous spark timer. Six ranges from 5 to 120 Hz. Replace the jumper wire on each glider with a parallel RC combination. A spark timer for the Eduquip air track. Cenco spark timer modification. Circuit for a tube based AC spark generator. A tube based variable frequency spark timer. A DC relay combined with a RC circuit to form a relaxation oscillator. Plans for a double spark timer for the air track. A coincident spark timer starts sparking at the manual release of the glider. Improves the first mark timing for impulse experiments. Another double sparker method. Re: AJP 36,761 (1968), recommends a different capacitor. Leave the air track floating and attach the spark timer across the two wires. The spark timer paper strip is replaced by a rotating cylinder. A paparatus Drawings Project No. 20: A system for controlling a timer with photoconductive cells and/or electric contacts. A circuit for cycle counting and clock control. An inexpensive hardwired timer based on the 7217A timer chip. A timer to sequentially switch many channels into a single channel strip chart recorder. Add a rectifier in parallel with the switch to stop the residual motion of the clock motor. Circuit for a switch with a reset timer that will open after times from a few seconds to ten minutes.

	=		
AJP 33(2),xiii AJP 28(9),817 AJP 33(6),v	scaler becomes photocell timer free fall timer interval timing with a scaler	9B10.30 9B10.30 9B10.30	Circuit diagram for interfacing scalers to photocell timers. Gate a multivibrator to a scaler. Gate a tuning fork oscillator to a scaler.
AJP 40(8),1168 AJP 44(8),803	photodiode gate light operated millisecond timer	9B10.31 9B10.32	A photodiode gate for the Beckman-Berkeley electronic timer. Light activated gating of a 555 timer running at 100 kHz.
AJP 49(7),701	big X4 timer	9B10.40	Abstract from the 1981 apparatus competition of a 1 ms timer with 2.8 in high digits.
AJP 45(9),881	phototransistor adaptor	9B10.45	A photo transistor adaptor to control stopclocks, digital stopwatches, and digital timers.
AJP 43(3),280	pendulum counter/timer	9B10.50	Circuit for a timer using a photocell that keeps track of the total time and the number of cycles.
AJP 45(11),1126	pulse counter Position and Velocity Detectors	9B10.60 9B15.00	Modify a four function pocket calculator to function as a pulse counter.
Mei, 7-1.8	kinematics instrumentation	9B15.10	Motors, plotters, electronics, etc. to show simultaneous correlation between actual displacement, velocity, and acceleration. Diagrams and pictures.
AJP 42(5),409	ladder of light	9B15.11	Reflect a beam across an air track many times and record the output of a audioamp.
AJP 40(1),202 AJP 56(10),950	air track velocity meter air track timing circuit	9B15.12 9B15.13	A capacitor is charged while a light beam is blocked. A circuit that interfaces five digital stop watches to five gates on the air track.
AJP 48(8),685	mechanical start-stop gates	9B15.14	Mechanical gates instead of photogates control relays which in turn can control something else.
AJP 52(3),281	model race track kinematics	9B15.15	Twenty optical sensors with an Apple computer interface are attached to a model race track to give successive time intervals.
AJP 56(8),739	distributed infrared detector	9B15.15	Forty-six permanently mounted emitter-detector pairs are interfaced to a computer.
AJP 48(1),85	multitimer air track system	9B15.16	Photoelectric sensors combined with solid state memories store a sequence of time intervals which are then transferred to a digital display.
AJP 55(11),1050	multiphotogate timer system	9B15.16	A multiprocessor based multiphotogate array system that allows the time interval between any set of gates to be displayed by selecting from a keyboard.
AJP 50(4),381	air track multitimer	9B15.16	As the air glider passes along a tape with holes, a light beam is transmitted to a photodetector. A circuit is given to store and read out the timing information.
AJP 54(10),894	ultrasonic ranging module interface	9B15.20	Interface the TI sonar ranging module to an Apple II through the game port.
AJP 55(7),658	two glider ultrasonic ranging	9B15.21	Modification of the Western and Crummett system (AJP 54,894) to accommodate two gliders.
TPT 28(6)423	corner reflectors with sonic detect.	9B15.22	Simple corner reflectors eliminate alignment problems with reflectors.
AJP 45(8),711 AJP 35(2),159	air track Doppler radar air track Doppler radar	9B15.28 9B15.28	A homodyne Doppler velocimeter with two parallel explanations. Use X-band radar for air track velocity measurements.
AJP 44(9),879	air track ultrasonic Doppler	9B15.29	Ultrasonic Doppler shift measurement of the velocity of an air track glider.
AJP 53(1),86	air track glider position	9B15.30	Ferrite magnets on the air track glider pass by a wire bent into a square wave and the induced pulses are shaped and then recorded by a microcomputer.
AJP 50(1),84	induction transducer position sensor	9B15.31	A triangular shaped coil is used in an induction system.
AJP 41(3),419	air track induction speedometer	9B15.32	Magnets mounted on the air glider pass on both sides of a long squarewave shaped copper wire that goes to an amplifier and oscilloscope.
AJP 43(4),375	air track inductive recorder	9B15.35	A container of fine iron particles in suspension on the glider moves past microphones attached to a tape recorder.
AJP 37(3),327	air track timer	9B15.40	Circuit for a timer that reads out a voltage proportional to the speed of an object.
AJP 36(1),61	y-t air track recorder Sources of Sound	9B15.50 9B17.00	A roll of spark paper is used to obtain y-t records of an air track.
Sut, S-67	point source of sound	9B17.10	A mechanical apparatus coupled to a resonator to produce a point source of sound.
Mei, 19-4.16	noise generators	9B17.20	Sources of noise and their use in some demonstrations.
AJP 50(7),669	photoacoustic generator	9B17.20 9B17.30	Chop an intense light beam illuminating a sealed blackened funnel.
Hil, O-7k	acoustical radiator	9B17.30 9B17.30	Four speakers at one end of a glass lined box make a 5-10 KHz acoustical
AJP 42(9).780	edge tone generator	9B17.40	radiator. Reference: AJP 17(12),581. Produce tones by blowing air by a wedge.

Demonstration	Bibliography	Jı	uly 2015	Equipment
Sut, S-58	high pitched whistle	9B17.90	Directions for making a high pitched whistle. Diagram.	
Sut, S-60	directional sound source	9B17.91	Directions for constructing a directional sound source usi whistle. Diagram.	ng a high pitched
0 / 0 75	Sound Detectors	9B18.00		
Sut, S-75	microphones	9B18.10	Connecting a carbon-granule microphone to a tube ampli	
Sut, S-76	manometric flames	9B18.20	A rubber diaphragm in a device (diagram) controls flame viewed in a rotating mirror.	neight which is
Hil, S-3e	manometric capsule	9B18.20	A sensitive flame is viewed with a rotating mirror.	
Mei, 17-7.4	sensitive flame	9B18.30	Noise changes a high-calm flame to the turbulent state. I	eybold No. 41197.
Sut, S-71	sensitive flames	9B18.30	Hold copper gauze above a jet and light.	
Sut, S-70	sensitive flames	9B18.30	A hood for a ordinary Bunsen burner (Diagram) that will p	oroduce a flame
Sut, S-69	sensitive flame	9B18.30	sensitive to sound. A flame lit at the end of a glass tube drawn into a fine tip	can be tuned to be
Sut, S-72	sensitive flames	9B18.30	very sensitive to sound. A Bunsen burner with air holes covered and gas pressure	e reduced becomes
Sut, S-73	Sensitive liquid jet	9B18.35	sensitive to sound. Make a sensitive jet in an aquarium to show conclusively	that the jet and not
Mei, 19-9.1	sound amplification with water	9B18.36	the flame is sensitive. A tuning fork coupled to a steady water stream breaks it	up and the drops fall
Sut, S-74	sensitive liquid jet	9B18.36	on a drum head. Place a tuning fork against a nozzle and let the drops hit	
Sul, 8-74		3010.30	the drumhead to the nozzle with a rod for self sustaining	
Sut, S-78	phonodeik	9B18.40	Diagrams of four phonodeiks and one phonelescope. All acoustic oscillographs using a diaphragm to move a sma	
Sut, S-77	phonodeik	9B18.40	Cement a small mirror on a rubber diaphragm on one end light off a rotating mirror to the small mirror onto a screen	d of a tube. Reflect
	Circuits/Components/Inst.	9B20.00	5 5	
AJP 56(7),665	displacement transducer	9B20.10	An optical wedge made with a strip of 35 mm slide film.	
AJP 32(11),xxiv	seismometer	9B20.11	A ceramic phonograph pick-up modified to be a seismom oscilloscope directly.	ieter, drives a
AJP 35(3),xxii	electrometer display	9B20.13	Use the recorder output of an electrometer to drive a proj lecture table meter.	ection meter or
AJP 34(3),xxix	inexpensive electrometer amplifier	9B20.13	Circuit for an inexpensive transistor electrometer amplifie	۲.
AJP 40(4),623	electrometer circuit	9B20.13	A solid state electrometer circuit.	
AJP 36(10),969	vacuum tube electrometer	9B20.13	Circuit for an inexpensive vacuum tube electrometer.	
AJP 28(7),xiii	electrometer circuit	9B20.13	A three tube circuit to extend the range of a RCA Ultra-Se Microammeter (Model WV-84A).	ensitive DC
AJP 44(10),1016	picoammeter		Circuit for a simple picoammeter with adjustable input po	
AJP 34(7),vii	versatile test instrument		A circuit for a mercury pulser, sliding pulsar, and stable p	
TPT 3(5),226	calibrating meters	9B20.20	Improves on TPT 3(2),78 (1965). Ammeter range switch adjustment.	and ohmmeter zero
TPT 3(2),77	meter tester	9B20.20	A tester to determine full scale current and internal resist	
AJP 33(8),603	inexpensive student potentiometer	9B20.21	A 0.1% student potentiometer and calibration source may parts.	de from off the shelf
AJP 35(10),xi	null indicator circuit	9B20.21	Add a battery and current limiting resistor to a bridge / mi indicator.	croammeter null
AJP 35(7),iii	meter guard	9B20.21	Protect your meter movements.	
AJP 42(2),108	strain gauge	9B20.23	Apparatus competition merit award looks like the precurs product.	or of the PASCO
AJP 52(1),86	precision voltage reference	9B20.25	Use a precision voltage reference built with an LM399 for Wheatstone bridge reference.	use as a
AJP 34(12),xvi	use mototcycle batteries	9B20.28	Motorcycle batteries are a convenient size.	
AJP 30(6),vi	infrared detector	9B20.30	Data for the Block Associates KH-51 indium antimonide p infrared detector.	ohotoconductive
AJP 44(2),188	LED photometer	9B20.30	A circuit for using an LED as a light detector.	
AJP 46(10),1079	photodiode photometer	9B20.30	A photodiode photometer based on the PIN-125 photodic amp.	ode and 741 op-
AJP 42(1),77	fringe intensity photometer	9B20.30	Mount a photocell on a traveling microscope stage.	
AJP 28(6),563	optical tachometer	9B20.30	Simple photodiode circuit detects black and white sides of	of a spinning top.
AJP 41(7),931	photointerrupt module	9B20.30	On using the GE A13A1 photointerrupt module.	
AJP 42(4),342	solid state photometer	9B20.30	A high sensitivity solid state photometer based on the MF	RD 14B photo
AJP 57(10),840	Pasco photogate evaluation	9B20.30	Darlington and ULN 2157 op amp. Thorough evaluation of the Pasco photogate.	

AJP 52(6),550	selective surface solar radiometer	9B20.30	Black and white painted surfaces give directly an absolute determination of the solar irradiance.
AJP 35(12),ix	photometer	9B20.30	Make a photometer out of a meter and photosensitive resistance cell.
AJP 35(4),359	inexpensive photodensitometer	9B20.30	Use a photodiode in conjunction with a X-Y recorder to make a direct reading photodensitometer.
AJP 44(4),399	holography light meter	9B20.30	A selenium photocell hooked to a microammeter will give the reference to object beam ratio.
AJP 38(8),987	small area photometer	9B20.30	Simple photometer for measuring small light intensities over small areas. Suitable for single and multiple slit experiments.
AJP 53(11),1108	optical radiation power meter	9B20.30	A new accurate power meter based on new 100% efficient silicon photodiodes
AJP 34(3),240	counting photons	9B20.30	Counting photons, here for the optical barrier penetration experiment, with a liquid N2 cooled photomultiplier (1P21).
AJP 55(12),1147	inexpensive photometer	9B20.30	A photoresistor with a LED that lights when a preset level is exceeded. Use neutral density filters to vary range.
AJP 29(8),iv	light actuated PNPN switch	9B20.30	"Photran" light switch from Solid State Products. (1961)
Sut, A-101	photomultiplier tube	9B20.30	Using the recently developed electron multiplier photocell. Picture.
AJP 34(10),xv	variable frequency switch	9B20.35	A transistor switch in series with a DC supply is used as a audio amplifier where waveform requirements are not stringent.
AJP 44(12),1228	V to F	9B20.35	Simple three transistor V to F converter.
AJP 37(5),566	transistor based opamp	9B20.35	Make a low noise, high input impedance opamp with transistors. Circuit given.
Sut, A-86	mechanical model of a amplifier	9B20.35	A mouse trap triggering a rat trap is a mechanical model of a two stage amplifier.
Sut, A-85	multistage tube amplifier	9B20.35	Circuit diagram for a multistage tube amplifier.
AJP 31(2),xi	temperature controller	9B20.40	Control the temperature of small systems to 0.2 C using a photoresistor in
		0000 40	the light beam of a galvanometer.
AJP 47(1),120	glass resistance thermometer	9B20.40	Use ordinary glass instead of a carbon glass thermistor to construct a inexpensive resistance thermometer.
AJP 58(12),1210	temperature controller	9B20.40	A circuit for a wide range temperature controller for solid samples.
AJP 45(3),311	millidegree temperature thermostat	9B20.40	Millidegree temperature control in a double oven chamber.
AJP 29(6),v	low temp thermistors	9B20.40	Announcement of a bead type "Veco" thermistor good down to liquid nitrogen temperatures.
AJP 57(11),1049	LM 34/35 temperature sensor	9B20.40	National Semiconductor LM34/35 temperature sensors have 10 mV/deg outputs.
AJP 49(6),599	inexpensive digital thermometer	9B20.40	A digital thermometer based on the AD590 and A/D converter with 6 digit LED driver.
AJP 45(3),312	proportional temperature control	9B20.40	Millidegree temperature controller.
AJP 46(8),863	differential thermostat	9B20.40	A low cost differential thermostat developed for use in solar energy control.
AJP 41(3),443	simple diode radiometer	9B20.40	Circuit for a simple diode (1N 5179) radiometer.
AJP 33(5),xvii	strain gauge bridge	9B20.45	Circuit for a strain gauge bridge, used here to measure the deformation of a brass ring.
AJP 43(2),155	phono cartridge as transducer	9B20.45	On the utility of inexpensive piezoelectric type phono cartridges as displacement transducers.
AJP 53(11),1108	Motorola pressure transducer	9B20.50	A short note on the Motorola MPX100 pressure transducer.
AJP 39(3),348	simple pressure transducer	9B20.51	The thickness of an optically dense dye between two anvils is measured electroptically.
AJP 30(4),xiv	electrohumidity transducer	9B20.55	A humidity sensor that changes resistance with humidity.
AJP 53(10),1011	silica gel humidity sensor	9B20.55	The change of conductivity of silica gel is used to measure humidity.
AJP 46(2),192	LN2 level probe	9B20.65	The simplest probe is to blow on a meter stick which frosts up to the level of the LN2. Also, a thermocouple on a rod connected to a microammeter or
	law agat INO manifest	0000.05	millivoltmeter is inserted until the meter deflects.
AJP 57(10),954	low cost LN2 monitor	9B20.65	A circuit monitors LN2 levels in a dewar.
AJP 57(12),1153 AJP 36(7),641	flow detector making solenoids	9B20.66 9B20.70	An optoswitch detects the ball in an inline ball flow indicator. Make a coil of 3500 turns of No. 16 wire. Data.
AJP 36(7),641 AJP 34(5),x	high Q inductors	9B20.70 9B20.70	High Q inductors from United Transformer Corp. are useful in demonstrating
, ioi 0+(0),x		0220.10	resonance at power line frequencies.
AJP 32(10),xvi	inexpensive coils	9B20.70	Focus coils from old TV sets or field coils from old speakers are convenient due to large opening and can usually be connected directly to 120 V AC.
AJP 40(7),1040	making coils	9B20.70	Directions for winding coils for use with 10 V DC.
AJP 35(8),vi	winding transformers	9B20.70	Use Scotch tape between layers if you are trying to wind a transformer without a winder.
AJP 57(2),184	field stabilized electromagnet	9B20.71	Transformer windings are used for the core of an electromagnet.

Demonstration	Bibliography	Ju	ıly 2015	Equipment
AJP 28(7),xiv	mercury-wetted contact relays	9B20.75	A catalog describing design features and operating chara	acteristics.
Sut, A-97	photoelectric relays	9B20.75	On using photocells to turn things on. Diagram.	
Sut, A-98	photocell-thyratron relay	9B20.75	On using photocells for sensitive control. Diagram.	
AJP 35(11),1047	electric and magnetic field probes	9B20.80	Electric and magnetic field probes where the strengths and	re presented
AJP 56(7),622	Hall effect transducer	9B20.80	audibly. Circuit diagrams. Using integrated circuit Hall effect transducers.	
AJP 54(1),89	Hall effect sensor	9B20.80	Using the Microswitch 91SS12-2 Hall effect sensor.	
AJP 54(1),88	digital integrator	9B20.90	A circuit starts with a VFC, ends with a counter.	
AJP 49(4),374	• •	9B20.90	A very simple lamp, photocell, opamp circuit to demonstr feedback.	ate negative
AJP 49(11),1035	Josephson junction analog	9B20.90	An electronic analog of a resistively shunted Josephson j	junction.
AJP 47(5),471	two component exponential decay circuit	9B20.90	A circuit provides a output composed of both fast (20 sec sec) time constants.	c) and slow (100
Mei, 30-2.8	integrator and differentiator	9B20.90	A circuit provides both RC integrating and differentiating square wave input.	circuits with 1 KHz
AJP 46(8),866	digital logic monitor	9B20.92	An LED on each pin shows the logic state of integrated c	ircuits.
AJP 50(3),283	simple universal logic state checker	9B20.92	A circuit for a simple universal logic state checker.	
AJP 41(9),1117	reverse sudden death lead	9B20.95	Make a breakout box with a standard duplex receptacle to	
AJP 46(9),952	digital lecture hall display	9B20.99	A circuit for a four digit LED display with 24 LEDs in each	n digit.
0	Function Generators	9B30.00		
Sut, A-27	audio frequency oscillator	9B30.10	A tube with a resonant RLC circuit oscillating in the audio capacitors with separate keys makes an organ. Diagram.	U
Sut, S-68	audio oscillator	9B30.10	A tube era audio oscillator. Circuit.	ubita naisa an a
AJP 32(7),v	noise generators	9B30.11	Schematic for a thyatron noise source. Listen and show v scope, insert a tunable adjustable width resonant circuit a as Q increases, some interference demonstrations.	
AJP 44(1),110	square wave generator	9B30.12	A five component TTL square wave generator with a range	ge of 0.1 to 50 kHz.
AJP 44(7),710	digital waveform synthesizer	9B30.13	A simple ten step waveform digitizer made from three ch	ips.
Sut, A-28	plucked string oscillator	9B30.14	Modify the audio oscillator in A27 to be a damped oscillar a plucked string.	tor that sounds like
AJP 49(3),275	gating amplifier for tone bursts	9B30.15	This circuit gates bursts of periodic signals to simulate For single pulse on a wave analyzer.	ourier analysis of a
AJP 46(10),1080	harmonic oscillator circuit	9B30.16	An op-amp based harmonic oscillator capable of demons interaction between the initial transient and steady-state	-
AJP 35(8),v	frequency scanning for wave analyzer	9B30.17	A frequency scanning device and output coupler for use wave analyzer. Circuits given.	
AJP 33(11),965	low frequency current source	9B30.20	A mirror on a pendulum directs light onto a photovoltaic o oscillating output.	
AJP 45(12),1234	very low frequency oscillator	9B30.20	Circuit for a .25 to 2.5 Hz oscillator based on the Intersil 8	
AJP 43(1),113	ultra low frequency oscillator	9B30.20	Mechanically rotate a Polaroid between a light source an pickup covered with another Polaroid	
Sut, A-24	very low frequency oscillator		A tube circuit for generating very low frequency sine wave demos. Diagram.	
Sut, A-23	very low frequency alternator	9B30.20	Plates connected to a 12 V battery rotating in a salt wate frequency of rotation for use with slow circuits. Diagram.	r bath give AC at the
Hil, S-1f	Welch turntable oscillator	9B30.20	A slow oscillator made from two turntables.	
Mei, 33-2.7	RC phase shift oscillator	9B30.30	A single tube RC phase shift oscillator. Diagram. A circuit for generating high frequency damped oscillation	ac by coark
Sut, A-30	spark discharge oscillator - parallel resistance	9030.40	discharge with parallel resistance.	is by spark
Sut, A-32	10 MHz oscillator	9B30.40	Directions for making a 10 MHz oscillator.	
Sut, A-36	UHF oscillator	9B30.40	Using "modern" tubes to generate UHF oscillations.	
Sut, A-40	modulation of HF	9B30.40	The plate of the oscillator in A-36 is modulated at an aud Diagram.	io frequency.
Sut, A-29	spark discharge oscillator - series	9B30.40	A circuit for generating high frequency damped oscillation discharge and a series resonant circuit.	ns by spark
	Oscilloscopes	9B37.00	-	
AJP 43(2),182	TV as oscilloscope	9B37.10	A simple circuit to convert a black and white TV set into a oscilloscope.	a multiple trace
AJP 29(5),xii	large oscilloscopes	9B37.10	Large oscilloscopes on the market in 1960 and reference constructing one by Harold Jensen.	e to plans for
AJP 35(9),ix	demonstration oscilloscope	9B37.10	Use the Welch demonstration oscilloscope as a slave to oscilloscope with vertical and horizontal outputs.	a high quality
Mei, 33-2.10	large oscilloscope	9B37.10	A 12" oscilloscope. Picture, Details in appendix, p.1337.	

AJP 32(4),xvi	project oscilloscope traces	9B37.15	A ten inch focal length lens projects a high intensity oscilloscope pattern with
			magnifications up to twenty.
AJP 48(4),318	oscilloscope trigger	9B37.20	Simple circuit provides a calibrated sweep for cheap oscilloscopes.
AJP 51(3),283	tektronix 503 power transformer	9B37.30	Install a separate transformer if the CRT filament windings are the problem.
	repair		
	Advanced Instruments	9B40.00	
AJP 29(7),iii	GM scaler	9B40.14	Review of Radiation Equipment and Accessories Corp model E-115 GM
			scaler and accessories. (1961)
AJP 53(8),793	single-channel pulse height	9B40.14	A six IC single-channel pulse height analyzer.
(- //	analyzer		
AJP 52(10),890	time to amplitude converter	9B40.14	A time-to amplitude circuit suitable for multichannel analyzer input.
AJP 29(9),xvii	mercury-relay pulse generator	9B40.15	Pulse generator at 60 Hz with variable decay time.
AJP 28(6),559	rate meter circuit	9B40.15	A four tube ratemeter circuit for standard GM negative pulses.
AJP 36(9),920	scintillation preamp and power	9B40.15	Use an RCA CA 3001 IC as a pulse preamp.
AJI 30(3),320		3040.15	ose an Non on southo as a puise preamp.
	supply	004046	On the use of multichennel englyzers in the intro lobe
AJP 43(11),1017	multichannel analyzers in the lab	9B40.16	
AJP 55(12),1150	RF null detector	9B40.20	Three methods of connecting microammeters to radios as null detectors.
Sut, A-34	radios	9B40.20	A crude radio is made by coupling an antenna to the oscillator in A-32.
Sut, A-33	wavemeter	9B40.20	A simple RLC wavemeter with a flashlight lamp for use with high frequencies.
		0040.00	Annonatus Drawings Draiget No. 10: NMD conceptus
AJP 29(7),451	NMR apparatus	9B40.30	Apparatus Drawings Project No. 18: NMR apparatus.
AJP 29(8),492	electron paramagnetic resonance	9B40.31	Apparatus Drawings Project No. 19: Simple lab apparatus for investigating
	hellistic vehiceseter	0040.05	EPR.
AJP 43(5),465	ballistic galvanometer	9B40.35	Plans for a simple ballistic magnetometer.
AJP 29(7),445	small X-ray tube	9B40.40	Apparatus Drawings Project No. 17: Small X-ray tube 28 kv.
AJP 43(2),194	make an X-ray tube	9B40.40	o
AJP 45(1),104	light bulb X-ray tube	9B40.40	Convert an ordinary showcase light bulb into an X-ray tube.
Sut, A-102	X-ray tubes and equipment	9B40.40	A discussion of X-ray tubes.
AJP 42(2),169	plasma device	9B40.45	
AJP 43(3),280	double plasma machine	9B40.45	A double plasma machine constructed from "throw-away" items.
AJP 37(9),859	droplet suspension	9B40.50	A small chamber where a nonuniform AC field provides three dimensional
=			containment.
AJP 59(9),807	"Paul" trap - macroscopic	9B40.50	A simplified "Paul" trap to demonstrate trapping of dust particles in a AC
/			electric quadrupole field.
AJP 37(10),1013	droplet suspension	9B40.50	Same as AJP 37(9),859: A small chamber where a nonuniform AC field
			provides containment. Circuits and drawings.
AJP 41(3),442	frequency spectrum analyzer	9B40.60	Two four quadrant multiplier integrated circuits (MG 1594L) are the basis of a
			frequency spectrum analyzer.
	Power Supplies	9B50.00	Annual the Device the October Device the State of the State of
AJP 30(10),738	direct coupled amp and power	9B50.01	Apparatus Drawings Project No. 30A: Power supply with built in direct
	supply		coupled amplifier (tube based).
AJP 53(11),1116	lab power supply	9B50.10	A circuit for a low cost 0 to 28 V, 0.5 A power supply.
AJP 42(2),158	four output power supply	9B50.11	Schematic for a four output, single transformer, DC power supply using IC
			regulators.
AJP 44(3),301	high current supply	9B50.12	Circuit for a 28 V DC 20 Amp power supply.
AJP 43(4),376	inverter	9B50.15	Schematic for a 12 V DC to 115 V AC converter.
AJP 34(10),xvi	precision adjustable DC standard	9B50.20	Team a Kelvin-Varley voltage divider with a constant voltage supply to obtain
			a precision adjustable DC voltage standard.
AJP 38(6),769	precision voltage divider	9B50.25	An inexpensive variation of the Kelvin-Varley divider has constant input
			impedance for all values of the voltage ratio.
TPT 3(7),321	surplus power supplies	9B50.30	Replace selenium rectifiers, use 400 cycle inverters with the 400 cycle
			aircraft equipment.
AJP 35(10),xi	keeping storage cells charged	9B50.35	Plug all storage cells into a charger on a timer that comes on for two hours
			every night at midnight.
AJP 28(9),815	e/m power supply	9B50.40	Power supply circuit for coils, tube.
AJP 45(5),495	e/m power supply	9B50.40	Independently regulated heater, focus, and plate supplies.
AJP 35(10),972	capacitor discharge switch	9B50.99	Operate a gas pulse switch "backwards".
	Light Sources	9B60.00	
PIRA 1000	eosin mister	9B60.10	
Mei, 34-2.6	large arc lamp	9B60.10	Use a movie theater arc lamp.
AJP 33(9),xii	cool-beam projection system	9B60.20	The GE PAR 56/2NSP cool beam lamp has a dichroic reflector and 6 1/2"
			diameter.
Mei, 34-2.7	projection system	9B60.20	Add for the 300W GE PAR 56/2NSP narrow spot cool beam Lamp. Picture.
AJP 29(7),iii	pinlite	9B60.22	1/64" dia x 1/16" incandescent lamp from Kay Electric Company.
Mei, 34-2.2	point source of light	9B60.22	Add for the Osram HBO-109 high pressure mercury vapor lamp.
	-		

AJP 48(5),418 LED point source AJP 45(1),106 LED point source AJP 54(10),952 crossed gratings diverging bea AJP 49(1),91 single grating - parallel beams AJP 33(6),v strobe for hall displays Mei, 7-2.5 motion study stroboscope Sut, L-2 incandesent lamps AJP 29(3),xxvi straight line filament lamps Mei, 34-2.5 straight line filament AJP 39(4),454 ripple free sources Sut, L-4 sodium and mercury vapor lan AJP 52(8),762 sodium lamps AJP 44(12),1227 sodium street lamps AJP 47(2),197 sodium source AJP 28(9),ix cesium vapor lamp AJP 29(6),371 mercury source AJP 43(10),927 monochromatic mercury sourc hydrogen lamp AJP 29(12),856 AJP 28(6),xi atomic hydrogen lamp AJP 28(6),xi Hg point source TPT 2(6),281 mercury arc AJP 35(11),ix electrodeless discharge tubes improves gas discharge tube AJP 36(2),x AJP 43(12),1111 Fe-Ne source AJP 30(2),127 blackbody source Sut, L-3 glow lamps AJP 28(6),xii strobe flashtube AJP 43(8),747 blinky calibration AJP 29(11),787 optical bench source

Light Paths Made Visible F&A, Ob-8 optical disc Sut, L-6 optical disc Hil, O-4b optical disc AJP 36(12),1170 blackboard optics D&R, O-007 blackboard optics smoke box Sut, L-9 D&R, O-035 smoke box TPT 28(6),420 bee smoker

resource letter of radiometry

AJP 38(1),43

AJP 48(4),320beam splitting deviceAJP 49(12),1185conical beam in smoke boxSut, L-10chalk dustD&R, O-035chalk dustSprott, 6.2chalk dustAJP 43(1),92laser mount for opticsAJP 41(4),549Gaussian beam

July 2015

Equipment

	9B60.23	Cut the lens off an LED and use as a point source for generating a
		columinated light beam.
	9B60.23	Use an LED in inverse square law experiments.
ams	9B60.25	Use a laser and crossed gratings to generate a pattern of diverging beams,
		collimated if needed, for optics demonstrations in a smoke box.
5	9B60.26	Pass a laser beam through a grating, then collimate the diverging beams with
		a lens to obtain parallel beams for optics demonstrations.
	9B60.30	A circuit to vary the rate of a neon strobe.
	9B60.30	Fan blades chop a beam from a masked lamp. Diagram.
	9B60.50	Line filaments, point sources, photofloods, 7/16" brass tube lamp holder.
	9B60.55	Chicago Miniature Lamp Works makes three way spring suspension lamps
		that retain straight axial filament position.
	9B60.55	A standard showcase lamp is a good line source.
	9B60.59	After starting, switch spectral sources to DC from batteries.
nps	9B60.60	Sodium vapor lamp was new in the thirties, Mercury has UV, reference for
		constructing other glass lamps: Rev.Sci.Inst.,3,7,1932.
	9B60.61	The Norelco SOX-35 and SOX-18 low pressure sodium lamps.
	9B60.62	The GE Lucalux LU250/BD lamp.
	9B60.62	Low pressure sodium street lamps are discussed. Neon carrier, increased
		brightness, broader lines.
	9B60.63	The Westinghouse CL-2 lamp has two strong lines at 8521 and 8944 A. Can
		be modulated at 10 KHz.
	9B60.65	Use a small germicidal ozone lamp in series with a ballast.
ce	9B60.65	Use a medium pressure Hg arc (GE H-100-A4/t3) lamp and an interference
		filter.
	9B60.65	Review of the Hassler hydrogen lamp.
	9B60.65	Announcement of the Hassler 75 W 500 hr. Balmer series lamp.
	9B60.65	Announcement of the Osram HBO-109 high pressure mercury arc lamp.
	9B60.65	Directions for making a mercury arc that runs off 110 V DC.
	9B60.66	Excite electrodeless discharge tubes with a microwave generator.
	9B60.67	A procedure for making fluorescent screens for discharge tubes.
	9B60.68	The Westinghouse WL-22810A Fe-Ne lamp is a good standard wavelength
		source for spectroscopy.
	9B60.69	Apparatus Drawings Project No. 24: A platinum wedge that can be used a
	0000 70	blackbody or non-blackbody source. Temperatures to 1500 K.
	9B60.70	Glow lamps with standard medium base are used as polarity indicators on
		direct current, dim strobe flashers at twice AC frequency. Argon lamp has
	0060.00	some UV.
	9B60.80 9B60.80	Inexpensive GE FT-30 flashtube is suitable for stroboscopic operation. Calibrate a blinky with a photocell to scaler.
	9B60.80 9B60.90	A Nite Lite makes an inexpensive extended optical bench source.
	9B60.99	A resource letter reprinted from "Journal of the Optical Society of America"
	900.99	lists general references.
	9B61.00	lists general references.
	9B61.20	A ground glass disc makes rays of light more visible and has provision to
	0001.20	mount various optical elements.
	9B61.20	A description of the optical disc.
	9B61.20	Many optical demonstrations can be shown with the optical disc.
	9B61.25	Several suggestions to improve the Klinger blackboard optics system.
	9B61.25	The Klinger blackboard optics system
	9B61.30	A large glass fronted black box filled with smoke or ammonium chloride (A-5)
		fumes.
	9B61.30	A box with acrylic or glass front is filled with smoke.
	9B61.31	Bee smokers produce a large amount of smoke from one wadded paper
		towel. 1-800-Beeswax.
	9B61.32	Use a stack of microscope slides to obtain parallel, convergent, and
		divergent sets of beams.
	9B61.33	A mirror set at a small angle on the end of a rotating shaft is used to produce
		a reflected conical beam.
	9B61.35	Clap dusty chalkboard erasers together.
	9B61.35	Laser beam made visible with chalk dust.
	9B61.35	Chalk dust or a smoke generator is used to make a laser beam visible.
	9B61.36	A mount for a laser permits either transverse or rotational movement of the
		beam.
	9B61.38	A rotating device with two offset lenses generates a ray envelope from a
		laser beam that simulates a Gaussian beam.

Demonstration Bibliography July 2015 Equipment Sut. L-8 gauze screen 9B61.40 White threads are stretched 2-3 mm apart on a 2x4' frame. Use tracing paper on embroidery frames. AJP 30(12),929 tracing paper screen 9B61.41 AJP 33(11),970 optical tank 9B61.50 Fluorescein in an aquarium, aerosol generator. Sut. L-7 optical tank 9B61.50 A 3x3x36" water tank with some fluorescein added. Many demos mentioned. TPT 2(6),278 ink paths on the overhead 9B61.61 Ink dipped balls are rolled down chutes at various barriers shaped like optical elements. The incident and reflected paths are traced out. TPT 2(2),87 elastic string ray model 9B61.66 Elastic strings don't sag like regular string when used in three dimensional ray models. Sut, L-5 invisibility of light 9B61.71 Light passing through a glass fronted black box is not visible until a white card is placed inside. Lasers 9B62.00 Mei, 36-1-3 9B62.10 laser theory Introduction to lasers. AJP 43(12),1057 laser modes display 9B62.11 Use a Fabry-Perot etalon to display both longitudinal and transverse modes. AJP 50(1),90 laser transverse modes 9B62.11 Observe the transverse modes of a laser by shining a beam through a defunct laser tube to a screen a meter away. AJP, 50 (1), 90 laser transverse modes 9B62.11 Observe the transverse modes of a laser by shining a beam through a defunct laser tube to a screen a meter away. AJP, 50 (10), 936 laser modes display 9B62.11 An experiment where switching between axial modes during laser start up is used in the correlation of changes in the tube temperature, cavity length, and output polarization. AJP 49(9),891 polarization and intensity 9B62.12 Lasers show large intensity fluctuations when externally polarized and so do fluctuations some internally polarized lasers. AJP 59(8),757 laser polarization simplified 9B62.13 Find the angle to set the polarizer that gives constant intensity. Directions. AJP 49(10),915 laser resource letter 9B62.15 Here's the source of all laser information pre 1980. AJP 49(9),915 laser resource letter 9B62.15 Here's where to go for laser information. AJP 42(11),1006 An article on laser safety and the status of federal regulations (1974). laser safety 9B62.20 Mei, 36-8 laser safety 9B62.20 Don't look into a laser. AJP 34(10),989 inexpensive CO2 gas laser 9B62.30 Plans for an inexpensive CO2 gas laser. Power is increased by lengthening the tube and introducing a cooling AJP 35(8),776 9B62.30 CO2 laser power increase system. chemical detector for CO2 laser 9B62.30 A filter paper soaked in a cobalt chloride and ammonium chloride solution AJP 38(6),777 turns blue where the beam strikes. AJP 38(5),655 inexpensive nitrogen laser 9B62.33 Directions for constructing a small pulsed ultraviolet nitrogen laser. Sprott, 6.2 wavelengths of a HeNe laser 9B62.34 The light from a HeNe laser tube is observed through a diffraction grating. Many colors are observed. 9B62.35 AJP 33(3),225 HeNe laser construction Design of a 60 cm confocal resonator laser. AJP 37(3),276 9B62.35 construction of HeNe lasers The general procedures for designing a HeNe laser. AJP 38(10),1250 inexpensive RF HeNe laser 9B62.35 Directions for making an inexpensive 3.39 micron RF excited HeNe laser. AJP 44(12),1172 N2 laser 9B62.36 Design and construction of a low cost N2 pulsed laser. AJP 35(6),ix A method for preparing uranium hydrite inside a noble gas laser. uranium hydrite getter 9B62.38 AJP 35(8),v correction - uranium hydride getter 9B62.38 There are several errors in the description of the preparation of a getter from metallic uranium. AJP 45(11),1118 laser alignment 9B62.40 Use a square aperture to align two beams with no rotation. AJP 32(5),355 optics of the laser beam 9B62.40 Some optics. 9B62.40 AJP 35(5),x plasma tube mirror alignment A method for aligning mirrors on plasma tubes with respect to the tube, not each other. AJP 45(1),107 9B62.50 HeNe laser rejunevation A HeNe laser was operated in a helium environment for a day and began to lase again. AJP 45(8),778 reconditioning HeNe tubes 9B62.50 Reactivate the getter. AJP 45(11),1127 laser communication 9B62.60 Bounce a laser beam off a earphone driven mirror. AJP 47(3),282 laser communication system 9B62.60 Shine a laser through an ultrasonic light modulator. 9B62.60 AJP 38(7),926 transmitting sound with laser Use an audio transformer in series with the cathode side of the laser power supply. AJP 44(1),111 9B62.60 Modulate a laser beam by passing it through a small plastic strip attached to laser communication apparatus an earphone. TPT 28(8),560 laser eavesdropping 9B62.60 Development of a crude laser eavesdropping system during a student project. 9B62.60 Sut, A-99 transmission of sound by light Sound-light demonstrations with a commercial photocell. 9B65.00 **Microwave Apparatus** AJP 35(8),761 microwave system 9B65.10 Description of a low cost x band system for research and demonstration. D&R, O-030 microwave system 9B65.10 The Welch 3 cm system. AJP 32(4),xv microwave absorber 9B65.13 A bag of charcoal absorbs microwaves. AJP 39(1),120 supports for microwave studies 9B65.20 Styrofoam sheets with the edges outside the beam introduce no perturbations to the beam.

Demonstration	Bibliography	Jı	uly 2015	Equipment
AJP 39(1),121	microwave probe antennas	9B65.25	Design of microwave probe antennas for both electric and	magnetic waves.
AJP 41(10),1198	microwave coherer	9B65.40	A coherer in series with a battery and galvanometer is much than a spark gap or neon glow lamp.	ch more sensitive
Mei, 33-7.5 AJP 44(7),628	introduction to microwave optics microwave optics with 1 cm waves	9B65.90 9B65.91	General comments about use of microwaves in optics. The advantages of using 1 cm wavelengths in physical option	tics including
AJP 49(12),1149	microwave optics	9B65.91	overhead projection techniques. A 9 GHz system used in microwave versions of the Michel Bragg reflection, Brewster's law, and total internal reflectio interference.	
Hil, O-7j	microwave demonstrations	9B65.91	Microwave demonstrations using 420 MHz. Reference: AJ	P 20(5),307-8.
Hil, O-7g Hil, O-7h	microwave optics microwave optics	9B65.91 9B65.91	A complete set of 12 cm microwave optics. A complete set of 3cm microwave optics.	
111, 0-711	Computer Interface	9B03.91 9B90.00	A complete set of schriftletowave optics.	
AJP 57(6),561	IBM parallel printer port interface	9B90.20	Very good discussion on using the parallel printer port.	
AJP 59(11),998	ultrasonic ranging module	9B90.20	Interfacing the TI module to a PC.	
AJP 59(2),187	A to D on the IBM	9B90.20	Hook up an ADC0804 to the parallel port.	
AJP 48(4),317	computer - AV interface	9B90.30	Pick up the pulses that drive a computer's speaker and de	code them for use
AJP 56(10),953	Apple II paddle port ADC	9B90.40	in operating projectors, cameras, etc. Circuit given. A simple single chip ADC interface to the paddle port with write the data.	a little program to
AJP 51(11),1048	specialized interface	9B90.40	Interface for the Nuclear Data 2200 or 555 multichannel ar	nalyzer to Apple II.
TPT 28(5),332	ADC for the Apple II	9B90.40	Construct a high quality ADC that plugs into an expansion	slot.
AJP 43(9),839	PDP-8 signal averager	9B90.50	A signal averager for the PDP-8.	
AJP 50(2),187	multichannel analyzer -TRS-80 interface	9B90.50	Interface the LeCroy 3001 multichannel analyzer to a TRS	
AJP 52(6),566	TRS-80 data logger	9B90.50	Use the joystick inputs of the TRS-80 in a simple scheme data logger.	for a four channel
	MECHANICAL Motors	9C00.00 9C10.00		
	Pumps	9C20.00		
	Vacuum	9C25.00		
AJP 36(3),234 Mei, 16-6.1	high vacuum system movable vacuum system	9C25.10 9C25.10	Design of a high vacuum system suitable for lecture demo Pictures of a movable vacuum system good to high vacuu Details in the Appendix, p 610.	
Sut, A-57	vacuum system	9C25.10	Construction of a portable high vacuum system.	
AJP 32(7),vi	vacuum lore	9C25.15	Let in only dry gas or heat traps to 100 C to reduce water of	contamination.
AJP 37(1),109	liquid nitrogen cold trap	9C25.15	Mount a styrofoam bucket on top of a minimum sized reen	trant can-type trap.
AJP 30(8),v	Bayard-Alpert type ionization gauge	9C25.20	A single device contains a titanium vapor pump that consist filament depositing a film on the wall to act as a getter, and type ionization gauge.	
AJP 32(6),504	power supply for Penning vacuum gage	9C25.20	Schematic diagram for a Penning vacuum gauge power su	upply.
AJP 32(6),483	homemade high vacuum techniques	9C25.20	Make experimental vacuum tubes with solder glass, mass and multiple gettering.	produced headers,
AJP 28(7),654	thin films of dielectrics and metals	9C25.25	Directions for making a transparent aluminum oxide film or mirror. The interference colors of the mirror and glass side complementary. A parallelogram frame permits demonstra color with angle of incidence. More.	es are
Hil, M-21b AJP 28(6),xii	vacuum deposition system vacuum tube construction kit	9C25.26 9C25.30	A picture of a vacuum deposition system. The Physikit 100A from Harries Microphysics contains par	ts to make several
AJP 29(10),xiii	high vacuum epoxy joints	9C25.40	tubes. From J. Sci. Instr. 37,203 (1960): Techniques for making s vacuum joints with epoxy resin.	successful high
AJP 36(5),viii	vacuum lines and connections	9C25.40	Use thermoplastic polyethylene tubing and connectors with	h vacuum grease.
AJP 32(4),xv	cheap vacuum fittings	9C25.40	Standard plumbing "Flex Fittings" from Imperial-Eastman vacuum connectors.	work very well as
AJP 31(4),xiii	vacuum apparatus	9C25.40	Use Pyrex brand pipe and fittings for student high vacuum	experiments.
AJP 35(11),ix	vacuum feed through	9C25.41	Just use a spark plug.	
AJP 33(4),xxvi	vacuum electrical feed-throughs	9C25.41	High vacuum electrical lead-throughs good to 6000 V and diameter conductor.	up to 5/16 in

201101101101101	- Ensite graphily	•	
AJP 40(10),1550	vacuum electrical feed through	9C25.41	Use an automobile spark plug.
AJP 35(7),iv	vacuum seal	9C25.45	Use teflon tape.
	Air Support	9C30.00	•
AJP 43(9),840	air track flatness		A device for checking air track flatness.
AJP 35(3),281	cooling air for the air track	9C30.25	-
AJP 36(1),59	photograph the air track	9C30.26	Use a stroboscopic shutter on a Polaroid camera instead of "black box"
	F		timers for air track demonstrations.
AJP 47(9),825	flat air track	9C30.30	An air track made from 1 X 3 extruded aluminum tubing with discussion of
/101 11(0);020		0000.00	gliders, etc.
AJP 44(5),493	central blower and timer	9C30.30	6
AJP 39(3),340	improving the air track and table	9C30.30	Enlarge the holes with a No. 57 drill.
AJP 36(3),x	mobile air track	9C30.30	5
/101 00(0),/		0000.00	accessories.
AJP 30(11),839	making air tracks	9C30.30	Make air tracks out of standard 2" square extruded aluminum tubing.
TPT 28(9),618	long air track	9C30.30	Three air tracks are carefully combined into one 8.3 m track for a hall display.
			······································
Hil, M-15g	moving air tracks	9C30.30	Mount the air track on a table with castors. See AJP 36(3),x.
AJP 31(4),255	linear air trough	9C30.31	Long article on a linear air trough.
AJP 35(10),xi	crush proof springs for gliders	9C30.35	Back the spring with a post so it doesn't go beyond the elastic limit.
AJP 42(5),414	magnetic coupling at a distance	9C30.37	Magnet configurations used to couple air gliders at a distance.
AJP 29(10), xiv	modify Apparatus Drawings	9C30.40	Two minor modifications to the air suspended pucks of Apparatus Drawings
	Project No. 10		Project No. 10.
AJP 33(2),168	gas supported puck theory	9C30.40	In contrast to AJP 32,306,(1964), experimental gas layer thickness is within
/101 00(2),100	gao capportoa paole moory	0000.10	3% of theory.
AJP 32(4),306	air supported puck theory	9C30.40	An approximate solution of the Navier-Stokes equation for flow from the
			center of the puck.
AJP 36(11),1022	double floating puck	9C30.40	•
AJP 32(9),xiv	another dry ice puck design	9C30.40	A cylindrical puck with internal dry ice compartment.
AJP 28(7),670	air supported pucks	9C30.40	
			external and internal supplies.
AJP 32(5),xiii	dry ice puck base	9C30.40	Make a nonwarping plastic base for dry ice pucks.
AJP 41(3),355	gas supported pucks	9C30.40	A criterion for a stable design of CO2 supported pucks is developed.
AJP 32(9),xiv	an "airless" air puck	9C30.40	A plastic puck with a convex surface floated 60 ft. and stops when the speed
/ 10/ 02(0),/11			drops below a critical value.
Mei, 10-2	air supported pucks	9C30.40	How to make several different types of air supported pucks.
AJP 32(5),xiv	reproducible puck launching	9C30.41	A bifilar pendulum hits the puck.
AJP 36(5),vii	air table modifications	9C30.45	
AJP 36(11),1020	air table center bearing	9C30.45	
	5		table.
AJP 35(4),xv	air table	9C30.45	
AJP 36(11),1021	air table grid	9C30.45	Photographing a grid pattern before or after the experiment.
AJP 31(11),867	air table	9C30.45	Describing construction of the first air table, 18"x35".
AJP 37(9),857	transparent air table	9C30.46	A launcher and transparent air table for the overhead projector.
AJP 35(12),ix	transparent air table	9C30.46	Directions for making an air table for the overhead projector.
AJP 35(10),xii	seat for air gyro	9C30.50	Mold technique for making air gyro seats.
AJP 31(9),xii	air bearing	9C30.50	Announcement of the Ealing air bearing pulley.
	Ripple Tank	9C35.00	
AJP 54(11),1002	ripple tank - water depth	9C35.01	A study of the profiles of waves for different water depths.
F&A, Sm-1	ripple tank - general	9C35.01	The ripple tank.
Mei, 18-6.1	ripple tank - construction	9C35.10	Hints on building ripple tanks. Diagrams and pictures. Construction details in
			appendix, p. 626.
Mei, 18-6.5	ripple tank - construction	9C35.10	Ripple tank construction hints. Picture.
Mei, 18-6.2	ripple tank - construction	9C35.10	A mobile ripple tank illuminated by a strobe with air powered wave makers.
			Picture. Construction details in appendix, p. 631.
Sut, S-49	ripple tanks - general discussion	9C35.10	A long discussion on ripple tanks.
TPT 2(2),81	ripple tank - overhead projector	9C35.11	Design of a ripple tank for use on the overhead projector.
AJP 49(11),1079	ripple tank - driver	9C35.20	A ripple tank driver is make from a loudspeaker.
AJP 43(2),195	electric scissors generator	9C35.20	Convert a household electric scissors into a variable speed oscillator.
AJP 30(2),133	electric production of ripples	9C35.20	Water climbs a highly charged wire (5000-10,000 V AC) touching the
	· · ·		surface.
AJP 45(1),105	ripple tank waves	9C35.20	Mount a two tooth comb in an electric toothbrush.
F&A, Sm-3	ripple tank - plane waves	9C35.20	Simple plane waves of different frequencies on the ripple tank.
F&A, Sd-2	vibrating reed frequency meter	9C35.21	A 60 Hz reed frequency meter is observed with a strobe to show phase
			differences.
AJP 45(7),683	ripple tank wave generator	9C35.22	Use a loudspeaker to drive the ripple tank dippers.

July 2015

Equipment

Demonstration	Dibilography		
AJP 29(4),xiv	slow ripple tank waves	9C35.23	A layer of aniline under an equal layer of water gives waves that travel at 5 cm/sec. Discusses a few of the problems associated with aniline.
AJP 30(7),v	ripple tank strobe	9C35.30	Advice on adding a sectored disk strobe to your ripple tank.
Sut, S-9	Other mechanical vibrator	9C40.00 9C40.05	A SHM driver can be made from a old truck flywheel on bearings attached to a crank.
Sut, S-10	mechanical vibrator	9C40.05	Commercial motor driven mechanical vibrators are available.
Sut, S-11	mechanical vibrator	9C40.05	A heavy pendulum on a knife edge can be used to generate horizontal motion of periods from 1 to 10 seconds.
Sut, S-12	mechanical vibrator	9C40.05	A vibrator of fixed period is made from a clock motor.
Hil, S-4e	Macalaster-PSSC oscillator	9C40.05	An apparatus for many demonstrations in mechanical resonance.
AJP 42(10),914	cheese dish demonstration collection	9C40.10	Eighteen demonstrations of the "string and sticky tape" style that use a cheese dish.
AJP 34(12),xvi	microspheres	9C40.15	Small hollow glass bubbles ranging from 10 to 270 microns.
AJP 31(12),xiv	steam trap spheres	9C40.15	Use floats for steam traps in electrostatics demos. Available from 1 1/2" to 6" diameter.
	plantia halla, hamianharan ata	9C40.15	
AJP 29(8),iv	plastic balls, hemispheres,etc		Sources for plastic balls, hemispheres, and styrofoam balls (1961).
AJP 31(9),xi	hollow stainless balls	9C40.15	A source of hollow stainless balls from 5/8" to 10" diameter.
AJP 34(8),iii	labeling cables	9C40.17	Use ordinary white paper and heat shrink tubing.
AJP 29(11),xiv	stranded tungsten wire	9C40.17	Stranded tungsten wire from GE for use in vacuum metalizing.
AJP 34(5),ix	spinning thin metal	9C40.19	Use a teflon plug at the end of a spinning tool.
		9C40.19	
AJP 34(5),x	bluing steel by heat treatment	9040.19	Form a good corrosion resistant surface by heating to 299 C and quenching in mineral oil.
AJP 30(11),xvi	constant torque devices	9C40.20	Constant torque devices for providing constant tension to strings and cords in recording instruments.
AJP 31(11),xv	springs for harmonic motion	9C40.20	Wind springs from #22 piano wire 1 cm diameter, 5-6 cm long for spring
AJI JI(11), XV	springs for narmonic motion	3040.20	
			constants about 100,000 dyn/cm. Source: Hunter Springs, also make constant force springs.
AJP 40(12),1876	modified mass hanger	9C40.20	The masses don't fall off this mass hanger.
AJP 30(4),310	hooked weights	9C40.20	How to make small hooked weights out of lead.
TPT 3(7),320	storing Slinky	9C40.21	Store a Slinky around a #6 dry cell.
AJP 29(12),xvi	graphite-woven furnace fabric	9C40.22	Graphite cloth heating elements can release 1 Kw / sq in. Sources for the cloth and furnaces.
AJP 29(11),xiii	cercor ceramic structure	9C40.23	A thin walled cellular ceramic from Corning Glass that withstands 1000 C and great thermal shock.
AJP 30(10),xv	braided glass sleeving	9C40.23	This sleeving is suitable for insulating wires in high vacuum systems.
AJP 34(10),xvi	soft solder to tungsten wire	9C40.24	To soft solder a tungsten wire, first properly tin it.
AJP 38(6),776	soldering refractory metals	9C40.24	A method for coating tungsten, molybdenum, and tantalum with brazing
AJP 34(12),xv	plastic drive belts	9C40.25	metal before soldering with rosin core solder. A method for joining the ends of vinyl or Tygon tubing to make endless belts.
		0040.05	
AJP 36(3),x	modification of a Tesla leak tester		Add a pushbutton switch on the side of the probe.
AJP 34(5),ix	polyester film belts	9C40.25	Make an endless belt of mylar by stretching a cut circle. Also, splicing various polymers.
AJP 29(9),xviii	heat shrink tubing	9C40.26	Insulating tubing that shrinks on heating.
AJP 30(7),vi	teflon spagetti tubing	9C40.26	Describes thinwall teflon tubing.
. ,			
AJP 30(5),x	nylon fasteners	9C40.28	Source of fasteners made from nylon 6, a special cold flow plastic.
AJP 30(1),xvii	flexible rubber magnet	9C40.30	Quarter inch flexible magnet supports 40 g/inch.
AJP 29(8),iii	ceramic ring magnets	9C40.30	Source of ceramic ring magnets (1961).
AJP 28(8),x	gallium-indium eutectic	9C40.33	75% gallium - 25% indium (by weight) freezes at 15.5 C and wets many
AJP 34(7),viii	electroplating tape	9C40.35	semiconductor surfaces making low-resistance ohmic contact. Scotch brand pressure sensitive tape for electroplating works well for
			masking surfaces to be etched.
AJP 30(8),vi	liquid insulating tape	9C40.35	Paint this stuff on instead of using tape.
AJP 35(2),xix	vinyl foam tape	9C40.35	Foam tape with adhesive on both sides is more compliant than double sided tape.
AJP 35(7),iv	epoxy to steel balls	9C40.36	Clean steel ball bearings before using epoxy to fasten on a hook.
. ,			
AJP 30(5),x	conducting epoxy	9C40.36	Electrically conducting epoxy announcement.
AJP 31(2),xi	modified epoxy resins	9C40.36	Recipes for sand loaded epoxy, Cab-O-Sil loaded with note about stirring to destroy thixotropic property.
AJP 30(7),vi	silicone rubber adhesives	9C40.36	Some data on RTV.
AJP 31(1),xiv	Plexiglas adhesives	9C40.36	A three component Plexiglas cement, or moisten with chloroform and clamp.
AJP 31(4),xiv	more glues	9C40.36	Rez-n-glue for styrofoam. 3M EC-1368 thermosetting adhesive. 3M AF-42 can be cut to shape, clamped, and cured.
AJP 29(9),xviii	conducting epoxy cement	9C40.36	Silver filled epoxy cements, source and data.

AJP 29(12),xv	epoxy seals in Geiger-Muller tube construction	9C40.36	Anyone can make Geiger-Muller tubes with this simple method.	
AJP 34(12),xvi	epoxy dispenser	9C40.36	Mix epoxy and catalyst in a disposable syringe and then dispense.	
AJP 30(8),vi	white lubricating compound	9C40.37	A compound that lubricates to 1100 C and is a grease from -40 to 140 C.	
AJP 30(1),xviii	high temperature paint	9C40.38	An aluminum pigment paint for use between 500 and 1000 F.	
AJP 30(1),xviii	pressure sensitive paint	9C40.38	Pressure sensitive electrically conductive paint can be used between	
			conducting surfaces to make pressure transducers.	
AJP 30(4),xiii	spandle for glassblowing	9C40.40	A tool designed to simplify straight butt, T and V joint seals, and joining capillaries.	
AJP 35(7),iv	nonwetting glass surface	9C40.40	L-45, a silicone fluid from Union Carbide, makes glass nonwetting to	
			aqueous solutions.	
AJP 29(12),xvi	polish for acrylic and aluminum	9C40.40	X-109 polish (Chem-X Inc.) works well on plastics.	
AJP 28(8),x	low radioactivity glass	9C40.40	Corning Glass has a low radioactivity glass available in early 1961.	
AJP 30(2),xv	low temperature solder glasses	9C40.40	Some data on Schott solder glasses.	
AJP 30(6),vi	fused quartz products	9C40.40	Fused quartz springs, pans, fibers, and other products are available from the	
	ID entirel meterials report	0040 40	Worden Laboratory (1962).	
AJP 28(7),xiii	IR optical materials report	9C40.40	A report listing the optical and physical properties of fifty materials for use in IR optics.	
Hil, S-3h	large glass tube cutter	9C40.40	Loop a wire around a glass tube, heat it red hot electrically, pour on cold water.	
AJP 32(4),xvi	dry ice chest	9C40.41	Line a plywood chest with 4" of styrofoam.	
AJP 34(12),xv	dry ice from fire extinguisher	9C40.41	Discharge a fire extinguisher into a space covered with a towel.	
AJP 33(12),1090	foam liquid nitrogen container	9C40.41	Use a large foam bowl for a cheap unbreakable container.	
AJP 34(3),xxx	epoxy resin leak sealant	9C40.45	The Varian Associates "Torr-Seal".	
AJP 28(7),xiv	transparent electroconductive	9C40.45	Pointer to Rev.Sci.Instr.31,344(1960). Apply a thin oxide film to lead glass	
7.01 20(7),7.10	coating	00-10.40	with a resistance of 350 ohms/square, light transmittance of 75%.	
AJP 31(5),362	radioactive source	9C40.50	Irradiate sodium iodate 2hrs to get a radioisotope with a half-life of 25 min.	
AJP 42(3),254	determining equivalent focal length		A simple string method for determining the equivalent focal length of a lens.	
AJF 42(3),234	determining equivalent local length	9040.00	A simple suring method for determining the equivalent local length of a lens.	
AJP 43(12),1111	making curved slits	9C40.60	How to make slits for a double-prism non dispersive premonochromator.	
AJP 44(3),310	mobile optical table	9C40.60	A 3' x 4' aluminum plate with 2" hole spacing.	
AJP 29(4),xiv	micropositioners	9C40.60	There are micropositioners available for optics.	
AJP 49(1),88	making high quality pinholes	9C40.60 9C40.60	A short discharge from a pointed to a rounded electrode through a thin metal	
AJF 49(1),00	making high quality philoles	9040.00	foil produces some nice pinholes.	
AJP 35(5),x	making spatial filters	9C40.60	A spark from a tesla coil makes a hole in carbon paper or thin metal foil.	
AJP 40(2),294	making multilayer dielectric mirrors	9C40.60	Techniques for making multilayer mirrors tuned for HeNe laser work.	
AJP 41(1),138	eyepiece illuminator	9C40.60	Construct an inexpensive Gauss eyepiece illuminator from a neon pilot light	
			in a block of aluminum.	
TPT 28(9),606	cheap laser spirograph	9C40.60	Small DC motors with front silvered mirrors mounted on the shafts are use to	
			make a cheap spirograph.	
AJP 33(6),504	poor man's optical bench	9C40.61	Make a cheap optical bench out of round bar stock.	
AJP 29(2),x	fabricating triangular optical bench	9C40.61	A 5/8" hexagonal bar stock mounted on a 1 7/8" hexagonal bar stock gives a	
			bench similar to the Zeiss design.	
AJP 30(7),vi	electrothermal thermocord	9C40.64	A flexible heating cord good to 450 C at 5 W/inch.	
AJP 32(4),xv	resistor oven	9C40.65	Hollow wire wound resistors can be used as small ovens (insert mercury	
			thermocouple for calibration of thermocouple).	
AJP 36(4),x	simple linear heating rate oven	9C40.65	Design of a small oven.	
AJP 32(9),679	furnace for growing metal crystals	9C40.65	A simple furnace for growing metal crystals has produced a single crystal of	
			aluminum 2" in diameter and 5" high.	
AJP 32(1),xiii	low cost spot welder	9C40.66	Copper tongs, a six volt car battery, and some components are used to make	
			this spot welder.	
AJP 32(10),xiv	spot welder	9C40.66	Schematic for a simple condenser-discharge spot welder.	
AJP 52(5),468	interograph for integrals and areas	9C40.70	An interograph that produces both definite and indefinite integrals.	
		0040 70		
AJP 28(8),x	gauge blocks	9C40.70	Different nonstandard uses of gauge blocks, including feeling the attraction	
	profilemeter	0040 70	between two.	
AJP 56(9),857	profilometer	9C40.70	A shop drawing of a profilometer that is inexpensive, accurate, and can be	
	ahaan lah jart	0040.00	computer interfaced.	
AJP 40(11),1706	cheap lab jack	9C40.80	Modify a scissors type axle jack by adding metal plates top and bottom.	
AJP 37(4),456	adjustable platform	9C40.80	A simple adjustable platform that rides on two vertical rods.	
AJP 36(2),ix	pressure cell - 350 bar	9C40.81	Draw up some epoxy into a 0.05 ml Microliter syringe to seal the bottom and	
			lubricate the plunger with light vacuum oil.	

MECHANICS

1A Measurments

- 10 Basic Units
 - .10 basic unit set
 - .36 1 "nsec"
 - .38 body units
 - .45 WWV signal
 - .50 one liter cube
 - .55 mass, volume, and density
 - .60 Avogadro's number box
 - .65 mole samples
 - .70 density samples

20 Error and Accuracy

- .10 Gaussian collision board
- .20 coin flip
- .25 dice
- .50 weight judgment
- .60 reaction time

30 Coordinate Systems

- .30 polar coordinates
- .41 blackboard hemisphere

40 Vectors

- .14 vector components animation
- .20 folding rule
- .25 tinker toys
- .30 magnetic vector addition
- .31 vector addition (parallelogram)
- .33 vector addition (head to tail)
- Vernier Vector Addition II .35
- .40 resultant of vectors
- .70 vector dot products
- .75 vector cross products

60 Scaling

- .20 Scaling model for biological systems
- .30 2:1 scaling
- .40 scaling cube

1C MOTION IN ONE DIMENSION

- 10 Velocity
 - .27 velocity air track and glider
 - .30 approaching instantaneous velocity
 - .60 muzzle velocity
 - .65 muzzle velocity disc

20 Uniform Acceleration

- .12 hammer and feather on Moon
- .15 drop lead and cork balls
- .16 drop ball and paper
- .41 blinky track with graphs

30 Measuring g

- .15 little big ball dropper
- .20 big big ball dropper

- .35 earth moon system
- .50 air track pendulum glider
- .55 air track inchworm

50 Central Forces

- .15 arrow on a disc
- .20 whirligig
- .26 plane on a string
- .30 carnival ride model
- .45 penny on a coat hanger
- .48 balls on a propeller
- .50 Welch centripetal force
- .60 banked track
- .70 rolling chain
- **52 Deformation by Central Forces**
 - .20 water parabola
 - .21 rotating water troughs
 - .30 balls in water centrifuge
 - .35 water and mercury centrifuge
 - .40 rotating candle
 - .50 paper saw
 - .61 rotating rubber wheel
- 55 Centrifugal Escape
 - .11 the big omega
 - .20 grinding wheel
 - .23 spinning disc with water
 - .30 falling off the merry-go-round
- **60 Projectile Motion**
 - .05 ball to throw
 - .15 howitzer and tunnel on incline
 - .16 vertical gun on accelerated car
 - .50 parabolic path through rings
 - .55 parabolic trajectory on incline
 - .60 parabolic trajectory
- .65 water stream trajectory
- **1E RELATIVE MOTION**

20 Rotating Reference Frames

- .20 Foucault pendulum model
- .30 Foucault pendulum latitude model
- .50 rotating room
- **30 Coriolis Effect**
 - .10 draw the coriolis curve vertical
 - .11 draw the coriolis curve
 - .13 coriolis overhead transparency
 - .20 coriolis gun
 - .28 coriolis ball on turntable
- .50 rotating TV camera **1F NEWTON'S FIRST LAW**

- .40 falling drops
- .55 catch a meter stick

1D MOTION IN TWO DIMENSIONS

10 Displacement in Two Dimensions

- .10 ball in a tube
- .20 cycloid generator
- .40 mounted wheel
- .50 ball on the edge of a disc

15 Velocity, Position, and Acceleration

- .12 Hobbie film loop AAPT
- .15 kick a moving ball
- .30 catching the train
- .35 passing the train
- .40 Galileo's circle
- .41 sliding weights on triangle
- .50 brachiostochrone
- .55 triple track

40 Motion of the Center of Mass

- .15 loaded bolas
- .22 air table center of mass

.20 inertia bongs

10 Measuring Inertia

.25 foam rocks

.10 inertia balance

20 Inertia of Rest

.11 bowling ball inertia balls

.11 inertia balance - leaf spring

- .15 inertia block
- .20 smash your hand
- .22 hit the nail on the head
- .25 smash block on bed of nails
- .33 inertia cylinder
- .34 coin/card snap
- .36 pin and embroidery hoop
- .40 stick on wine glasses
- .50 shifted air track inertia

30 Inertia of Motion

- .21 water hammer
- .30 car on cart on cart
- .40 nail by hand
- .50 pencil and plywood

1G NEWTON'S SECOND LAW

10 Force, Mass, and Acceleration

- .11 constant mass acceleration system
- .15 roller cart and bungee loop

- .40 horizontal boom
- .55 human force table

deflect a rope

- .60 sail against the wind
- .70 sand in a tube

.16 strain gage

.20 accelerated car

.22 accelerated instructor

20 Accelerated Reference Frames

.76 suspended ball accelerometers

.85 acceleration pendulum cart

.20 mass on spring, on balance .30 hourglass on a balance

.25 acceleration block

.30 mass on a scale

.10 candle in a bottle

.30 leaky pail drop

.45 dropped slinky

30 Complex Systems

.20 ball in a thrown tube

.80 cart and elastic band

1H NEWTON'S THIRD LAW

.15 reaction air gliders

.20 Newton's sailboat

.11 stool on conveyor

10 Finding Center of Gravity

.30 liquid nitrogen cannon

.26 balance beam and bat

11 Exceeding Center of Gravity

.15 tipping block on incline

.11 topplings cylinders

.12 wood block stability

.15 block on the cylinder

.25 nine nails on one

.32 spoon on nose

.35 horse and rider

.55 broom stand

.70 double cone

.15 normal force

30 Resolution of Forces

.51 chair on a pedestal

.17 block on curved surfaces

.20 fork, spoon, and match

.46 tightrope walking model

.26 rope and three weights

.30 break a wire with a hinge

STATICS OF RIGID BODIES

.12 irregular object center of mass

.20 loaded beams - moving scales

.40 male and female center of gravity

20 Stable, Unstab., and Neut. Equillibrium

.25 helicopter rotor

11 Recoil

1J

10 Action and Reaction

.75 stand on an egg

40 Static Torque

.27

- .15 torque wrench
- .16 different length wrenches
- .21 hinge board
- .24 walking the plank
- .25 torque wheel
- .27 torque double wheel
- .30 opening a door
- .32 opening a trap door
- .45 Galileo lever
- .60 suspended ladder
- .65 hanging gate
- .70 crane boom
- .75 arm model

1K APPLICATIONS OF NEWTON'S LAW

10 Dynamic Torque

- .11 tipping blocks
- .25 forces on a ladder full scale
- .40 pull the bike pedal
- .41 traction force roller
- .42 extended traction force
- .50 rolling uphill

20 Friction

- .05 washboard friction model
- .42 friction roller
- .45 frictional force rotator
- .70 falling flask capstan
- .90 air track friction

30 Pressure

.20 pop the balloons

1L GRAVITY

- **10 Universal Gravitational Constant**
 - .20 Cavendish balance model
 - .50 gravitational field model

20 Orbits

- .36 film "Motion of Attracting Bodies"
- .40 conic sections
- .50 ellipse drawer
- .71 film "Planetary Motion and Kepler's Laws"

1M WORK AND ENERGY

10 Work

- .10 shelf and block
- .15 block on table
- .16 carry a block
- .25 pile driver with pop cans

20 Simple Machines

- .01 simple machine collection
- .11 pulley advantage
- .15 pulley and scales
- .25 monkey and bananas
- .35 big screw as incline plane
- .40 levers
- .45 body levers

30 Non-Conservative Forces

.10 air track collision/sliding mass

40 Conservation of Energy

- .23 reverse loop the loop
- .25 energy well track
- .30 ball in a trough
- .33 triple track
- .35 roller coaster
- .41 Beck ballistic pendulum
- .61 1-D trampoline
- .63 x-squared spring energy dependence
- .64 spring ping pong gun
- .65 height of a spring launched ball

.45 vertical catapult from moving cart

22 Rockets

- .15 rocket lift-off video
- .25 balloon rocket
- .30 CO2 cartridge rocket
- .33 rocket around the Moon
- .40 ball bearing rocket cart

30 Collisions in One Dimension

- .11 bowling ball collision balls
- .20 3:1 collision balls
- .30 air track collision gliders
- .33 equal and unequal mass air track collisions
- .55 elastic and inelastic model
- .65 double air glider bounce

40 Collisions in Two Dimensions

- .10 shooting pool
- .21 air table collisions unequal mass
- .22 air table collisions inelastic

1Q ROTATIONAL DYNAMICS

10 Moment of Inertia

- .20 torsion pendulum inertia
- .31 rolling bodies on incline
- .55 weary roller

.70 rigid and non-rigid rollers

20 Rotational Energy

- .15 flywheel and drum with weight
- .20 angular acceleration wheel
- .25 accelerate light and heavy pulleys
- .35 bike wheel on incline
- .51 bowling ball faster than "g"
- .55 pennies on a meter stick
- .60 falling meter sticks scaling
- **30 Transfer on Angular Momentum**

.15 pass bags o' rice

- .25 satellite de rotator
- .30 catch the bag on the stool

40 Conservation of Angular Momentum

- .23 centrifugal governor
- .25 pulling on the whirligig
- .40 train on a circular track
- .45 wheel and brake
- .50 pocket watch
- .60 sewer pipe pull
- .70 marbles and funnel
- .80 Hero's engine
- .82 air rotator with deflectors

.21 bike wheel on gimbals

.23 bike wheel precession

50 Gyros

.65 height of a spring launched ball	.24	walking the wheel	
.66 mechanical jumping bean	.30	MITAC gyro	
.67 spring jumper	.31	ride a gyro	
.75 obedient can	.35	gyro in gimbals	
.90 rattleback	.40	suitcase gyro	
.91 high bounce paradox	.60	gyrocompass	
50 Mechanical Power	.70	stable gyros	
.10 Pony brake	.72	ship stabilizer	
1N LINEAR MOMENTUM & COLLISIONS	60 Rotational Stability		

10 Impulse and Thrust

.10 collision time pendula

- .35 car crashes
- .40 auto collision videodisc
- .70 model rocket impulse
- .80 fire extinguisher thrust

20 Conservation of Linear Momentum

- .15 car on a rolling board
- .25 elastic band reaction carts
- **21 Mass and Momentum Transfer**
 - .20 catapult from cart to cart
 - .30 ballistic air glider
 - .40 drop sandbag on cart

- .15 humming top
- .37 billiard ball ellipsoid
- .40 tossing the book
- .45 tossing the hammer
- .50 spinning lariat, hoop, and disc
- .51 spinning rod and hoop
- .80 static/dynamic balance

1R PROPERTIES OF MATTER

10 Hooke's Law

- .20 strain gauge
- .25 pull on a horizontal spring
- .30 springs in series and parallel
- 20 Tensile and Compressive Stress
 - .11 elastic limits

30 Atmospheric Pressure

.15 Young's modulus

.20 bending beam

.25 sagging board .40 buckling tubes

.60 Bologna bottles

.10 shear book

.40 torsion rod

.20 crystal models

.45 crushing salt

2A SURFACE TENSION

.25 leaky boats

.40 crystal fault model

10 Force of Surface Tension

.21 floating metal sheet

.33 surface tension disc

.35 cohesion plates

.51 rubber balloons

.21 catenoid soap film

.35 capillary action

.30 mercury heart

2B STATICS OF FLUIDS

.25 Pascal's paradox

.32 chicken barometer

.50 Pascal's fountain

.61 two syringes

.30 weigh a water column

.62 hydraulic can crusher

.65 garbage bag blowup

.66 weight on a beach ball

.71 water/air compression

.70 compressibility of water

20 Static Pressure

15 Minimal Surface

20 Capillary Action

.30 surface tension balance

.40 drop soap on lycopodium powder

.80 charge and surface tension

.20 soap film minimal surfaces

.20 surface tension hyperbola

.10 surface tension boat propulsion

.15 pressure dependent on depth

.16 pressure vs. depth in water and alcohol

.34 hydrostatic paradox - truncated cone

30 Surface Tension Propulsion

.15 submerged float

FLUID MECHANICS

50 Crystal Structure

30 Shear Stress

.70 Prince Rupert's drops

- .05 lead bar
- .15 crush the soda can
- .25 crush the soda can with vacuum pump
- .33 Madgeburg hemisphere swing
- .34 Madgeburg tug-of-war
- .36 suction cups
- .40 soda straw contest
- .55 adhesion plates

.70 vacuum bazooka

35 Measuring Pressure

- .10 mercurv barometer
- .15 barometer in a tall bell jar
- .40 aneroid barometer

40 Density and Buoyancy

- .14 buoyant force
- .15 finger in beaker
- .18 board & weights
- .25 battleship in a bathtub
- .27 ship pictures full & empty
- .35 hydrometers

- .42 buoyancy balloon
- .43 helium balloon in a glass jar
- .44 helium balloon in liquid nitrogen
- .45 weight of air
- .53 water and mercury "U" tube
- .54 buoyancy in various liquids
- .56 floating square bar
- .59 density ball
- .60 hydrometer
- .61 different density woods

60 Siphons, Fountains, and Pumps

- .10 Hero's fountain
- .20 siphon
- .40 Mariotte flask and siphon
- .60 hydraulic ram
- .75 lift pump

2C DYNAMICS OF FLUIDS

- **10 Flow Rate**
- .26 syringe water velocity
- 20 Forces in Moving Fluids
 - .25 pitot tube
 - .36 ball in a stream of water
 - .44 coin in cup
 - .50 airplane wing
 - .70 Bjerknes' tube
 - .80 Flettner rotator

30 Viscosity

- .10 viscosity disc
- .25 viscosity of oil
- .55 ball drop
- .65 terminal velocity coffee filters
- 40 Turbulent and Streamline Flow
 - .10 streamline flow
 - .25 Poiseuille flow
 - .50 laminar and turbulent flow
- **50 Vorticies**
 - .15 vortex cannon
 - .20 liquid vortices
 - .30 tornado tube
 - .35 flame tornado

60 Non Newtonian Fluids

- .20 density balls in beans
- .30 cornstarch
- .35 slime ball
- .40 silly putty
- .55 ketchup uzi

OSCILLATIONS AND WAVES

- **3A OSCILLATIONS**
- 10 Pendula
 - .14 4:1 pendulum
 - .17 different mass pendula

- **60 Driven Mechanical Resonance**
 - .31 resonant driven pendula
 - .35 bowling ball pendula resonance
 - .40 driven mass on spring
 - .43 driven spring weight
 - .44 drunken sailor
 - .55 driven torsion pendulum
 - .60 upside-down pendulum (driven)
 - .70 lamppost resonance
- **70 Coupled Oscillations**
 - .15 swinging mass on a spring
 - .27 spring coupled physical pendula
 - .30 string coupled pendula
 - .40 inverted coupled pendula
 - .45 coupled masses on springs
 - .50 oscillating magnets

75 Normal Modes

- .30 masses on a string
- .40 bifilar pendulum modes
- 80 Lissajous Figures
 - .10 Lissajous sand pendulum
 - .40 Lissajous figures laser
- 95 Non-Linear Systems
 - .10 water relaxation oscillator
 - .20 wood block relaxation oscillator
 - .33 pendulum with large amplitude
 - .38 periodic non-simple harmonic motion
 - .45 amplitude jumps
 - .50 chaos systems
 - .60 parametric resonance
 - .70 pump a swing
- .80 parametric instability

3B WAVE MOTION

- **10 Transverse Pulses and Waves**
 - .05 the wave transverse
 - .15 tension dependence on wave speed
 - .16 speed of torsional waves
 - .17 speed of a slinky pulse
 - .18 speed of pulses on ropes
 - .25 standing pulse
 - .40 Kelvin wave apparatus
 - .75 pendulum waves

20 Longitudinal Pulses and Waves

.35 longitudinal wave machine .60 speed of particles vs. waves

- .05 the wave longitudinal
- .20 longitudinal wave on air track
- .30 longitudinal wave model (PASCO)
- .40 variable g pendulum

15 Physical Pendula

- .30 paddle oscillator
- .45 oscillating lamina
- .57 sweet spot of a meter stick
- .70 Kater's pendulum

20 Springs and Oscillators

- .20 springs in series and parallel
- .35 air track gliders between springs
- .40 roller cart and springs
- .50 oscillating chain

40 Simple Harmonic Motion

- .25 ball on track vs. pendulum
- .30 arrow on the wheel
- .35 SHM slide
- .41 tuning fork with light
- .50 strain gauge SHM
- .65 phase shift disc
- **50 Damped Oscillators**
 - .20 damped SHM tracer
 - .45 oscillating guilotine

- .15 three tensions standing waves
- .40 vertical vibrating bar

.70 Crova's disc

22 Standing Waves

- .50 slinky standing waves
- .60 longitudinal standing waves
- .70 soap film oscillations
- .90 crank slide
- **25 Impedance and Dispersion**
 - .20 reflection shive model
 - .25 spring wave reflection
 - .26 fixed and free rope reflection
 - .30 effect of bell
 - .35 acoustic coupling with speaker
 - .40 soundboard
 - .50 dispersion in a plucked wire
 - .55 space phone (spring horn toy)

27 Compound Waves

- .10 slinky and soda cans
- .15 wave superposition Shive model
- .20 adding waves apparatus
- .30 double pendulum beat drawer
- **30 Wave Properties of Sound**
 - .40 speaker and candle

.55 distinguishing harmonics with the ear

.15 mechanical square wave generator

.40 harmonic tones (vibrating string)

.70 wave analysis (PASCO filter)

.30 loudness (phones and sones)

.80 spectrum analyzer

.45 bubbles and bugle

33 Phase and Group Velocity

.55 sound velocity at different temperatures

.30 parabolic reflector and sound source

.60 speed of sound in rod and air

35 Reflection and Refraction (Sound)

.20 refraction prism - CO2

39 Transfer of Energy in Waves

.10 water wave model

.15 Doppler whistle

.25 Doppler reed

.30 Doppler beats

.30 solition tank

.40 tsunami tank

.60 refraction of water waves

.15 shock waves in ripple tank

.20 pop the champagne cork

50 Interference and Diffraction

.55 interference model

.60 diffraction fence

.11 beat bars

.30 siren disc

3C ACOUSTICS

10 The Ear

20 Pitch

.15 beat whistles

.40 ripple tank beats

.10 model of the ear

.40 Savart's wheel

.35 hearing - 3dB

30 Intensity and Attenuation

.21 dB meter and horn

50 Wave Analysis and Synthesis

.50 noise (pink and white)

.35 resonance tube spectrum

60 Beats

.25 ripple tank - double slit

.50 double slit transparency

55 Interference & Diffraction of Sound

.55 diffraction pattern of a piston

.50 helium talking

.65 music box

.20 two combs

.10 gas lens

.20 dominoes

40 Doppler Effect

45 Shock Waves

55 Music Perception and the Voice

- .20 pitch of complex tones
- .25 missing fundamental
- .30 difference tones
- .35 beats vs. difference tones
- .40 chords
- .45 consonance and dissonance
- .55 tuning forks on resonance boxes
- .70 tone quality
- .74 keyboard and oscilloscope
- .80 formants
- .85 filtered music and speech

INSTRUMENTS 3D

20 Resonance in Strings

- .20 modes of string oscillation on scope
- .21 guitar and scope
- .50 Aeolian harp

22 Stringed Instruments

.10 violin

.20 cigar box cello

30 Resonance Cavities

- .15 resonance tube with piston
- .16 horizontal resonance tube
- .40 Hemholtz resonators
- .74 variable hoot tubes

32 Air Column Instruments

- .10 organ pipes
- .20 organ pipes with holes
- .25 open and closed end pipes
- .30 slide whistle
- .40 demonstration trumpet
- .45 PVC instruments

40 Resonance in Plates, Bars, Solids

- .10 xylophone
- .11 rectangular bar oscillations
- .12 high frequency metal bars
- .15 musical sticks
- .16 musical nails
- .33 thick Chladni plate
- .35 flaming table
- .45 bubble membrane modes
- .50 musical goblet
- .65 bull roarer

46 Tuning Forks

- .16 tuning fork
- .22 adjustable tuning fork

3E SOUND PRODUCTION

- 10 Audio Systems
 - .10 audio cart complete audio system
- 20 Loudspeakers
 - .20 crossover network for speakers
- 80 Digital Systems
 - .10 CD with holes
 - THERMODYNAMICS

4A THERMAL PROPERTIES OF MATTER

- **10 Thermometry**
 - .15 mercury thermometer
 - .20 Galileo's thermometer
 - .50 cholesteric liquid crystals
- 20 Liquid Expansion
- .30 maximum density of water
- **30 Solid Expansion**
 - .11 thermostat model
 - .15 wire coil thermostat Zig's model
 - .40 hopping discs
 - .50 expansion of quartz and glass
 - .80 heat rubber bands

- .30 Leidenfrost effect
- .35 finger in hot oil
- .40 reverse Leidenfrost
- .60 greenhouse effect

60 Mechanical Equivalent of Heat

- .11 invert tube of lead
- .15 hammer on lead
- .20 copper barrel crank
- .50 bow and stick
- .70 cork popper
- **70 Adiabatic Processes**
 - .25 pop the cork cooling

4C CHANGE OF STATE

20 Phase Changes: Liquid-Solid

- .10 supercooled water
- .55 heat of solution
- .60 heat of crystallization

30 Phase Changes: Liquid-Gas

- .15 boiling at reduced pressure
- .25 geyser
- .30 helium and CO2 balloons in liquid N2
- .35 liquid nitrogen in a balloon
- 31 Cooling by Evaporation
 - .20 freezing by evaporation
- 32 Dew Point and Humidity
 - .10 sling psychrometer
 - .40 condensation nuclei
- 33 Vapor Pressure
 - .10 vapor pressure in barometer
 - .20 addition of vapor pressures
 - .30 vapor pressure curve for water

40 Sublimation

- .15 blow up balloon with CO2
- 45 Phase Changes: Solid Solid
 - .10 phase change in iron
 - .30 polymorphism

50 Critical Point

- .20 critical opalescence
- .40 triple point of water cell

4D KINETIC THEORY

10 Brownian Motion

- .20 Brownian motion simulator
- .30 colloidal suspension
- .40 Dow spheres suspension
- 20 Mean Free Path
 - .20 mean free path and pressure
 - .30 mean free path pin board
- 30 Kinetic Motion

40 Properties of Materials at Low

Temperatures

- .20 mercury hammer
- .35 cool rubber band
- .40 viscous alcohol

4B HEAT AND THE FIRST LAW

10 Heat Capacity and Specific Heat

- .15 water and oil in a hot plate
- .30 melting wax
- .60 Clement's and Desormes' experiment
- .70 elastic properties of gases

20 Convection

- .20 two chimney convection box
- .25 convection chimney with vane
- .30 convection chimney with confetti
- .40 convection currents projected
- .50 Bernard cell

30 Conduction

- .12 conduction melting wax
- .20 painted rods
- .25 four rods heat conduction
- .30 copper and stainless tubes
- .35 toilet seats
- .50 heat propagation in a copper rod

40 Radiation

- .30 Leslie's cube
- .40 two can radiation
- .50 selective absorption and transmission
- .60 black and white thermometers

50 Heat Transfer Application

.11 big kinetic motion apparatus

- .21 equipartition of energy simulator
- .22 pressure vs. column simulator
- .23 free expansion simulation
- .24 temperature increase simulation
- .40 glass beads
- .60 flame tube viscosity
- 40 Molecular Dimensions
 - .10 steric and oleic acid films
- 50 Diffusion and Osmosis
 - .20 diffusion through porcelain
 - .45 bromine diffusion
 - .50 bromine cryophorus
 - .60 diffusion in liquids CuSO4
- .80 osmosis simulator

4E GAS LAW

- **10 Constant Pressure**
 - .11 thermal expansion of air
- 20 Constant Temperature
 - .15 syringe and pressure gauge
 - .30 Boyle's law with tap pressure
 - .40 balloon in a vacuum
- 30 Constant Volume

10 Capacitors

10 Electric Field

20 Gauss' Law

5B

5C

.21 battery and separable capacitor

.20 constant volume thermometer

ENTROPY AND THE SECOND LAW

ELECTRICITY AND MAGNETISM

4F

10 Entropy

30 Heat Cycles

.20 balls in a pan

.60 Nitinol engine

5A ELECTROSTATICS

.30 electret

20 Coulomb's Law

.37

.70 rubber band engine

10 Producing Static Charge .15 triboelectric series

.35 equal and opposite charges

electrostatic rod and cloth

.40 mercury-glass charging wand

.55 heating and cooling tourmaline

.32 electrostatic spheres on air table

.50 cyrogenic pyroelectricity

.30 mvlar balloon electroscope

.25 soft drink can electrosope

.15 acrylic and aluminum bars

.15 electroscope charging by induction

.60 electrostatic generator principles

.50 Franklin's electrostatic machines

.15 Faraday's ice pail on electroscope

.31 electroscope in a cage/Wimshurst

ELECTRIC FIELDS AND POTENTIAL

.50 Kelvin electrostatic voltmeter

.28 beer can pith balls

22 Electrostatic Meters

.70 electrometer

40 Induced Charge

.80 electric field mill

50 Electrostatic Machines

.26 electrified strings.30 electric chimes

30 Conductors and Insulators

.25 paper sticks on board

.15 Toepler-Holtz machine

.31 Van de Graaff principles

.70 rubber sheet field model

.40 refrigerator

- .30 dependence of capacitance on area
- .35 rotary capacitor

30 Electrostatic Potential

.20 charged ovoid

CAPACITANCE

20 Dielectric

- .17 helium dielectric
- .20 force on a dielectric
- .25 attraction of charged plates
- .35 bound charge
- .60 displacement current

30 Energy Stored in a Capacitor

- .10 Leyden jar and Wimshurst
- .15 exploding capacitor
- .35 lifting weight with a capacitor
- .40 series/parallel Leyden jars
- .42 series/parallel capacitors
- .50 Marx and Cockroft-Walton
- .60 residual charge

5D RESISTANCE

10 Resistance Characteristics

.50 current model with Wimshurst

20 Resistivity and Temperature

- .15 flame and liquid nitrogen
- .50 thermistors

30 Conduction in Solutions

- .13 salt water string
- .20 migration of ions
- .30 pickle glow

40 Conduction in Gases

- .20 conduction of gaseous ions
- .30 ionization by radioactivity
- .40 conduction from a hot wire
- .42 thermionic emisson
- .50 neon bulb
- .80 x-ray ionization

5E ELECTROMOTIVE FORCE &

CURRENT

- 30 Plating
 - .10 copper flashing of iron
 - .40 silver coulomb meter

40 Cells and Batteries

- .20 voltaic cell
- .75 weak and good battery

50 Thermoelectricity

.60 Peltier effect

60 Piezoelectricity

- .25 piezoelectric gun
- .30 stress vs. voltage
- .40 piezoelectric speaker

5F DC CIRCUITS

10 Ohm's Law

- .15 water Ohm's law analog
- .20 potential drop along a wire
- .25 potential drop with Wimshurst

15 Power and Energy

- .10 electrical equivalent of heat
- .30 fuse with 30 V lamp
- .40 voltage drops in house wires
- .45 IR2 losses

20 Circuit Analysis

- .20 superposition of current
- .25 reciprocity
- .30 potentiometer
- .40 Wheatstone bridge
- .45 light bulb Wheatstone bridge
- .51 light bulb board 12 V
- .55 series and parallel resistors
- .60 equivalent resistance

30 RC Circuits

.15 RC time constant on galvanometer

40 Hysteresis

.50 hysteresis waste heat

45 Magnetostriction and Magnetores

- .10 magnetorestrictive resonance
- .30 magnetorestriction of nickel wire
- .70 magnetoresistance

50 Temperature and Magnetism

- .15 Curie nickel
- .20 thermomagnetic motor
- .25 dysprosium in liquid nitrogen

5H MAGNETIC FIELDS AND FORCES

10 Magnetic Fields

- .50 area of contact
- .55 gap and field strength
- .60 shunting magnetic flux

.61 magnetic shielding

.65 magnetic screening

15 Fields and Currents

- .13 right hand rule
- .15 Biot-Savart law animation
- .20 parallel wires and iron filings
- .25 anti-parallel wires and iron filings

20 Forces on Magnets

- .15 snap the lines of force
- .23 centrally levitating magnets
- .24 linearly levitating magnets
- .30 inverse square law
- .35 inverse square law balance
- .40 inverse fourth law dipoles
- .50 inverse seventh law magnet/iron

25 Magnet/Electromagnet Interaction

- .10 magnet in a coil
- .20 jumping magnet
- .25 force on a solenoid core

30 Force on Moving Charges

- .15 bending an electron beam
- .25 magnetic mirror
- .30 rotating plasma
- .50 electromagnetic pump
- .55 ion motor
- 40 Force on Current in Wires
 - .23 filament and magnet with AC/DC
 - .25 dancing spiral
 - .35 jumping wire coil
 - .36 long wire in field
 - .70 Ampere's motor

50 Torques on Coils

- .20 force on a current loop
- .50 series and parallel capacitors
- .60 neon relaxation oscillator

40 Instruments

- .10 sensitivity and resistivity of a
- galvanometer
- .20 galvanometer as an ammeter and
- voltmeter
- .21 loading by voltmeter

5G MAGNETIC MATERIALS

10 Magnets

- .15 lodestone
- .16 lodestone suspended
- .30 Which is a magnet?
- .50 lowest energy configuration of magnets

20 Magnet Domains & Magnetization

- .45 induced magnetic poles
- .60 magnetization by current
- .61 magnetization by contact
- .62 demagnitization by hammering
- .71 electromagnet
- .72 large electromagnet
- .73 magnetically suspended globe
- .75 retentivity

30 Paramagnetism and Diamagnetism

- .15 pull the sample
- .20 paramagnetism of liquid oxygen

- .25 short and long coils in field
- .35 dipole loop around long wire
- .45 spinning coil over magnet

5J INDUCTANCE

10 Self Inductance

.30 back EMF - spark

5K ELECTROMAGNETIC INDUCTION

10 Induced Currents and Forces

- .16 tape head model
- .21 10/20/40 coils with magnet
- .40 induction coils with core
- .48 current coupled pendula
- .65 jumping rope
- .70 What does a voltmeter measure?

20 Eddy Currents

- .15 Eddy damped pendulum
- .20 falling aluminum sheet
- .42 Arago's disk
- .50 rotating ball
- .65 electromagnetic can breaker

30 Transformers

.13 salt water string

.22 aluminum foil reflection.25 ripple tank reflection

.18 microwave reflection

10 Reflection From Flat Surfaces

.11 optical disk with flat mirror

.30 vertical transformer

.60 reaction of a secondary on primary

SEMICONDUCTORS AND TUBES

.20 special purpose discharge tubes

.20 model transmission line - phases

.50 IR camera and remote control device

5N ELECTROMAGNETIC RADIATION

10 Transmission Lines and Antennas

.55 microwave standing waves

.10 model transmission line

30 Electromagnetic Spectrum

.52 IR control devices

6A GEOMETRICAL OPTICS

02 Straight Line Propagation

.10 light in a vacuum

.35 chalk dust

.20 speed of light - two path

.30 speed of light - rotating mirror

.15 straight line propagation - shadows

.35 light underwater

40 Motors and Generators

.15 Faraday motor

.83 bicycle generator

.45 coupled motor/generator

.85 generator slowed by load

.20 capacitive impedance

.30 capacitive reactance

.18 driven LRC circuit

.10 glow discharge

.15 HV line model

20 Tesla Coil

.40 Tesla Coil

OPTICS

01 Speed of Light

.71 brillouin/compass array .90 transistor amplifier

.40 weld a nail

.10 DC motor

5L AC CIRCUITS

20 LCR Circuits - AC

10 Semiconductors

.50 diode

20 Tubes

10 Impedance

5M

- .31 large corner cube
- .37 parity reversal in a mirror
- .65 half silvered mirror box

20 Reflection from Curved Surfaces

- .11 optical disc with curved mirrors
- .20 spherical abberation in a mirror
- .35 optic mirage
- .41 projected filament with mirror
- .60 energy at a focal point

40 Refractive Index

- .40 variable index of refraction tank
- .45 mirage
- .50 oil, water, laser
- .60 Schlieren image
- .70 short beer

42 Refraction at Flat Surfaces

- .11 optical disk with glass block
- .21 Nakamara refraction tank
- .30 refraction model rolling

- .35 ripple tank refraction
- .43 light in a tank
- .47 acrylic/lead glass refraction
- .50 minimum angle of deviation
- .51 three prism stack
- .55 paraffin prism and microwaves

44 Total Internal Reflection

- .11 optical disk with prism, semicircle
- .25 Snell's wheel
- .30 ripple tank total internal reflection
- .41 optical path in fibers
- .42 steal the signal
- .45 water stream light pipe
- .55 black ball turns silver

46 Rainbow

- .20 rainbow model
- .30 optical disc with spherical lens

60 Thin Lens

- .11 optical disk with thin lens
- .16 ripple tank concave lens
- .31 projected arrow with lens
- .35 lens magnification
- .45 position of virtual image
- .60 paraffin lens and microwaves
- 61 Pinhole
 - .10 pinhole projection
- 65 Thick Lens
 - .15 optical disc circular glass plate
 - .31 off axis distortion
 - .35 astigmatism and distortion
 - .52 fillable air lens
 - .70 Frensel lens

70 Optical Instruments

.35 projector model

6B PHOTOMETRY

10 Luminosity

- .20 inverse square law with photometer
- .35 grease spot photometer
- .40 Rumford shadow photometer
- .50 frosted globe surface brightness
- .55 frosted globes
- 30 Radiation Pressure
- .10 radiometer quartz fiber

40 Blackbodies

- .25 carbon block
- .26 carbon rod
- .40 X-Y spectrum recorder
- .41 IR spectrum on galvanometer
- .45 IR camera and projected spectrum
- .50 IR camera and soldering iron
- FF must set an estimate and share

- 30 Thin Films
- .60 interference filters

40 Interferometers

.15 interference fringes with audio

6F COLOR

- 10 Synthesis and Analysis of Color
 - .25 spinning color disc
 - .30 recombining the spectrum
 - .33 purity of the spectrum
 - .45 complementary shadow
 - .75 colors in spectral light

30 Dispersion

.10 dispersion curve of a prism

40 Scattering

- .20 optical ceramics scattering
- .50 microwave scattering

6H POLARIZATION

- 10 Dichroic Polarization
- .40 polaroids cut at 45 degrees

20 Polarization by Reflection

- .15 microwave Brewster's angle
- .30 Brewster's cone
- **30 Circular Polarization**
 - .70 microwave optical rotation
 - .80 Faraday rotation

35 Birefringence

- .15 calcite and Polaroid on overhead
- .17 plexiglass birefringence
- .45 half wave plate
- .53 butterfly, etc
- .65 LCD element between polaroids

50 Polarization by Scattering

- .30 depolarization by diffuse reflection
- .90 Haidinger's brush

6J THE EYE

10 The Eye

- .30 blind spot
- .40 inversion of image of retina
- .80 resolving power of the eye
- .81 resolving power with TV

11 Physiology

10 Holography

20 Physical Optics

- .10 retinal fatigue color disc
- .20 visual fatigue
- .30 persistence of vision
- .50 impossible triangles

.20 in class holograms

- .70 color blindness 6Q MODERN OPTICS
- .55 project spectrum and change temperature

6C DIFFRACTION

10 Diffraction Through One Slit

- .12 Cornell plate single slit
- .20 two finger slit
- .30 slit on photodiode array
- .50 microwave diffraction

20 Diffraction Around Objects

- .22 shadow of a needle
- .40 zone plate lens

6D INTERFERENCE

10 Interference From Two Sources

- .05 interference model
- .11 Cornell plate two slit
- .15 double slit on X-Y recorder
- .17 double slit on photo diode array
- .20 microwave two slit interference
- .25 microwave two source interference
- .35 ripple tank incoherence

20 Gratings

- .56 regular and irregular patterns
- .59 random multiple gratings

.10 Abbe demonstrations

MODERN PHYSICS 7A QUANTUM EFFECTS

10 Photoelectrics Effects

- .12 photoelectric charging
- .15 discovery of the photoelectric effect
- .35 photoelectric threshold
- .40 solar cells
- .50 photo conduction vs. thermopile
- .60 carrier recombination and lifetime

15 Millikan Oil Drop

- .10 Millikan oil drop
- .20 Millikan oil drop model

50 Wave Mechanics

- .30 vibrating soap film
- .50 complementary rule
- .90 Mermin's Bell theorem boxes

55 Particle/Wave Duality

- .10 wave/particle sound analogy
- .15 wave/particle model with dice

.20 dominoes chain reaction

.15 match chain reaction

.45 electrical analog of decay

dice on the overhead

.20 single photon interference

60 X-ray and Electron Diffraction

.30 electron "Poisson spot"

.60 ripple tank Bragg diffraction

.10 Josephson junction analog

.20 Josephson effect simple demo

.15 line spectra with large grating

.25 flame absorption projected

.30 mercury vapor shadow

.60 band absorption spectra

.40 UV spectrum by fluorescence

.25 Stern-Gerlach crystal model

.10 ionization potential of mercury

.10 discharge at low pressures

.20 half life with isotope generator

.30 contamination by neutron source

.15 Zeeman - sodium flame in magnet

.40 filtered spectrum

13 Resonsance Radiation

.55 luminescence

30 Ionization Potential

35 Electron Properties

.40 Maltese cross

.75 plasma tube

7D NUCLEAR PHYSICS

.25 radon in the air

.55 coin toss half life

.80 cosmic rays

20 Nuclear Reactions

10 Radioactivity

.50

.50

paddle wheel

20 Fine splitting

.05 triboluminescence

.45 Mossbauer model

.40 excited states model

.20 sodium vapor beam

.40 field emission electron microscope

.20 diffraction model

.90 x-ray diffraction

70 Condensed Matter

7B ATOMIC PHYSICS

.11 flame salts

10 Spectra

11 Absorption

.95 sample x-ray tube

.30 F-center diffusion

.20 project spectral lines

30 Particle Detectors

- .05 Ludlum Detectors
- .10 nixie Geiger counter
- .15 thermal neutron detector
- .25 spark chamber

40 NMR

.10 NMR gyro model

50 Models of the Nucleus

- .20 Rutherford scattering animation
- .30 Thompson model
- .46 mass defect

7E ELEMENTARY PARTICLES

10 Misc.

.20 fundamental particles software

7F RELATIVITY

- 10 Special Relativity
 - .10 Lorentz tranformation machine
 - .20 flow ripple tank twin source
 - .25 foam rubber roller
- .66 Majestic clockwork

ASTRONOMY

8A PLANETARY ASTRONOMY

- 05 Historical Astronomy **10 Solar System Mechanics** .35 local zenith **20 Earth - Moon Mechanics** .70 pinhead earth **30 Views from Earth** .10 horizon astronomy model .20 Cinhelium 35 Views from Earth - 2 **40 Planetary Properties** .10 globes **50 Planetary Properties - 2** 60 Planetary Properties - 3 70 Planetary Properties - 4 80 Planetary Properties - 5 .20 comet orbit **8B STELLAR ASTRONOMY** 10 The Sun 20 Stellar Spectra **30 Stellar Evolution** .10 stellar magnitude simulator .40 variable star simulation
 - .65 pulsar model
 - .70 pulsar recording
 - .95 forward and backward scattering
- **40 Black Holes**
 - .20 black hole surface
- **50 Stellar Miscellaneous**

8C COSMOLOGY

- **10 Models of the Universe**
 - .35 inflating balloon
 - .37 expanding universe on white board
 - .40 bubble universe
 - .50 galaxy model

20 Gravitational Effects

- .10 Klein bottle
- .20 Moebius strip
- .30 saddle shape

8D MISCELLANEOUS

10 Miscellaneous

8E ASTRONOMY TEACHING

TECHNIQUES

30 Astronomy Teaching Techniques

EQUIPMENT

- **9A SUPPORT SYSTEMS**
- **10 Blackboard Tools**
 - .10 compass

38 Video & Computer Projection

- .10 TV table (color) .11 TV table (B&W) .15 tripod TV (color) .16 tripod TV (B&W) .17 tripod TV (IR) .20 video projector
- .21 LCD panel
- .22 color LCD panel
- .25 classroom monitors
- .26 monitor on cart
- .30 video disc
- .40 VHS tape deck
- .45 3/4" tape deck
- .50 IBM clone
- .65 Mac

9B ELECTRONIC

- 60 Light Sources
 - .10 eosin mister

- .12 protractor
- .31 angle templates
- .35 sine wave templates

20 Audio

- .10 wireless microphone
- .11 multiple wireless microphones
- .15 cord microphone
- .16 multiple cord microphones
- .20 CD player
- .30 audio cassette
- .40 phonograph
- .50 reel to reel

30 Slide Projectors

- .05 mobile screen
- .10 35 mm projector
- .11 two 35 mm projectors
- .15 35 mm to go
- .20 lantern projector

34 Film Projectors

- .10 16 mm projector
- .20 film loop projector
- .30 super 8 projector
- .35 8 mm projector
- .40 film strip projector

36 Overhead Projectors

- .10 overhead projector
- .15 two overhead projectors
- .30 write on film rolls